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ABSTRACT. It is shown that every Dini function on the primitive ideal space
of a C∗-algebra A is the generalized Gelfand transform of an element of A.
Here a Dini function on a topological space X means a non-negative lower
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( ⋂

τ
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downward directed net {Fτ}τ of closed subsets of X.
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1. INTRODUCTION AND MAIN RESULT

We have studied in [9] the Dini functions on a T0 space X.

DEFINITION 1.1. A map g : X → R+ := [0, ∞) is a Dini function on a topo-
logical T0 space X if g satisfies:

(i) g is a non-negative lower semi-continuous function on X, and

(ii) sup g
( ⋂

F∈G
F
)

= inf{sup g(F); F ∈ G} for every downward directed set G

of closed subsets of X.
Here we use the convention sup ∅ = 0, because we consider only least upper
bound of subsets of R+ . G is downward directed if for F1, F2 ∈ G there is F3 ∈ G
with F3 6 F1 ∩ F2 . Thus our definition implies that X is quasi-compact if X
admits a Dini function f with inf f (X) > 0 . If the topology of X has a countable
base then it suffices to consider decreasing sequences G = {F1 ⊃ F2 ⊃ · · · } in (ii).

REMARK 1.2. In [9] we have shown that a bounded non-negative lower semi-
continuous function g : X → [0, ∞) on a T0 space X is a Dini function on X if and
only if g fulfills the condition: For every upward directed net { fτ}τ of non-negative
lower semi-continuous functions fτ on X with g(x) = sup

τ
fτ(x) (for every x ∈ X)
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the net { fτ}τ converges uniformly to g. (The latter characterizes the continuous
functions on compact Hausdorff spaces by a lemma of Dini.)

If X is spectral in the sense of the below given Definitions 1.3, then every
Dini function g has the property that for every closed subset F ⊂ X there is y ∈ F
such that g(y) = sup g(F). In particular, then g is bounded.

If g : X → [0, ∞) is a bounded Dini function on a T0 space X such that for
every closed subset F ⊂ X there is y ∈ F with g(y) = sup(F), then for every
γ > 0, the Gδ set g−1[γ, ∞) = {y ∈ X : g(y) > γ} is quasi-compact.

If g : X → [0, ∞) is a bounded and lower semi-continuous function on a
T0 space X and if g−1[γ, ∞) is quasi-compact for every γ > 0, then g is a Dini
function on X.

But there are T0 spaces X, bounded Dini functions g : X → [0, ∞) and γ > 0
such that g−1[γ, ∞) is not quasi-compact, e.g. X := P ∩ [0, 1]lsc, g : t ∈ X → t ∈
[0, 1] and γ = 2−1/2. ([0, 1]lsc is defined below.)

The Dini functions on a locally compact Hausdorff space are just the non-
negative continuous functions vanishing at infinity (cf. [9]).

DEFINITIONS 1.3. A closed subset F 6= ∅ of a T0 space X is prime if F is not
the union of two closed subsets F1, F2 of X both different from F, i.e. F is not “de-
composable” in the sense of Hausdorff ([6], p. 231). (Here we use a terminology
which is adapted to algebras: if X = Prim(A) then F is prime if and only if F is
the hull h(k(J)) of the kernel k(J) for a some prime ideal J of A). Since the lattice
of closed subsets of X is distributive, a closed subset F of a T0 space X is prime
if F ⊂ F1 ∪ F2 implies F ⊂ F1 or F ⊂ F2 for closed subsets F1, F2 of X (thus F is
“irreducible” in the sense of Definition 4.9 in [7]).

We call a T0 space X spectral or point-complete if every prime closed sub-
set F of X is the closure of a point of X. (The name “spectral space” is used in
Definition 4.9 of [7] for point-complete T0 spaces. Every Hausdorff space is auto-
matically point-complete. But N with the T1-topology given by the complements
of the finite sets is not point-complete, because N is a prime closed set.)

Recall that a topological space X is second countable if the topology of X has
a countable base.

A subset C of a T0 space X is quasi-compact if every open covering V of C
contains a finite subset V ′ which is still a covering of C.

We use the following definition of a locally quasi-compact T0 space:
A T0 space X is locally quasi-compact if for every open subset V of X and every

point x ∈ V there is a quasi-compact subset C ⊂ X such that C ⊂ V and x is in the
interior C◦ of C.

The T0 space prime(A) of prime ideals of non-separable C∗-algebras A is
point-complete and locally quasi-compact, but it is not second countable in gen-
eral. The space prime(A) is the “spectral completion” of the T0 space Prim(A) of
primitive ideals of A, but is in general different from Prim(A) for non-separable
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C∗-algebras, cf. [15]. In the non-separable case the adjoint of the natural map from
Prim(A) into prime(A) is an isomorphism on the space of lower semi-continuous
functions and maps the set of Dini functions on prime(A) onto the set of Dini
functions on Prim(A), cf. [9]. N∞ ∪ {∞} with the topology given by the open
sets of N∞ and the open set N∞ ∪ {∞} is a quasi-compact, second countable and
point-complete T0 space, but is not locally quasi-compact.

Let [0, 1]lsc denote [0, 1] with the T0 topology given by the system of open
sets {∅, [0, 1], (t, 1]; t ∈ [0, 1)}. The subspace Z := P ∩ [0, 1) of rational numbers
6= 1 in [0, 1]lsc is second countable and locally quasi-compact, but is not point-
complete and has an unbounded lower semi-continuous function g : Z → [0, ∞)
with (ii) of Definition 1.1, cf. [9].

DEFINITION 1.4. We call a T0 space X a Dini space if X is point-complete, is
second countable and the supports g−1(0, ∞) of the Dini functions g : X → [0, ∞)
build a base of the topology of X.

It is well-known (e.g. from [3], [4] and [12], Chapter 4.3) that the T0 space
X := Prim(A) of primitive ideals of a separable C∗-algebra A with the Jacobson
topology has the following properties:

(I) There is an open and continuous map from the Polish space P of pure states
on A onto X.

(II) The generalized Gelfand transforms N(a) : X → [0, ∞) given by the norm-
functions N(a)(J) := ‖a + J‖ (J primitive ideal of A) of a are lower semi-
continuous functions on X, and define the T0 topology of X by the open sets
N(a)−1(0, ∞).

(III) sup N(a)
( ⋂

Fn
)

= inf
n

sup N(a)(Fn) , if F1 ⊃ F2 ⊃ · · · is a decreasing se-

quence of closed subsets Fn of X (see e.g. Lemma 3.2).

(II) and (III) show that the functions N(a) are Dini functions on X in the
sense of Definition 1.1. Thus (I)–(III) and Lemma 2.2 imply that Prim(A) is a Dini
space in the sense of Definition 1.4.

The above defined space [0, 1]lsc is an example of a Dini space and has
only constant continuous functions, but has many Dini functions because it is
the primitive ideal space of a unital nuclear C∗-algebra, cf. [9].

The set D(X) of (bounded) Dini functions on a T0 space X is closed under
maximum ( f , g) 7→ max( f , g), under uniform convergence, and under composi-
tions f 7→ ϕ ◦ f with continuous increasing functions ϕ on [0, ∞) with ϕ(0) = 0.
In general on Dini spaces addition or multiplication of Dini functions are not
possible, because each of addition, multiplication and min-operation on D(X)
is equivalent to the property of X that the intersection of two quasi-compact Gδ

subsets of X is again quasi-compact, cf. [9]. The C∗-algebra of sequences of com-
plex 2× 2-matrices which converge to a diagonal matrix is an example of an AF
algebra A where this intersection property does not hold for X = Prim(A).
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If X is a Dini space, then the set of Dini functions is closed with respect to the
uniform topology, is separable with respect to the uniform topology, and there is
a sequence of Dini functions g1, g2, . . . such that their supports build a base of the
topology of X and sup gn(X) = 1.

In [9] we have shown that a spectral T0 space X is locally quasi-compact if
and only if the supports of the Dini functions on X build a base of the topology
of X. Thus X is a Dini space if and only if X is point-complete, locally quasi-
compact, and second countable.

Our main result is the following theorem. It shows that bounded Dini func-
tions on T0 spaces are analogs of norm functions on primitive ideal spaces.

THEOREM 1.5. Suppose that A is a C∗-algebra. Then every Dini function on
Prim(A) is the generalized Gelfand transform (norm-function) N(a) of some element
a ∈ A.

The primitive ideal space Prim(A) is a Dini space if A is separable.

The proof of Theorem 1.5 is given in Section 4. It follows that for every C∗-
algebra A the set of norm functions N(a) on Prim(A) is closed under maximum
and contains its uniform limits. Thus, the generalized Gelfand transforms N(a)
do not add to primitive ideal spaces Prim(A) any additional structure that is not
automatically defined by the topology of Prim(A) alone.

The most interesting open question on Dini spaces is the following:

QUESTION 1.6. Is every Dini space X homeomorphic to the primitive ideal
space of a separable nuclear C∗-algebra?

If the open quasi-compact subsets of X build a base of the topology of X
then there is an AF algebra A such that Prim(A) ∼= X, cf. [2].

See Section 5 for other partial answers and related questions.

2. PRELIMINARIES ON T0 SPACES

The lemmas and remarks in this section are taken from [9]. The proofs can
be found there.

DEFINITIONS 2.1. A subset Z of a T0 space X is pseudo-Fσ if it can be ex-
pressed as a union Z =

⋃
n

Zn of countably many intersections Zn = Fn ∩Un of

closed subsets Fn and open subsets Un of X. A subset Z is pseudo-Gδ if X \ Z is
pseudo-Fσ, i.e. if Z can be expressed as an intersection Z =

⋂
n

Zn of countably

many unions Zn = Fn ∪Un of closed subsets Fn and open subsets Un of X.
Recall that a subset Z of X has the Baire property if for every sequence of open

subsets Un ⊂ X with Un ∩ Z ⊃ Z holds
( ⋂

n
Un

)
∩ Z ⊃ Z, i.e. the intersection of

a countable family of open and dense subsets of Z is dense in Z.
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LEMMA 2.2. Suppose that Y is a Polish space, ψ : Y → X is a continuous map
into a T0 space X, and Z is a pseudo-Gδ subset of X provided with the topology inherited
from X.

(i) The set ψ−1Z is a Gδ subset of Y (and, hence, ψ−1Z is a Polish space with the
topology inherited from Y).

(ii) If, in addition, ψ is open and ψ(Y) = X , then the restriction ψ|ψ−1Z is an open
and continuous map from the Polish space ψ−1Z onto Z. Then Z is second countable,
has the Baire property and is point-complete.

LEMMA 2.3. Let X and Y topological spaces and ψ : Y → X a map from Y onto
X. Then ψ is open and continuous if and only if ψ−1(Z) = ψ−1(Z) for every subset
Z ⊂ X.

REMARK 2.4. Let Y and Z be T0 spaces. We call a map Ψ from the lattice
O(Y) of open subsets of Y into O(Z) a ∪-preserving map if Ψ(U ∪ V) = Ψ(U) ∪
Ψ(V) for all open subsets of U, V of Y. Ψ is called non-degenerate if Ψ(Y) = Z and
Ψ(∅) = ∅.

Let f a non-negative bounded lower semi-continuous function on Y. If one
denotes by χ(U) the characteristic function of the open set U of Z or Y, then

VΨ( f )(z) := sup{tχ(Ψ( f−1(t, ∞)))(z); t > 0}

defines obviously a non-negative bounded lower semi-continuous map VΨ( f )
on Z.

It is easy to check that the map V = VΨ, from the bounded non-negative
lower semi-continuous functions BLSC+(Y) on Y into BLSC+(Z), satisfies the
following conditions (i)–(v) for every f , g ∈ BLSC+(X) and t > 0:

(i) V(1) = 1,
(ii) V(max( f , g)) = max(V( f ), V(g)),

(iii) V( f 2) = V( f )2,
(iv) V(t f ) = tV( f ) and
(v) V(( f − t)+) = (V( f )− t)+.

(i)–(v) imply V(g) 6 V(h) for g 6 h, min(V( f ), V(g)) > V(min( f , g)) and V( f +
g) 6 V( f ) + V(g). In particular, ‖V( f )−V(g)‖ 6 ‖ f − g‖. By (i)–(v), for every
continuous increasing function ϕ on [0, ∞) with ϕ(0) = 0 it follows that V(ϕ ◦
f ) = ϕ ◦V( f ).

Conversely, if a map V from BLSC+(Y) into BLSC+(Z) with (i)–(v) is given,
then V determines a non-degenerate and ∪-preserving map ΨV : O(Y) → O(Z)
with V(χ(U)) = χ(ΨV(U)). We have V = VΨV and ΨVΨ

= Ψ.

LEMMA 2.5. Suppose that Y and X are T0 spaces, that ψ : Y → X is a continuous
map, which is an open map from Y onto the subspace ψ(Y). We define V( f ) := f̂ :=
sup f (ψ−1(x)) for bounded lower semi-continuous non-negative functions f on Y.

(i) The function f̂ is lower semi-continuous on ψ(Y), and sup f (Y) = sup f̂ (ψ(Y)).
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(ii) The map V : f 7→ f̂ satisfies V(1) = 1, V(max( f , g)) = max(V( f ), V(g)) and
V(h( f )) = h(V( f )) for every increasing continuous function h on [0, ∞).

(iii) In particular, V is order-preserving.
(iv) ĝ ◦ ψ = g|ψ(Y) for every lower semi-continuous function g : X → [0, ∞).

3. NORM FUNCTIONS N(a) ON Prim(A)

We want to identify the Dini functions on the primitive ideal space Prim(A)
of a C∗-algebra A. Some lemmas are needed to prove that every Dini function on
Prim(A) is a generalized Gelfand transform of an element of A.

REMARK 3.1. Recall that the space P(A) of pure states of a C∗-algebra A is
a Polish space if A is separable. The natural epimorphism P(A) → Prim(A) from
P(A) onto X := Prim(A) is open and continuous (even if A is not separable),
cf. Theorem 3.4.11 of [4] and Chapter 4.3 of [12]. Here P(A) has the σ(A∗, A)-
topology, and the set Prim(A) of kernels of irreducible representations of A car-
ries the hull-kernel topology of Jacobson.

The norm-function N(a) on Prim(A) for a ∈ A is defined by

N(a)(J) := ‖a + J‖ := inf
b∈J

‖a + b‖

for primitive ideals J ∈ Prim(A) of A (i.e. kernels of irreducible representations).
The map a ∈ A+ → N(a) ∈ BLSC+(Prim(A)) generalizes the Gelfand transform
on commutative C∗-algebras.

The definition of the topology on Prim(A) shows immediately that there
is an obvious order-preserving one-to-one relation between open subsets Z of
Prim(A) and closed ideals IZ := k(Prim(A) \ Z) of A. If F is a closed sub-
set of X := Prim(A), then IX\F = k(F) is the intersection of the J ∈ F and
sup{N(a)(J); J ∈ F} = ‖a + IX\F‖.

If one considers for a ∈ A+ the non-negative continuous function fa :=
ǎ(ρ) := ρ(a) (ρ ∈ P(A)) on P(A), then N(a) = f̂a, where f ∈ BLSC+(P(A)) 7→
f̂ ∈ BLSC+(X) is defined as in Lemma 2.5 for the open and continuous epimor-
phism P(A) → X.

LEMMA 3.2. Suppose that A is a C∗-algebra and that U is an open subset of
Prim(A). Then

(i) N(a) = N(c) for c := (a∗a)1/2, and
(ii) N(ϕ(b)) = ϕ(N(b)) for every increasing continuous function ϕ on [0, ∞) with

ϕ(0) = 0 if b ∈ A+.
(iii) Every generalized Gelfand transformation N(a) : J 7→ ‖a + J‖ is a Dini function

with sup N(a)(Prim(A)) = ‖a‖. For every closed subset F of Prim(A) there is J ∈ F
with N(a)(J) = sup N(a)(F). N(a)−1[γ, ∞) is quasi-compact for every γ > 0.
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(iv) There is a ∈ A+ such that U is the support N(a)−1(0, ∞) of N(a) if and only if
U is the union of a countable sequence of quasi-compact subsets of U. (The latter is the
case for all open subsets U of Prim(A) if A is separable.)

(v) For every bounded Dini function f : Prim(A) → [0, ∞) there is e ∈ A+ with
same support, i.e. N(e)−1(0, ∞) = f−1(0, ∞). (In particular, the support of f is the
union of a countable sequence of quasi-compact subsets.)

(vi) The space Prim(A) is locally quasi-compact. It is a Dini space if A is in addition
separable.

Proof. (i) N(a) = N(c) for c := (a∗a)1/2 because the semi-norms a 7→ ‖a +
J‖ have the C∗-property.

(ii) ϕ(b) + J = ϕ(b + J) and ‖ϕ(b + J)‖ = ϕ(‖b + J‖) for b ∈ A+ if ϕ(0) = 0,
ϕ is increasing and continuous.

(iii) N(b) is lower semi-continuous for b ∈ A+, because N(b)−1(t, ∞) =
N((b − t)+)−1(0, ∞) is the open subset of Prim(A) which corresponds to the
closed ideal J of A generated by (b− t)+ for t ∈ [0, ∞).

Thus N(a) = N((a∗a)1/2) is lower semi-continuous for every a ∈ A.

sup N(a)
( ⋂

τ
Fτ

)
= inf

τ
sup N(a)(Fτ) for every decreasing net of closed sub-

sets Fτ of X, because this is equivalent to the obvious identities
∥∥∥a +

⋃
τ

Jτ

∥∥∥ =∥∥∥a +
⋃
τ

Jτ

∥∥∥ = inf
τ
‖a + Jτ‖ for the increasing net {Jτ} of closed ideals Jτ of A cor-

responding to the complements X \ Fτ of the closed sets Fτ .
The rest follows from Lemma 3.3.6 and Proposition 3.3.7 of [4], but we give

a proof based on Remark 1.2 as follows:
If F is a closed subset of Prim(A) and if I := IU = k(F) is the closed ideal

of A corresponding to Prim(A) \ F, then sup N(a)(F) = ‖πI(a)‖. There is an ir-
reducible representation d : A/I → L(H) such that ‖d(a)‖ = ‖πI(a)‖ (e.g. the
GNS construction for a pure state ρ on A which is a Hahn–Banach extension
of a character χ on C∗(πI(a∗a)) with ρ(πI(a∗a)) = χ(πI(a∗a)) = ‖πI(a∗a)‖).
J := (πI)−1(K) (for the kernel K of d) is a primitive ideal of A with J ∈ F and
N(a)(J) = ‖a + J‖ = ‖πJ(a)‖ = sup N(a)(F).

By Remark 1.2, N(a)−1[γ, ∞) is quasi-compact for every γ > 0.
(iv) Let I be the intersection of the primitive ideals J ∈ X \ U. If there is

a ∈ A such that N(a) has U as its support, then U is the union of the sequence of
the sets Cn := N(a)−1[1/n, ∞), which are quasi-compact by (iii).

If, in addition, A is separable, then there exists a strictly positive element
a ∈ I+, e.g. a := ∑

n
2−nb∗nbn for a dense sequence b1, b2, . . . in the unit ball of I.

Then N(a)(J) > 0 for every primitive ideal J ∈ U, because this is equivalent to
I 6⊂ J.

If A is not separable, but if U is the union of a sequence of quasi-compact
sets C1, C2, . . . ⊂ U, then for every n ∈ N and every J ∈ Cn there are contractions
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bn,J ∈ I with N(bn,J)(J) > 0. Since the supports of N(bn,J) are open and since Cn
is quasi-compact, there is a sequence of contractions b1, b2, . . . ∈ I such that for
every point J ∈ U there is n ∈ N with N(bn)(J) > 0. The support N(a)−1(0, ∞)
of N(a) equals U for a := ∑

n
2−nb∗nbn , because a ∈ I and 2nN(a) > N(bn)2 for

every n ∈ N.
(v) Let G denote the set of all functions g : Prim(A) → [0, ∞) with g 6 f

and the property that there exist n ∈ N and a1, a2, . . . , an ∈ A such that g =
max(N(a1), N(a2), . . . , N(an)). Then G is an upward directed net of lower semi-
continuous functions. For J ∈ Prim(A) with f (J) =: η > 0 and ε ∈ (0, η/2)
let U := f−1(η − ε, ∞) and IU := k(Prim(A) \ U). Then J ∈ U, IU 6⊂ J, and
there is b ∈ (IU)+ \ J with N(b)(J) = ‖b + J‖ = δ > 0. Let ϕ(t) := min(t, δ)
and a := ((η − ε)/δ)ϕ(b). The g := N(a) satisfies g(J) = η − ε and g 6 (η −
ε)χU 6 f . Thus G converges point-wise to f . Since f is bounded and Dini, by
Remark 1.2 there are gn ∈ G with f − 1/n 6 gn 6 f for n = 1, 2, . . .. There are
bn,1, . . . , bn,m(n) ∈ A with gn = max(N(bn,1), . . . , N(bn,m(n))). Thus bn,j ∈ IV for
n ∈ N, j ∈ {1, . . . , m(n)}, and the bn,j all together generate IV as a closed ideal of
A, where IV is the closed ideal corresponding to the support V := f−1(0, ∞) of f .

Let an := b∗n,1bn,1 + · · ·+ b∗n,m(n)bn,m(n) and e := ∑
n
(2n‖an‖)−1an. Then we

have N(e)−1(0, ∞) = Prim(A) \ h(I) for the closed ideal I generated by {e}, and
I is equal to the closed ideal IV generated by {bn,j ; n ∈ N, 1 6 j 6 m(n)}. Hence
N(e)−1(0, ∞) = f−1(0, ∞).

(vi) The supports of the Dini functions N(a) on Prim(A) build a base of the
hull-kernel topology by (iii) and (iv). This implies that Prim(A) is locally quasi-
compact: If N(a)(J) > δ > 0 then the open neighborhood N(a)−1(δ, ∞) of J is
contained in the quasi-compact set C := N(a)−1[δ, ∞), and C is contained in the
support of N(a).

If A is separable, then Prim(A) is point-complete and second countable by
Lemma 2.2, because the natural map from the Polish space P(A) onto Prim(A) is
continuous and open, cf. Chapter 4.3 of [12].

LEMMA 3.3. Suppose that A is a C∗-algebra and that a, b, c ∈ A+ satisfy ‖a‖ 6
1, ‖b‖ 6 1, bc = c and ‖ab− b‖ < ε. Then ‖a‖+ ‖c‖ − ε < ‖a + c‖.

Proof. Suppose ‖c‖ > 0, and extend a character χ on C∗(b, c) with χ(c) =
‖c‖ to a state ρ on the unitization of A. Then ρ(c) = ρ(bc) = ρ(b)ρ(c), thus
ρ(b) = 1, and ρ(ab) = ρ(a)ρ(b) = ρ(a), which gives |1− ρ(a)| < ε.

It follows ‖a‖+ ‖b‖ − ε 6 1− ε + ‖b‖ < ρ(a) + ρ(b) 6 ‖a + b‖.

In the following let N(a) be the generalized Gelfand transform of a in a
C∗-algebra A.
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LEMMA 3.4. Suppose that A is a C∗-algebra, f is a Dini function on Prim(A)
and that g1, g2, d ∈ A+ are positive contractions with g2g1 = g1, N(g1) 6 f 6 N(g2),
d ∈ g1 Ag1.

Let J denote the closed ideal of A corresponding to the support f−1(0, ∞) of f .
Then for every δ > 0 there is a positive contraction e = eδ ∈ J ∩ g2 Ag2 with

(1− δ)g1 6 e, (1− δ)d 6 e, ‖ed− d‖ < δ and ( f − δ)+ 6 N(e).

Proof. Let X := Prim(A) and m ∈ N with m > 1/δ2, and U := f−1(0, ∞) ∈
O(X). Since f 6 N(g2), the intersection D of the ideal J (corresponding to
the support U of f ) with the hereditary C∗-subalgebra g2 Ag2 is full in J, i.e.
span(ADA) = J. The element g1 is in D, because g2g1 = g1 and N(g1) 6 f ,
i.e. because N(g1)−1(0, ∞) ⊂ U. Thus g1, d ∈ g1 Ag1 ⊂ D.

Now we use the natural isomorphism Prim(D) ∼= U given by J ∈ U 7→
J ∩ D ∈ Prim(D). By Lemma 3.2(v), there is a positive element k ∈ D+ with
‖k‖ = 1/2 such that N(k)−1(0, ∞) = U.

By the proof of Theorem 1.4.2 in [12], there is a contraction h ∈ D+ with
(1− δ)g1 6 h, (m/(m + 1))d1/m 6 h and k 6 h.

Then N(h)−1(0, ∞) = U, (1 − δ)g1 6 h1/n and ‖h1/nd − d‖ < δ for all
n ∈ N, because h 6 h1/n 6 1 and

‖h1/nd− d‖2 6 ‖d1/2(1− h)d1/2‖ 6
∥∥∥d− m

m + 1
d1/md

∥∥∥ 6
1

m + 1
< δ2 .

Furthermore, min(N(h1/n), f ) is an increasing sequence of lower semi-contin-
uous functions on X which converges point-wise to f , because f 6 1, N(h1/n) =
N(h)1/n and N(h)−1(0, ∞) = f−1(0, ∞). By Remark 1.2 on Dini functions, there
is n ∈ N such that f − δ 6 N(h1/n). The element e := h1/n is as desired.

LEMMA 3.5. Suppose that f1, f2, . . . , fn are Dini functions on Prim(A) with
norm 6 1 such that fk+1 fk = fk for k = 1, . . . , n − 1, and that a1, . . . , an are posi-
tive contractions in A+ with ak+1ak = ak and N(ak) 6 fk for k = 1, . . . , n, and that
there is m < n such that f j 6 N(aj+m) for j = 1, . . . , n−m. Let δ > 0 fixed.

There are positive contractions bk and dk in A+ with the following properties:
(i) bk ∈ Jk ∩ ak+m Aak+m for k = 1, . . . , n−m, bk ∈ Jk for k = n−m + 1, . . . , n−

1, where Jk is the closed ideal of A corresponding to the support f−1
k (0, ∞) of fk.

(ii) ‖bkdk−1 − dk−1‖ < δ for k > 1.
(iii) ( fk − δ)+ 6 N(bk).
(iv) (1− δ)ak 6 bk.
(v) dk(bk + bk−1 + · · ·+ b1 − δ)+ = (bk + bk−1 + · · ·+ b1 − δ)+, and

(vi) dk ∈ Jk ∩ ak+m Aak+m for k = 1, . . . , n − m, and dk ∈ Jk for k = n − m +
1, . . . , n.

The elements b := bn−1 + · · ·+ b1 , a := an + · · ·+ a1 and the function f :=
fn + · · ·+ f1 satisfy

(1− δ)(a− 1)+ 6 b 6 a + m and ( f − 1)+ − 3nδ 6 N(b) 6 f .
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Proof. For k = 1 let d0 := 0. By Lemma 3.4 there is b1 ∈ J1 ∩ a1+m Aa1+m
with ( f1 − δ)+ 6 N(b1) and (1− δ)a1 6 b1: consider f1, a1, a1+m, 0 in place of
f , g1, g2, d in Lemma 3.4. Let d1 := δ−1(b1 − (b1 − δ)+), then (i)–(vi) are satisfied
for b1 and d1.

Suppose b1, . . . , bk and d1, . . . , dk have been found with (i)–(vi).
Lemma 3.4 applies to fk+1, ak+1, ak+m+1, dk, if k < n−m, and to fk+1, ak+1 ,

1M(A), dk, if k > n − m. It gives bk+1 with (i)–(iv). (Note here that Prim(A)
is an open subspace of Prim(M(A)) and that fk+1 is also a Dini function on
Prim(M(A)).)

Then c := bk+1 + · · ·+ b1 is in Jk+1 ∩ ak+1+m Aak+1+m for k < n−m, and is
in Jk+1 for k > n−m. Thus dk+1 := δ−1(c− (c− δ)+) satisfies (v) and (vi).

The inequality (1 − δ)(a − 1)+ 6 b := bn−1 + · · · + b1 follows from (iv),
because (a− 1)+ = an−1 + · · ·+ a1.

Since ak+1ak = ak and bk is a contraction in ak+m Aak+m by (i), we have
bk 6 ak+1+m for k < n−m. Thus b 6 m + bn−m−1 + · · ·+ b1 6 a + m .

By (ii) and Lemma 3.3 we have

N(bk+1 + ((bk + · · ·+ b1)− δ)+) > N(bk+1) + (N(bk + · · ·+ b1)− δ)+ − δ .

Since N : A+ → BLSC+(Prim(A)) is order-monotone, it follows

N(bn−1) + · · ·+ N(b1)− 2(n− 2)δ 6 N(b) 6 N(bn−1) + · · ·+ N(b1)

and ( f − 1)+ − 3nδ 6 N(b) by (iii), because ( f − 1)+ = fn−1 + · · ·+ f1.
It holds N(bk) 6 fk+1, because fk+1 fk = fk and the support of N(bk) is

contained in the support of fk by (i). Thus also N(b) 6 f .

4. PROOF OF THEOREM 1.5

First let g a be bounded Dini function on X := Prim(A). We can suppose that
sup g(X) = 1.

We show that for c ∈ A+ and t ∈ (0, 1] with N(c) 6 g 6 N(c) + t there is
e ∈ A+ with N(e) 6 g 6 N(e) + t/2 and c− t/2 6 e 6 c + 3t/2. Then one gets
by induction a convergent sequence a0 = 0, a1, a2, . . . ∈ A+ with N(an) 6 g 6
N(an) + 2−n and an − 2−n−1 6 an+1 6 an + 2−n−13.

The existence of e reduces to Lemma 3.5 as follows:
Take n ∈ N and δ > 0 such that n > 4/t and δ < t/12. Let m 6 n denote

the smallest integer > nt.
We use the continuous increasing functions from [0, 1] into [0, 1] given by

ϕ1(t) := (nt− (n− 1))+ and ϕk(t) := (nt− (n− k))+ − (nt− (n− k + 1))+ (It
is indexed from top to bottom.)

We have N(ϕk(c)) = ϕk(N(c)). Thus n, m, ak := ϕk(c), fk := ϕk(g) for
k = 1, . . . , n satisfy the assumptions of Lemma 3.5. It holds a = nc and f = ng.



GENERALIZED GELFAND TRANSFORMS 249

Let e := n−1b. Then (1− δ)(c − 1/n)+ 6 e 6 c + m/n and (g − 1/n)+ − 3δ 6
N(e) 6 g.

Thus e is as desired, by the choice of n and δ.
Now we show that every Dini function g : X := Prim(A) → [0, ∞) is bounded.
Let ψ(t) := t/(1 + t) for t ∈ [0, ∞) and ψ(∞) := 1. The function ψ is

continuous on [0, ∞], strictly increasing, ψ(0) = 0, ψ(sup Z) = sup ψ(Z), and
ψ(inf Z) = inf ψ(Z) for every subset Z ⊂ [0, ∞]. It follows that ψ ◦ g is a bounded
Dini function on X and sup ψ ◦ g(X) 6 1. Thus there is a ∈ A with ψ ◦ g = N(a)
and ‖a‖ 6 1. Since g has values in [0, ∞), there is no J ∈ X with ‖a + J‖ = 1.
Thus ‖a‖ < 1 and sup g(X) 6 ψ−1(‖a‖) = ‖a‖/(1− ‖a‖) < ∞. Which ends the
proof of Theorem 1.5.

5. REMARKS AND QUESTIONS ABOUT PRIMITIVE IDEAL SPACES

QUESTION 5.1. Is every Dini space (at least) the primitive ideal space of a
separable C∗-algebra?

Recent joint works with H. Harnisch and M. Rørdam give a partial an-
swer. They show that the following properties (I)–(IV) of a point-complete second
countable T0 space X are equivalent. (Note for the following thatF (Y) means the
lattice of closed subsets of a topological space Y. The greatest lower bound (g.l.b.,
inf) of a family in the lattice F (Y) is simply the intersection of the closed sets in
the family, and the least upper bound (l.u.b., sup) is the closure of the union of
the sets in the family.)

(I) X is isomorphic to the primitive ideal space of a separable nuclear C∗-
algebra.

(II) F (X) is lattice-isomorphic to a sub-lattice G of F (Y) which is closed under
forming of l.u.b. and g.l.b. for some locally compact Polish space Y. Equivalently,
this means that there is a map Ψ from the open subsets O(X) of X into the open
subsets O(Y) of Y with following properties (i)–(iv):

(i) Ψ(
⋃
τ

Uτ) =
⋃
τ

Ψ(Uτ).

(ii) Ψ
(( ⋂

τ
Uτ

)◦)
=

( ⋂
τ

Ψ
(

Uτ

))◦
. (Z◦ denotes the interior of Z.)

(iii) Ψ(X) = Y, Ψ(∅) = ∅.
(iv) Ψ(U) = Ψ(V) implies U = V.

(III) F ((0, 1]lsc × X) is (in a lattice sense) the projective limit of F (Pn \ {qn})
for pointed finite one-dimensional polyhedra (Pn, qn). With Yn = Pn \ {qn} the
connecting maps Φn : F (Pn+1 \ {qn+1}) → F (Pn \ {qn}) satisfy:

(i) Φn

(⋃
τ

Fτ

)
=

⋃
τ

Φn(Fτ) for every family {Fτ}τ of closed subsets in

F (Yn+1),
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(ii∗) Φn

( ⋂
k

Fk

)
=

⋂
k

Φn(Fk) for every decreasing sequence F1 ⊃ F2 ⊃ · · ·

in F (Yn+1), and
(iii) Φn(Yn+1) = Yn , Φn(∅) = ∅.

(IV) There are a locally compact Polish space Y and a continuous map ϕ : Y → X
such that, for closed subset F ⊂ G of X with F 6= G, the set G \ F contains a point
of ϕ(Y), and that ⋃

n
ϕ−1(Fn) = ϕ−1

( ⋃
n

Fn

)
for every increasing sequence of closed subsets of X.

One can show (with the methods of [9]) that every Dini space X is the
image of an open and continuous map ϕ from a Polish space Y onto X. Then
F ∈ F (X) → ϕ−1F ∈ F (Y) defines an complete order isomorphism onto an
sup- and inf-closed sublattice of F (Y). Unfortunately, our construction gives in
general not a locally compact space Y. (But we know that [0, 1]lsc is a continuous
and open image of the Hilbert cube [0, 1]∞. The map can be defined by a suitable
increasing family {Ct ; t ∈ [0, 1]} of compact convex subsets of the Hilbert space.)

REMARK 5.2. (i) If Ω is a closed subset of [0, 1] with 0, 1 ∈ Ω, then Ω and
Ω \ {0} considered as subspaces of [0, 1]lsc are primitive ideal spaces of separable
nuclear C∗-algebras A in the UCT class, as follows from [11], or even of a C∗-
algebra A, that is an inductive limit of C0((0, 1], M2n), n = 1, 2, . . ., cf. [13]. One
could construct also a suitable Cuntz–Pimsner algebra, by the above mentioned
general result.
(ii) Another explicit construction of an A with Prim(A) ∼= Ωlsc goes as follows:
C(Ω) is a subalgebra of the Cantor algebra C({0, 1}∞) ⊂ M2∞ ⊂ O2. Let h : C(Ω)
→ C(Ω×Ω) ⊂ C(Ω)⊗ B for B = M2∞ or B = O2 and h( f )(s, t) := f (min(s, t)).
There is a unital isomorphism ι : B ⊗ B ↪→ B. ϕ := (idC(Ω) ⊗ ι) ◦ (h ⊗ idB) is a
unital endomorphism of D := C(Ω)⊗ B. The inductive limit A of ϕn : D → D
has primitive ideal space Ω ⊂ [0, 1]lsc, as one can easily see.

QUESTION 5.3. Does there exist (up to homeomorphisms) a Dini space X∞
which contains (up to homeomorphisms) every other Dini space as a closed sub-
space of X∞?

Every primitive ideal space of a separable C∗-algebra is a closed subspace
of the primitive ideal space Prim(J) of the kernel J of the trivial character on the
full group C∗-algebra C∗(F2) of the free group F2 on two generators.

QUESTION 5.4. Suppose that X is a second countable T0 space, and that
every pseudo-Gδ subset of X satisfies the Baire property. Is there an open and
continuous map from a Polish space onto X? (The converse is trivial, see Lem-
ma 2.2(ii). There are non-Polish second countable metrizable Hausdorff spaces X
with Baire property, as follows from capacity theory.)
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