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1. INTRODUCTION

The first construction of an operator without non-trivial closed invariant
subspaces is due to P. Enflo. The example of that so-called, transitive operator
has been produced in 1976 but got published only by 1987 [3]. In the meantime,
different operators have been constructed by C. Read in [5], [6], and [7] and a
simplification of the Enflo’s example has been published by B. Beauzamy [2].

Although the mentioned examples provide us with the negative answer to
the general invariant subspace problem, there is a vast number of related ques-
tions that remain unanswered. Existence of a topologically simple Banach alge-
bra, of a transitive operator on a reflexive Banach space, or of a positive transitive
operator are among such questions.

This paper is devoted to the modification of the example of C. Read. Our
example is based on the construction from [8] and acts on l1. The matrix of the
operator consists of blocks which are defined in an inductive manner. In [8] both
the length of the m-th block and the value of entries in it depend on previous m−
1 blocks. In our paper we fix the structure of the matrix from the very beginning
and only the entries of the matrix will be defined inductively.

Another modification that we make in this paper concerns the relations be-
tween entries of the matrix of Read’s example. Every m-th block of Read’s con-
struction is partitioned into 4m smaller blocks. Among those, m contain the same
entry which is essential for the proof. We eliminate this dependence from the ma-
trix. Hence, our operator yields more degrees of freedom. Needless to say that
all the other properties from [8] are preserved.
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All proofs replicate the corresponding proofs of C. Read, though because
we avoid working with specific coefficients, they seem simpler than the original.

2. TRANSFORMATION MATRIX

In this paper all operators under consideration will be continuous linear
maps from a Banach space X = l1 into itself. We consider X as the norm closure
X = (c00, ‖ · ‖1) of the space of finite number sequences c00 endowed with l1-
norm.

DEFINITION 2.1. Let ( fi)∞
i=0 denote the unit vector basis of X. For each n >

0, Xn will denote the linear span span{ fi : i = 0, . . . , n − 1}.

Let |p| denote the sum of the absolute values of the coefficients of the poly-
nomial p. Let us agree that pairs of non-negative integers (m, n) with m > n are
ordered so that (m, m) < (m, m − 1) < (m, m − 2) < · · · < (m, 2) < (m, 1) <
(m + 1, m + 1) for every m. Next we define an increasing sequence um,n by

u1,1 = 1; ui,j = 16um,n + un,n

where the pair (i, j) is the successor of (m, n) in the linear order introduced above.
This sequence partitions the set of natural numbers into the blocks [um,n, 16um,n +
un,n) ∩N which we will refer to as block (m, n). Every such block we consider as
a disjoint union of four “intervals":

[1)m,n := [um,n, 8um,n) ∩N,

[2)m,n := [8um,n, 8um,n + un,n) ∩N,

[3)m,n := [8um,n + un,n, 12um,n) ∩N, and

[4)m,n := [12um,n, 16um,n + un,n) ∩N.

Any transitive operator must be a “right shift" on a proper collection of vectors.
We continue by defining that sequence of vectors (ei)∞

i=0 using the standard basis
( fi):

1. If i ∈ [1)m,n or i = 0, we set

fi = Fiei.

2. If i ∈ [2)m,n, we set

fi = Gi[H
(2)
m,nei − ei−8um,n ].

3. If i ∈ [3)m,n, we set
fi = Fiei.

4. If i ∈ [4)m,n, we set

fi = Gi[H
(4)
m,nei − ei−8um,n ].
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Sometimes, to emphasize what group and interval the number i is in, we will be
using additional sub/super indices. For instance, if i ∈ [1)m,n we may use the
notation F(1)

i,m,n instead of just Fi.
Assuming that non-zero F-, G-, and H-coefficients are defined, we may

write fi =
i

∑
j=0

λijej uniquely, for each i ∈ Z+. Since λii is never zero, this lin-

ear relationship is invertible. So the ei exist and are unique. In addition for each
n we have

span{ei : i = 0, . . . , n − 1} = span{ fi : i = 0, . . . , n − 1} = Xn.

Our construction is based on the order in which the coefficients are chosen
and on the rate of their growth.

The rate of growth of the coefficients is governed by the functions Na(m, n)
and Nb(m, n). The former regulates the intervals [1)m,n and [2)m,n and the latter
sets the rate of change on [3)m,n and [4)m,n. The properties of Na and Nb we will
derive during the proof process and then will summarize in Theorem 6.2. To this
end we assume that both functions are at least 2.

The values of Na(m, n), Nb(m, n), and the coefficients for the block (m, n)
are determined in the following order:

Na(m, n) → G(2)
8um,n

→ G(2)
8um,n+1 → · · · → G(2)

8um,n+un,n−1 →
→ F(1)

um,n → F(1)
um,n+1 → · · · → F(1)

8um,n−1 → H(2)
m,n →

→ Nb(m, n) → G(4)
12um,n

→ G(4)
12um,n+1 → · · · → G(4)

16um,n+un,n−1 →
→ F(3)

8um,n+un,n
→ F(3)

8um,n+un,n+1 → · · · → F(3)
12um,n−1 → H(4)

m,n

In setting the values of any number in this linear diagram we are free to use every
number which is already defined. Using this principle we continue by defining
the values of the coefficients.

For fixed m, the first coefficient of all (m, ∗) blocks we set by

(2.1) G(2)
8um,m

:= m

to guarantee that we will “return" to e0 with increasing precision. That is, to have

‖H(2)
m,me8um,m − e0‖ =

‖ f8um,m‖
G8um,m

=
1
m

.

Notice that for n < m we have (n, n) < (m, n) and the number of elements in
[2)m,n is un,n. This allows us to set G-coefficients in [2)m,n equal to the corre-
sponding coefficients from [2)n,n:

(2.2) G(2)
i,m,n := G(2)

i−8um,n+8un,n
.
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The first coefficient of [4)m,n we set by

(2.3) G(4)
12um,n

:= Nb(m, n).

If i and i + 1 belong to the same interval of the block (m, n), the correspond-
ing F- and G-coefficients are set by:

F(1)
i+1,m,n := Na(m, n)F(1)

i,m,n;(2.4)

G(2)
i+1,m,n := Na(n, n)G(2)

i,m,n;(2.5)

F(3)
i+1,m,n := Nb(m, n)F(3)

i,m,n;(2.6)

G(4)
i+1,m,n := Nb(m, n)G(4)

i,m,n.(2.7)

To finish the description of the block (m, n), we need to define H-coefficients and
the values of the first F-coefficients Fum,n and F8um,n+un,n . To this end we set

Fum,n := Na(m, n)G8um,n+un,n−1,(2.8)

F8um,n+un,n := Nb(m, n)G16um,n+un,n−1,(2.9)

H(2)
m,n := Na(m, n)F8um,n−1, and(2.10)

H(4)
m,n := Nb(m, n)F12um,n−1.(2.11)

The definitions (2.4–2.11) are possible due to the order in which we define
the coefficients. We finish the description of the transformation matrix by setting
F0 = 1.

3. SHORT OUTLINE OF THE PROOF

Using introduced vectors ei we define the linear map T : c00 → c00 by
Tei = ei+1. Then we show that the map T satisfies ‖T‖ 6 1. Therefore, T can be
extended to entire X. Next for any unit vector x ∈ X we will find a projection
Qm,n that maps x into a special compact subset of X. After that we will estab-
lish the existence of a polynomial q such that the numbers ‖q(T)Qm,nx − e0‖ and
‖q(T)(I − Qm,n)‖ are small. This will show that e0 ∈ span{Trx : r > 0}.

Every inequality about the norm of operators will be obtained by estimating
‖T fi‖ for every i.

4. NORM ESTIMATIONS

Let us continue by showing that T is a contraction.
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LEMMA 4.1. If for any consecutive pairs (m, n) < (r, s) the functions Na and Nb
satisfy

Na(r, s) > 2H(4)
m,nG(4)

16um,n+un,n−1,

Nb(m, n) > 2H(2)
m,nG(2)

8um,n+un,n−1,

then ‖T‖ 6 1 holds.

Proof. Let Na and Nb be two functions satisfying the assumption of the
lemma. Consider the operator T constructed using Na, Nb, and the guidelines
above. Let us fix (m, n) and show that ‖T fi‖ 6 1 for every i from the block (m, n).

Since f0 = F0e0 and f1 = F1e1 we can estimate

‖T f0‖ = ‖F0e1‖ =
F0

F1
‖ f1‖ 6

1
Na(1, 1)

6
1
2

.

Let us fix i > 0 and assume that ‖T|Xi‖ 6 1.
Case 1: Suppose i and i + 1 both belong to either [2)m,n or [4)m,n. Then

fi = Gi(Hm,nei − ei−8um,n) and fi+1 = Gi+1(Hm,nei+1 − ei+1−8um,n). Thus,

‖T fi‖ = ‖Gi(Hm,nei+1 − ei+1−8um,n)‖ =
Gi

Gi+1
‖ fi+1‖ =

1
N(m, n)

6
1
2

.

Here N(m, n) is either Na(n, n) or Nb(m, n) depending on whether i is in [2)m,n or
in [4)m,n (see formulae (2.5) or (2.7) respectively). In either case N(m, n) is at least
2, which implies the last inequality.

The case when both i and i + 1 belong to either [1)m,n or [3)m,n can be
checked similarly due to formulae (2.4) and (2.6) above.

Case 2: Suppose i is in [1)m,n or [3)m,n and i + 1 is in [2)m,n or [4)m,n respec-
tively. Then fi = Fiei and fi+1 = Gi+1(Hm,nei+1 − ei+1−8um,n). Thus,

‖T fi‖ = Fi‖ei+1‖ =
Fi

Hm,n

∥∥∥ fi+1

Gi+1
+ ei+1−8um,n

∥∥∥ 6
1

N(m, n)
(1 + ‖ei+1−8um,n‖).

Here N(m, n) is either Na(m, n) or Nb(m, n) depending on whether i is in [1)m,n
or in [3)m,n (see formulae (2.10) or (2.11) respectively). Since we have ei+1−8um,n =
(T|Xi )

i+1−8um,n e0 by our inductive assumption we conclude ‖ei+1−8um,n‖ 6 1.
Then the fact that N(m, n) > 2 and the estimate above imply ‖T fi‖ 6 1.

Case 3: Suppose i = 8um,n + un,n − 1 is in [2)m,n and i + 1 is in [3)m,n. Then,
as before, T fi = G8um,n+un,n−1(H(2)

m,ne8um,n+un,n − eun,n). Notice that un,n belongs to

the interval [1)n,n and thus satisfies eun,n = fun,n
Fun,n

. We also have G8um,n+un,n−1 =
G8un,n+un,n−1 by formula (2.2). Since i + 1 is in [3)m,n we can write e8um,n+un,n =
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f8um,n+un,n
F8um,n+un,n

. Therefore, by (2.8), (2.9), and our assumption about Nb(m, n) we obtain

‖T fi‖ 6
‖ f8um,n+un,n‖G8um,n+un,n−1H(2)

m,n

F8um,n+un,n

+
‖ fun,n‖G8un,n+un,n−1

Fun,n

<
G8um,n+un,n−1H(2)

m,n

Nb(m, n)
+

1
Na(n, n)

< 1.

The formulae (2.8), (2.9), and the assumption about Na(r, s) for the successor (r, s)
help us to handle the last case i = 16um,n + un,n − 1, the end of interval [4)m,n, in
a similar manner.

By the lemma above the linear map T : c00 → c00 can be extended to the
completion X with ‖T‖ 6 1.

Next we will discuss the relation between expansions of an element x ∈ c00

with respect to (ei) and ( fi). If x =
N
∑

i=0
λiei ∈ c00 we consider a different norm

defined by |x| =
N
∑

i=0
|λi|. Since ‖ei‖ 6 1 for every i, we conclude that ‖x‖ 6 |x|

for every x ∈ c00. Let us introduce another auxiliary function by

f (m, n) := sup{|x| : x ∈ X8um,n+un,n , ‖x‖ = 1}.

From the definition of (ei) it follows, in particular, that

f (m, n) > max{Gj : j < 8um,n + un,n}.

For a fixed pair (m, n) consider projections Pm,n, Qm,n : X → X8um,n+un,n , and
τm,n : X8um,n+un,n → X8um,n+un,n defined by

Pm,n( fi) =


fi i 6 2um,n,
−Giei−8ur,s i ∈ [2)r,s and (s, s) 6 (n, n) 6 (m, n) 6 (r, s),
0 otherwise (including the case 2um,n < i 6 8um,n);

Qm,n( fi) =


fi i < 8um,n + un,n,
−Giei−8ur,s , i ∈ [2)r,s and (s, s) < (m, n) < (r, s),
0 otherwise;

τm,n(ei) =

{
ei i 6 2um,n,
0 otherwise.

For every pair (m, n) let us define a compact set Km,n ⊂ X8um,n+un,n\{0} by

Km,n =
{

y ∈ X8um,n+un,n : ‖y‖ 6 f (m, n), ‖τm,ny‖ >
2−m−n

16 f (m, n)

}
.

The next lemma will help us to send any unit vector of X inside one of Km,n.
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LEMMA 4.2. For every vector x ∈ X with ‖x‖ = 1 and for each natural number
n there exist j > n and m > j such that Qm,jx ∈ Km,j.

Proof. First, notice that for every vector x ∈ X with ‖x‖ = 1 and for each
natural number n we have the convergence Pm,nx → x as m → ∞. Indeed, for a
fixed n and for any y ∈ c00 the equation Pm,ny = y holds for all but finitely many
m. So, to prove our first claim, we need boundedness of ‖Pm,n‖ where n is fixed.
According to the definition of Pm,n,

‖Pm,n‖ = max{Gi‖ei−8ur,s‖ : i ∈ [2)r,s and (s, s) 6 (n, n) 6 (m, n) 6 (r, s)}.

On the other hand, if i ∈ [2)r,s and (s, s) 6 (n, n) 6 (m, n) 6 (r, s), then Gi =
Gi−8ur,s+8us,s and i − 8ur,s + 8us,s < 9us,s 6 8un,n + un,n. This and the fact that
‖ei‖ 6 ‖e0‖ = 1 for every i, yield ‖Pm,n‖ 6 max{Gj : j < 8un,n + un,n} 6 f (n, n)
for every m. Hence, we have shown that Pm,nx → x as m → ∞.

For a subset U ⊂ R+ denote by πU the projection such that πU( fi) = fi if
i ∈ U and zero otherwise. Our next important claim is that for every j satisfying
n < j 6 m we have π[2)m,j

τm,nQm,n = π[2)m,j
. To show this, let us write out the

formula for τm,nQm,n.
Observe that if i is less than 8um,n + un,n, then i 6 2um,n, or 2um,n < i <

8um,n, or i ∈ [2)m,n. If i 6 2um,n holds, then neither Qm,n nor τm,n changes fi. For
any index i satisfying 2um,n < i < 8um,n we have τm,nQm,n fi = τm,n fi = 0. Fi-
nally, if i ∈ [2)m,n, then τm,nQm,n fi = τm,n fi = Gi Hm,nτm,nei − Giτm,nei−8um,n =
−Giei−8um,n . We also observe that i ∈ [2)r,s with (s, s) < (m, n) < (r, s) im-
plies i − 8ur,s < us,s < 2um,n. It follows that for such i we have τm,nQm,n fi =
τm,n(−Giei−8ur,s) = −Giei−8ur,s .

Summarizing these comments we obtain the following.

τm,nQm,n( fi) =


fi i 6 2um,n,
−Giei−8ur,s i ∈ [2)r,s and (s, s) < (m, n) 6 (r, s),
0 otherwise (including the case 2um,n < i 6 8um,n).

Back to our claim, for j with n < j 6 m we have (m, j) < (m, n) and, there-
fore, [2)m,j ⊂ [0, 2um,n) holds. Since for every i ∈ [0, 2um,n) the vector fi is un-
changed by τm,nQm,n we obtain π[2)m,j

= π[2)m,j
π[0,2um,n) = π[2)m,j

τm,nQm,nπ[0,2um,n).
It is left to notice that the only indexes i > 2um,n for which τm,nQm,n fi 6= 0 are
those satisfying i ∈ [2)r,s with (s, s) < (m, n) 6 (r, s). But for such i we have
i − 8ur,s < us,s 6 um,m < 8um,j and, hence, π[2)m,j

τm,nQm,nπ[2um,n ,∞) = 0. We
conclude that π[2)m,j

τm,nQm,n = π[2)m,j
.

Notice that similarly to the norm-estimation of the projection Pm,n we may
obtain the following estimations

‖Qm,n‖ = sup
i
‖Qm,n fi‖ 6 max{Gi : i < 8um,n + un,n}‖e0‖ 6 f (m, n),

as well as ‖τm,nQm,n‖ 6 f (m, n).
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Now, everything is ready to prove the lemma. Let x be a unit vector and
let n be a fixed number. Since for every pair (m, j) we have ‖Qm,jx‖ 6 ‖Qm,j‖ 6
f (m, j) we only need to show that there is a pair (m, j) such that n 6 j < m and
‖τm,jQm,jx‖ > 2−m−j

16 f (m,j) . As we showed above, there is k such that ‖Pk,nx‖ > 1
2 .

If for this k the inequality ‖τk,nQk,nx‖ > 1
4 holds, we are done. If not, then

the inequality ‖Pk,nx − τk,nQk,nx‖ > 1
4 must hold. The image (Pk,n − τk,nQk,n) fi

is non-zero if and only if i ∈ [2)r,s where (n, n) < (s, s) < (k, n) < (r, s).
Since (k, n) < (r, s) with n < s is possible only if k < r we may say that
(Pk,n − τk,nQk,n)x = (Pk,n − τk,nQk,n)πSx for⋃

(n,n)<(s,s)<(k,n)<(r,s)

[2)r,s =
⋃

n<s6k<r

[2)r,s =: S.

Then, since ‖(Pk,n − τk,nQk,n)πSx‖ > 1
4 , we obtain

‖πSx‖ >
1

4‖Pk,n − τk,nQk,n‖
>

1
4[ f (n, n) + f (k, n)]

>
1

8 f (k, n)
.

The fact that S is a countable union of sets [2)r,s suggests that there exists a pair
(m, s) with n < s 6 k < m such that ‖π[2)m,s x‖ > ‖πSx‖2−m−s. As discussed
above, then we have π[2)m,s τm,s−1Qm,s−1x = π[2)m,s x and, thus, for n 6 j = s− 1 <
k < m

‖τm,jQm,jx‖ > ‖π[2)m,s τm,jQm,jx‖ = ‖π[2)m,s x‖ >
‖πSx‖
2m+s >

2−m−j−1

8 f (k, n)
>

2−m−j

16 f (m, j)
.

The proof is complete.

5. WHAT MAKES T TRANSITIVE?

Let us see what we need in order to show that T does not have non-trivial
closed invariant subspaces. For every pair of numbers (m, n) let Km,n be the
compact set defined above. Let Tm,n : X8um,n+un,n → X8um,n+un,n be the “trun-
cated" version of T, namely, Tm,nei = ei+1(i < 8um,n + un,n − 1) or zero (i =
8um,n + un,n − 1).

Given y ∈ Km,n, write y =
8um,n+un,n−1

∑
i=α

λiei, where λα 6= 0. Then

span{Tr
m,ny : 6um,n 6 r < 8um,n + un,n} = span{eα+6um,n , . . . , e8um,n+un,n−1}.

Since τm,n(y) 6= 0 we have α 6 2um,n and hence the vector e8um,n belongs to
span{Tr

m,ny : 6um,n 6 r < 8um,n + un,n}. Since Km,n is compact there is a finite

number p1, . . . , pr of polynomials p (of form pj(t) =
8um,n+un,n−1

∑
s=6um,n

νsjts) such that
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for all y ∈ Km,n there is a number j such that

‖pj(Tm,n)x − H(2)
m,ne8um,n‖ <

1
n

.

Using the polynomials pj that we find for a pair (m, n), we define a function

g(m, n) by g(m, n) = max
j

|pj|. Since by the definition of e8um,n we have ‖H(2)
m,ne8um,n

−e0‖ 6 1
G8um,n

= 1
G8un,n

= 1
n our discussion provides us with the following

lemma.

LEMMA 5.1. There is a function g(m, n) with the following property. For any pair
(m, n) and y ∈ Km,n there is a polynomial p such that |p| < g(m, n), p(t) is of the form

p(t) =
8um,n+un,n−1

∑
s=6um,n

νsjts, and

‖p(Tm,n)y − e0‖ <
2
n

.

REMARK 5.2. The following inequalities

f (m, n) 6 [Na(m, n)]h(um,n) and g(m, n) 6 [Na(m, n)]h(um,n)

hold for a relatively simple function h. This might be interesting for explicit def-
inition of a transitive operator. Since it is irrelevant for this paper we do not
present the argument.

Our next lemma allows us to replace Tm,n in the estimation above by T.

LEMMA 5.3. If for any consecutive pairs (m, n) < (r, s) the functions Na and Nb
satisfy

Na(r, s) > n[ f (m, n)]2g(m, n)H(4)
m,n,

Nb(m, n) > n[ f (m, n)]2g(m, n),

then the following holds:
For any y ∈ Km,n, with the notation of previous lemma, the polynomial q(t) =

H(4)
m,nt8um,n p(t) satisfies t14um,n |q(t), deg q 6 16um,n + un,n, |q| 6 H(4)

m,ng(m, n), and

‖q(T)y − e0‖ <
4
n

.

Proof. Given y ∈ Km,n, let p be the polynomial from the previous lemma.
For convenience, let us set M = 8um,n + un,n − 1 for this proof. If p(Tm,n)y =

M
∑

i=6um,n

λiei, then

‖H(4)
m,nT8um,n p(Tm,n)y − p(Tm,n)y‖ =

∥∥∥ M

∑
i=6um,n

λi(H(4)
m,ne8um,n+i − ei)

∥∥∥,
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since for every 6um,n 6 i 6 M above we have 8um,n + i ∈ [4)m,n, we continue

=
∥∥∥ M

∑
i=6um,n

λi
f8um,n+i

G8um,n+i

∥∥∥ 6
1

G12um,n

M

∑
i=6um,n

|λi| =
|p(Tm,n)y|

G12um,n

6
|p||y|

G12um,n

6
g(m, n)‖y‖ f (m, n)

G12um,n

6
g(m, n)[ f (m, n)]2

G12um,n

=
g(m, n)[ f (m, n)]2

Nb(m, n)
6

1
n

.

Hence, the inequality

‖H(4)
m,nT8um,n p(Tm,n)y − p(Tm,n)y‖ 6

1
n

holds.
Next we replace Tm,n by T inside the polynomial p. To this end notice that

T8um,n(p(T)− p(Tm,n))y ∈ T8um,n span{ej : M < j 6 2M}
⊂ span{ej : 16um,n + un,n 6 j < 8(16um,n + un,n)}
= span{ej : j ∈ [1)r,s}

where the block (r, s) is the successor of (m, n). Since Fjej = f j for every j in [1)r,s
we obtain

‖ej‖ 6
1

Fur,s

for every j ∈ [1)r,s. So, with p as above

‖H(4)
m,n[T8um,n p(Tm,n)y − T8um,n p(T)y]‖ 6

H(4)
m,n|p||y|

Fur,s

6
H(4)

m,n f (m, n)g(m, n)‖y‖
Fur,s

<
H(4)

m,n[ f (m, n)]2g(m, n)
Na(r, s)

<
1
n

.

Summarizing we obtain for q(t) = H(4)
m,nt8um,n p(t) the inequality ‖q(T)y− e0‖ < 4

n
provided the conditions on Na and Nb are satisfied.

By this point we have proved the following. For every x ∈ X such that
‖x‖ = 1 and for any number n0 we can find numbers m > n > n0 such that
y = Qm,nx belongs to the compact set Km,n. Then for that y ∈ Km,n we find a
polynomial q with t14um,n |q and |q| < H(4)

m,ng(m, n) such that ‖q(T)y − e0‖ 6 4
n .

Thus, we obtain the estimation

‖q(T)x − e0‖ 6 ‖q(T)x − q(T)Qm,nx‖+ ‖q(T)Qm,nx − e0‖

6 ‖q̃(T)T14um,n(I − Qm,n)x‖+
4
n

where q̃ is such that q(t) = t14um,n q̃(t). So, in order to show that e0 belongs to the
closure of span{Trx : r > 0} we need to show that the first term can be made
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arbitrarily small. To this end observe that

‖q̃(T)T14um,n(I − Qm,n)x‖ 6 |q|‖T14um,n(I − Qm,n)‖

6 g(m, n)H(4)
m,n‖T14um,n(I − Qm,n)‖.

After that we will prove the following estimate of g(m, n)H(4)
m,n‖T14um,n(I−Qm,n)‖.

LEMMA 5.4. If for any, not necessary consecutive, pairs (m, n) < (r, s) the func-
tions Na and Nb satisfy

Na(r, s) > 2ng(m, n)[H(4)
m,n]2,

Nb(r, s) > 2ng(m, n)H(4)
m,nH(2)

r,s ,

then for every pair (m, n) the inequality

g(m, n)H(4)
m,n‖T14um,n(I − Qm,n)‖ <

1
n

holds.

Proof. Let us fix a pair (m, n) and consider the corresponding projection
Qm,n. We will prove the claim of the lemma by proving the inequality

(5.1) g(m, n)H(4)
m,n‖T14um,n(I − Qm,n) fi‖ <

1
n

for every i.
By the definition of the projection Qm,n we have (I − Qm,n) fi = 0 for every

i < 8um,n + un,n and, hence, (5.1) holds trivially. Thus, for our estimations we
consider i > 8um,n + un,n. Observe that in this case

(I − Qm,n) fi =

{
Gi H

(2)
r,s ei if i ∈ [2)r,s and (s, s) < (m, n) < (r, s),

fi otherwise.

Case 1: If i ∈ [2)r,s where (s, s) < (m, n) < (r, s), then (I − Qm,n) fi =
Gi H

(2)
r,s ei. Notice that (s, s) < (m, n) < (r, s) implies us,s < um,n < 14um,n < ur,s,

hence, every i such that 8ur,s 6 i < 8ur,s + us,s satisfies 8ur,s + us,s 6 i + 14um,n <

12ur,s. It follows that i + 14um,n ∈ [3)r,s. Therefore, using ei+14um,n =
fi+14um,n

F(3)
i+14um,n

,

F(3)
i+14um,n

> [Nb(r, s)]2, and G(2)
i < Na(r, s)H(2)

r,s we obtain

‖T14um,n(I − Qm,n) fi‖ = ‖T14um,n G(2)
i H(2)

r,s ei‖ = G(2)
i H(2)

r,s ‖ei+14um,n‖

<
[H(2)

r,s ]2

F(3)
i+14um,n

Na(r, s)
<

[Nb(r, s)]2

Na(r, s)[Nb(r, s)]2
6

1
Na(r, s)

<
1

ng(m, n)H(4)
m,n

and that will make the inequality (5.1) hold.
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For the rest of the proof we assume that i > 8um,n + un,n and (I −Qm,n) fi =
fi since the other cases have been verified.

Case 2: If both i and i + 14um,n belong to the same interval. Observe that
these two indices cannot lie in the same interval of the block (m, n). Hence, let
them both belong to some block (r, s) with (r, s) > (m, n). Then, similar to the
proof of ‖T‖ 6 1 we express T14um,n fi as follows. If i is in [1)r,s or in [3)r,s, then
T14um,n fi = Fi

Fi+14um,n
fi+14um,n , otherwise, that is, if i is in [2)r,s or in [4)r,s, we have

T14um,n fi = Gi
Gi+14um,n

fi+14um,n . In either case we obtain

‖T14um,n(I − Qm,n) fi‖ = ‖T14um,n fi‖ <
1

[N(r, s)]14um,n
<

1
N(r, s)

6
1

ng(m, n)H(4)
m,n

where the function N is Na(r, s), Nb(r, s), or Na(s, s) with (s, s) > (m, n) depend-
ing on the situation. This guarantees the inequality (5.1).

Case 3: If i belongs to the block (m, n). Let (r, s) be the successor of (m, n).
Then since i > 8um,n + un,n we have i + 14um,n > 16um,n + un,n + 1 = ur,s + 1. We
also have i + 14um,n < 8(16um,n + un,n) and, thus, i + 14um,n ∈ [1)r,s. Moreover,
F(1)

i+14um,n ,r,s > [Na(r, s)]2. Therefore, if i ∈ [3)m,n, then we get the estimate

‖T14um,n(I − Qm,n) fi‖ = ‖T14um,n fi‖ =
F(3)

i,m,n

F(1)
i+14um,n ,r,s

<
H(4)

m,n

[Na(r, s)]2
<

1
Na(r, s)

which leads to the inequality (5.1) as before.
If i ∈ [4)m,n, then i > 12um,n which implies

i − 8um,n + 14um,n > 18um,n > 16um,n + un,n + 1 = ur,s + 1

and, thus, i − 8um,n + 14um,n lies in [1)r,s. Now inequality (5.1) follows from

‖T14um,n(I − Qm,n) fi‖ = ‖G(4)
i H(4)

m,nei+14um,n − G(4)
i ei−8um,n+14um,n‖

6
G(4)

i H(4)
m,n

F(1)
i+14um,n

+
G(4)

i

F(1)
i−8um,n+14um,n

<
[H(4)

m,n]2

[Na(r, s)]2
+

H(4)
m,n

[Na(r, s)]2
<

2
Na(r, s)

.

For the rest of the proof we assume that i and i + 14um,n belong to different
intervals and that i is in the block (r, s) with (r, s) > (m, n). In particular, this
means ur,s > 16um,n.

Case 4: If i belongs to [1)r,s, then i + 14um,n < 9ur,s and, therefore, i + 14um,n
lies in [2)r,s or in [3)r,s. For the latter, the inequality (5.1) easily follows from

‖T14um,n(I − Qm,n) fi‖ =
F(1)

i

F(3)
i+14um,n

<
H(2)

r,s

[Nb(r, s)]2
<

1
Nb(r, s)

.
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For the former, the inequality (5.1) follows from (2.10) and

‖T14um,n(I−Qm,n) fi‖ =
∥∥∥ F(1)

i fi+14um,n

Ga
i+14um,n

H(2)
r,s

+
F(1)

i ei+14um,n−8ur,s

H(2)
r,s

∥∥∥ <
2F(1)

i

H(2)
r,s

<
2

Na(r, s)
.

Case 5: If i belongs to [2)r,s, then i + 14um,n lies in [3)r,s because of the in-
equality i + 14um,n < 12ur,s. Due to Case 1 above we consider only the case
(s, s) > (m, n), that is, us,s > 16um,n. Let us determine in what interval the
number i − 8ur,s + 14um,n lies. Since i + 14um,n > 8ur,s + us,s we conclude that
i − 8ur,s + 14um,n > us,s. We also have i < 8ur,s + us,s which implies i − 8ur,s +
14um,n < us,s + 14um,n < 8us,s. Altogether this gives us that i − 8ur,s + 14um,n
belongs to [1)s,s. Using (2.2) we estimate

‖T14um,n(I − Qm,n) fi‖6
G(2)

i H(2)
r,s

F(3)
i+14um,n

+
G(2)

i

F(1)
i−8ur,s+14um,n

<
[H(2)

r,s ]2

Na(r, s)[Nb(r, s)]2
+

1
Na(s, s)

<
1

Na(r, s)
+

1
Na(s, s)

which together with the fact that (r, s) > (s, s) > (m, n) yield the inequality (5.1).
Case 6: If i belongs to [3)r,s, then i + 14um,n lies in [4)r,s and we get as usually

‖T14um,n(I−Qm,n) fi‖ =
∥∥∥ F(3)

i fi+14um,n

G(4)
i+14um,n

H(4)
r,s

+
F(3)

i ei+14um,n−8ur,s

H(4)
r,s

∥∥∥ <
2F(3)

i

H(4)
r,s

<
2

Nb(r, s)
.

So, the inequality (5.1) holds.
Case 7: If i belongs to [4)r,s, then i + 14um,n lies in [1)l,j, where (l, j) is the

successor of (r, s). Then by our assumptions we obtain 8ur,s + us,s 6 i − 8ur,s +
14um,n < 12ur,s meaning that i − 8ur,s + 14um,n lies in [3)r,s. So, the inequalities
(2.6), (2.8), and (2.9) give us

‖T14um,n(I − Qm,n) fi‖ 6
G(4)

i H(4)
r,s

F(1)
i+14um,n

+
G(4)

i

F(3)
i−8ur,s+14um,n

<
[H(4)

r,s ]2

Nb(r, s)Na(l, j)
+

1
Nb(r, s)

<
Na(l, j)

Nb(r, s)Na(l, j)
+

1
Nb(r, s)

<
2

Nb(r, s)
.

Since we have considered all possibilities, the lemma has been proved.

6. CONCLUSION

Let us finish with the demonstration of the quasinilpotence of our construc-
tion. After that we will summarize our demands for the functions Na and Nb.

Similarly to [8] we obtain:
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THEOREM 6.1. If the functions Na and Nb satisfy the conditions of Lemma 5.4
and, in addition, for any, not necessary consecutive, pairs (m, n) < (r, s) the functions
Na and Nb satisfy

Na(r, s), Nb(r, s), and Nb(m, n) > n14um,n [ f (m, n)]2,

then the resulting operator T is quasinilpotent.

Proof. Consider the functions Na and Nb satisfying the condition of the the-
orem. Let T be constructed using Na and Nb. Fix a pair of natural numbers (m, n)
with m > n. Then similarly to Lemma 5.4 we obtain

‖T14um,n‖ 6 ‖T14um,n(I − Qm,n)‖+ ‖T14um,n Qm,n‖ <
2

N(r, s)
+ ‖T14um,n Qm,n‖

where (r, s) is some pair satisfying (r, s) > (m, n) and N is either Na or Nb. Re-
call that Qm,n(X) = X8um,n+un,n and ‖Qm,n‖ 6 f (m, n) which provides us with
‖T14um,n Qm,n‖ 6 f (m, n)‖T14um,n |X8um,n+un,n

‖. Using the facts that ‖T‖ 6 1 and
that for every x ∈ X8um,n+un,n we have |x| 6 f (m, n)‖x‖ we estimate

‖T14um,n |X8um,n+un,n
‖ 6 f (m, n)‖T14um,n : (X8um,n+un,n , | · |) → X‖

6 f (m, n) max{‖ei+14um,n‖ : i < 8um,n + un,n}

6 f (m, n)‖e8um,n+un,n‖ =
f (m, n)

F8um,n+un,n

<
f (m, n)

Nb(m, n)
.

We combine everything above into

‖T14um,n‖ 6
2

N(r, s)
+

[ f (m, n)]2

Nb(m, n)
<

3
n14um,n

.

Since the last inequality holds for every pair (m, n), the operator T is quasinilpo-
tent.

We may summarize the conditions of all lemmas above, for instance, as
follows.

THEOREM 6.2. An operator T : l1 → l1 described in Section 2 above is a quasi-
nilpotent operator without non-trivial closed invariant subspaces provided the functions
Na and Nb satisfy the following inductive conditions:

Na(r, s) > max{n14um,n g(m, n)H(2)
m,n[ f (m, n)H(4)

m,n]2 : (m, n) < (r, s)} and

Nb(r, s) > Na(r, s)s14ur,s g(r, s)H(2)
r,s [ f (r, s)]2.

It should be noticed that our modification is less rigid than the original con-
struction. We eliminated the connection between transitivity and the form of
the operator. As a result we may consider more involved matrices preserving
transitivity. Another degree of freedom can be obtained from the order of the
blocks (m, n). For our paper we have fixed it in convenient way at the begin-
ning. Despite this the only place where the order of the blocks has been used was
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Lemma 4.2. Hopefully these new degrees of freedom might help to produce new
interesting examples.
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