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ABSTRACT. We show that multilinear pseudodifferential operators with sym-
bols in the modulation space M>1 are bounded on products of modulation

spaces. In particular, M*! includes non-smooth symbols. Several multilin-
ear Calderén—Vaillancourt-type theorems are then obtained by using certain
embeddings of classical function spaces into modulation spaces.
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1. INTRODUCTION

The study of multilinear operators has been actively pursued in recent years
due to their many applications in linear and nonlinear partial differential equa-
tions. For example, it is known that the formal solutions to certain evolution
equations reduce to infinite sums of multilinear pseudodifferential operators; see
[6] and the references therein. The simplest example of a multilinear operator is
the pointwise product of n functions, and in this case Holder’s inequality regu-
lates the boundedness properties on Lebesgue spaces. In this paper we address
the question of how much of Hoélder’s inequality carries over to the much more
complicated class of general multilinear pseudodifferential operators.

An m-linear pseudodifferential operator is defined a priori through its (dis-
tributional) symbol ¢ to be the mapping T from the m-fold product of Schwartz
spaces S(RY) x - - - x S(R?) into the space S’ (R?) of tempered distributions given
by the formula
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for fi,..., fu € S(R?). The pointwise product f; - - - f corresponds to the case
c=1

Various authors have searched for sufficient (nontrivial) conditions on ¢ that
guarantee the boundedness of T, on products of appropriately chosen Banach
spaces. For instance, by using wavelet decompositions and a multilinear version
of Schur’s test, Grafakos and Torres [13] have obtained results on Besov-Triebel-
Lizorkin spaces. For other results, including the boundedness of multilinear
Hormander-Mihlin and Marcinkiewicz multipliers, that use classical harmonic
analysis techniques, see, e.g., [5], [12], [14]. Another line of investigation uses the
class of modulation spaces both as symbols and as the underlying Banach spaces
on which a multilinear pseudodifferential operator acts. The modulation spaces
figure implicitly in the analysis of linear pseudodifferential operators presented
in [3], [19], [24]. The paper [17] explicitly recognized the space M1 (]de) as the
appropriate symbol class to establish the boundedness of T, = ¢(X, D) acting on
M”(Rd ), 1 < p < oo, including M?=1%asa special case. Further developments
using modulation spaces have since been obtained in [7], [16], [18], [22], [21],
[25]. The analogous investigation of multilinear pseudodifferential operators on
modulation spaces was initiated in [1] and is certainly only in its infancy.

We will investigate the boundedness of multilinear pseudodifferential op-
erators on products of modulation spaces. As our symbol class we use the mod-
ulation space M*1(R("+1)4) This modulation space can be seen as a useful and
conceptually simple extension of the standard symbol class 58,0. In particular,
M1 includes non-smooth symbols. Our main result shows that an m-linear
pseudodifferential operator T, with symbol ¢ € M®!(R("+1)?) is bounded on
modulation spaces with indices that obey a relation similar to Holder’s inequality.
In contrast to pure analysis results which would use decomposition techniques,
Schur’s test, or Cotlar’s Lemma, we will use tools developed in time-frequency
analysis, especially techniques developed in Chapter 14 of [16] and [18]. Further,
by using some recent embeddings theorems from [23], we can state new bound-
edness results on products of certain Besov spaces.

While concrete boundedness problems are rarely easy to deal with, the bi-
linear or multilinear case offers additional difficulties. To give an example of
these new problems, consider the classical symbol class 58,0 consisting of those o
which satisfy estimates of the form

1.2) |a§a§a(x, &) < Cup, Va,p>0.
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A classical result of Calderén and Vaillancourt [4] asserts that the corresponding
linear pseudodifferential operator T, is bounded on L?(R%). In the bilinear case,
however, the analogous class of symbols which satisfy the conditions

(13) 10598070 (x,8,1)| < Cupyr Y, 8,720,

does not necessarily yield bounded operators from L? x L? into L!, unless addi-
tional size conditions are imposed on the symbols; see [2]. However, as a conse-
quence of our main result we will show that the Calderén—Vaillancourt-like con-
dition (1.3) does yield boundedness from L? x L? into a modulation space that
contains L.

Our conditions should also be compared to a typical hard analysis result of
Coifman and Meyer ([5], Theorem 12): If the symbol ¢ of a bilinear pseudodiffer-
ential operator satisfies the conditions

(1.4) |a§a;a(x, &l < Cpy
and
(1.5) 5o (x',&,m) = 9Eafo(x, & )| < Cpy ¥ —x|°

for all B, v > 0 and some é > 0, then the corresponding operator is bounded on
products of certain Lebesgue spaces. It turns out that conditions (1.4) and (1.5)
are not comparable to the condition o € M*!; neither set of conditions implies
the other.

Our paper is organized as follows. In Section 2 we set the notation, define
the modulation spaces and collect some of their basic properties and the embed-
dings that will be needed later on. The main results are then stated and proved
in Section 3, and some applications of these results are obtained in Section 4.

2. NOTATION AND PRELIMINARIES

2.1. GENERAL NOTATION. Translation and modulation of a function f with do-
main R are, respectively, Ty f(t) = f(t — x) and M, f(t) = €™V £(t). The inner
product f, g € L*(R%) is (f, g) f f(t) g(t) dt, and the same notation is used for

the extension of the inner product to 8’ x S. The Fourier transform of f € L'(R?)
ISf f f e~ 2mitw q¢.
The Short Time Fourier Transform (STFT) of a function f with respect to a

window g is

Vef(x,9) = (f,MyTug) = [ e 2™ g(t=x) f(B)dt, (x,y) € R¥,
R4
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whenever the integral makes sense. If ¢ € S and f € S’ then V,f is a uniformly
continuous function on R??. One important technical tool is the extended isome-
try property of the STFT ([16], 14.31): If ¢ € S(R?), ||¢||,2 = 1, then

(2.1) (f h)y = (Vof, Voh) VfeS, hes.

A second important tool is the fundamental identity V, f(x, y)=e =2V VgA]?(y, —X).
We let LP1(R??) be the mixed-norm Lebesgue space defined by the norm

e = ([ ([1rGompax)” ay)™

R R4

with the usual adjustment if p or g is infinite, and we use a similar notation for
the mixed-norm sequence spaces £//1.

2.2. MODULATION SPACES. Given 1 < p,q < oo, and given a fixed, nonzero
window function ¢ € S(R?), the modulation space MP4(R¥) consists of all dis-
tributions f € S’(R?) for which the following norm is finite:

02 Wl = ([ ([ Vs ax)"" ay) " = Veflusa

R: R4

with the usual modifications if p or g are infinite. Note that M?? = L2

We refer to [16] for a detailed description of the theory of modulation spaces
and their weighted counterparts. In particular, MP/ is a Banach space, and any
nonzero function ¢ € M1 can be substituted for g in (2.2) to define an equivalent
norm for MP4. The Schwartz class is dense in MP4 for all p, g < cc.

For1 < p,q < oo, the dual of MP4 is MV where % + pl = % + % =1
To deal with duality properly in the cases p = o0 or g = oo, we introduce the
following new related modulation spaces.

DEFINITION 2.1. Let LO(R?¥) denote the space of bounded, measurable func-
tions on R?? which vanish at infinity. We define
MOUIRY) = {f € M™A(RY) : Vof € LO(R*)}, 1
MPO(RY) = {f € MP*(RY) : Vof € LO(R)}, 1
MOORY) = {f € M (RY) : Vo f € LY(R)},
equipped with the norms of M1, MP*, and M*, respectively.

Though not yet explicitly mentioned in the literature, we will see that these
spaces are useful for the treatment of end-point results and in the study of com-
pactness properties of pseudodifferential operators. The following properties are
easily established.
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LEMMA 2.2. (i) M% is the M™A-closure of S in M, hence is a closed sub-
space of M™4. Likewise, MPO s the MP-closure of S in MP*, and MO0 s the
closure of S in the M®*®-norm.

(ii) The following duality results hold for 1 < p,q < oco: (M%) = MM, (MPO)
= MV, and (MO0)" = MU,

Proof. Statement (i) is proved exactly as Proposition 11.3.4 of [16], and (ii)

can be obtained by a modification of Theorem 11.3.6 in [16]. Both statements can
also be seen as special cases of the coorbit space theory developed in [8]. 1

Using these spaces, we can prove that the following compactness result for
linear pseudodifferential operators is a corollary of the boundedness result for
the symbol class M1, Other compactness results have been obtained by Labate
in [21].

PROPOSITION 2.3. If ¢ € MOY(R?), then T, is a compact mapping of MP/
into itself forall 1 < p,q < oo.

Proof. Assume first that o € S(R??). Then we can write T, as an integral
operator with kernel k € S(R??). Let ¢ € MV (R?) and &, B > 0 be such that
{®kn} neza is a Parseval Gabor frame for L*(R%), where ¢y, = Mg, Tyr¢. Then
{@ktmn }i ¢ mnezs is a Parseval Gabor frame for L*(R*"), where @y, (x,y) =
B (X) o (y). Since k € MY1, we therefore have

k=Y (k Peomn) Prtmn, With Y [{k, Ppyun)| < o0,

kt,mn k,mn

and hence

Tle = Z <kr ®k€mn> <f’¢€m>¢kn-

k.t mmn

Since the ¢, are uniformly bounded in M?"7-norm, it follows easily that T; is a
compact mapping of M1 into itself; in fact, T, is nuclear.

For the general case, if ¢ € MY (R??) then by Lemma 2.2 there exists
a sequence 0, € S(R?) such that o — 0| \ye1 — 0. By the boundedness
theorem for linear pseudodifferential operators with symbols ¢ € M>1 ([16],
Theorem 14.5.2), the operator norm can be estimated as || T, — Ty, || ppa —ppa <
Cllo — 0| pqeo1- Since the ideal of compact operators is closed in the operator
norm, this implies that T, is compact on M*4. 1

2.3. EMBEDDINGS. We conclude this section by listing a few embeddings proved
in [23] between Lebesgue or Besov spaces and modulation spaces. Further em-
beddings and comparisons of modulation space with standard spaces can be
found in [15], [11], [20], [25].

(@) B5, CLP C MPP fors>0,1<p<2and1<q<o;

(i) By, € LP C MPPfors > 0,2< p<ooand 1< q < oo

(iii) B;,, € MP¥ fors > 4,1 < p < oo,
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3. BOUNDEDNESS OF MULTILINEAR PSEUDODIFFERENTIAL OPERATORS

Our main result is the following.

THEOREM 3.1. If o € MY (RUDA) then the m-linear pseudodiﬁerential op-
erator T, defined by (1.1) extends to a bounded operator from MP1AL x - .. x MPmAn
into/\/lpo'%when%—i- —b—ﬁ %qT+ —l—#:m 1+fand1 pi,gi <
oo for 0 < i< m.

Theorem 3.1 has the following intuitive explanation. Though not literally
correct, it is instructive to think of f € MP4 as being represented by the state-
ment “f € L? and f € L7” (for a rigorous comparison of modulation spaces
and Fourier-Lebesgue spaces see the embeddings in [11]). Under this analogy,
the first condition } pj_l = Py ! is the condition required to estimate the point-

wise product f1- -+ fm by Holder’s inequality, and the second condition Zqil =

-1+ qo is the condition needed to apply Young's inequality to the convolu-
tion product f1 Kok fm Thus, loosely speaking, Theorem 3.1 asserts that the
symbol class M°° 'l yields multilinear operators T, that behave like pointwise
multiplication with respect to both time and frequency.

The proof of Theorem 3.1 requires some preparation. To compactify the no-
tation, let us writecf: (&1,---,Cm), dzf: déy - - -dém, etc. Thenfor fi,..., fm, g €
S(R%), the action of T, can be expressed by the formula

(Tof, 8) = (To(fir- s fn), 8)
= [ oG e @) FunlGu) O g dEy- g

R(m+1)d
= (0, Win(g f, - fun)) = (0, Win(g, ),

where

Win (8 fise s fin) (%81, Gm) = 8(%) fi1(E1) -+~ fin(Gm) @2 (Gt
REMARK 3.2. For m = 1, the Kohn-Nirenberg correspondence can be writ-

ten as (Tof,) = (7, Wi(g, f)) where Wi(g, f)(x,§) = e 2™ g(x) f(g) is the
so-called cross-Ryhaczek distribution of f and g. Thus, one may think of W, as a
multilinear version of the Ryhaczek distribution.

The following multilinear “magic formula” will be an important tool.

LEMMA 3.3. Let (¢o, ) = (Po, P1,---,m) € (S(RY))™ 1 be given. Then for

( g) (Moo,oo(Rd))m+l and (uo, ﬁ) = (MOI Uy, .. .,Mm), (Uo, 5) = (Uo, 01,-- 'rvm)
e R4 50 hgve

-
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Vi (o) Wi (87 ) (s0, 1), (00, 5))

. m
(31) — e2muo'(u1+.“+um) V¢Og(u0, ) + uq + 4 um) H V47ifi(u0 + v, ui)_
i=1

Proof. Note first that Wy, (¢, $) € S(R("+1)) Assume that we also had
(f,8) € (S(RY))™+1. Then the integral defining the STFT V,,, W (0, Wi (g, f) con-
verges absolutely, and hence the following manipulations are justified:

Vot oy Wi (82 F) (1, ), (20, )

= [ Walg, N ) e DD W (g0, §)((x,) — (0, ) dx dF

R(m+1)d

- m . m —
x go(x —ug) [ ] i(&i — ;) eI B Gmui) gy dg

— 27miug- it / g(x) H z(‘: x - uO H

R(m+1)d

m
x e 2mix (oot Ly ) T o 2méi(uo+0i) qy 47
i=1

m

"
27y iy U V‘P g(uo, v + E ) H 43 (Ui, —ug — v;)
i=1 i=1

27'[11102, 1 Ui V¢g(uol’(]0—i—z )HV(Plﬂ u0+vl/ Z)
i=1

and the result follows in this case.

Now assume that (g, f) € (M®*(R?))"+1 Then we have §® fi®- - -® f€
MES(RMHDE) - Since pointwise multiplication by the “chirp” e 2% (&1t +&m)
leaves M** invariant ([9] or Theorem 12.1.3 of [16]), we find that W, (g, f ) €
M2 (RMH1D) a5 well.  Consequently Vi (60, Wi (&2 f) is a well-defined,
bounded, uniformly continuous function on R("+1)7,

We prove the validity of the identity (3.1) by approximation. Since S is
weak*-dense in ./\/l°° %, we can choose sequences g, € S(RY) and f, € (S(R%))"™

such that (g,, f) — (g, f) in M®. By continuity of tensor products and mul-
tiplication by chirps, we obtain that Wi, (g, f) 2 W, (g, f) in M™*. Since
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weak*-convergence of distributions is equivalent to uniform convergence of the

STFT on compact sets [8], we find that Vwm( ) Wi (g0, ﬁl) converges uniformly

on compact sets to Vi, 5 Wi (g, .

m

Similarly, for the right-hand side of (3.1) we obtain that Vs ¢n — Vg
and V,(fn)i — Vg, fi uniformly on compact sets. Consequently the right-hand

. m m m
side converges uniformly to ezt "V (uo, v+ Y ul-) T Vg, fi(uo + vi, u;).
i=1 i=1

This proves the identity in the general case. 1

LEMMA 3.4. Let (¢o, §) € (S(R?))"+1 be given. Assume that plT o=

%and%—l—---—l—#=m—1+qio,withl<p0,q0<oofor0<i<m.Then

Vg0, W (& Pl < Cl fillvarvan == [ fonll wapmoam 1 a1

whenever the right-hand side is defined.

Proof. Lemma 3.3 implies that for all (vy, 7) € R"*1)? we have

| Wty Won(, ) (10, 0), (20,))| o i

R(m+1)d
m m
= / ‘V%g(uo,vo + Z ui) ’ ‘ HV¢,ﬁ(u0 + v;,u;)| dug dit
RO i=1 i=1
m m
< [ |Vas (oo o) | TV fiCeom)lon dit = o,
i=1 i=1

Rmd

the last line following by applying Holder’s inequality in the first variable, since
%—i-'"—l—pi—l—pi,:l.Nowwrite
mn 0

G(v) = [IVpg (- o)l and Fi(ui) = [V, fi (-, —ui) | pi

. With this notation, ”G”Ulé = ”g”MPé"ié and ||F||;s = || fill ppen: (more precisely,
a different equivalent norm for MPii is used for each i because of the different

choice of window functions), and we may rewrite the term (x) above as

() = / G(”O"’iui) ]—mIFi(—Hz‘)dﬁ:(G*Fl*'“*Fm)(Uo)-

Rmd i=1

Note that this expression is independent of 7. Applying now Young’s inequality
for convolutions, since qll + -+ qim =m-1+ q% we obtain
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I VWm(zpo,zﬁ) Win(g, f) [l 100

= sup [ Vi oy W D) (a0, ), (00, ) dug d

(00/5)€R<m+1)dR(m+1)d

< |G * Fy s -« - % By || oo
m

<Gy TTIE o
i=1

<Clgl iy fillagsran = fnll g,

the constant C arising from the use of different windows to measure the modula-
tion space norms. 1

We can now prove our main result.
Proof of Theorem 3.1. Let f; € MPifli be given, and let ¢g, ¢p1,...,¢m € S(]Rd)
be fixed so that ||¢;||;2 = 1 for each i. Then, using the extended isometry property

of the STFT, Holder’s inequality, and Lemma 3.4, for any g € MPo9 we may
estimate that

(Tof, 8)| = (o, Win(g, )]

= V(00T Vo) Won (8. )]

< \|Vw,n(¢0,43)‘7||ml IV m(%,@)wm(grf)HLLw
m

< Cllofl pgeon ]_{ fill wavens Iy ot
i=

If p{, g, < oo, then the duality properties of the modulation spaces imply that
T,f € MPo0 with the norm estimate

m
I Tofllpromo < Clloll pgeon TTIfillapics-
i=1

If either pj, = oo or g, = oo or both, then we take g € MO0, MPoO, or MO0
instead. Again the duality stated in Lemma 2.2 then implies that T, f € MPo/90
with the correct norm estimate, which completes the proof. 1

4. APPLICATIONS
In this final section we give some applications of Theorem 3.1.

First we consider the boundedness of T, from MP1P1 x ... x MPmPm into
MPoPo. The required conditions on the exponents p; and g; then imply that
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we must necessarily have m = 1, since p; = g;. Thus we recover the follow-
ing boundedness condition for linear pseudodifferential operators, which, as ex-
plained in the introduction, extends the classical result of Calderén and Vaillan-
court.

COROLLARY 4.1. ([17], Theorem 1.1) If ¢ € M1 (R??), then T, extends to a
bounded operator from MPP into MPP for 1 < p < oo.

If instead we choose q; = pl’- for 1 < i < m, then the conditions of Theo-
rem 3.1 yield qp = pj,. Hence we have the following.

COROLLARY 4.2. If o € MY (R"VD) and 1 < po, py, ..., pm < oo satisfy

% + -+ p% = pl—o, then T, extends to a bounded operator from MPUPL % oo %

MPmPu into MPOFO,

Using the embedding (iii) from Section 2.2 of Besov spaces into the modu-
lation spaces, we obtain the following.

COROLLARY 4.3. Let ¢ € MY RV and let 1 < po, p1,..., pm < oo be

givensothat%—%--—l—ﬁ = %. If s; > %forl < i < m, then T, extends to a

bounded operator from By, ,, % --- x By, into MPorpy,

It is tempting to seek a similar result for Lebesgue spaces by using the em-
bedding (i) from Section 2.2. However, in this case the embeddings and the con-
ditions of Theorem 3.1 do not seem to lead to interesting results.

Next we consider the multilinear Calderén-Vaillancourt class of symbols o
defined by the inequalities

(4.1) |a§;oagi 0 (2,81, )| < Cagty et

for all multiindices a;, 0 < i < m up to a certain order. It was shown in [2] that
condition (4.1) does not necessarily yield an operator T, that is bounded from
L2 x L? into L', or more generally from L? x L1 into L" for 1 + 1 = 1 Here
the use of the modulation spaces clarifies the situation. In particular, by applying
Theorem 3.1 with p; = pp = q1 = g and M?? = L? we see by how much L? x L?

fails to be mapped into L!.

COROLLARY 4.4. Ifo € M*1(R3?), then T, maps L> x L? into MV (in fact,
into M),

The relationship between M1 and the Calderén-Vaillancourt class (4.1) is
illuminated by the following embeddings.

COROLLARY 4.5. A symbol o belongs to M®! under each of the following con-
ditions:
m
(i) Equation (4.1) is satisfied for all aj such that Y- |aj| <m(d +1) + 1.
j=1
(i) Equation (4.1) is satisfied for all a; such that |a;| < d +1forj=0,...,m.
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(iii) Equation (4.1) is satisfied for all aj such that a; € {0, 1,2}4.
(iv) o € CS(RU™DA) with s > (m +1)d.
In each of these cases, Ty extends to a bounded operator from MPLTL x .. X
PmAm § Po4 1 4. 1 1 1., . .41 _ _ 1
M into MPoH0 wﬁen o + + o Po’ + + i m—1+ 0 and
1< pi,gi <oofor0<i <m.

Proof. The embeddings (i) and (iv) are well-known, see, e.g., [16], [19], [23].
The embeddings (ii) and (iii) are new, but their proofs are almost identical to the
proof of Theorem 14.5.3 in [16]. &

REMARK 4.6. Finally, we compare membership of the symbol in M1 (R3?)
with the requirement that ¢ satisfy (1.4) and (1.5). These two conditions are dis-
tinct, in the sense that neither implies the other. The condition presented in this
paper is more general in the variables ¢ and 7, but too strong in the x-variable.
We can easily construct examples satisfying one but not the other condition. For
instance, consider a symbol of the form

o(x,én) =) ﬂk,l(x)ezm(k'éﬂ'”)
klezd

with Y ag(x)| < oo for all x. Choosing the coefficients suitably, we can make
k1

o € M™!, but o obviously does not satisfy the Coifman-Meyer conditions.
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