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ABSTRACT. We give a complete description of the linear isometries between
spaces of vector-valued bounded continuous functions defined on some nat-
ural families of topological spaces which may be neither compact nor locally
compact. A similar study is carried out for spaces of vector-valued bounded
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1. INTRODUCTION

The aim of this paper is the study, in some natural contexts, of linear isome-
tries between spaces of bounded continuous functions. A classical result in this
theory is the following: if X and Y are compact and Hausdorff and T : C(X) —
C(Y) is a surjective linear isometry, then there exist a homeomorphism ¢ from
Y onto X and a € C(Y) with |a(y)| = 1 for every y € Y such that (Tf)(y) =
a(y)f(¢(y)) for every f € C(X) and every y € Y.

The above theorem has some vector-valued counterparts, and has been
broadly studied. In particular, for compact X and Y, if E is a Banach space sat-
isfying a special condition (namely, having trivial centralizer), then every linear
isometry from C(X, E) onto C(Y, E) is a strong Banach-Stone map (see definition in
Section 2), that is, in that case we can obtain a description of the map. This result
can be extended to maps defined between spaces of continuous functions van-
ishing at infinity on locally compact spaces (see for instance [6]; see also [14] for
recent results concerning local isometries, and [16] for related results). In general,
results in this direction always include some kind of compactness of the topolog-
ical spaces among the hypotheses.

Notice that if no conditions on compactness are required, then for spaces of
bounded continuous functions C,(X) and C,(Y), a linear isometry T : C,(X) —
Cp(Y) always leads to a homeomorphism between X and BY (the Stone-Cech



286 JESUS ARAUJO

compactifications of X and Y), as elements in C,,(X) and Cp,(Y) can be extended
to elements in C(BX) and C(BY). Consequently, no direct link between X and Y
can be given, and the natural context to study such isometries is that of compact
spaces.

In this paper, we will see that the behaviour in the vector-valued case is es-
sentially different, and in many important cases X and Y must be homeomorphic
(see Theorem 3.2). Also, when E and F are infinite-dimensional, we show that
the natural framework to carry out the study of linear isometries between spaces
of bounded continuous functions C, (X, E) and Gy, (Y, F) is not that of compact
spaces, but one containing a wider family of sets, as it is that of realcompact spaces
(see Remark 3.3). In our approach, we will take advantage of our study of bisep-
arating maps in previous papers [3], [2] to describe such isometries (see also [1],
[12], [15] for related results in the (locally) compact case). Similar techniques can
be used to study linear isometries between spaces of bounded uniformly contin-
uous functions, providing in this case a special description of them (some papers
dealing with the case of scalar-valued uniformy continuous functions have ap-
peared recently, [4], [9], [11]).

We want to mention also that the only results related to isometries between
spaces Cp (X, E) and C, (Y, F) (for X and Y not locally compact) which seem to
have made their way in the literature so far are contained in [5], where the author
gives a representation of such isometries in the case when X and Y are complete
metric spaces and E = F is a Hilbert space. This situation will be a particular case
of our Context 3 (see next section).

For a systematic account on isometries between spaces of continuous func-
tions and related topics, the reader is referred for instance to [13] and the new
book [8].

2. DEFINITIONS AND NOTATION

Throughout the paper K will be the field of real or complex numbers. E and
F will be K-Banach spaces.

For a completely regular space X, C, (X, E) denotes the space of E-valued
bounded continuous functions on X. When E = K, G, (X) := G, (X, K).

On the other hand, if X is also a complete metric space, Cg(X, E) denotes the
space of uniformly continuous bounded functions defined on X, taking values in
E. Also in this case C}!(X) := C}(X, K).

Both G, (X, E) and Cy/(X, E) are endowed with the sup norm.

Also, if e € E, then € denotes the constant function from X to E taking the
value e.

THE CONTEXTS. Our results will be valid (with the same proof) for different
kinds of spaces. For this reason we first consider several situations to work in.
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From now on we will assume that we are in one of the following four con
texts. All definitions, results and comments given in this paper apply to these
four contexts unless otherwise stated.

o CONTEXT 1. E and F are infinite-dimensional. X and Y are realcompact.
A(X,E) = Cp(X,E), A(Y,F) = Gy (Y, F).

e CONTEXT 2. E and F are infinite-dimensional. X and Y are completely
regular, and all points of X and Y are Gs-points. A(X,E) = C,(X,E),
A(Y,F) = G, (Y, F).

e CONTEXT 3. X and Y are completely regular and first countable.
A(X,E) = Cp(X,E), A(Y,F) = Cp(Y,F).

e CONTEXT 4. X and Y are complete metric spaces. A(X,E) = C(X,E),
A(Y,F) = CX(Y, F).

This means that when we refer to spaces X, Y, A(X, E), A(Y, F), we assume
that all of them are included at the same time in one of the above four contexts.
A(X,K) will have the natural meanings, that is, 4(X,K) = C,(X,K) in Con-
texts 1-3, and A(X,K) = C(X,K) in Context 4. A similar comment applies to
A(Y,K).

We next adapt Lemma 3.1 from [3] and give the following result.

LEMMA 2.1. Let a, B € R satisfy 0 < a < . Suppose that f : X — [0,+00)
belongs to A(X,K), and that the sets U := {x € X : f(x) < a}andV :={x € X :
f(x) > B} are both nonempty. Then there exists g € A(X,K) such that0 < g < 1,
g=0onU,andg=1onV.

Given f € A(X, E), we define the cozero set of f as

e(f) = {x € X: f(x) #0}.

DEFINITION 2.2. Amap T : A(X,E) — A(Y,F) is said to be separating if it
is additive and c(Tf) N¢c(Tg) = @ whenever f, g € A(X, E) satisfy c(f) Nc(g) =
@. Besides T is said to be biseparating if it is bijective and both T and T~! are
separating.

As for the spaces of linear functions, L(E, F) and I(E, F) stand for the space
of continuous linear maps from E to F and the set of all linear isometries from
E onto F, respectively. We consider that both L(E, F) and its subset I(E, F) are
endowed with the strong operator topology, that is, the coarsest topology such
that the mappings S — Se are continuous for every e € E (see for instance [7]).

DEFINITION 2.3. A surjective linear isometry T : A(X, E) — A(Y, F) is said
to be a strong Banach-Stone map if there exist a continuous map J : Y — I(E,F)
and a surjective homeomorphism ¢ : Y — X such that for every f € A(X,E)
andy €Y, (Tf)(y) = (Jy)(f(¢(y)). In Context 4, a strong Banach-Stone map
T : CA(X,E) — CZ(Y,F) is said to be uniform if both ¢ and ¢! are uniformly
continuous.
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MULTIPLIERS AND CENTRALIZER. For a Banach space B, we denote by Extp the
set of extreme points of the closed unit ball of its dual B’'.

DEFINITION 2.4. Given a Banach space B, a continuous linear operator T :
B — B is said to be a multiplier if every p € Extp is an eigenvector for the trans-
posed operator T’, i.e. if there is a function ar : Extg — K such that po T =
ar(p)p for every p € Extg.

DEFINITION 2.5. Let B be a Banach space. Given two multipliers T,S : B —
B, we say that S is an adjoint for T if ag = ar, that is, if ag coincides with ar when
K = R, and with the complex conjugate of ar when K = C.

The centralizer of B is the set of those multipliers T : B — B for which an
adjoint exists.

When it exists, the adjoint operator for T, which must be unique, will be
denoted by T*. On the other hand, the centralizer of B will be denoted by Z(B)
(notice that when K = R, the centralizer of B consists of the set of all multipliers
of B).

Given h € A(X,K), we define the operator M, : A(X,E) — A(X,E) as
My, (f) := hf foreach f € A(X,E).

3. MAIN RESULTS

We first state a proposition which will be crucial to prove the main result of
the paper. It is not the first time that the relation "linear isometry-biseparating
map" is used to prove Banach-Stone theorems between spaces of vector-valued
continuous functions defined on (locally) compact spaces (see for instance [12],
where the case of E and F strictly convex or with strictly convex dual is covered;
see also [1] for related results).

PROPOSITION 3.1. Suppose that Z(E) and Z(F) are one-dimensional. If T :
A(X,E) — A(Y, F) is a surjective linear isometry, then T is biseparating.

Finally we state our main result.

THEOREM 3.2. Suppose that Z(E) and Z(F) are one-dimensional. If T :
A(X,E) — A(Y,F) is a surjective linear isometry, then it is a strong Banach-Stone
map. If we are in Context 4, it is also uniform.

REMARK 3.3. Suppose that X and Y are any completely regular spaces (not
necessarily included in Contexts 1-4), and E and F are infinite-dimensional Ba-
nach spaces. It is easy to see that the proof of Proposition 3.1 (see next section) is
also valid to show thatif T : C,(X,E) — C, (Y, F) is a surjective linear isometry,
then it is a biseparating map. According to Theorem 3.4 in [2], we have that the
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realcompactifications of X and Y are homeomorphic. We conclude that the natu-
ral setting to study such isometries for infinite-dimensional E and F is that where
X and Y are realcompact.

Consequently Theorem 3.2 cannot be stated in general if we assume that our
spaces are not included in Contexts 1-4. Example 3.4 below shows that even if X
implies to be included in one of our contexts and Y is included in a different one,
then the theorem is no longer valid. As for Example 3.5, we see that in Context 2,
the fact that E and F are infinite-dimensional is essential to get the description
given in Theorem 3.2. Finally, in Example 3.6, we see that in Context 4, the re-
quirement of completeness of X and Y is necessary to get the homeomorphism ¢
given in Theorem 3.2.

EXAMPLE 34. Take X = W(w;) := {0 : ¢ < wi}, where w; denotes
the first uncountable ordinal ([10], 5.12), and let Y be its Stone-Cech compacti-
fication, which coincides with its realcompactification. It is clear that X is first
countable and completely regular (but not realcompact). Suppose E = 2, which
satisfies that Z(E) is one-dimensional. Since E is realcompact ([10], 8.2), every
f € Cp(X, E) can be extended to a map f’ € C,(Y, E).

EXAMPLE 3.5. Take X = Nand Y = NU {c}, where ¢ € BN\ N. Clearly
each f € Cp(X) admits a continuous extension f’ : Y — K. We have that X and
Y are not homeomorphic (see 4M in [10]).

EXAMPLE 3.6. Take X = (0,1), Y = [0,1], and E any Banach space. It is
easy to see that each f € C}!(X, E) can be extended to amap f' € C(Y, E).

In the three examples above, the operator sending each f into its extension
f' turns out to be a surjective linear isometry which is not a strong Banach-Stone
map.

4. PROOFS

With a proof similar to that of Proposition 4.7 (i) in [6], we have the follow-
ing result.

LEMMA 4.1. Foreach h € A(X, K), the operator My, belongs to Z(A(X,E)).

Notice that when K = C, given p € Ext 4x ), its real part Re p belongs to
Ext 4(x ), (Where A(X, E) is A(X, E) viewed as a real space). Next, considering
the real and imaginary parts of /1, Reh and Im}, we have that (Rep) o Mgy, =
AMg,, (Rep)Rep and (Rep) o My, = ap,,, (Rep)Re p. Taking into account that
p(f) = Rep(f) —iRep(if) forevery f € A(X, E), itis straightforward to see that
am, (p) = amg,, (Rep) +iap,, , (Rep). We deduce that the adjoint for My, is My,
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Next we are going to see that the converse of Lemma 4.1 is also true when
Z(E) is trivial (i.e., one-dimensional). First we will state the following lemma,
whose proof is easy.

LEMMA 4.2. Let r,s € (0,1] satisfy s > 1 —r/100. Let «, B € K be such that
a/B € (—0,0). If |a|, |B| > r/3, then either |s — «| > 1or |[s — | > 1.

LEMMA 4.3. Suppose that Z(E) is one-dimensional. Given an operator T €
Z(A(X,E)), there exists h € A(X,K) such that T = M,,.

Proof. Suppose that T € Z(.A(X, E)). Then there exists a map
ar . EXtA(X,E) — K

such that g o T = ar(q)q for every q € Ext 4(x r).-

For x € X, define Ty : E — E as Tye := (Te)(x) for each e € E, that
is, Ty = exoToi, where ex : A(X,E) — E is the evaluation map at x, and
i: E — A(X,E) is the natural embedding.

CLAM 1. If p € Extg and xo € X, then p o ex, € Ext 4(x r)-

Suppose that p o ey, = ap; + (1 — a) p, where py, p> are points in the closed
unit ball of the dual space A(X,E)’, and 0 < a < 1. We have to prove that
P1 = P2 = poex:

Notice that A(X, E) can be expressed as the direct sum of the closed sub-
spaces E; :={e:e € E} and E; := {f € A(X,E) : f(xg) = 0}. It is easy to see
that if we define, fori = 1,2, g; : E — Kas g;(e) := p;(€) for every e € E, then g1
and g, belong to the closed unit ball of E’. Clearly we have that, for e € E,

ple) = (poex)(€) = api(@) + (1 —a)pa(€) = aqi(e) + (1 — a)qa(e),
thatis, p = ag; + (1 — a)g2. Next, since p € Extg, we deduce that g1 = g = p.
This implies that p; = pp = p o ey, in the subspace E;. Our next step will be to
prove that p; = p» = 0 in the subspace E,.
We clearly have that, in Ep,
p2 = &oP1,

where ap := a/(a —1) < 0. Assume without less of generality that |ag| > 1,
thatis, 1 — & < « (otherwise we would work with p; instead of p1). Suppose that
there exists fy € E; with |[fo|| = 1 and r := p1(fo) > 0. Next take e € E with
|le]| = 1and such that p(e) > 1 —r/100. By Lemma 2.1, we can find ¢ € A(X,K),
0 < g <1,suchthat g({xp}) =1and

g({x € X [Ifo(x)|| =r/100}) =0.

Suppose now that t := p1((1 — g)e) € K satisfies |t| > r/3. Then we have
that also |p2((1 — g)e)| = |apt| > r/3, and by Lemma 4.2, either

p1(ge)l = lp(e) =t[>1 or [pa(ge)| = [p(e) —aot| > 1,
which is impossible because ||ge|| < 1and ||p;|| <1 =1,2).
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Consequently |t| < r/3 and |pi(ge)| = 1 —r/100 — r/3. Next, multiplying
by a number of modulus one if necessary, we may assume that p;(ge) > 0. Thus,
Ilfo + ge|l <1+ r/100 and

p1(fo+ge) >r+1—ﬁ—%> 1+ﬁ,
which contradicts the fact that ||p1]| < 1.

As a consequence p; = py = poex, and poex, € Extyx ). The claim is

proved.

CLAIM 2. For xg € X, Ty, belongs to Z(E).

By Claim 1, if p € Extg, then (poey,) o T = ar(poex,)p o ex,, which gives
us that, for every f € A(X,E),

p((Tf)(x0)) = ar(p o ex,) p(f(x0))-

Consequently we have that, whenever p € Extr and e € E,

p(Txy(e)) = ar(poex)p(e).
In this way, if we define ar, : Exty — Kas ar, (p) := ar(p oey,), then we will
have that, for every p € Extg,

po Ty = ar, (p)p.

As a consequence, Ty, is a multiplier.

But notice that working as above we can prove that the operator ey, o T* o :
E — Eis also a multiplier. On the other hand it is straightforward to see that (in
the complex setting) it is the adjoint for Ty,. Consequently Ty, belongs to Z(E),
and the claim is proved.

Now, as Z(E) = KIdg (where Idg : E — E stands for the identity map on
E), we have that, for each x € X, there exists a, € K such that T, = a,Idg, and
this implies clearly that, for every p € Extg, ar, (p) = ay, thatis, ar, is a constant
function for each x € X.

Thus, given f € A(X,E), we saw above that, for every p € Extg,

p((Tf)(x)) = ar(poex)p(f(x)), thatis,
pU(Tf)(x)) = axp(f(x)) = plaxf(x)).
This implies that
(Tf)(x) = axf(x),
because Extr separates the points of E. Since this is true for every x € X, we
conclude that, if we define h : X — Kas h(x) := ay foreach x € X, then Tf = hf

for every f € A(X, E). Finally, since for e € E\ {0}, Te = he belongs to A(X, E),
we deduce that h € A(X,K). Consequently we can say that T = M;. 1

The proof of the following lemma is an adaptation of the one given for
Lemma 4.13 (i) in [6].
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LEMMA 44. If T : A(X,E) — A(Y,F) is a surjective linear isometry, then
for each h € A(Y,K), the map TM,, defined as (TMy,)(f) := T~ (hTf) for each
f € A(X,E), belongs to Z(A(X,E)).

Proof. First notice that the transposed operator (T~!) : A(X,E) —
A(Y,F) is a linear surjective isometry, and consequently it maps Ext A(X,E) onto
Ext4(y,r)- So, for p € Exty(x ) (T~1)(p) belongs to Ext 4(y,r), and then, by
Lemma 4.1, it is clear that ((T~!)(p)) o M, = am, ((T~1)'(p)) - (T71)'(p). But
this means that, for every p € Ext yx ), p© (T'oMoT) =ap,(poT 1) p.
As a consequence, if we define a1,y o7(p) 1= am, (p o T—1), then we have that
T~!o My, o T is a multiplier.

So the lemma is proved if K = R. Now, if K = C, we just have to find
an adjoint for T~! o My, o T. But notice that if h € A(Y,K), then & also belongs
to A(Y,K). We deduce that, in the same way as above, T~! o Mg oTisalso a
multiplier and, for every p € Extyx k), aT,1OMﬁOT(p) = am(po T-1). Finally,
since the adjoint for M, is My, as we remarked after Lemma 4.1, we conclude that
T-lo M, o T is the adjoint for T~! o My o T, and we are done. 1

Proof of Proposition 3.1. Clearly, it is enough to prove that T~! is separating,
because a similar argument allows us to conclude that T is also separating.

Suppose that g1 and g in A(Y, F) \ {0} satisfy c(g1) Nc(g2) = @, and take
Xo € X with

r:=||(T"'g1)(x0) |l > 0.

We will see that (T~'¢»)(xg) = 0. First, by Lemma 2.1, we can take k € A(Y,K)
suchthat 0 < k< 1L, k=1lon{y e Y : |s1(y)|l = r/2}andk = 0on {y €
Y : |lg1(y)|| < r/3}. Now define g} := kg;. It is clear that ||g] — g1 < r/2.
Consequently, as T~! is an isometry, we see that (T~1g})(xg) # 0. Next, using
again Lemma 2.1, take h € A(Y,K), 0 < h < 1, such that

h=0on{yeY:|gaa(y)||<r/4} and h=lon{yeY:|x(y)l =>r/3}.

It is clear that hg} = ¢} and hgr = 0.
On the one hand, by Lemma 4.4 we know that TM;, € Z(.A(X, E)), and then
by Lemma 4.3 TM), = M for some f € A(X,K), that is,

(TMy)(T'gh) = T8} and (TM)(T 'g2) = fT g2
On the other hand, by definition,
(TM)(T'87) = T '(hgy) = T7'¢) and  (TM,) (T 'g2) = T~ (hga) = 0.

This implies that fT1g] = T !¢} and fT !¢, = 0, which gives us that
f=1lonc(T !g))and f = 0 on c(T 'gp). We deduce that xg & (T 'g2). Itis
easy to see now that T~! is separating, as we wanted to see. &
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Now we are in a position to prove the main theorem. But first, let us recall
a necessary result from [3].

THEOREM 4.5 ([3], Theorem 3.5 and Corollary 4.3). Suppose that T :
A(X,E) — A(Y,F) is a linear and continuous biseparating map. Then there exist a
surjective homeomorphism ¢ : Y — X and a continuous map | : Y — L(E,F) such
that (Tf)(y) = (Jy)(f(¢(y)) for every f € A(X,E) andy € Y; also Jy is bijective
for every y € Y. On the other hand, if we are in Context 4, then ¢ is also a uniform
homeomorphism.

Proof of Theorem 3.2. Since T is biseparating, we can use the description
given in Theorem 4.5, and we have just to prove that, foreachy € Y, Jy € I(E, F).
Take any y € Y and e € E. Then |[(Jy)(e)|| = ||(T€)(y)|. We are going to see
that ||(T€)(y)|| = ||e||. Of course, if this is not the case for some yy € Y, then

1(T€)(yo)[l < [lef]. Let

r€ ([(Te)(yo)ll, llell)-
Next, using Lemma 2.1, we can take § € A(Y,K) suchthat0 < g<1,¢=0

on{y €Y :|[(Te)(y)| >r} and g(yo) = 1. Itis clear that there exists « > 0 such
that ||(1 4+ ag(y))(Te)(y)|| < ||e|| for every y € Y, that s,

ITe +agTel| < [le]|.
Now, if fo € A(X, E) satisfies Tfy = agTe, then since g(yo) =1,

(Tfo)(yo) = «g(vo)(T€)(yo) = (Tae)(yo)-
We deduce that (T(fp — «€))(yo) = 0, which implies by Theorem 4.5 that
(Jyo)(fo(¢(yo)) — ae) = 0. As a consequence, since [y is bijective, fo(¢(yo)) =
ae and

[+ foll = 1€+ fo) (@(wo)) I = (1 +a)el[ > lel],

which contradicts the fact that T is an isometry. We conclude ||(T€)(y)|| = |le||
for every y € Y, and we are done. 1
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