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ABSTRACT. We show that multilinear pseudodifferential operators with sym-
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1. INTRODUCTION

The study of multilinear operators has been actively pursued in recent years
due to their many applications in linear and nonlinear partial differential equa-
tions. For example, it is known that the formal solutions to certain evolution
equations reduce to infinite sums of multilinear pseudodifferential operators; see
[6] and the references therein. The simplest example of a multilinear operator is
the pointwise product of n functions, and in this case Hölder’s inequality regu-
lates the boundedness properties on Lebesgue spaces. In this paper we address
the question of how much of Hölder’s inequality carries over to the much more
complicated class of general multilinear pseudodifferential operators.

An m-linear pseudodifferential operator is defined à priori through its (dis-
tributional) symbol σ to be the mapping Tσ from the m-fold product of Schwartz
spaces S(Rd)×· · ·×S(Rd) into the space S ′(Rd) of tempered distributions given
by the formula
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Tσ( f1, . . . , fm)(x)

=
∫

(Rd)m

σ(x, ξ1, . . . , ξm) f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm) dξ1 · · ·dξm,(1.1)

for f1, . . . , fm ∈ S(Rd). The pointwise product f1 · · · fm corresponds to the case
σ ≡ 1.

Various authors have searched for sufficient (nontrivial) conditions on σ that
guarantee the boundedness of Tσ on products of appropriately chosen Banach
spaces. For instance, by using wavelet decompositions and a multilinear version
of Schur’s test, Grafakos and Torres [13] have obtained results on Besov-Triebel-
Lizorkin spaces. For other results, including the boundedness of multilinear
Hörmander-Mihlin and Marcinkiewicz multipliers, that use classical harmonic
analysis techniques, see, e.g., [5], [12], [14]. Another line of investigation uses the
class of modulation spaces both as symbols and as the underlying Banach spaces
on which a multilinear pseudodifferential operator acts. The modulation spaces
figure implicitly in the analysis of linear pseudodifferential operators presented
in [3], [19], [24]. The paper [17] explicitly recognized the space M∞,1(R2d) as the
appropriate symbol class to establish the boundedness of Tσ = σ(X, D) acting on
Mp(Rd), 1 6 p 6 ∞, including M2 = L2 as a special case. Further developments
using modulation spaces have since been obtained in [7], [16], [18], [22], [21],
[25]. The analogous investigation of multilinear pseudodifferential operators on
modulation spaces was initiated in [1] and is certainly only in its infancy.

We will investigate the boundedness of multilinear pseudodifferential op-
erators on products of modulation spaces. As our symbol class we use the mod-
ulation space M∞,1(R(m+1)d). This modulation space can be seen as a useful and
conceptually simple extension of the standard symbol class S0

0,0. In particular,
M∞,1 includes non-smooth symbols. Our main result shows that an m-linear
pseudodifferential operator Tσ with symbol σ ∈ M∞,1(R(m+1)d) is bounded on
modulation spaces with indices that obey a relation similar to Hölder’s inequality.
In contrast to pure analysis results which would use decomposition techniques,
Schur’s test, or Cotlar’s Lemma, we will use tools developed in time-frequency
analysis, especially techniques developed in Chapter 14 of [16] and [18]. Further,
by using some recent embeddings theorems from [23], we can state new bound-
edness results on products of certain Besov spaces.

While concrete boundedness problems are rarely easy to deal with, the bi-
linear or multilinear case offers additional difficulties. To give an example of
these new problems, consider the classical symbol class S0

0,0 consisting of those σ

which satisfy estimates of the form

(1.2) |∂α
x∂

β
ξ σ(x, ξ)| 6 Cα,β, ∀ α, β > 0.
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A classical result of Calderón and Vaillancourt [4] asserts that the corresponding
linear pseudodifferential operator Tσ is bounded on L2(Rd). In the bilinear case,
however, the analogous class of symbols which satisfy the conditions

(1.3) |∂α
x∂

β
ξ ∂

γ
η σ(x, ξ, η)| 6 Cα,β,γ, ∀ α, β, γ > 0,

does not necessarily yield bounded operators from L2 × L2 into L1, unless addi-
tional size conditions are imposed on the symbols; see [2]. However, as a conse-
quence of our main result we will show that the Calderón–Vaillancourt-like con-
dition (1.3) does yield boundedness from L2 × L2 into a modulation space that
contains L1.

Our conditions should also be compared to a typical hard analysis result of
Coifman and Meyer ([5], Theorem 12): If the symbol σ of a bilinear pseudodiffer-
ential operator satisfies the conditions

(1.4) |∂β
ξ ∂

γ
η σ(x, ξ, η)| 6 Cβ,γ

and

(1.5) |∂β
ξ ∂

γ
η σ(x′, ξ, η)− ∂

β
ξ ∂

γ
η σ(x, ξ, η)| 6 Cβ,γ |x′ − x|δ

for all β, γ > 0 and some δ > 0, then the corresponding operator is bounded on
products of certain Lebesgue spaces. It turns out that conditions (1.4) and (1.5)
are not comparable to the condition σ ∈ M∞,1; neither set of conditions implies
the other.

Our paper is organized as follows. In Section 2 we set the notation, define
the modulation spaces and collect some of their basic properties and the embed-
dings that will be needed later on. The main results are then stated and proved
in Section 3, and some applications of these results are obtained in Section 4.

2. NOTATION AND PRELIMINARIES

2.1. GENERAL NOTATION. Translation and modulation of a function f with do-
main Rd are, respectively, Tx f (t) = f (t− x) and My f (t) = e2πiy·t f (t). The inner
product f , g ∈ L2(Rd) is 〈 f , g〉 =

∫
Rd

f (t) g(t) dt, and the same notation is used for

the extension of the inner product to S ′×S . The Fourier transform of f ∈ L1(Rd)
is f̂ (ω) =

∫
Rd

f (t) e−2πit·ω dt.

The Short-Time Fourier Transform (STFT) of a function f with respect to a
window g is

Vg f (x, y) = 〈 f , MyTxg〉 =
∫

Rd

e−2πiy·t g(t− x) f (t) dt, (x, y) ∈ R2d,
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whenever the integral makes sense. If g ∈ S and f ∈ S ′ then Vg f is a uniformly
continuous function on R2d. One important technical tool is the extended isome-
try property of the STFT ([16], 14.31): If φ ∈ S(Rd), ‖φ‖L2 = 1, then

(2.1) 〈 f , h〉 = 〈Vφ f , Vφh〉 ∀ f ∈ S ′, h ∈ S .

A second important tool is the fundamental identity Vg f(x, y)=e−2πix·yVĝ f̂(y,−x).
We let Lp,q(R2d) be the mixed-norm Lebesgue space defined by the norm

‖ f ‖Lp,q =
( ∫

Rd

( ∫

Rd

| f (x, y)|p dx
)q/p

dy
)1/q

,

with the usual adjustment if p or q is infinite, and we use a similar notation for
the mixed-norm sequence spaces `p,q.

2.2. MODULATION SPACES. Given 1 6 p, q 6 ∞, and given a fixed, nonzero
window function g ∈ S(Rd), the modulation space Mp,q(Rd) consists of all dis-
tributions f ∈ S ′(Rd) for which the following norm is finite:

(2.2) ‖ f ‖Mp,q =
( ∫

Rd

( ∫

Rd

|Vg f (x, y)|p dx
)q/p

dy
)1/q

= ‖Vg f ‖Lp,q ,

with the usual modifications if p or q are infinite. Note that M2,2 = L2.
We refer to [16] for a detailed description of the theory of modulation spaces

and their weighted counterparts. In particular, Mp,q is a Banach space, and any
nonzero function φ ∈ M1,1 can be substituted for g in (2.2) to define an equivalent
norm for Mp,q. The Schwartz class is dense in Mp,q for all p, q < ∞.

For 1 6 p, q < ∞, the dual of Mp,q is Mp′ ,q′ where 1
p + 1

p′ = 1
q + 1

q′ = 1.
To deal with duality properly in the cases p = ∞ or q = ∞, we introduce the
following new related modulation spaces.

DEFINITION 2.1. Let L0(R2d) denote the space of bounded, measurable func-
tions on R2d which vanish at infinity. We define

M0,q(Rd) = { f ∈ M∞,q(Rd) : Vg f ∈ L0(R2d)}, 1 6 q < ∞,

Mp,0(Rd) = { f ∈ Mp,∞(Rd) : Vg f ∈ L0(R2d)}, 1 6 p < ∞,

M0,0(Rd) = { f ∈ M∞,∞(Rd) : Vg f ∈ L0(R2d)},

equipped with the norms of M∞,q, Mp,∞, and M∞,∞, respectively.

Though not yet explicitly mentioned in the literature, we will see that these
spaces are useful for the treatment of end-point results and in the study of com-
pactness properties of pseudodifferential operators. The following properties are
easily established.
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LEMMA 2.2. (i) M0,q is the M∞,q-closure of S in M∞,q, hence is a closed sub-
space of M∞,q. Likewise, Mp,0 is the Mp,∞-closure of S in Mp,∞, and M0,0 is the
closure of S in the M∞,∞-norm.

(ii) The following duality results hold for 1 6 p, q < ∞: (M0,q)′ = M1,q′ , (Mp,0)′

= Mp′ ,1, and (M0,0)′ = M1,1.

Proof. Statement (i) is proved exactly as Proposition 11.3.4 of [16], and (ii)
can be obtained by a modification of Theorem 11.3.6 in [16]. Both statements can
also be seen as special cases of the coorbit space theory developed in [8].

Using these spaces, we can prove that the following compactness result for
linear pseudodifferential operators is a corollary of the boundedness result for
the symbol class M∞,1. Other compactness results have been obtained by Labate
in [21].

PROPOSITION 2.3. If σ ∈ M0,1(R2d), then Tσ is a compact mapping of Mp,q

into itself for all 1 6 p, q 6 ∞.

Proof. Assume first that σ ∈ S(R2d). Then we can write Tσ as an integral
operator with kernel k ∈ S(R2d). Let φ ∈ M1,1(Rd) and α, β > 0 be such that
{φkn}k,n∈Zd is a Parseval Gabor frame for L2(Rd), where φkn = MβnTαkφ. Then
{Φk`mn}k,`,m,n∈Zd is a Parseval Gabor frame for L2(R2d), where Φk`mn(x, y) =
φkn(x) φ`m(y). Since k ∈ M1,1, we therefore have

k = ∑
k,`,m,n

〈k, Φk`mn〉Φk`mn, with ∑
k,`,m,n

|〈k, Φk`mn〉| < ∞,

and hence
Tσ f = ∑

k,`,m,n
〈k, Φk`mn〉 〈 f , φ`m〉 φkn.

Since the φkn are uniformly bounded in Mp,q-norm, it follows easily that Tσ is a
compact mapping of Mp,q into itself; in fact, Tσ is nuclear.

For the general case, if σ ∈ M0,1(R2d) then by Lemma 2.2 there exists
a sequence σn ∈ S(R2d) such that ‖σ− σn‖M∞,1 → 0. By the boundedness
theorem for linear pseudodifferential operators with symbols σ ∈ M∞,1 ([16],
Theorem 14.5.2), the operator norm can be estimated as ‖Tσ − Tσn‖Mp,q→Mp,q 6
C‖σ− σn‖M∞,1 . Since the ideal of compact operators is closed in the operator
norm, this implies that Tσ is compact on Mp,q.

2.3. EMBEDDINGS. We conclude this section by listing a few embeddings proved
in [23] between Lebesgue or Besov spaces and modulation spaces. Further em-
beddings and comparisons of modulation space with standard spaces can be
found in [15], [11], [20], [25].

(i) Bs
p,q ⊆ Lp ⊆Mp,p′ for s > 0, 1 6 p 6 2 and 1 6 q 6 ∞;

(ii) Bs
p,q ⊆ Lp ⊆Mp,p for s > 0, 2 6 p 6 ∞ and 1 6 q 6 ∞;

(iii) Bs
p,p ⊆Mp,p′ for s > d

p′ , 1 6 p 6 ∞.
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3. BOUNDEDNESS OF MULTILINEAR PSEUDODIFFERENTIAL OPERATORS

Our main result is the following.

THEOREM 3.1. If σ ∈ M∞,1(R(m+1)d), then the m-linear pseudodifferential op-
erator Tσ defined by (1.1) extends to a bounded operator from Mp1,q1 × · · · ×Mpm,qm

into Mp0,q0 when 1
p1

+ · · ·+ 1
pm

= 1
p0

, 1
q1

+ · · ·+ 1
qm

= m− 1 + 1
q0

, and 1 6 pi, qi 6
∞ for 0 6 i 6 m.

Theorem 3.1 has the following intuitive explanation. Though not literally
correct, it is instructive to think of f ∈ Mp,q as being represented by the state-
ment “ f ∈ Lp and f̂ ∈ Lq” (for a rigorous comparison of modulation spaces
and Fourier-Lebesgue spaces see the embeddings in [11]). Under this analogy,
the first condition ∑ p−1

j = p−1
0 is the condition required to estimate the point-

wise product f1 · · · fm by Hölder’s inequality, and the second condition ∑ q−1
j =

m− 1 + q−1
0 is the condition needed to apply Young’s inequality to the convolu-

tion product f̂1 ∗ · · · ∗ f̂m. Thus, loosely speaking, Theorem 3.1 asserts that the
symbol class M∞,1 yields multilinear operators Tσ that behave like pointwise
multiplication with respect to both time and frequency.

The proof of Theorem 3.1 requires some preparation. To compactify the no-
tation, let us write ~ξ = (ξ1, . . . , ξm), d~ξ = dξ1 · · ·dξm, etc. Then for f1, . . . , fm, g ∈
S(Rd), the action of Tσ can be expressed by the formula

〈Tσ
~f , g〉 = 〈Tσ( f1, . . . , fm), g〉

=
∫

R(m+1)d

σ(x, ξ1, . . . , ξm) f̂1(ξ1)· · · f̂m(ξm)e2πix·(ξ1+···+ξm) g(x) dξ1· · ·dξm dx

= 〈σ, Wm(g, f1, . . . , fm)〉 = 〈σ, Wm(g, ~f )〉,

where

Wm(g, f1, . . . , fm)(x, ξ1, . . . , ξm) = g(x) f̂1(ξ1) · · · f̂m(ξm) e−2πix·(ξ1+···+ξm).

REMARK 3.2. For m = 1, the Kohn-Nirenberg correspondence can be writ-

ten as 〈Tσ f , g〉 = 〈σ, W1(g, f )〉 where W1(g, f )(x, ξ) = e−2πix·ξ g(x) f̂ (ξ) is the
so-called cross-Ryhaczek distribution of f and g. Thus, one may think of Wm as a
multilinear version of the Ryhaczek distribution.

The following multilinear “magic formula” will be an important tool.

LEMMA 3.3. Let (φ0,~φ) = (φ0, φ1, . . . , φm) ∈ (S(Rd))m+1 be given. Then for
(~f , g) ∈ (M∞,∞(Rd))m+1 and (u0,~u) = (u0, u1, . . . , um), (v0,~v) = (v0, v1, . . . , vm)
∈ R(m+1)d we have
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VWm(φ0,~φ)Wm(g, ~f )((u0,~u), (v0,~v))

= e2πiu0·(u1+···+um) Vφ0 g(u0, v0 + u1 + · · ·+ um)
m

∏
i=1

Vφi fi(u0 + vi, ui).(3.1)

Proof. Note first that Wm(φ0,~φ) ∈ S(R(m+1)d). Assume that we also had
(~f , g) ∈ (S(Rd))m+1. Then the integral defining the STFT VWm(φ0,~φ)Wm(g, ~f ) con-
verges absolutely, and hence the following manipulations are justified:

VWm(φ0,~φ)Wm(g, ~f )((u0,~u), (v0,~v))

=
∫

R(m+1)d

Wm(g, ~f )(x,~ξ) e−2πi(x,~ξ)·(v0,~v) Wm(φ0,~φ)((x,~ξ)− (u0,~u)) dx d~ξ

=
∫

R(m+1)d

g(x)
m

∏
i=1

f̂i(ξi) e−2πix·∑m
i=1 ξi e−2πi(x·v0+∑m

i=1 ξi ·vi)

× φ0(x− u0)
m

∏
i=1

φ̂i(ξi − ui) e2πi(x−u0)·∑m
i=1(ξi−ui) dx d~ξ

= e2πiu0·∑m
i=1 ui

∫

R(m+1)d

g(x)
m

∏
i=1

f̂i(ξi) φ0(x− u0)
m

∏
i=1

φ̂i(ξi − ui)

× e−2πix·(v0+∑m
i=1 ui)

m

∏
i=1

e−2πiξi ·(u0+vi) dx d~ξ

= e2πiu0·∑m
i=1 ui Vφ0 g

(
u0, v0 +

m

∑
i=1

ui

) m

∏
i=1

Vφ̂i
f̂i(ui,−u0 − vi)

= e2πiu0·∑m
i=1 ui Vφ0 g

(
u0, v0 +

m

∑
i=1

ui

) m

∏
i=1

Vφi fi(u0 + vi, ui),

and the result follows in this case.
Now assume that (g, ~f ) ∈ (M∞,∞(Rd))m+1. Then we have ḡ⊗ f̂1⊗· · ·⊗ f̂m∈

M∞,∞(R(m+1)d). Since pointwise multiplication by the “chirp” e−2πix·(ξ1+···+ξm)

leaves M∞,∞ invariant ([9] or Theorem 12.1.3 of [16]), we find that Wm(g, ~f ) ∈
M∞,∞(R(m+1)d) as well. Consequently VWm(φ0,~φ)Wm(g, ~f ) is a well-defined,

bounded, uniformly continuous function on R(m+1)d.
We prove the validity of the identity (3.1) by approximation. Since S is

weak∗-dense in M∞,∞, we can choose sequences gn ∈ S(Rd) and ~fn ∈ (S(Rd))m

such that (gn, ~fn) w∗−→ (g, ~f ) in M∞,∞. By continuity of tensor products and mul-

tiplication by chirps, we obtain that Wm(gn, ~fn) w∗−→ Wm(g, ~f ) in M∞,∞. Since
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weak∗-convergence of distributions is equivalent to uniform convergence of the
STFT on compact sets [8], we find that VWm(φ0,~φ)Wm(gn, ~fn) converges uniformly

on compact sets to VWm(φ0,~φ)Wm(g, ~f ).
Similarly, for the right-hand side of (3.1) we obtain that Vφ0 gn → Vφ0 g

and Vφi ( fn)i → Vφi fi uniformly on compact sets. Consequently the right-hand

side converges uniformly to e2πiu0·∑m
i=1 ui Vφ0 g

(
u0, v0 +

m
∑

i=1
ui

) m
∏
i=1

Vφi fi(u0 + vi, ui).

This proves the identity in the general case.

LEMMA 3.4. Let (φ0,~φ) ∈ (S(Rd))m+1 be given. Assume that 1
p1

+ · · ·+ 1
pm

=
1
p0

and 1
q1

+ · · ·+ 1
qm

= m− 1 + 1
q0

, with 1 6 p0, q0 6 ∞ for 0 6 i 6 m. Then

‖VWm(φ0,~φ)Wm(g, ~f )‖L1,∞ 6 C ‖ f1‖Mp1,q1 · · · ‖ fm‖Mpm ,qm ‖g‖Mp′0,q′0 ,

whenever the right-hand side is defined.

Proof. Lemma 3.3 implies that for all (v0,~v) ∈ R(m+1)d we have

∫

R(m+1)d

|VWm(φ0,~φ)Wm(g, ~f )((u0,~u), (v0,~v))|du0 d~u

=
∫

R(m+1)d

∣∣∣Vφ0 g
(

u0, v0 +
m

∑
i=1

ui

)∣∣∣
∣∣∣

m

∏
i=1

Vφi fi(u0 + vi, ui)
∣∣∣ du0 d~u

6
∫

Rmd

∥∥∥Vφ0 g
(
·, v0 +

m

∑
i=1

ui

)∥∥∥
Lp′0

m

∏
i=1
‖Vφi fi(·, ui)‖Lpi d~u = (∗),

the last line following by applying Hölder’s inequality in the first variable, since
1
p1

+ · · ·+ 1
pm

+ 1
p′0

= 1. Now write

G(v) = ‖Vφ0 g(·, v)‖
Lp′0 and Fi(ui) = ‖Vφi fi(·,−ui)‖Lpi

. With this notation, ‖G‖
Lq′0 = ‖g‖Mp′0,q′0 and ‖Fi‖Lqi = ‖ fi‖Mpi ,qi (more precisely,

a different equivalent norm for Mpi ,qi is used for each i because of the different
choice of window functions), and we may rewrite the term (∗) above as

(∗) =
∫

Rmd

G
(

v0 +
m

∑
i=1

ui

) m

∏
i=1

Fi(−ui) d~u = (G ∗ F1 ∗ · · · ∗ Fm)(v0).

Note that this expression is independent of ~v. Applying now Young’s inequality
for convolutions, since 1

q1
+ · · ·+ 1

qm
= m− 1 + 1

q0
we obtain
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‖VWm(φ0,~φ)Wm(g, ~f )‖L1,∞

= sup
(v0,~v)∈R(m+1)d

∫

R(m+1)d

|VWm(φ0,~φ)Wm(g, ~f )((u0,~u), (v0,~v))|du0 d~u

6 ‖G ∗ F1 ∗ · · · ∗ Fm‖L∞

6 ‖G‖q′0

m

∏
i=1
‖Fi‖Lqi

6 C ‖g‖Mp′0,q′0 ‖ f1‖Mp1,q1 · · · ‖ fm‖Mpm ,qm ,

the constant C arising from the use of different windows to measure the modula-
tion space norms.

We can now prove our main result.

Proof of Theorem 3.1. Let fi ∈ Mpi ,qi be given, and let φ0, φ1, . . . , φm ∈ S(Rd)
be fixed so that ‖φi‖L2 = 1 for each i. Then, using the extended isometry property
of the STFT, Hölder’s inequality, and Lemma 3.4, for any g ∈ Mp′0,q′0 we may
estimate that

|〈Tσ
~f , g〉| = |〈σ, Wm(g, ~f )〉|

= |〈VWm(φ0,~φ)σ, VWm(φ0,~φ)Wm(g, ~f )〉|

6 ‖VWm(φ0,~φ)σ‖L∞,1 ‖VWm(φ0,~φ)Wm(g, ~f )‖L1,∞

6 C ‖σ‖M∞,1

m

∏
i=1
‖ fi‖Mpi ,qi ‖g‖Mp′0,q′0 .

If p′0, q′0 < ∞, then the duality properties of the modulation spaces imply that
Tσ

~f ∈ Mp0,q0 with the norm estimate

‖Tσ
~f ‖Mp0,q0 6 C ‖σ‖M∞,1

m

∏
i=1
‖ fi‖Mpi ,qi .

If either p′0 = ∞ or q′0 = ∞ or both, then we take g ∈ M0,q′0 , Mp′0,0, or M0,0

instead. Again the duality stated in Lemma 2.2 then implies that Tσ
~f ∈ Mp0,q0

with the correct norm estimate, which completes the proof.

4. APPLICATIONS

In this final section we give some applications of Theorem 3.1.
First we consider the boundedness of Tσ from Mp1,p1 × · · · ×Mpm,pm into

Mp0,p0 . The required conditions on the exponents pi and qi then imply that
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we must necessarily have m = 1, since pi = qi. Thus we recover the follow-
ing boundedness condition for linear pseudodifferential operators, which, as ex-
plained in the introduction, extends the classical result of Calderón and Vaillan-
court.

COROLLARY 4.1. ([17], Theorem 1.1) If σ ∈ M∞,1(R2d), then Tσ extends to a
bounded operator from Mp,p into Mp,p for 1 6 p 6 ∞.

If instead we choose qi = p′i for 1 6 i 6 m, then the conditions of Theo-
rem 3.1 yield q0 = p′0. Hence we have the following.

COROLLARY 4.2. If σ ∈ M∞,1(R(m+1)d) and 1 6 p0, p1, . . . , pm 6 ∞ satisfy
1
p1

+ · · · + 1
pm

= 1
p0

, then Tσ extends to a bounded operator from Mp1,p′1 × · · · ×
Mpm,p′m into Mp0,p′0 .

Using the embedding (iii) from Section 2.2 of Besov spaces into the modu-
lation spaces, we obtain the following.

COROLLARY 4.3. Let σ ∈ M∞,1(R(m+1)d), and let 1 < p0, p1, . . . , pm < ∞ be
given so that 1

p1
+ · · · + 1

pm
= 1

p0
. If si > d

p′i
for 1 6 i 6 m, then Tσ extends to a

bounded operator from Bs1
p1,p1 × · · · × Bsm

pm,pm into Mp0,p′0 .

It is tempting to seek a similar result for Lebesgue spaces by using the em-
bedding (i) from Section 2.2. However, in this case the embeddings and the con-
ditions of Theorem 3.1 do not seem to lead to interesting results.

Next we consider the multilinear Calderón-Vaillancourt class of symbols σ
defined by the inequalities

(4.1) |∂α0
x ∂α1

ξ1
· · · ∂αm

ξm
σ(x, ξ1, . . . , ξm)| 6 Cα0,α1,...,αm ,

for all multiindices αi, 0 6 i 6 m up to a certain order. It was shown in [2] that
condition (4.1) does not necessarily yield an operator Tσ that is bounded from
L2 × L2 into L1, or more generally from Lp × Lq into Lr for 1

p + 1
q = 1

r . Here
the use of the modulation spaces clarifies the situation. In particular, by applying
Theorem 3.1 with p1 = p2 = q1 = q2 andM2,2 = L2 we see by how much L2× L2

fails to be mapped into L1.

COROLLARY 4.4. If σ ∈ M∞,1(R3d), then Tσ maps L2 × L2 into M1,∞ (in fact,
into M1,0).

The relationship between M∞,1 and the Calderón-Vaillancourt class (4.1) is
illuminated by the following embeddings.

COROLLARY 4.5. A symbol σ belongs to M∞,1 under each of the following con-
ditions:

(i) Equation (4.1) is satisfied for all αj such that
m
∑

j=1
|αj| 6 m(d + 1) + 1.

(ii) Equation (4.1) is satisfied for all αj such that |αj| 6 d + 1 for j = 0, . . . , m.
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(iii) Equation (4.1) is satisfied for all αj such that αj ∈ {0, 1, 2}d.
(iv) σ ∈ Cs(R(m+1)d) with s > (m + 1)d.

In each of these cases, Tσ extends to a bounded operator from Mp1,q1 × · · · ×
Mpm,qm into Mp0,q0 when 1

p1
+ · · · + 1

pm
= 1

p0
, 1

q1
+ · · · + 1

qm
= m − 1 + 1

q0
, and

1 6 pi, qi 6 ∞ for 0 6 i 6 m.

Proof. The embeddings (i) and (iv) are well-known, see, e.g., [16], [19], [23].
The embeddings (ii) and (iii) are new, but their proofs are almost identical to the
proof of Theorem 14.5.3 in [16].

REMARK 4.6. Finally, we compare membership of the symbol inM∞,1(R3d)
with the requirement that σ satisfy (1.4) and (1.5). These two conditions are dis-
tinct, in the sense that neither implies the other. The condition presented in this
paper is more general in the variables ξ and η, but too strong in the x-variable.
We can easily construct examples satisfying one but not the other condition. For
instance, consider a symbol of the form

σ(x, ξ, η) = ∑
k,l∈Zd

ak,l(x) e2πi(k·ξ+l·η)

with ∑
k,l
|akl(x)| < ∞ for all x. Choosing the coefficients suitably, we can make

σ ∈ M∞,1, but σ obviously does not satisfy the Coifman–Meyer conditions.
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