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ABSTRACT. In this paper we study a singular perturbation of an asymptoti-
cally convergent operator C0-semigroup, and describe the spectral behaviour
and a power series expansion of the perturbed semigroup. As an application
of our results we obtain the description of the asymptotic behaviour of the so-
lutions to a nonhomogeneous singularly perturbed differential equation in a
Banach space, extending the matrix results of S. Campbell and previous results
of the present authors.
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1. INTRODUCTION AND PRELIMINARIES

The main aim of this paper is to investigate a singular perturbation of a C0-
semigroup T(t) by replacing its infinitesimal generator A by ε−1 A + B, where
ε > 0 and B is a bounded linear operator, under the assumption that T(t) → P in
the operator norm.

In Section 2 we describe the spectral behaviour of the perturbed semigroup
Sε(t) with the generator ε−1 A + B, using this in Section 3 to obtain a power series
expansion for Sε(t) in the powers of ε. In the last section we study the asymptotic
convergence of the solution of the singularly perturbed differential equation

ε
duε(t)

dt
= (A + εB)uε(t) + f (t), t > 0,

uε(0) = x, ε > 0.
(1.1)

In the case that A and B are finite matrices, this equation has been studied by
Campbell in his monograph [1], who also obtained a power series expansion for
exp((ε−1 A + B)t) (in his notation A and B are interchanged). The homogeneous
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version of the problem was studied by the authors in [3] for the case when A
and B are bounded linear operators, and in [5] for the case of C0-semigroups.
The nonhomogeneous version was investigated in [4] for the special case B = 0.
An explicit description of the asymptotic behaviour of the solutions for the case
of a C0-semigroup was made possible by the introduction of the concept of the
g-Drazin inverse of a closed linear operator by the present authors in [4].

By C(X) we denote the space of all closed linear operators A with domain
and range in X; D(A), N (A) and R(A) denote the domain, nullspace and range
of A, respectively. If A, B ∈ C(X), we write A ⊂ B to mean that Γ(A) ⊂ Γ(B),
where Γ(T) is the graph of T ∈ C(X). By B(X) we denote the set of all A ∈ C(X)
withD(A) = X; by the closed graph theorem, the operators in B(X) are bounded
on X. An operator A ∈ C(X) is invertible if there exists an operator B ∈ B(X) such
that BA ⊂ AB = I; A−1 = B is the inverse of A.

If A ∈ C(X), then ρ(A) denotes the resolvent set of A, that is, the set of
all λ ∈ C such that λI − A is invertible. The complement of ρ(A) in C is the
spectrum σ(A) of A. The extended spectrum σe(A) of A is equal to σ(A) if A ∈
B(X) and to σ(A) ∪ {∞} otherwise. For λ ∈ ρ(A), R(λ; A) denotes the resolvent
operator (λI− A)−1 of A; the closed graph theorem ensures that R(λ; A) is always
bounded.

Let A ∈ C(X) with σ(A) 6= C. Then a subset σ of σe(A) is called an isolated
spectral set of A if it is both open and closed in the relative topology of σe(A) as a
subset of C ∪ {∞}. A singleton {µ} is an isolated spectral set of A if and only if
µ is an isolated singularity of the resolvent R(λ; A) of A. We call µ a pole of A if µ
is a pole of R(λ; A). For further relevant facts of operator theory of closed linear
operators see [2] and [8].

The concept of the g-Drazin inverse of a closed linear operator is crucial for
our exposition. According to Definition 2.1 in [4], A ∈ C(X) is g-Drazin invertible
if there exists an operator B ∈ B(X) such that R(B) ∩R(I − AB) ⊂ D(A), and

(1.2) BA ⊂ AB, BAB = B, σ(A(I − AB)) = {0}.

Such an operator is unique, if it exists. It is called the g-Drazin inverse of A, and is
denoted by AD.

From Theorem 2.3 of [4] we know that A is g-Drazin invertible if and only if
0 is not an accumulation point of σ(A). In this case we write Aπ for the spectral
idempotent of A, a bounded linear operator characterized by the properties

(Aπ)2 = Aπ , Aπ A ⊂ AAπ , σ(AAπ) = {0}, 0 /∈ σ(A + Aπ);

note that Aπ = 0 if A is invertible. By (2.3) of [4],

(1.3) AD = (A + Aπ)−1(I − Aπ), Aπ = I − ADA.

The resolvent of a g-Drazin invertible operator A has the following Laurent
expansion at the origin ([4], Theorem 3.1):
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LEMMA 1.1. Let A ∈ C(X). If A is g-Drazin invertible, then there exists r > 0
such that

(1.4) R(λ; A) =
∞

∑
n=0

λ−n−1 An Aπ −
∞

∑
n=0

λn(AD)n+1, 0 < |λ| < r.

We will also need the following auxiliary result in which TG(t) stands for a
C0-semigroup with the infinitesimal generator G.

LEMMA 1.2. Let TA(t) be a C0-semigroup, and let P ∈ B(X) be an idempotent
operator such that R(P) ⊂ D(A) and TA(t)P = PTA(t) for all t > 0. Then PA ⊂
AP ∈ B(X), and

TA(t)P = exp(tAP)P =
∞

∑
n=0

tn

n!
AnP,(1.5)

TA−P(t) = TA(t)(I − P + e−tP), t > 0.(1.6)

Proof. Since R(P) ⊂ D(A), AP is a bounded linear operator on X. Further,

APx =
d
dt

∣∣∣
0
T(t)Px =

d
dt

∣∣∣
0
PT(t)x = PAx, x ∈ D(A).

For any given x ∈ X, the differential equation

du(t)
dt

= (AP)u(t), t > 0, u(0) = Px,

has a unique solution

u(t) = exp(tAP)Px, t > 0.

By the properties of the semigroup T(t),

d
dt

T(t)Px = AT(t)Px = (AP)T(t)Px, T(0)Px = Px.

This proves that T(t)Px = exp(tAP)Px for each x ∈ X.
To obtain the power series expansion in (1.5), we show that R(P) ⊂ D(An)

for all n > 1. Suppose that x = Py ∈ D(An−1) for some n > 2. Then Px = x, and
Ax = APx = PAx ∈ D(A), that is, x ∈ D(An). Consequently, (AP)n = AnP for
n > 1, and

exp(tAP)P =
∞

∑
n=0

tn

n!
(AP)nP =

∞

∑
n=0

tn

n!
AnP.

To prove the second equation, write S(t) = TA(t)(I − P + e−tP). It can be
verified directly that S(t) is a C0-semigroup. Differentiating S(t)x at t = 0 for any
x ∈ D(A), we find that the generator of S(t) is A− P.
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2. SINGULAR PERTURBATION OF AN ASYMPTOTICALLY CONVERGENT C0-SEMIGROUP

In this section we obtain generalizations of some results of [1] and [3], es-
sential for the description of the asymptotic convergence of the solutions to (1.1).

A C0-semigroup T(t) with an infinitesimal generator A is (uniformly) asymp-
totically convergent if T(t) → P in the operator norm as t → ∞. If this is the case,
A ∈ C(X) is semistable, that is, σ(A) ⊂ H ∪ {0}, where H is the open left half of
the complex plane, and 0 is at most a simple pole of A (see [5]). The limit operator
P is the spectral projection Aπ of A at 0, and AP = 0. (The semistability of the
generator is not sufficient for the asymptotic convergence of the C0-semigroup.)

It will be convenient to write for any r > 0,

∆r = {λ : |λ| < r}, Ωr = {λ : |λ| > r}.

THEOREM 2.1. Let TA(t) be an asymptotically convergent C0-semigroup with the
infinitesimal generator A, and let B ∈ B(X). Then there exists r > 0 such that, for
all sufficiently small ε > 0, σε = σ(A + εB) ∩∆r is an isolated spectral set of A + εB.
Let Pε be the spectral projection of A + εB corresponding to σε, and let P = Aπ . Then
Pε → P in the operator norm as ε → 0+.

Proof. Since A is semistable, 0 is not an accumulation point of σ(A), and
there exists r > 0 such that ∆r ∩ σ(A) ⊂ {0}. By the semicontinuity of the sep-
arated parts of the spectrum (see Chapter IV, Theorem 3.16 of [2]) there exists
ε0 > 0 such that for all ε ∈ (0, ε0) the spectrum of A + εB is split into two isolated
spectral sets

σ(A + εB) ∩∆r, σ(A + εB) ∩Ωr,

while ‖Pε − P‖ → 0 as ε → 0+.

CONVENTION 2.2. Throughout this paper T(t) = TA(t) denotes an asymp-
totically convergent C0-semigroup with the infinitesimal generator A and the
spectral projection Aπ = P, Sε will denote the C0-semigroup generated by ε−1 A +
B, and Pε will stand for the spectral projection of A + εB corresponding to the iso-
lated spectral set σε = σ(A + εB) ∩ ∆r for a suitable r > 0 and all sufficiently
small ε > 0.

We can now prove the following two results.

THEOREM 2.3. Let TA(t) be an asymptotically convergent C0-semigroup and let
B ∈ B(X). Then

(2.1) lim
ε→0+

Sε(t)Pε = exp(tPB)P = P exp(tBP),

uniformly on compact subsets of (0, ∞).
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Proof. Observe that, for all sufficiently small ε > 0, R(Pε) ⊂ D(A + εB) and
that (A + εB)Pε ∈ B(X). The spectral projections Pε are given by

(2.2) Pε = f (A) =
1

2πi

∫

Γ

R(λ; A + εB) dλ,

where f (λ) is equal to 1 on ∆r and 0 on Ωr, and Γ is the positively oriented circle
|λ| = r for a suitable r > 0.

Let α = sup{‖R(λ; A)‖ : λ ∈ Γ} and let ε > 0 satisfy 0 6 εα‖B‖ 6 1
2 . For

any λ ∈ Γ, ε‖R(λ; A)B‖ 6 1
2 , and

(2.3) R(λ; A + εB) = (I − R(λ; A)εB)−1R(λ; A) =
∞

∑
k=0

(R(λ; A)B)kR(λ; A)εk.

Since the series converges uniformly for λ ∈ Γ,

(2.4) Pε =
∞

∑
k=0

( 1
2πi

∫

Γ

(R(λ; A)B)kR(λ; A) dλ
)

εk =
∞

∑
k=0

Vkεk

with Vk ∈ B(X), for all sufficiently small ε > 0, and

(2.5) (ε−1 A + B)Pε =
∞

∑
k=0

(ε−1 A + B)Vkεk =
∞

∑
k=0

(AVk+1 + BVk)εk

as AV0 = AP = 0 in view of the semistability of A. Further, from (2.5),

lim
ε→+0

(ε−1 A + B)Pε = AV1 + BV0 = AV1 + BP.

We find AV1 recalling that, in some punctured neighbourhood of 0, R(λ; A) =

λ−1P + H(λ), where H(λ) = −
∞
∑

n=0
λn(AD)n+1 (see (1.4)):

AV1 =
1

2πi

∫

Γ

AR(λ; A)BR(λ; A) dλ

=
1

2πi

∫

Γ

A(λ−1P + H(λ))B(λ−1P + H(λ)) dλ

=
1

2πi

∫

Γ

AH(λ)B(λ−1P + H(λ)) dλ = AH(0)BP

= −AADBP = −(I − P)BP = −BP + PBP

using (1.3). Thus

(2.6) lim
ε→+0

(ε−1 A + B)Pε = AV1 + BP = PBP.

Using Lemma 1.2 and Theorem 2.1 , we get

(2.7) lim
ε→+0

Sε(t)Pε = lim
ε→+0

exp(t(ε−1 A + B)Pε)Pε = exp(tPBP)P,
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where the convergence is uniform for t in compact subsets of (0, ∞). From the
power series expansion of the exponential we get

exp(tPBP)P = exp(tPB)P = P exp(tBP).

THEOREM 2.4. Let TA(t) be an aymptotically convergent C0-semigroup and let
B ∈ B(X). Then there exist a positive constant µ and positive functions τ 7→ Mτ ,
τ 7→ ετ on (0, ∞) such that

(2.8) ‖Sε(t)(I − Pε)‖ 6 Mτe−µt/ε for all t ∈ (0, τ) and all ε ∈ (0, ετ).

Proof. Since Pε and A + εB commute, we can use Lemma 1.2 to obtain

Sε(t)(I − Pε) = TA+εB(t/ε)(I − Pε + e−t/εPε)− e−t/εTA+εB(t/ε)Pε

= TA+εB−Pε
(t/ε)− e−t/εTA+εB(t/ε)Pε, t > 0.

We show that TA+εB−Pε
(t/ε) decays exponentially as ε → 0+ uniformly for

t ∈ (0, ∞). Since TA(t) → P as t → ∞, then TA−P(t) = TA(t)(I − P + e−tP) → 0,
and according to Theorem 2.3 of [5] there exist positive constants N, ν such that
‖TA−P(t)‖ 6 Ne−νt for all t > 0. Applying Theorem 3.1.1 of [7], we get

‖TA+εB−Pε
(t)‖ = ‖T(A−P)+εB+P−Pε

(t)‖ 6 Ne(−ν+N‖εB+P−Pε‖)t, t > 0.

Select a positive constant β < ν. Since Pε → P, there exists ε1 such that for all
ε ∈ (0, ε1),

ε‖B‖+ ‖P− Pε‖ < (ν− β)N−1.

Then −ν + N(ε‖B‖+ ‖P− Pε‖) < −β, and ‖TA+εB−Pε
(t)‖ 6 Ne−βt for all t > 0,

that is,
‖TA+εB−Pε

(t/ε)‖ 6 Ne−βt/ε, t > 0, 0 < ε < ε1.

Let τ > 0. We show that e−t/εTA+εB(t/ε)Pε decays exponentially as ε → 0+
uniformly for t ∈ (0, τ). For this we note that by Theorem 2.3,

TA+εB(t/ε)Pε = Sε(t)Pε

converges uniformly on (0, τ) as ε → 0+ . Then there exists positive constants
Cτ , ητ such that ‖TA+εB(t/ε)Pε‖ 6 Cτ for all t ∈ (0, τ) and all ε ∈ (0, ητ).

For a given τ > 0 set Mτ = N + Cτ , µ = min (β, 1) and ετ = min (ε1, ητ).
Combining the two inequalities obtained earlier, we have

‖Sε(t)(I − Pε)‖ 6 Ne−βt/ε + Cτe−t/ε 6 Mτe−µt/ε, t ∈ (0, τ), ε ∈ (0, ετ).

Combining the preceding two theorems, we get the following generaliza-
tion of Theorem 2.2 in [3].

COROLLARY 2.5. Let TA(t) be an asymptotically convergent C0-semigroup and
let B ∈ B(X). Then

(2.9) lim
ε→0+

Sε(t) = lim
ε→0+

Sε(t)Pε = exp(tPB)P = P exp(tBP),

uniformly on compact subsets of (0, ∞).
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3. A POWER SERIES EXPANSION FOR Sε(t)

In this section we adapt some of the techniques employed by Campbell [1]
for matrices to obtain a power series expansion in ε for Sε(t) when TA(t) is an
asymptotically convergent C0-semigroup. We will find such an expansion by con-
sidering separately Sε(t)Pε (the so called inner solution of (1.1)) and Sε(t)(I − Pε)
(the so called outer solution of (1.1)).

3.1. A POWER SERIES EXPANSION FOR Sε(t)Pε . By Lemma 1.2, for all sufficiently
small ε > 0 we have

Sε(t)Pε = exp (t(ε−1 A + B)Pε)Pε, t > 0,

and the substitution of the power series (2.5) into the power series for the expo-
nential ensures that, for all sufficiently small ε, we have an expansion

(3.1) Uε(t) = Sε(t)Pε =
∞

∑
k=0

Xk(t)εk, t > 0,

where Xk : [0, ∞) → B(X) are continuous functions. We have already found (2.1)
that

(3.2) X0(t) = lim
ε→0+

Sε(t)Pε = exp (tPB)P.

Observe that Uε(t) satisfies the differential equation

dUε(t)
dt

= (ε−1 A + B)Uε(t), t > 0, Uε(0) = Pε.

We calculate Xk(t) for k = 0, 1, 2, . . . , by substituting (3.1) into the preceding dif-
ferential equation and equating the coefficients of εk:

(3.3) AX0 = 0 and
dXk
dt

= AXk+1 + BXk, k > 0.

To determine X1(t), observe from (3.3) that

(I − P)X1 = AD dX0

dt
− ADBX0 = −ADBX0 = −ADB exp (tPB)P

taking into account that ADP = 0. Multiplying dX1
dt = AX2 + BX1 from the left

by P produces

P
dX1

dt
= PBPX1 + PB(I − P)X1 = PBPX1 − PBADB exp (tPB)P.

The differential equation

d(PX1)
dt

= PB(PX1) + Q,
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where Q(t) = −PBADB exp(tPB)P, has a solution

PX1(t) = exp(tPB)
t∫

0

exp(−sPB)Q(s) ds + exp(tPB)PX1(0)

= − exp (tPB)
t∫

0

exp (−sPB)PBADB exp (sPB)P ds + exp (tPB)PX1(0).

From X1(t) = PX1(t) + (I − P)X1(t) we get

X1(t) = − exp (tPB)
t∫

0

exp (−sPB)PBADB exp (sPB)P ds

+ exp (tPB)PX1(0)− ADB exp (tPB)P.(3.4)

Using (3.3) again, we obtain (I − P)Xk and PXk, respectively. A similar calcula-
tion as for X1(t) yields

Xk+1(t) = exp (tPB)
t∫

0

exp (−sPB)PBAD
(dXk(s)

dt
− BXk(s)

)
ds

+ AD
(dXk(t)

dt
− BXk(t)

)
+ exp (tPB)PXk+1(0).(3.5)

We complete the calculation of Xk(t) by finding Xk(0). From (3.1),

∞

∑
k=0

Xk(0)εk =
1

2πi

∫

Γ

R(λ; A + εB) dλ.

By (2.3), for ε > 0 sufficiently small

R(λ; A + εB) =
∞

∑
k=0

(R(λ; A)B)kR(λ; A)εk.

Hence
∞

∑
k=0

Xk(0)εk =
∞

∑
k=0

( 1
2πi

∫

Γ

(R(λ; A)B)kR(λ; A) dλ
)

εk,

and

(3.6) Xk(0) =
1

2πi

∫

Γ

(R(λ; A)B)kR(λ; A) dλ.

In particular,

X0(0) =
1

2πi

∫

Γ

R(λ; A) dλ = P,
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which agrees with (3.2). In fact, we only need to calculate PXk(0) in (3.5) for k > 1.

By (1.4), for 0 < |λ| < r, R(λ; A) = λ−1P + H(λ) = λ−1P −
∞
∑

n=0
λn(AD)n+1,

which implies PR(λ; A) = λ−1P. Then

PXk(0) = PB
1

2πi

∫

Γ

λ−1(R(λ; A)B)k−1R(λ; A) dλ.

For k = 1,

PX1(0) = PB
1

2πi

∫

Γ

λ−1R(λ; A) dλ = PB
1

2πi

∫

Γ

(λ−2P + λ−1H(λ)) dλ

= PBH(0) = −PBAD.

A similar calculation for k = 2 gives

PX2(0) = PB(ADBAD − (AD)2BP− PB(AD)2).

We observe that according to (3.4),

X1(t) = − exp (tPB)
t∫

0

exp (−sPB)PBADB exp (sPB)P ds

− exp (tPB)PBAD − ADB exp (tPB)P.(3.7)

3.2. A POWER SERIES EXPANSION FOR Sε(t)(I − Pε). Since Sε(t) = TA+εB(t/ε),
we will work with TA+εB(τ), where τ = t/ε. For the perturbation of A by εB ∈
B(X) we can use the series ([7], p. 78),

TA+εB(τ) =
∞

∑
n=0

Sn(τ) =
∞

∑
n=0

Wn(τ)εn,

where

S0(τ) = TA(τ), Sn+1(τ) = ε

τ∫

0

TA(τ − s)BSn(s) ds,

and where Wn(τ) = ε−nSn(τ) ∈ B(X) are free of ε for all n. Since

I − Pε = I −
∞

∑
k=0

( 1
2πi

∫

Γ

(R(λ; A)B)kR(λ; A) dλ
)

εk,

TA+εB(τ)(I − Pε) is a product of two power series in ε, and

W(τ) = TA+εB(τ)(I − Pε) =
∞

∑
k=0

Yk(τ)εk,

where Yk(τ) ∈ B(X) for each k > 0. On the other hand, W(τ) satisfies

dW(τ)
dτ

= (A + εB)W(τ).
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Substituting the series for W(τ) into this equation and equating the coefficients
of εk gives

dY0

dτ
= AY0 and

dYk
dτ

= AYk + BYk−1, k > 1.

This infinite system can be solved iteratively if the initial values Yk(0) are known:

Y0(τ) = TA(τ)Y0(0),(3.8)

Yk(τ) = TA(τ)Yk(0) +
τ∫

0

TA(τ − s)BYk−1(s) ds, k > 1.(3.9)

We complete the expansion by finding Yk(0) for k > 0.

Since
∞
∑

k=0
Yk(τ)εk is a product of two power series, we have

Yk(τ) = Wk(τ)−
k

∑
j=0

Wj(τ)
1

2πi

∫

Γ

(R(λ; A)B)k−jR(λ; A) dλ, k > 0.

For k = 0 we have

Y0(τ) = W0(τ)−W0(τ)
∫

Γ

R(λ; A) dλ = TA(τ)(I − P).

For k > 1 we have

Yk(0) = Wk(0)−
k

∑
j=0

Wj(0)
1

2πi

∫

Γ

(R(λ; A)B)k−jR(λ; A) dλ.

But W0(0) = I and Wk(0) = 0 for all k > 1, and so

(3.10) Y0(0) = I − P, Yk(0) = − 1
2πi

∫

Γ

(R(λ; A)B)kR(λ; A) dλ, k > 1.

When A, B are matrices, this agrees with Equation (19) in [1], p. 99.
Putting together the results of Sections 3.1 and 3.2 we obtain the following

theorem which generalizes Theorem 5.3.1 of [1].

THEOREM 3.1. Let TA(t) be an asymptotically convergent C0-semigroup, let B ∈
B(X), and let Sε(t) be the C0-semigroup generated by ε−1 A + B. Then, for all suffi-
ciently small ε > 0,

(3.11) Sε(t) =
∞

∑
k=0

Xk(t)εk +
∞

∑
j=0

Yj(t/ε)εj, t > 0,

where the Xk are given by (3.2), (3.5) and (3.6), and the Yj are given by (3.8), (3.9) and
(3.10).
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4. NONHOMOGENEOUS SINGULARLY PERTURBED DIFFERENTIAL EQUATION

In this section, as an application of the preceding results, we describe the
asymptotic behaviour of the solutions to the singularly perturbed nonhomoge-
neous differential equation. In the special case when the operators are matrices,
we recover Theorem 5.8.3 of [1]. By assuming the boundedness of the forcing
term, we are able to express the limit of the solution explicitly in terms of the
g-Drazin inverse.

THEOREM 4.1. Let TA(t) be an asymptotically convergent C0-semigroup, let B ∈
B(X) and let f : [0, ∞) → X be continuous and bounded. Then the mild solution uε(t)
of the singularly perturbed differential equation

ε
duε(t)

dt
= (A + εB)uε(t) + f (t),

uε(0) = x, ε > 0,
(4.1)

converges as ε → 0+ if and only if P f (t) = 0 for all t > 0. If this is the case, then

(4.2) u(t) = lim
ε→0+

uε(t) = exp (tPB)Px +
t∫

0

X1(t− s) f (s) ds− AD f (t)

uniformly on compact subsets of (0, ∞), where X1(t) is given by (3.7). The limit u is the
solution of the reduced equation

(4.3) 0 = Au(t) + f (t), u(0) = Px− AD f (0).

Proof. The mild solution of (4.1) (see p. 106 in [7]) is given by

(4.4) uε(t) = Sε(t)x + ε−1
t∫

0

Sε(t− s) f (s) ds, t > 0.

By Corollary 2.5, Sε(t) → exp (tPB)P as ε → 0+ uniformly on compact subsets
of (0, ∞). Let Pε be the spectral projection of A + εB. The second term in (4.4) can
be expressed as the sum

(4.5) ε−1
t∫

0

Sε(t− s)Pε f (s) ds + ε−1
t∫

0

Sε(t− s)(I − Pε) f (s) ds.

Let τ > 0. By Theorem 2.4 there exist positive constants µ, Mτ , ετ such that

‖Sε(t)(I − Pε)‖ 6 Mτe−µt/ε, t ∈ (0, τ), ε ∈ (0, ετ).

Given ν > 0, there exists δ > 0 such that for any t1, t2 ∈ (0, τ) satisfying |t1− t2| <
δ we have ‖ f (t1)− f (t2)‖ < ν (uniform continuity of f on (0, τ)).
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Let t ∈ (0, τ). Choose t0 ∈ (0, t) such that t0 > t− δ. Then

ε−1
t∫

0

Sε(t− s)(I − Pε) f (s) ds

= ε−1
t∫

0

Sε(t− s)(I − Pε)( f (s)− f (t)) ds + ε−1
t∫

0

Sε(t− s)(I − Pε) f (t) ds

= v1
ε (t) + v2

ε (t).

We have

‖v1
ε (t)‖ 6 ε−1

t∫

0

Mτe−µ(t−s)/ε‖ f (s)− f (t)‖ds

= ε−1
t0∫

0

Mτe−µ(t−s)/ε2‖ f ‖∞ ds + ε−1
t∫

t0

Mτe−µ(t−s)/εν ds

6 2Mτµ−1‖ f ‖∞(e−µ(t−t0)/ε − e−µt/ε) + νMτµ−1(1− e−µ(t−t0)/ε).

Hence lim sup
ε→0+

‖v1
ε (t)‖ 6 νMτµ−1. Since ν > 0 is arbitrary, we conclude that

lim
ε→0+

‖v1
ε (t)‖ = 0 uniformly for t ∈ (0, τ). Further,

lim
ε→0+

v2
ε (t) = lim

ε→0+
ε−1

t∫

0

Sε(t− s)(I − Pε) f (t) ds

= lim
ε→0+

t/ε∫

0

TA+εB(z)(I − Pε) f (t) dz =
∞∫

0

TA(z)(I − P) f (t) dz,(4.6)

provided we show that

(4.7) lim
ε→0+

t/ε∫

0

[TA+εB(z)(I − Pε)− TA(z)(I − P)] f (t) dz = 0

uniformly on (0, τ). We have

I(ε, z) = TA+εB(z)(I − Pε)− TA(z)(I − P)

= [TA+εB−Pε
(z)− TA+εB(z)e−zPε]− [TA−P(z)− TA(z)e−zP](4.8)

= [TA+εB−Pε
(z)− TA−P(z)]− [TA+εB(z)Pε − TA(z)P]e−z

= I1(ε, z)− I2(ε, z).

We recall ([5], Theorem 3.4) that, for an asymptotically convergent semigroup
TA(t) with P = Aπ , we have ‖TA−P(t)‖ 6 Ne−νt for some positive constants
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N, ν and for all t > 0. Applying Corollary 3.1.3 of [7], we obtain

‖I1(ε, z)‖ = ‖TA+εB−Pε
(z)− TA−P(z)‖

6 Ne−νz(eN‖εB+P−Pε‖z − 1) = Ne−νz(eρ(ε)z − 1),

where ρ(ε) → 0 as ε → 0+. Then

t/ε∫

0

e−νz(eρ(ε)z − 1) dz =
1

ν− ρ(ε)
(1− e(−ν+ρ(ε))t/ε) +

1
ν
(e−νt/ε − 1),

and we conclude that

∥∥∥
t/ε∫

0

I1(ε, z) f (t) dz
∥∥∥ 6 N‖ f ‖∞

t/ε∫

0

e−νz(eρ(ε)z − 1) dz → 0 as ε → 0+

uniformly on (0, τ).
Next we have

I2(ε, z) = [TA+εB(z)Pε − TA(z)P]e−z

= [TA+εB(z)− TA(z)]Pεe−z + TA(z)(P− Pε)e−z = I2,1(ε, z) + I2,2(ε, z).

A similar argument as for I1(ε, z) shows that lim
ε→0+

t/ε∫
0

I2,1(ε, z) f (t) dz = 0 uni-

formly on (0, τ). Finally,

lim
ε→0+

t/ε∫

0

I2,2(ε, z) f (t) dz = 0

uniformly on (0, τ) since TA(z) is bounded and P− Pε converges to 0. This proves
(4.7). Return to (4.6) and observe that, by Theorem 4.2 (iii) of [4],

∞∫

0

TA(z)(I − P) f (t) dz = −AD f (t).

Using the expansion (3.11), we can write the first term in (4.5) as

(4.9) ε−1
t∫

0

exp((t− s)PB)P f (s) ds +
t∫

0

X1(t− s) f (s) ds +
t∫

0

Kε(t− s) f (s) ds,

where Kε is continuous on [0, ∞) and lim
ε→0+

Kε(s) = 0 uniformly on compact sub-

sets of (0, ∞). Thus the limit of (4.9) as ε → 0+ exists if and only if the limit

(4.10) lim
ε→0+

ε−1
t∫

0

exp((t− s)PB)P f (s) ds
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exists for each t > 0. Since exp(sPB) is invertible for each s > 0, the limit (4.10)
exists (and is equal to 0) if and only if P f (t) = 0 for all t > 0.

Combining all parts of the proof, we conclude that the solution uε(t) con-

verges to u(t) = exp (tPB)Px +
t∫

0
X1(t − s) f (s) ds − AD f (t) as ε → 0+ , uni-

formly on any compact subset of (0, ∞).
Finally we confirm by a direct substitution that u(t) is the solution of the

reduced equation (4.3).

Setting B = 0 in the preceding theorem we recover Theorem 5.2 of [4].
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