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ABSTRACT. We introduce an indefinite analogue of the so-called Stieltjes class
and provide some basic results on this indefinite Stieltjes class. Among them:
The relation between the functions q(z), zq(z) and zq(z2), limit properties, a
distributional representation. These results generalize well known properties
of functions belonging to the Stieltjes class.
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1. INTRODUCTION

In the study of the vibrating string the so-called Stieltjes class S of functions
analytic in C \ [0, ∞) having the property that q(z) as well as zq(z) maps the
upper half plane into itself plays a prominent role. A systematic investigation of
the class S goes back to I.S. Kac and M.G. Krein, cf. [13], [14]. For example it is
proved that a function q belongs to S if and only if it has an analytic continuation
through R− and satisfies q(x) > 0, x ∈ R−.

Functions belonging to the Stieltjes class possess some rather remarkable
properties. Let us specify a couple of them: If q ∈ S , then also the function zq(z2)
maps the upper half plane into itself. If q ∈ S , then the limit of q(z) must exist
when z tends to ∞ along the negative real axis. The class S is closed with respect
to locally uniform limits. Every function q ∈ S has an integral representation of
a particular kind.

In a paper of M.G. Krein and H. Langer [20] a class N+
κ of functions was

introduced which could be viewed as an indefinite generalization of the Stielt-
jes class. This class occurs in the investigation of the generalized string, a string
which can carry negative point masses (electric charges) and dipols, cf. [21]. How-
ever, it turned out that N+

κ is, in a way, not the proper indefinite analogue of S .



18 MICHAEL KALTENBÄCK, HENRIK WINKLER, AND HARALD WORACEK

It is our aim to introduce a proper indefinite analogue of the Stieltjes class
and to derive basic results for this class of functions. After some general discus-
sion we will focus on the correct analogues of the above mentioned properties of
S . The exact definition of the main objects of our studies, the classes Nκ of gen-
eralized Nevanlinna functions of negative index κ ∈ N ∪ {0}, the class N ep

<∞ of
essentially positive generalized Nevanlinna functions and the classN sym

<∞ of sym-
metric generalized Nevanlinna functions will be given a couple of lines below in
Definition 1.1.

Let us mention that a related kind of generalization of the Stieltjes class to an
indefinite setting can be found in [7], where in fact operator valued functions are
considered. In another work of V. Derkach and M. Malamud, cf. [6], subclasses
S±κ := {q ∈ N0 : z±1q(z) ∈ Nκ} have been introduced and applied to the
description of certain classes of generalized resolvents of a symmetric operator
in a Hilbert space. Moreover, functions of these classes have been characterized
in terms of their zeros and poles as well as in terms of the parameters of their
integral representation. Most intimately related to our present paper is the work
[5] of V. Derkach who introduced the classes

(1.1) N ν
κ := {q ∈ Nκ : zq(z) ∈ Nν} ,

and applied the theory of these classes to the description of the generalized resol-
vents of a symmetric operator in a Pontryagin space. Note that N 0

κ = N+
κ and

N κ
0 = S+κ .

Let us describe the content of the present paper. In Section 2 we provide
some rather general statements on symmetry in reproducing kernel Pontryagin
spaces. This general treatment gives a more structural view on the results of
Section 3, where we deal with the class N sym

<∞ .
In Section 4 we prove Theorem 4.1, the first main result of this paper. It

states, roughly speaking, that if q ∈ N ep
<∞, then zq(z2) ∈ N sym

<∞ . This is the ana-
logue of the first of the above mentioned properties of the Stieltjes class. We will
use Theorem 4.1 to obtain Proposition 4.8 which describes the relationship of the
functions q(z), zq(z) and zq(z2). Moreover, we shall see that Theorem 4.1 implies
the appropriate analogues of the mentioned limit properties of the Stieltjes class,
see Proposition 4.11 and Proposition 4.12.

The final Section 5 is devoted to the indefinite analogue of the integral rep-
resentation of a function q ∈ S . This representation employs a certain class of
distributions which occured already in [12] and [18] where distributions are used
to obtain an integral representation of an arbitrary generalized Nevanlinna func-
tion. In the present context the task is to single out those distributions which give
rise to functions of the class N ep

<∞ or N sym
<∞ , respectively. This is the content of

Theorem 5.9 which can be regarded as the second main result of this paper.
The theory of generalized Nevanlinna functions is most intimately related

with the theory of selfadjoint operators in Pontryagin spaces and of course the
notions of symmetric and essentially positive generalized Nevanlinna functions
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possess their proper analogy in the operator theoretic context. However, in this
paper we shall rather take the viewpoint of complex analysis and do not go into
operator theoretic topics. A thorough investigation in this direction can be found
in [15].

Let us recall the notion of a (matrix valued) kernel function in general, and
of a generalized Nevanlinna function in particular. Let Ω ⊆ C be an open set
and K : Ω×Ω → Cn×n. The function K(w, z) is called an analytic hermitian kernel
(kernel, for short) on Ω if it is analytic in the two variables z and w and satisfies
K(w, z) = K(z, w)∗. We say that the kernel K has κ negative squares on Ω, where κ
is a nonnegative integer, if for any finite set of points z1, . . . , zm ∈ Ω and elements
f1, . . . , fm ∈ Cn the hermitian matrix

((K(zi, zj) fi, f j)Cn)m
i,j=1

has at most κ negative eigenvalues, and if for some choice of zi, fi this bound is
actually attained. In this case we shall write ind− K = κ. If for no κ ∈ N ∪ {0}
this condition is fullfilled, we write ind− K = ∞.

Let Ω be an open subset of C and let Q : Ω → Cn×n be an analytic function
which satisfies Q(z) = Q(z)∗ whenever both z and z belong to Ω. The Nevan-
linna kernel of Q is defined as

(1.2) LQ(w, z) :=

{
Q(z)−Q(w)∗

z−w z, w ∈ Ω, z 6= w,
Q′(z) z = w ∈ Ω.

Then LQ is an analytic hermitian kernel on Ω. We say that Q is a generalized
Nevanlinna function if ind− LQ < ∞, and put ind− Q := ind− LQ. Moreover, we
define

N n×n
κ := {Q : ind− Q = κ}, N n×n

6κ := {Q : ind− Q 6 κ},

N n×n
<∞ := {Q : ind− Q < ∞} .

In the scalar case n = 1 the upper index n× n will be suppressed.
A generalized Nevanlinna function Q, which is from the start defined on

some open set Ω always has an analytic continuation to C \R with possible ex-
ception of finitely many points (in fact at most 2 ind− Q many) which are poles,
see e.g. [19]. The number ind− Q does not depend on the set Ω on which Q is
defined. Hence we can always think of Q as being meromorphic on C \R. How-
ever, the maximal domain of analyticity of a given function Q might also contain
parts of the real axis.

DEFINITION 1.1. Let κ ∈ N∪ {0}. A function Q ∈ N n×n
κ is said to be:

(i) symmetric, if Q(−z) = −Q(z), i.e. if Q is odd.
(ii) essentially positive, if Q is analytic on C \ [0, ∞) with possible exception of

finitely many poles.
The subset of N n×n

κ which consists of all symmetric (essentially positive)
functions will be denoted by N n×n, sym

κ (N n×n, ep
κ , respectively).
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We will freely use selfexplanatory notation like N ep
6κ , N n×n, sym

<∞ etc., which
is defined correspondingly.

2. SYMMETRY IN REPRODUCING KERNEL PONTRYAGIN SPACES

Basic objects of our studies are reproducing kernel Pontryagin spaces. Let
us recall the necessary definitions.

A Pontryagin space is a linear space P equipped with an inner product [·, ·]
such that P decomposes as the orthogonal and direct sum P = P1[+̇]P2 of a
Hilbert space P1 and a finite dimensional anti-Hilbert space P2. The dimension
of P2 in such a decomposition is independent of the decomposition and will be
called the negative index of P:

ind− P := dim P2 .

A Pontryagin space carries a unique norm-topology which is induced by the in-
ner product. In fact, a sequence (xn)n∈N converges to a point x if and only if

lim
n→∞

[xn, xn] = [x, x], lim
n→∞

[xn, y] = [x, y], y ∈ P .

For a detailed discussion of the concept of Pontryagin spaces we refer the reader
to [11] or [3].

Consider a Pontryagin space P whose elements f are vector-valued analytic
functions on some fixed open set Ω ⊆ C, f : Ω → Cn, and assume that the linear
operations are defined pointwise. Then, for each w ∈ Ω, the point evaluation
function

χw :
{

P → Cn

f 7→ f (w)
is a linear functional on P. The space P is called a reproducing kernel Pontryagin
space if for each w ∈ Ω the functional χw is continuous. The space P is a repro-
ducing kernel space if and only if there exists a kernel function, that is a function
K : Ω×Ω → Cn×n which possesses the following properties:

(i) For all w ∈ Ω and x ∈ Cn we have K(w, ·)x ∈ P.
(ii) For all f ∈ P, w ∈ Ω and x ∈ Cn

(2.1) [ f (·), K(w, ·)x] = x∗ f (w) .

A kernel function K is uniquely determined by the properties (i) and (ii) and
will be referred to as the reproducing kernel of the space P. It satisfies ind− K =
ind− P.

Conversely, every kernel K on Ω with ind− K < ∞ gives rise to a reproduc-
ing kernel Pontryagin space P(K) with ind− P(K) = ind− K, which has K as its
reproducing kernel. In fact, P(K) can be defined as completion of the linear set

span{K(w, ·)x : w ∈ Ω, x ∈ Cn}
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with respect to an inner product defined according to (2.1). For a detailed account
on reproducing kernel Pontryagin spaces we refer the reader to [1].

The following elementary lemma serves as a starting point for our subse-
quent investigations. It models the idea of symmetry in Pontryagin spaces. This
concept should not be mixed up with the notion of "symmetry with respect to an
involution" as considered e.g. in [9].

LEMMA 2.1. Let P be a Pontryagin space and let M : P → P be an involutory
and isometric linear mapping, i.e. assume that

M ◦ M = I, [M f , Mg] = [ f , g], f , g ∈ P .

Then M∗ = M−1 = M. Put Pe := 1
2 (I + M) and Po := 1

2 (I − M). Then Pe and Po
are orthogonal projections onto the nondegenerated and closed subspaces

Pe := ran Pe = { f ∈ P : M f = f },

Po := ran Po = { f ∈ P : M f = − f }.

We have P = Pe[+̇]Po. In particular, ind− P = ind− Pe + ind− Po.
If in addition it is assumed that P is a reproducing kernel space of functions on

some set Ω, then also Pe and Po have this property. The respective kernel functions
K, Ke, Ko are related by

Ke = PeK, Ko = PoK .
In particular, K = Ke + Ko.

Proof. Let f , g be given, then

[M f , g] = [M f , M(Mg)] = [ f , Mg] ,

hence M∗ = M. Since M ◦ M = I, we have P2
e = Pe and P2

o = Po. Moreover, Pe
and Po are selfadjoint. Clearly Pe + Po = I, and

PePo = PoPe = 0.

Thus P = ran Pe[+̇] ran Po. All other assertions are obvious.

The situation described in this lemma often arises from analytic involutions
on Ω. Let Ω ⊆ C be an open set and assume that λ : Ω → Ω is an analytic invo-
lution, i.e. λ is analytic and λ ◦ λ = idΩ. Then we can define a linear involution
Mλ on the linear space O(Ω)n of all analytic functions of Ω into Cn by means of
composition with λ:

Mλ :
{
O(Ω)n → O(Ω)n

f 7→ f ◦ λ
.

LEMMA 2.2. Let P be a reproducing kernel space on a set Ω, so that P ⊆ O(Ω)n,
and let λ : Ω → Ω be an analytic involution. In order that composition with λ induces
an isometric involution on P, i.e. that Mλ|P maps P isometrically onto itself, it is nec-
essary and sufficient that the reproducing kernel K : Ω×Ω → Cn×n of P satisfies

(2.2) K ◦ (λ× λ) = K ,
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or equivalently that K(λ(·), ·) = K(·, λ(·)). In this case we have

(2.3) Pe = { f ∈ P : f ◦ λ = f }, Po = { f ∈ P : f ◦ λ = − f } .

Proof. Assume that Mλ|P maps P isometrically onto itself. Let v, w ∈ Ω,
x, y ∈ Cn, then K(λ(·), λ(·))y = MλK(λ(·), ·)y ∈ P and we compute

x∗K(λ(v), λ(w))y = [K(λ(v), λ(·))y, K(w, ·)x]

= [MλK(λ(v), λ(·))y, MλK(w, ·)x]

= [K(λ(v), λ(λ(·)))y, K(w, λ(·))x](2.4)

= [K(λ(v), ·)y, K(w, λ(·))x]

= y∗K(w, λ(λ(v)))x = x∗K(v, w)y.

Since x, y and v, w were arbitrary, this just means that the condition (2.2) holds
true.

Conversely, assume that (2.2) is valid. Then we have

MλK(w, ·)x = K(w, λ(·))x = K(λ(w), ·)x, w ∈ Ω, x ∈ Cn .

Hence Mλ maps the linear span

L := {K(v, ·)y : v ∈ Ω, y ∈ Cn}
onto itself. Moreover, by reading the formula (2.4) backwards, we see that Mλ|L
is isometric. It follows that Mλ|L extends to an isometry of P = L onto itself
(cf. [1]). Since point evaluation in P is continuous, this extension must actually
coincide with Mλ|P.

The relation (2.3) is an immediate consequence of Lemma 2.1.

The spaces Pe and Po can be abstracted from their origin as subspaces of all
functions in P satisfying a certain functional equation. We start with the space Pe.

LEMMA 2.3. Let P ⊆ O(Ω)n be a reproducing kernel space, λ : Ω → Ω an
analytic involution and assume that (2.2) is fullfilled. Let µ ∈ O(Ω) be such that for
every z0 ∈ Ω we have

(2.5) {z ∈ Ω : µ(z) = µ(z0)} = {z0, λ(z0)} ,

and put Ω′ := µ(Ω). Then there exists a kernel K+ on Ω′ such that

Ω×Ω

µ×µ

��

Ke // Cn×n

Ω′ ×Ω′

66mmmmmmm K+

We have ind− K+ = ind− Pe and composition with µ yields an isometry of P(K+)
onto Pe

Ψ+ :
{

P(K+) → Pe
f 7→ f ◦ µ

.
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Proof. For every w ∈ Ω the function Ke(w, ·) belongs to Pe and hence we
have Ke ◦ (id×λ) = Ke. Since Ke is hermitian, Ke ◦ (λ× id) = Ke. We conclude
from (2.5) that an analytic function K+ is well defined by the relation Ke = K+ ◦
(µ× µ). Obviously K+ is hermitian.

In order to show that the mapping f 7→ f ◦ µ has the required isometry
property, let v ∈ Ω′ and choose w ∈ Ω such that µ(w) = v; then we have

K+(v, µ(z)) = K+(µ(w), µ(z)) = Ke(w, z) .

It follows that composition with µ maps the linear space

L+ := span{K+(v, ·)x : v ∈ Ω′, x ∈ Cn}

onto

Le := span{Ke(w, ·)x : w ∈ Ω, x ∈ Cn} .

In fact this mapping is isometric (µ(w) = v, µ(w′) = v′):

[K+(v, ·)x, K+(v′, ·)y] = y∗K+(v, v′)x = y∗K+(µ(w), µ(w′))x

= Ke(w, w′) = [Ke(w, z), Ke(w′, z)]

= [K+(v, µ(z)), K+(v′, µ(z))] .

Hence ind− K+ = ind− Ke and composition with µ has an extension to an isom-
etry of P(K+) = L+ onto Pe = Le. Since in both spaces point evaluation is
continuous, this extension is just composition with µ.

Let us turn our attention to Po. There the situation is a bit more compli-
cated.

LEMMA 2.4. Let P ⊆ O(Ω)n be a reproducing kernel space, λ : Ω → Ω an
analytic involution and assume that (2.2) is fullfilled. Moreover, let µ and Ω′ be as in
previous lemma. Let m ∈ O(Ω) be such that:

(i) m ◦ λ = −m;
(ii) all zeros of m are simple and are fixed points of λ.

Then there exists a kernel K− on Ω′ such that

Ω×Ω

1
m(w)m(z)

Ko(w,z)
//

µ×µ

��

Cn×n

Ω′ ×Ω′

44hhhhhhhhhhh K−

We have ind− K− = ind− Po. Moreover, P(K−) and Po are isometrically isomorphic
via the mapping

Ψ− :
{

P(K−) → Po
f 7→ m · ( f ◦ µ) .
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Proof. For every w ∈ Ω the function Ko(w, ·) belongs to Po and hence satis-
fies the functional equation Ko ◦ (id×λ) = −Ko. Since Ko is hermitian, it follows
that also Ko ◦ (λ × id) = −Ko. Let z0 be a fixed point of λ, then Ko(w, z0) = 0,
w ∈ Ω. Hence m(z)−1Ko(w, z) is analytic on Ω. Since Ko is hermitian, we con-
clude that K̂(w, z) := m(w)−1m(z)−1Ko(w, z) is analytic in z and w. Moreover,
K̂ ◦ (id×λ) = K̂ and K̂ ◦ (λ × id) = K̂, and it follows from (2.5) and our as-
sumption (i) that the relation m(w)−1m(z)−1Ko(w, z) = K−(µ(w), µ(z)) defines
an analytic function K−. Obviously K− is hermitian.

We consider the map f 7→ m · ( f ◦ µ). Let v ∈ Ω′ and choose w ∈ Ω such
that µ(w) = v; then

m(z)K−(v, µ(z)) = m(z)K−(µ(w), µ(z)) =
Ko(w, z)

m(w)
.

It follows that composition with µ maps the linear space

L− := span{K−(v, ·)x : v ∈ Ω′, m(µ−1(v)) 6= {0}, x ∈ Cn}

onto
Lo := span{Ko(w, ·)x : w ∈ Ω, x ∈ Cn} .

This mapping is isometric (µ(w) = v, µ(w′) = v′):

[K−(v, ·)x, K−(v′, ·)y] = y∗K−(v, v′)x = y∗K−(µ(w), µ(w′))x

= y∗
Ko(µ(w), µ(w′))

m(w)m(z)
x
[ Ko(w, ·)

m(w)
x,

Ko(w′, z)
m(w′)

y
]

= [m(z)K−(v, µ(z)), m(z)K−(v′, µ(z))] .

Thus ind− K− = ind− Ko and composition with µ extends to an isometry of
P(K−) = L− onto Po = Lo. In both spaces point evaluation is continuous.
Thus this extension must be equal to Ψ−.

3. SYMMETRIC NEVANLINNA FUNCTIONS

Let Q ∈ N n×n
<∞ and let LQ denote the Nevanlinna kernel of Q, cf. (1.2). We

are interested in the symmetry property of P(LQ) induced by the analytic invo-
lution λ(z) := −z. First of all note that, since a function Q ∈ N n×n

<∞ is analytic
on C \R with possible exception of finitely many points, we can without loss of
generality consider the kernel LQ as a kernel being defined on some open set Ω
with λ(Ω) = Ω. Hence the notions of Section 2 can be applied. For notational
convenience we shall write PQ instead of P(LQ).

PROPOSITION 3.1. Let Q ∈ N n×n
<∞ . Then the mapping M := Mλ : f (z) 7→

f (−z) induces an isometric involution on PQ if and only if there exists a selfadjoint
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constant a = a∗ ∈ Cn×n such that (cf. Definition 1.1)

a + Q ∈ N n×n, sym
<∞ .

Proof. First of all note that adding a selfadjoint constant to a function Q does
not change the space PQ. Hence, to prove the sufficiency of the given condition
we may without loss of generality assume that Q is odd. Then

LQ(−w,−z) =
Q(−z)−Q(−w)

(−z)− (−w)
=
−Q(z) + Q(w)

−z + w

=
Q(z)−Q(w)

z− w
= LQ(w, z) ,

i.e. the kernel relation (2.2) holds, and Lemma 2.2 yields that M is an isometry of
PQ onto itself.

Assume conversely that M is an isometry of PQ onto itself. Choose y0 > 0
such that Q is analytic at iy0 and put

a0 := −Q(iy0) + Q(−iy0)
2

= −Q(iy0) + Q(iy0)∗

2
.

Then the function Q1 := a0 + Q satisfies Q1(−iy0) = −Q1(iy0). For the proof
of necessity we may therefore assume without loss of generality that there exists
a point z0 such that Q(−z0) = −Q(z0). From this and the validity of (2.2) we
conclude that

−Q(−z)−Q(z0)∗

z− z0
=

Q(−z)−Q(−z0)∗

(−z)− (−z0)
= LQ(−z,−z0)

= LQ(z, z0) =
Q(z)−Q(z0)∗

z− z0
,

and hence that −Q(−z) = Q(z) for all z.

Assume that Q ∈ N n×n, sym
<∞ . If we make the choice µ(z) = z2 and m(z) = z

for the application of the Lemmata 2.3 and 2.4, we can obtain the spaces P+ and
P− by means of two Nevanlinna functions.

PROPOSITION 3.2. Let Q ∈ N n×n, sym
<∞ be given and define two functions Q+, Q−

by the relations

(3.1)
Q+(z2)

z
= Q(z), zQ−(z2) = Q(z) .
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Then Q+, Q− ∈ N n×n
<∞ and ind− Q+ + ind− Q− = ind− Q. We have (with the above

made choice of µ and m) K+ = LQ+ and K− = LQ− , and the isomorphisms

PQ

||
PQ+

f (z) 7→ f (z2) // PQ,e

[+̇]

PQ−
f (z) 7→z f (z2) // PQ,o

Proof. First of all note that the choice of µ(z) = z2 and m(z) = z is legitimate
since the requirements on µ and m of the Lemmata 2.3 and 2.4 are met. Moreover,
Q+ and Q− are well-defined since Q(−z) = −Q(z). We compute LQ,e:

LQ,e(w, z) =
1
2
(LQ(w, z) + LQ(w,−z)) =

1
2

( Q(z)−Q(w)∗

z− w
+

Q(−z)−Q(w)∗

−z− w

)
=

1
2

( Q(z)−Q(w)∗

z− w
+

Q(z) + Q(w)∗

z + w

)
=

zQ(z)− wQ(w)∗

z2 − w2

=
Q+(z2)−Q+(w2)∗

z2 − w2 = LQ+(w2, z2) .

Similarly one finds LQ,o:

LQ,o(w, z) =
1
2
(LQ(w, z)− LQ(w,−z)) = zwLQ−(w2, z2) .

Hence K+ = LQ+ and K− = LQ− . The final assertions of the present proposition
follow from Lemma 2.3 and Lemma 2.4.

REMARK 3.3. (i) Note that the functions Q+ and Q− in (3.1) are related by
the relation

Q+(z) = zQ−(z) .
(ii) The fact that LQ = LQ, e + LQ, o reflects in the kernel relation

(3.2) LQ(w, z) = LQ+(w2, z2) + wzLQ−(w2, z2) ,

which holds true by elementary calculation for every triple of analytic functions
related by (3.1).

COROLLARY 3.4. Let Q− ∈ O(Ω)n×n be given. Then the following are equiva-
lent:

(i) zQ−(z2) ∈ N n×n
<∞ .

(ii) Q−(z), zQ−(z) ∈ N n×n
<∞ .

In this case ind− zQ−(z2) = ind− zQ−(z) + ind− Q−(z).

Proof. If we assume (i), we obtain from Proposition 3.2 applied to Q(z) :=
zQ−(z2) that (ii) holds and that negative indices sum up. Conversely, if (ii)
holds true, then the kernel relation (3.2) applied with Q(z) = zQ−(z2), Q+(z) =
zQ−(z) shows that (i) holds.
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4. ESSENTIALLY POSITIVE NEVANLINNA FUNCTIONS

Theorem 4.1 below shows that the classes N n×n, sym
<∞ and N n×n, ep

<∞ are most
intimately related. It has proved to be a powerful tool in our further investiga-
tions ([16]) and can be regarded as the first main result of this paper.

Before we come to the statement of this result let us recall that every rational
function Q which satisfies Q(z) = Q(z)∗ belongs to N n×n

<∞ . In fact ind− Q 6
n · deg Q, where deg Q denotes the McMillan-degree of Q, see [2]. Moreover, if
r(z) is a scalar rational function and Q ∈ N n×n

<∞ , then (r#(z) := r(z))

(4.1) Q̂(z) := (r(z)r#(z))−1Q(z) ∈ N n×n
<∞ ,

which can be verified using the kernel relation (cf. [4])

LQ̂(w, z) =
1

r#(z)
Q(z)−Q(w)

z− w
1

r(w)

− r(z)− r(w)
z− w

Q(z)
r#(z)r(z)r(w)

− r#(z)− r#(w)
z− w

Q(w)
r#(z)r(w)r#(w)

.

We see that in fact ind− Q̂ 6 ind− Q + 2n · deg r.

THEOREM 4.1. Assume that the function Q belongs to N n×n, ep
<∞ . Then Q1(z) :=

zQ(z2) belongs to N n×n, sym
<∞ . Conversely, if Q is meromorphic in C \R and Q1(z) :=

zQ(z2) ∈ N n×n, sym
κ , then Q ∈ N n×n, ep

6κ .

Proof. Let Q ∈ N n×n, ep
<∞ . We have to show that Q1(z) ∈ N n×n, sym

<∞ . First
choose a rational function R such that Q + R is analytic in C \ [0, ∞). If the asser-
tion is proved for Q + R it follows that

Q1(z) = z(Q + R)(z2)− zR(z2) ∈ N n×n, sym
<∞ .

Hence we may assume without loss of generality that Q is analytic on C \ [0, ∞).
Recall from Proposition 2.1 of [4] that a generalized Nevanlinna function Q

has an integral representation of the form

(4.2) Q(z) =
s

∏
j=1

((z− αj)(z− αj))
−ρj

[
(z2 + y2

0)
ρ

∞∫
−∞

tz + y2
0

t− z
dΣ(t) +

2ρ+1

∑
l=0

Blzl
]

with some nondecreasing and bounded n× n-matrix function Σ(t), nonnegative
integers s, ρj, ρ, Hermitian matrices Bl , mutually different numbers αj ∈ C+ ∪R
and y0 > 0, iy0 6= αj. This representation can be chosen such that the domain
of holomorphy of Q is equal to the complement of the union of the support of
dΣ and {α1, α1, . . . , αs, αs}. Conversely, every function represented in this way
belongs to N n×n

<∞ .
Since we assume that the function Q under consideration is analytic in C \

[0, ∞), we can choose y0 = 1 and we know that αj ∈ [0, ∞). The same argument as
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in the first paragraph of this proof shows that we may assume that (dΣ)({0}) =
0. Let us recall that (cf. [20])

(1 + z2)ρ tz + 1
t− z

=
( 1

t− z
− (t + z)

ρ+1

∑
k=1

(1 + z2)k−1

(1 + t2)k

)
(1 + t2)ρ+1 + z(1 + z2)ρ .

The function

q(z) :=
∞∫

0

tz + 1
t− z

dΣ(t)

belongs to N n×n
0 . It suffices to prove that zq(z2) ∈ N n×n

<∞ , since the assertion
zQ(z2) ∈ N n×n

<∞ will then follow from (4.1). The fact that zQ(z2) is odd is anyway
obvious.

In view of Corollary 3.4 it is enough to show that zq(z) ∈ N n×n
<∞ . This,

however, is immediate from the identity

z
tz + 1
t− z

= (1 + z2)
t

t− z
− 1 .

We proceed to the proof of the converse part. Let Q1 ∈ N n×n, sym
κ , then by

Proposition 3.2 we have Q ∈ N n×n
6κ . Since Q1 is meromorphic in C+, the function

Q is meromorphic in C \ [0, ∞). Moreover, its nonreal poles correspond to the
nonreal poles of Q1 which lie off the imaginary axis, and its poles on the negative
real half axis correspond to those on the imaginary axis. Alltogether, there can
exist only finitely many poles in C \ [0, ∞).

As a first consequence we shall formulate a connection with the classes N ν
κ ,

cf. (1.1).

COROLLARY 4.2. We have

N ep
κ =

⋃
ν∈N∪{0}

N ν
κ .

Let Q ∈ N n×n, ep
<∞ . By putting together the formulas of the proof of Theo-

rem 4.1 we obtain an estimate for the number of negative squares of zQ(z2).

REMARK 4.3. The estimate given in the corollary below is very rough, how-
ever, the only thing of importance is to see that the negative index of zQ(z2) is
bounded by a value which depends only on n, κ(Q) and γ(Q).

COROLLARY 4.4. For Q ∈ N n×n, ep
<∞ put κ(Q) := ind− Q and let γ(Q) denote

the number of poles of Q in C \ [0, ∞) counted according to their multiplicities. Then we
have

ind− zQ(z2) 6 l(κ(Q), γ(Q), n) .
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Proof. With the notation of Theorem 4.1 we obtain

zQ(z2) =
(z4 + 1)ρ

s
∏
j=1

((z2 − αj)(z2 − αj))
ρj

zq(z2) +

2ρ+1
∑

l=0
Blz2l+1

s
∏
j=1

((z2 − αj)(z2 − αj))
ρj

+

+
(z4 + 1)ρ

s
∏
j=1

((z2 − αj)(z2 − αj))
ρj

(−Σ({0})− zR(z2)) .

Thereby the numbers ρ, ρj in (4.2) satisfy (cf. [4])

ρ
s

∑
j=1

ρj 6 κ(Q) .

Moreover,

zq(z2) = p(z) + (1 + z2)
∞∫

−∞

tz + 1
t− z

dΣ̂(t)

where p is a polynomial of degree at most 3. The asserted estimate follows from
the discussion on counting negative squares in the beginning of the present sec-
tion. In fact we can choose l(κ(Q), γ(Q), n) = 2n · (2γ(Q) + 10κ(Q) + 5).

EXAMPLE 4.5. Let us consider the particular case that q ∈ N0 is of the form

q(z) =
N

∑
k=1

−αk
tk + z

− α0

z
+ α + βz +

∞∫
0+

dσ(t)
t− z

where tk, αk > 0, α0, β > 0, α ∈ R, and

∞∫
0+

dσ(t)
1 + |t| < ∞ .

Then

zq(z2) =
N

∑
k=1

−αk
2

[ 1
z + i

√
tk

+
1

z− i
√

tk

]
− α0

z
+

∞∫
0+

z
t− z2 dσ(t) + αz + βz3 .

The integral term can be written as

1
2

∞∫
0+

[( 1
u− z

− u
1 + u2

)
−

( 1
u + z

− u
1 + u2

)]
dσ(u2)=

1
2

∞∫
−∞

( 1
v− z

− v
1 + v2

)
dτ(v),
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where dτ(u) = dσ(u2) on the positive half axis and dτ(u) = dτ(−u). This
measure satisfies

∞∫
−∞

dτ(v)
1 + v2 < ∞ ,

and, therefore, the integral term belongs to N0. We conclude that

zq(z2) ∈ Nκ ,

where

κ = N +


0 β = 0, α > 0,
1 (β = 0, α < 0) or β > 0,
2 β < 0.

For the sake of simplicity we shall restrict ourselves for the rest of this paper
to the scalar case n = 1.

The first task is to characterize those functions which might appear as q+
(or q−) in Proposition 3.2. In order to give an answer, we need one more lemma.

LEMMA 4.6. Let q ∈ N<∞ and assume that q is meromorphic on R−, i.e. can
be considered as an analytic mapping of C \ [0, ∞) into the Riemann sphere S2. Then
outside of a sufficiently large disk the poles and zeros of q are real, simple and interlace.

The same assertion holds true when we consider functions q meromorphic on R+.

Proof. According to [8] we can write q as

(4.3) q(z) = r(z) · q1(z) ,

with some rational function r of the form

(4.4) r(z) =

n1
∏
i=1

(z− αi)(z− αi)

n2
∏
i=1

(z− βi)(z− βi)
,

and a function q1 ∈ N0 which again is meromorphic on R−.
Choose R such that all poles and zeros of r(z) lie inside the disk with radius

R. Then outside this disk the poles and zeros of q coincide with those of q1. Since
in every point t0 ∈ R− of analyticity of q1 we have q′1(t0) > 0, between two poles
of q1 there must lie exactly one zero, i.e. the poles and zeros of q1 interlace.

Note that Nκ and N sym
κ are closed with respect to the transformation q 7→

− 1
q . With the aid of the above lemma we obtain the same statement for N ep

κ .

COROLLARY 4.7. We have q ∈ N ep
κ if and only if − 1

q ∈ N
ep
κ .

Proof. Assume that q ∈ N ep
κ . Then − 1

q ∈ Nκ . The poles of − 1
q located on

R− correspond to the zeros of q. By the above lemma q can have only finitely
many zeros located on the negative half axis.
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PROPOSITION 4.8. The following assertions are equivalent:
(i) q(z) ∈ N ep

<∞.
(ii) zq(z) ∈ N ep

<∞.
(iii) zq(z2) ∈ N sym

<∞ .
In this case we have

(4.5) ind− zq(z2) = ind− q(z) + ind− zq(z) .

The condition (iii) can be substituted by zq(z2) ∈ N<∞, since symmetry is anyway
obvious.

Proof. The equivalence of (i) and (iii) is just the statement of Theorem 4.1.
By taking inverses we obtain the equivalence of (ii) and (iii): For if we put q̂(z) :=
−(zq(z))−1, then zq̂(z2) = −(zq(z2))−1. The validity of (4.5) was already proved
in Proposition 3.2.

An inductive application of the above proposition yields:

COROLLARY 4.9. We have q ∈ N ep
<∞ if and only if

zkq(z) ∈ N<∞ for all k ∈ Z .

REMARK 4.10. From Proposition 4.8 and Corollary 3.4 it is obvious how the
classes N ep

κ are related with the classes N+
κ : Recall that a function q is said to

belong to N+
κ if q(z) ∈ Nκ and zq(z) ∈ N0. We conclude that N+

κ ⊆ N ep
κ .

This inclusion is also evident from the integral representation ([20], Satz 3.8) for
functions of the class N+

κ .
An interesting consequence of (4.5) is that q ∈ N+

κ if and only if q ∈ Nκ and
zq(z2) ∈ Nκ .

The class N+
0 is nothing else but the Stieltjes class S , cf. [14]. For an elabo-

rate discussion of the connection of the function triple q(z), zq(z), zq(z2) with the
theory of strings see also [17].

We are going to exploit Theorem 4.1 to obtain some more information on
functions of the class N ep

<∞. First we bring a result dealing with the asymptotics
of a generalized Nevanlinna function. It generalizes a property of functions of
the Stieltjes class which goes back to the original definition of S , compare (iii) of
Proposition 4.11 below and [14]. After that we will deal with limits of sequences
of generalized Nevanlinna functions.

Any function q ∈ N<∞ can be considered as an analytic mapping of C \R
into the Riemann sphere S2. The maximal domain of analyticity Ω of a given
function q ∈ N<∞ considered as mapping into S2 can be strictly larger than C \R.
For example Ω ⊇ C \ [0, ∞) whenever q ∈ N ep

<∞.
We will always consider the Riemann sphere S2 as a metric space endowed

with the spherical metric χ and of C as embedded in S2 by means of the stere-
ographical projection. Thereby χ should be normalized so that χ(0, ∞) = 1,
χ(1,−1) = 1, χ(1, ∞) = 1√

2
, etc.
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We shall establish some limit properties of generalized Nevanlinna func-
tions, in particular of symmetric and essentially positive ones. This result can
be seen in a fairly straightforward manner, however, for the convenience of the
reader we shall include its proof.

PROPOSITION 4.11. Let q ∈ N<∞.
(i) For each δ > 0 the limit

(4.6) lim
z→∞

δ6arg z6π−δ

1
z

q(z)

exists as an element of S2 and belongs to R∪ {∞}.
(ii) If q ∈ N sym

<∞ , then for all but finitely many y > 0 we have q(iy) ∈ iR. The limit

(4.7) lim
y→+∞

1
iy

q(iy)

exists in the two-point compactification R∪ {±∞} of R.
(iii) If q ∈ N ep

<∞, then for each δ > 0 the limit

lim
z→∞

δ6arg z62π−δ

q(z)

exists as an element of S2 and belongs to R ∪ {∞}. Moreover, for all but finitely many
x < 0 we have q(x) ∈ R, and

lim
x→−∞

q(x)

exists in R∪ {±∞}.

Proof. (i) Consider a function q1 ∈ N0. It follows from its integral represen-
tation

q1(z) = a + bz +
∞∫

−∞

( 1
t− z

− t
1 + t2

)
dµ(t)

that the limit lim
z→∞

δ<arg z<π−δ

znq1(z) equals:



∞ n > 2,

−
∞∫
−∞

dµ(t) ∈ (−∞, 0] n = 1, b = 0,
∞∫
−∞

dµ(t) < ∞, a =
∞∫
−∞

t
1+t2 dµ(t),

∞ n = 1 and we are not in the above case,
b ∈ [0, +∞) n = −1,
0 n 6 −2.

(4.8)

Let q ∈ N<∞ be given and consider the factorization q = r · q1 as in (4.3). Since
r ∼ z2(n1−n2), z → ∞, we have

1
z

q(z) ∼ z2(n1−n2)−1q1(z), z → ∞ ,
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and the assertion follows from (4.8).
(ii) Since q is odd we have for y > 0 with q(iy) 6= ∞ that

q(iy) = q(iy) = q(−iy) = −q(iy) .

Hence q(iy) ∈ iR for such y.
If the limit (4.6) belongs to C then by the above said it must belong to R.

Assume that the limit (4.6) is equal to ∞, i.e. |(iy)−1q(iy)| → ∞ for y → +∞.
Choose C > 0 such that for all y > C we have q(iy) 6= ∞ and χ((iy)−1q(iy), ∞) 6

1√
2
. Then (iy)−1q(iy) is a continuous function of [C, ∞) into (−∞, 1]∪ [1, ∞) ⊆ S2

and, therefore, cannot change its sign. This shows that the limit (4.7) exists in
R∪ {±∞}.

(iii) With q̂(z) := zq(z2) we have q̂ ∈ N sym
<∞ . Taking square roots maps

angles δ < arg z < 2π − δ onto angles δ
2 < arg z < π − δ

2 and maps R− to iR+.
Hence the assertion of (iii) follows from the already proved statements (i) and (ii)
applied to q̂.

Let us make the notion of convergence of a sequence of generalized Nevan-
linna functions more precise. We provide the set O(C \R, S2) of all analytic func-
tions of C \ R into S2 with the compact-open topology, that is to say with the
topology of uniform convergence on compact subsets of C \ R. The set N<∞ is
always assumed to carry the subspace topology of O(C \R, S2). Note that N<∞
is not closed in O(C \R, S2). By the theorem of Mittag-Leffler we in fact have

N<∞ = { f ∈ O(C \R, S2) : f (z) = f (z)}.

As in Corollary 4.4 we denote for q ∈ N ep
<∞ by γ(q) the total number of poles of q

in C \ [0, ∞).

PROPOSITION 4.12. Let qn ∈ O(C \ R, S2), n ∈ N, and assume that we have
lim

n→∞
qn = q in O(C \R, S2).

(i) If qn ∈ N6κ for all n ∈ N, then q ∈ N6κ .
(ii) If qn ∈ N sym

6κ for all n ∈ N, then q ∈ N sym
6κ .

(iii) If qn ∈ N ep
6κ for all n ∈ N and

(4.9) sup
n∈N

γ(qn) < ∞ ,

then q ∈ N ep
6κ .

Proof. (i) Let K ⊆ C \ R be a compact subset with nonempty interior such
that ∞ 6∈ q(K). For sufficiently large n ∈ N we have ∞ 6∈ qn(K), and since
convergence in O(C \R, S2) implies pointwise convergence it follows that

lim
n→∞

Lqn(w, z) = Lq(w, z), w, z ∈ K .

This implies ind− q 6 sup
n∈N

ind− qn.
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(ii) This statement is obvious from the already proved part (i) and the fact
that pointwise convergence preserves the property of being odd.

(iii) Showing (iii) amounts to proving that q belongs to N ep
<∞ since by (i) we

already know that q ∈ N6κ . To this end consider the sequence

q̂n(z) := zqn(z2), n ∈ N .

By Theorem 4.1 we have q̂n ∈ N sym
<∞ and by Corollary 4.4 our assumption (4.9)

guarantees that
κ̂ := sup

n∈N
ind− q̂n < ∞ .

Choose a compact subset K of C+ with nonempty interior such that ∞ 6∈ q(K),
and denote by K̂ ⊂ C+ the image of K under the proper branch of the square root
map. Then we have q̂n(z) → q̂(z) := zq(z2), z ∈ K̂. As we saw in the proof of (i)
this implies q̂ ∈ N6κ̂ and hence q ∈ N ep

<∞.

Let us remark that the condition (4.9) in the assertion (iii) above is essential
and cannot be dropped.

5. DISTRIBUTIONS ASSOCIATED TO SYMMETRIC AND ESSENTIALLY POSITIVE
NEVANLINNA FUNCTIONS

In [12] and [18] it was shown that a generalized Nevanlinna function admits
a representation similar to the integral representation

q(z) = a + bz +
∞∫

−∞

( 1
t− z

− t
1 + t2

)
(1 + t2) dµ

of an ordinary Nevanlinna function q ∈ N0. Thereby the measure µ has to be
replaced by a certain distribution φ.

In our context a natural question arises: Which kind of distributions cor-
respond in this representation to symmetric or essentially positive generalized
Nevanlinna functions ?

It is the aim of this section to answer this question. However, first we would
like to properly introduce the notion of distributions on R and give a couple of
useful lemmata. Our standard reference concerning the theory of distributions
is [23].

5.1. DISTRIBUTIONS ON R. We consider the one-point compactification R = R∪
{∞} of the real numbers as a C∞-manifold in the usual way by making use of the
two charts

γ0 :
{

R → R
t 7→ t

, γ1 :
{

R → R
t 7→ 1

t
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where we have put 1
0 := ∞. Similarly the unit circle in the plane T = {z ∈ C :

|z| = 1} is considered as a C∞-manifold in the usual way. We fix a diffeomor-
phism γ from T to R, let us choose the fractional linear transformation

(5.1) γ :
{

T → R
w 7→ i 1−w

1+w
.

Clearly then

γ̃ :
{

C∞(R) → C∞(T)
f 7→ f ◦ γ

is a bijection.
On C∞(T) we have the topology of test functions, which is the F-space

topology induced by the family of seminorms (n ∈ N)

p̃n :
{

C∞(T) → R
f 7→ max{| f (n)(w)| : w ∈ T} .

On the space C∞(R) we define a topology by the requirement that γ̃ is a homeo-
morphism. This turns C∞(R) into a F-space, the topology being induced by the
family of seminorms

pn :
{

C∞(R) → R
f 7→ max{|( f ◦ γ)(n)(w)| : w ∈ T} .

The space of distributions on R is defined to be the dual C∞(R)′.
We will often make use of the classical theory of distributions on R by em-

ploying the following localization principle. For K ⊆ R compact let DK be the
F-space of all C∞-functions on R whose support lies in K endowed with the topol-
ogy induced by the family of seminorms

qn( f ) := max{| f (n)(t)| : t ∈ K}, n ∈ N .

The natural embedding ι : DK → C∞(R),

(ι f )(t) :=

{
f (t) t ∈ R,
0 t = ∞,

maps DK bijectively onto the closed subspace {g ∈ C∞(R) : supp g ⊆ K} of
C∞(R).

Let f ∈ DK. Since γ as well as each derivative γ(n) is bounded on γ−1(K),
we find constants Cn such that

|( f ◦ γ)(n)(w)| 6 Cn · max
06k6n

sup{| f (k)(t)| : t ∈ K}, w ∈ T .

Thus for all f ∈ DK
pn(ι f ) 6 Cn · max

06k6n
qk( f )

and hence ι is continuous. By the open mapping theorem it is a homeomorphism.
We can hence identify DK with the subspace ιDK of C∞(R).
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It is often practical to exchange the roles of the points 0, ∞ ∈ R. The map-
ping t 7→ t−1 (where we have put 0−1 := ∞, ∞−1 := 0) is a diffeomorphism of R
onto itself, hence gives rise to a bijection

Inv :
{

C∞(R) → C∞(R)
f (t) 7→ f ( 1

t )
.

Since we have

T
γ //

ξ

��

R
t 7→ 1

t
��

T γ
// R

with ξ(w) := −w, we find

C∞(T) C∞(R)
γ̃oo

C∞(T)

ξ̃

OO

C∞(R)
γ̃

oo

Inv

OO

where ξ̃( f ) := f ◦ ξ. The map ξ̃ is an automorphism with respect to the topology
of test functions on C∞(T), thus also Inv is an automorphism of C∞(R).

As shall be explained in the sequel one can associate to each element φ ∈
C∞(R)′ an analytic function q : C \R → C.

Let z0 = x0 + iy0 ∈ C+ be fixed and consider the functions (z ∈ C \R)

βz(t) :=

{( 1
t−z −

t−x0
|t−z0|2

)
|t−z0|2 t ∈ R,

z− x0 t = ∞.

Obviously,

(5.2) βz(t) =
( 1

t− z
− t− x0

(t− x0)2 + y2
0

)
((t− x0)2 + y2

0), t ∈ R .

A short computation shows that for w ∈ T

(5.3) (βz ◦ γ)(w) =
−(i + x0)zw + (i− x0)z + (ix0 + |z0|2)w + (|z0|2 − ix0)

−zw− z− iw + i
.

The right hand side of (5.3) defines a function α(z, w) which is analytic on C2 \ C,
where

C := {(z, w) ∈ C2 : i(1− w) = z(1 + w)} .

Since ((C \ R) × T) ∩ C = ∅ and (βz ◦ γ)(w) = α(z, w)|(C\R)×T, each function
βz ◦ γ belongs in particular to C∞(T). Thus βz ∈ C∞(R).
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LEMMA 5.1. Let φ ∈ C∞(R)′ and define

q(z) := φ(βz), z ∈ C \R .

Then q is analytic on C \R and admits an analytic continuation to C \ supp φ.

Proof. From the Cauchy integral representation of α(z, w) it follows that,
whenever O1, O2 ⊆ C are open sets such that (O1×O2)∩C = ∅ and n ∈ N∪{0},
the limit relation

(5.4) lim
ζ→z

∂n

∂wn
α(ζ, w)− α(z, w)

ζ − w
=

∂n+1

∂wn∂z
α(z, w)

holds locally uniformly on O1 ×O2.
Assume first that z1 ∈ C \R. Then ({z1} × T) ∩ C = ∅, and hence we can

choose open sets O1, O2 such that z1 ∈ O1, T ⊆ O2, (O1 ×O2) ∩ C = ∅. Then
(5.4) shows that βz ◦ γ is analytic for z ∈ O1 in the topology of C∞(T). Hence βz
is analytic at z1 in the topology of C∞(R).

Assume next that z1 ∈ R \ supp φ. Let φ̃ ∈ C∞(T)′ be defined as φ̃ :=
φ ◦ γ̃−1, so that we have

q(z) = φ̃(βz ◦ γ), z ∈ C \R .

Choose O1, O2 ⊆ C open such that z1 ∈ O1, supp φ̃ ⊆ O2 and (O1 ×O2)∩ C = ∅.
This choice is possible since z1 6∈ supp φ and hence ({z1} × supp φ̃) ∩ C = ∅.
Next choose a partition of unity χ0, χ1 ∈ C∞(T) subordinate to O2∩T, T\ supp φ̃,
and consider for each z

χ0(w)α(z, w)

as a function of w ∈ T. If z ∈ O1, then ({z} × supp χ0) ∩ C = ∅, hence for all
such z this function belongs to C∞(T). Moreover, by (5.4), it depends analytically
on z ∈ O1 in the topology of C∞(T). Thus also

q1(z) := φ̃(χ0(w)α(z, w))

is analytic on O1. However, if z ∈ O1 \ R and w ∈ T, we have α(z, w) = (βz ◦
γ)(w), and hence

χ0(w)α(z, w) = (βz ◦ γ)(w)− χ1(w)(βz ◦ γ)(w) .

Since supp φ̃ ∩ supp χ1 = ∅,

q1(z) = φ̃(χ0(w)α(z, w)) = φ̃(βz ◦ γ) = q(z), z ∈ O1 \R .

We found an analytic extension of q across an interval containing z1.
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5.2. THE CLASS F (R). REPRESENTATION OF GENERALIZED NEVANLINNA FUNC-
TIONS. Recall that measures can be considered as distributions. If µ is a complex
Borel measure on R, the functional

f 7→
∫
R

f dµ

belongs to C∞(R)′. This identification has a local version:

DEFINITION 5.2. Let M be an open subset of R and let µ be a positive Borel
measure on M with µ(K) < ∞ for all compact K ⊆ M. Moreover, let φ ∈ C∞(R)′.
We say that φ equals µ on M, φ =M µ, if

φ( f ) =
∫
M

f dµ, f ∈ C∞(R), supp f ⊆ M .

Note that hereby the measure µ is not assumed to satisfy µ(M) < ∞.

A distribution φ is called real, if it takes real values on real-valued test func-
tions.

The following definition was given in [18]. In the case of distributions with
compact support in R it goes back to [12].

DEFINITION 5.3. Let φ ∈ C∞(R)′. We write φ ∈ F (R), if φ is real and if
there exists a finite set s(φ) ⊆ R and a positive Borel measure µ on R \ s(φ) with
µ(K) < ∞ for all compact K ⊆ R \ s(φ), such that φ =R\s(φ) µ.

From the same sources let us recall the following representation of gener-
alized Nevanlinna functions. Denote by C(z) the space of all complex rational
functions.

PROPOSITION 5.4. Let z0 ∈ C+, r ∈ C(z), r = r#, and φ ∈ F (R). Then the
function

(5.5) q(z) := r(z) + φ(βz)

belongs to N<∞. Conversely, if q ∈ N<∞ and z0 ∈ C+ is fixed, then there exists a
unique function r ∈ C(z) analytic on R with r = r#, r = O(1) at ∞, and a unique
distribution φ ∈ F (R), such that (5.5) holds.

Let φ ∈ F (R), and let s(φ) and µ be as in Definition 5.3. The measure µ can
be recovered from the function q(z) = φ(βz) by means of the Stieltjes inversion
formula.

LEMMA 5.5. Let φ ∈ C∞(R)′ be real, fix z0 ∈ C+ and put q(z) := φ(βz).
Assume that on some interval (a0, b0) the distribution φ coincides with a measure µ in
the sense of Definition 5.2 and let ν be the measure defined by dν(t) = |t− z0|2 dµ(t).
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Then for all a, b ∈ (a0, b0), a < b, we have

1
π

lim
y↘0

b∫
a

Im q(x + iy) dx = ν((a, b)) +
ν({a}) + ν({b})

2
.

Proof. Choose a partition of unity χ0, χ1 ∈ C∞(R) subordinate to R \ [a, b],
(a0, b0). Since φ =(a0,b0) µ, we have

(5.6) φ( f ) = (χ0φ)( f ) +
∫

(a0,b0)

χ1 f dµ .

Since [a, b] ∩ supp χ0 = ∅, we can choose a′, b′ ∈ R such that

[a, b] ⊆ (a′, b′) ⊆ [a′, b′] ⊆ R \ supp χ0 .

Then we have χ1|[a′ ,b′ ] = 1, and the second summand in (5.6) can be written as

(5.7)
∫

(a0,b0)

χ1 f dµ =
∫

[a′ ,b′ ]

f dµ +
∫

(a0,b0)\[a′ ,b′ ]

χ1 f dµ .

Applying the relations (5.6) and (5.7) to the function f = βz yields

q(z) = (χ0φ)(βz) +
∫

[a′ ,b′ ]

βz dµ +
∫

(a0,b0)\[a′ ,b′ ]

χ1βz dµ .

Since supp(χ0φ) ∩ [a, b] = ∅ the first summand has an analytic continuation to
a neighbourhood of (C \ R) ∪ [a, b]. Since φ is real, it takes real values on [a, b].
As [a, b] ⊆ (a′, b′) the last summand as well has an analytic continuation to a
neighbourhood of (C \R) ∪ [a, b]. Clearly, it also takes real values on [a, b]. This
implies (z = x + iy)

(5.8) lim
y↘0

Im(χ0φ)(βz) = lim
y↘0

Im
∫

(a0,b0)\[a′ ,b′ ]

χ1βz dµ = 0

uniformly for x ∈ [a, b].
We have

Im βz(t) =
Im z
|t− z|2 · |t− z0|2 ,

and hence

Im
∫

[a′ ,b′ ]

βz dµ = Im z
∫

[a′ ,b′ ]

dν(t)
(t− x)2 + y2 .

The Stieltjes inversion formula (cf. Section 5.4 of [22]) gives

lim
y↘0

b∫
a

( 1
π

Im
∫

[a′ ,b′ ]

βz dµ
)

dx = ν((a, b)) +
ν({a}) + ν({b})

2
.
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By (5.8)

1
π

lim
y↘0

b∫
a

Im q(x + iy) dx = lim
y↘0

b∫
a

( 1
π

Im
∫

[a′ ,b′ ]

βz dµ
)

dx .

It is interesting to note that for distributions of the class F (R) also a con-
verse of Lemma 5.1 holds. A proof of this fact different to the one given below
could be obtained by combining the methods of Proposition 3.1 in [18] and [10].
We prefer to stick to a more elementary method, also because it gives a stronger
result which is of good use in the sequel.

LEMMA 5.6. Let φ ∈ C∞(R)′ be real, fix z0 ∈ C+ and set q(z) := φ(βz).
Moreover, let a0, b0 ∈ R, a0 < b0, and s ∈ (a0, b0). Assume that φ =(a0,b0)\{s} µ

for some measure µ and that q has an analytic continuation to (C \R) ∪ (a0, b0). Then
(a0, b0) ∩ supp φ = ∅.

Proof. Since φ is real, the function q takes real values on (a, b). An appli-
cation of the Stieltjes inversion formula to the intervals (a0, s) and (s, b0) yields
µ = 0. Thus supp φ ∩ (a0, b0) ⊆ {s}. Choose a1, b1 ∈ R such that

{s} ⊆ (a1, b1) ⊆ [a1, b1] ⊆ (a0, b0) .

Consider the distribution φ̃ := ι′φ ∈ D[a1,b1] where ι′ : C∞(R)′ → D′
[a1,b1]

is the

dual of the canonical embedding of D[a1,b1] into C∞(R). Then supp φ̃ ⊆ {s} and
thus

φ̃ = ∑
k6n

ckδ
(k)
s ,

where δs denotes the evaluation functional δs( f ) = f (s), cf. [23].
Choose a′, b′ ∈ R such that

{s} ⊆ (a′, b′) ⊆ [a′, b′] ⊆ (a1, b1)

and let χ0, χ1 ∈ C∞(R) be a partition of unity subordinate to (a1, b1), R \ [a′, b′].
Then

q(z) = φ(χ1βz) + φ(χ0βz) .

The first summand is analytic on [a′, b′] since supp χ1 ∩ [a′, b′] = ∅. As supp χ0 ⊆
(a1, b1), the second summand computes as

φ(χ0βz) = φ̃(χ0βz|[a1,b1]) = ∑
k6n

ck(χ0βz)(k)(s) = ∑
k6n

ckβ
(k)
z (s) .

By (5.2) the function β
(k)
z (s) has a pole of order k + 1 at s. Hence φ(χ0βz) has a

pole at s unless all numbers ck vanish. Since q as well as φ(χ1βz) is analytic at s,
we must have ck = 0, k = 0, . . . , n, and hence supp φ ∩ (a0, b0) = ∅.

COROLLARY 5.7. Let φ ∈ F (R) and q(z) = φ(βz). Then the maximal domain
of analyticity of q in C is equal to C \ supp φ.
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5.3. DISTRIBUTIONS ASSOCIATED TO SYMMETRIC AND ESSENTIALLY POSITIVE

NEVANLINNA FUNCTIONS.

DEFINITION 5.8. Denote by C∞(R)od the set of all odd functions in C∞(R).
Note that f (0) = f (∞) = 0 whenever f ∈ C∞(R)od. Let us introduce the follow-
ing notation:

F ep := {φ ∈ F (R) : supp φ ⊆ [0, ∞) ∪ {∞}},

F sym := {φ ∈ F (R) : ker φ ⊇ C∞(R)od}.

Clearly, F ep and F sym are linear subspaces of C∞(R)′. Moreover, a distri-
bution φ belongs to F sym if and only if φ( f (t)) = φ( f (−t)) for all f ∈ C∞(R).

The following theorem is the second main result of this paper.

THEOREM 5.9. Let a function q be given. Then:
(i) q ∈ N ep

<∞ if and only if it can be represented as q(z) = r(z) + φ(βz) where
r ∈ C(z), r = r#, the point z0 used for the definition of βz belongs to C+, and φ ∈ F ep.
In this case r can be chosen analytic on [0, ∞) and such that r = O(1) at ∞.

(ii) q ∈ N sym
<∞ if and only if it can be represented as q(z) = r(z) + φ(βz) where

r ∈ C(z) is odd, r = r#, the point z0 used for the definition of βz belongs to iR+, and
φ ∈ F sym. In this case r can be chosen analytic on R and such that r = o(1) at ∞.

Proof. (of Theorem 5.9, (i)) Assume that q is represented as in (i). By Lem-
ma 5.1, the function φ(βz) is analytic on C \ [0, ∞) and by Proposition 5.4 it be-
longs to N<∞. Alltogether we see that q ∈ N ep

<∞.
Conversely, let q ∈ N ep

<∞ be given, and let r1(z) be the unique rational func-
tion with r1 = o(1) at ∞ which is analytic on [0, ∞), and is such that q − r1 is
analytic on C \ [0, ∞). Then q1 := q − r1 belongs to N ep

<∞ and can be repre-
sented according to Proposition 5.4 as q1(z) = r(z) + φ(βz). Since q1 is analytic
on C \ [0, ∞) in this representation r is constant and, by Corollary 5.7, φ ∈ F ep.

The relation between the classes N sym
<∞ and F sym is similar. However, the

proof of this fact is not so straightforward and will be carried out in several steps.

Proof. (of Theorem 5.9, (ii), 1st part) Assume that q is represented as in (ii).
Since z0 = iy0, the functions βz can be rewritten as

βz(t) =
( 1

t− z
− t

t2 + y2
0

)
(t2 + y2

0) =
y2

0 + tz
t− z

,

and hence satisfy βz(t) = −β−z(−t). We obtain

q(−z) = r(−z) + φ(β−z(t)) = −r(z) + φ(−βz(−t))

= −r(z)− φ(βz(t)) = −q(z) .

Note that we have in fact proved the following more general statement.
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COROLLARY 5.10. Assume that z0 = iy0 ∈ iR+. Let φ ∈ C∞(R)′ and assume
that ker φ ⊇ C∞(R)od. Then the function φ(βz) is odd.

The proof of the converse part of Theorem 5.9 is based on the following two
statements.

LEMMA 5.11. Let K ⊆ [0, ∞) be compact, and let λ ∈ C(R) be such that λ(x) +
(−1)n+1λ(−x) = 0, x ∈ K. Then the functional defined on C∞(R) as

φ( f ) = (−1)n
∫

K∪−K

λ(x) f (n)(x) dx

is continuous and satisfies ker φ ⊇ C∞(R)od.

Proof. The set K∪−K is compact, hence has finite Lebesgue measure. More-
over, the function λ is bounded on K ∪ −K. Let γ be as in (5.1). Since γ−1 and
all of its derivatives are bounded on K ∪ −K, it follows that with appropriate
constants C, C′n, C′′n

|φ( f )| 6 C sup
x∈K∪−K

|λ(x)| · sup{| f (n)(t)| : t ∈ K ∪−K}

6 C sup
x∈K∪−K

|λ(x)| · C′n · max
06k6n

sup{|( f ◦ γ)(n)(w)| : w ∈ γ−1(K ∪−K)}

6 C′′n max
06k6n

pn( f ).

We see that φ is a continuous functional on C∞(R).
Let f ∈ C∞(R)od, then f (n)(−x) = (−1)n+1 f (x) and

(−1)nφ( f ) =
∫
K

λ(x) f (n)(x) dx +
∫
−K

λ(x) f (n)(x) dx

=
∫
K

λ(x) f (n)(x) dx +
∫
K

λ(−x) f (n)(−x) dx

=
∫
K

[λ(x) + (−1)n+1λ(−x)] f (n)(x) dx = 0.

PROPOSITION 5.12. Let φ ∈ C∞(R)′ be real and let S be a finite subset of R.
Assume that ker φ ⊇ { f ∈ C∞(R)od : supp f ∩ S = ∅} and that q(z) = φ(βz) is
odd (where we have chosen z0 = iy0 ∈ iR+). Then ker φ ⊇ C∞(R)od.

Proof. Put Ŝ := S ∪ −S. Since partitions of unity subordinate to open sets
Oj with Oj = −Oj can be chosen to consist of even functions, it suffices to prove
that every point s ∈ S has a neighbourhood (a1, b1) such that { f ∈ C∞(R)od :
supp f ⊆ (a1, b1) ∪ (−b1,−a1)} ⊆ ker φ.

First consider a point s ∈ Ŝ, s > 0. Choose a1, b1 ∈ R such that

[a1, b1] ⊆ R+, Ŝ ∩ [a1, b1] = {s} .
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Put A1 := [a1, b1] ∪ [−b1,−a1].
Consider ι′ : C∞(R)′ → D′

A1
. Since A1 is compact, there exists λ ∈ C(R),

supp λ ⊆ A1, and n ∈ N∪ {0} such that

φ(ι f ) = (ι′φ)( f ) = (−1)n
∫
A1

λ(x) f (n)(x) dx, f ∈ DA1 .

Since φ is real, the function λ is real valued.
Put Il := (a1, s), Ir := (s, b1). For f ∈ C∞(R+), supp f ⊆ Il, consider its odd

continuation

f̃ (x) :=


f (x) x > 0,
− f (−x) x < 0,
0 x = 0, ∞.

Then f̃ belongs to C∞(R)od and supp f̃ ∩ Ŝ = ∅. Hence, φ( f̃ ) = 0 and we com-
pute

0 = φ( f̃ ) = (−1)n
∫
A1

λ(x) f̃ (n)(x) dx

= (−1)n
∫
Il

[λ(x) + (−1)n+1λ(−x)] f (n)(x) dx .

Since f was arbitrary, it follows that

λ(x) + (−1)n+1λ(−x) = r1(x), x ∈ Il ,

with some polynomial r1 of degree at most n − 1. The same argument applies
with Ir instead of Il and we find a polynomial r2 whose degree does not exceed
n− 1 such that

λ(x) + (−1)n+1λ(−x) = r2(x), x ∈ Ir .

Define a function λ̃ on A1 by

λ̃(x) :=


λ(x) x ∈ [a1, b1],
λ(x) + (−1)nr1(−x) x ∈ [−s,−a1],
λ(x) + (−1)nr2(−x) x ∈ [−b1,−s].

Since r1(s) = r2(s), this function is continuous on A1. Moreover, λ̃ satisfies by its
definition λ̃(x) + (−1)n+1λ̃(−x) = 0, x ∈ A1. Let φ̃ be the distribution defined
by means of Lemma 5.11 applied to λ̃ and put ψ := φ− φ̃. By our assumption on
q and Corollary 5.10 the function

Q(z) := ψ(βz)

is odd. By the definition of λ̃ we have (A1 \ {−s}) ∩ supp ψ = ∅. In fact,

ψ( f ) =
−a1∫
−s

[r1(−x)− r2(−x)] f (n) dx, supp f ⊆ A1 .
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Since (a1, b1) ∩ supp ψ = ∅, the function Q admits an analytic continuation to
(C \R)∪ (a1, b1), and by symmetry also to (C \R)∪ (−b1,−a1). Moreover, since
(−Il ∪−Ir) ∩ supp ψ = ∅, we have ψ =(−Il∪−Ir) 0. Now Lemma 5.6 implies that
(−b1,−a1)∩ supp ψ = ∅. Hence, for all f with supp f ⊆ (a1, b1)∪ (−b1,−a1) we
must have φ( f ) = φ̃( f ). In case f is odd, this shows that φ( f ) = 0.

The points 0 and ∞ play a somewhat different role. Assume that 0 ∈ Ŝ.
Choose 0 < b2 < b1 < b0 such that (−b0, b0) ∩ Ŝ = {0}. Similar as above we find
n ∈ N and λ ∈ C((−b0, b0)) such that

φ( f ) = (−1)n
∫

(−b0,b0)

λ(x) f (n) dx, supp f ⊆ [−b1, b1] .

Also in the same way as in the previous step of this proof we find a polynomial r
of degree at most n− 1 such that

λ(x) + (−1)n+1λ(−x) = r(x), x ∈ (0, b1) .

Define λ̃ ∈ C([−b1, b1]) by

λ̃(x) :=

{
λ(x) x ∈ [0, b1],
λ(x) + (−1)nr(−x) x ∈ [−b1, 0],

and let φ̃ be as in Lemma 5.11 applied to λ̃, so that C∞(R)od ⊆ ker φ̃ and

φ̃( f ) = (−1)n
∫

[−b1,b1]

λ̃(x) f (n)(x) dx .

With ψ := φ − φ̃ the function Q(z) := ψ(βz) is odd. Since supp ψ ∩ ((−b1, 0) ∪
(0, b1)) = ∅, the function Q is analytic on (C \R)∪ ((−b1, 0)∪ (0, b1)), i.e. 0 is an
isolated singularity of Q.

For f with supp f ⊆ (−b1, b1) we obtain by integration by parts that

ψ( f ) = (−1)n
b1∫

0

r(x) f (n) dx =
( n−1

∑
k=0

ρkδ
(k)
0

)
( f )

where ρk are appropriate constants and δ0 denotes the point evaluation functional
at 0.

Choose an even partition of unity χ0, χ1 ∈ C∞(R) which is subordinate to
(−b1, b1), R \ [−b2, b2]. Then

Q(z) = (χ1ψ)(βz) + ψ(χ0βz) .

The first summand is analytic at 0, the second one computes as

ψ(χ0βz) =
n−1

∑
k=0

ρk
∂k

∂xk βz(x)|x=0 .
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Since

βz(x) =
y2

0 + xz
x− z

we see that ∂k

∂xk βz(x)|x=0 has a pole of order k + 1 at 0. As Q is odd we obtain that
ρ1 = ρ3 = · · · = 0.

This, however, implies that whenever f ∈ C∞(R)od, supp f ⊆ (−b1, b1), we
must have ψ( f ) = 0 and thus also φ( f ) = 0.

So far we have shown that every φ ∈ C∞(R)′ subject to the conditions of
the present proposition annulates all f ∈ C∞(R)od with supp F ⊆ R compact.

Finally let us consider the case that ∞ ∈ Ŝ. This case could be treated sim-
ilar as the case 0 ∈ Ŝ. However, we prefer to reduce it to the already proved
statement.

We start with a simple observation. The function φ(βz) is odd if and only if

βz(t) + β−z(t) ∈ ker φ ,

where z ranges in some open set. A computation gives

(5.9) βz(t) + β−z(t) = 2(y2
0 + z2)

t
(t− z)(t + z)

,

hence φ(βz) is odd if and only if

t
(t− z)(t + z)

∈ ker φ

for z in some open set.
We see that, if β̂z is defined by use of ẑ0 = iŷ0 ∈ iR+ instead of z0 = iy0, the

function φ(βz) is odd if and only if φ(β̂z) has this property.
We shall apply the automorphism Inv′. A computation gives

βz

(1
t

)
= −y2

0 β̂ 1
z
(t)

where β̂z is defined with ŷ0 = y−1
0 . It follows that

(Inv′ φ)(βz(t)) = φ
(

βz

(1
t

))
= −y2

0φ(β̂ 1
z
(t)) .

By the above considerations φ(βz) is odd if and only if φ(β̂ 1
z
) has this property.

Hence, with φ also Inv′ φ satisfies all hypothesis of the present proposition and
we conclude that (Inv′ φ)( f ) = 0 whenever f ∈ C∞(R)od, supp f ⊆ R compact.
Alltogether this shows that φ( f ) = 0 for all f ∈ C∞(R)od, supp f ⊆ R \ {0}.

We now obtain:

Proof. (of Theorem 5.9, (ii), converse part) Assume that q ∈ N sym
<∞ and let r1 be

the rational function which is analytic on R, r1 = o(1) at ∞, and such that q− r1 is
analytic on C \R. Since q is odd, also r1 has this property. Thus we may assume
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without loss of generality that q is analytic on C \ R. Then the representation
(5.5), where we chose z0 = iyo ∈ R+, is of the form

q(z) = α + φ(βz)

with some α ∈ R. By (5.9) we have βiy0(t) + β−iy0(t) = 0. Moreover,

βiy0(t) =
(y2

0 + tiy0

t− iy0

)
= β−iy0(t).

Alltogether it follows that

2 Re φ(βiy0) = φ(βiy0) + φ(βiy0) = φ(βiy0) + φ(βiy0) = φ(βiy0) + φ(β−iy0) = 0.

Since q is odd q(iy0) = q(−iy0) = −q(iy0), and we find

0 = Re q(iy0) = α + Re φ(βiy0) = α.

Hence it suffices to consider functions of the form φ(βz) with φ ∈ F (R).
Let the measure µ be as in Definition 5.3, so that φ =R\s(φ) µ. Since q is

odd the Stieltjes inversion formula Lemma 5.5 shows that µ(E) = µ(−E) for all
Borel sets E with E ∩ s(φ) = (−E) ∩ s(φ) = ∅. Thus φ satisfies the hypothesis of
Proposition 5.12 and we conclude that φ ∈ F sym.

Acknowledgements. The authors wish to express their gratitude to the referee for sug-
gesting an essential simplification of the proof of Theorem 4.1.
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