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ABSTRACT. In this work it is introduced the notion of regular Fredholm pair,
i.e. a Fredholm pair whose operators are regular. The main properties of these
objects are studied, and what is more, they are entirely classified. Further-
more, the index of a Fredholm pair turns out to be an extremely useful tool in
the description of the aforementioned objects. Finally, regular Fredholm pairs
are characterized in terms of regular Fredholm symmetrical pairs, exact chains
of multiplication operators, and invertible Banach space operators.
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1. INTRODUCTION

There are many ways to extend the notions of Fredholm operator and index
to several variable operator theory. For instance, both Fredholm complexes of
Banach spaces and the related notion of Fredholm pair have associated an index
with good stability properties, see for example [9], [1], [2], [3].

On the other hand, regular maps are a natural generalization of Fredholm
operators. However, the boundary maps of a Fredholm complex of Banach spaces
are generally not regular. In fact, in order for such a complex to have this prop-
erty, it must be a split Fredholm complex, see for example [4]. As regard Fred-
holm pairs, since the operators of such a pair are generally not regular, a similar
situation is encountered. The main objective of this work consists in the study of
regular Fredholm pairs, i.e. Fredholm pairs whose operators are regular.

In the next section the notion of regular Fredholm pair is introduced. More-
over, some definitions and facts needed for the present work are reviewed, and
some preliminary and general results regarding regularity are also proved. In
Section 3 the objects under consideration are entirely classified. In Section 4 the
index turns out to be an extremely useful tool to describe regular Fredholm pairs.
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Weyl pairs are also introduced and considered. Finally, in Section 5 three charac-
terizations of regular Fredholm pairs are proved. In fact, these objects are char-
acterized in terms of regular symmetrical Fredholm pairs, exacts chains of multi-
plication operators, and invertible Banach space operators.

2. NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS

From now on X and Y denote two Banach spaces, L(X, Y) the algebra of all
linear and continuous operators defined on X with values in Y, and K(X, Y) the
closed ideal of all compact operators of L(X, Y). As usual, when X = Y, L(X, X)
and K(X, X) are denoted by L(X) and K(X) respectively. For every S ∈ L(X, Y)
the null space of S is denoted by N(S) = {x ∈ X : S(x) = 0}, and the range of S
by R(S) = {y ∈ Y : ∃ x ∈ X such that y = S(x)}. Next follows the definition of
Fredholm pair, see for instance [2].

DEFINITION 2.1. Let X and Y be two Banach spaces and let S ∈ L(X, Y),
T ∈ L(Y, X) be such that the following dimensions are finite:

a : = dim N(S)/(N(S) ∩ R(T)), b : = dim R(T)/(N(S) ∩ R(T)),

c : = dim N(T)/(N(T) ∩ R(S)), d : = dim R(S)/(N(T) ∩ R(S)).

A pair (S, T) with the above properties is called a Fredholm pair. Let P(X, Y)
denote the set of all Fredholm pairs. If (S, T) ∈ P(X, Y), then the index of (S, T)
is defined by the equality

ind (S, T) : = a− b− c + d.

In particular, if (S, T) ∈ P(X, Y) is such that ST = 0 and TS = 0, that is if
b = d = 0, then (S, T) is said a Fredholm symmetrical pair, see [10]. Note that in
this case (S, T) and (T, S) are Fredholm chains, see Section 10.6 of [5] and [6].

Before going on, several properties of Fredholm pairs are recalled, see [2].

REMARK 2.2. First of all, observe that if S ∈ L(X, Y) is a Fredholm operator,
then (S, 0) is a Fredholm pair. Furthermore, ind S = ind (S, 0). Consequently,
the definition of Fredholm pair extends the notion of Fredholm operator to sev-
eral variable operator theory.

In second place, note that if (S, T) ∈ P(X, Y), then (T, S) ∈ P(Y, X) and

ind (T, S) = − ind (S, T).

In third place, if (S, T) ∈ P(X, Y), then R(S) and N(T) + R(S) are closed
subspaces in Y. Similarly, R(T) and N(S)+ R(T) are closed subspaces in X. What
is more, there are finite dimensional subspaces in X, X1 and X2, and in Y, Y1 and
Y2, such that:

(i) dim X1 = a, dim X2 = b, dim Y1 = c, dim Y2 = d;
(ii) N(S) = (N(S) ∩ R(T))⊕ X1, R(T) = (N(S) ∩ R(T))⊕ X2;
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(iii) N(T) = (N(T) ∩ R(S))⊕Y1, R(S) = (N(T) ∩ R(S))⊕Y2.
In particular,

N(S) + R(T) = (N(S) ∩ R(T))⊕ (X1 ⊕ X2),
and

N(T) + R(S) = (N(T) ∩ R(S))⊕ (Y1 ⊕Y2).
Moreover, S induces an isomorphism

X2 = R(T)/(N(S) ∩ R(T))
∼=−→ R(ST).

Similarly, T induces and isomorphism

Y2 = R(S)/(N(T) ∩ R(S))
∼=−→ R(TS).

In particular, dim R(ST) = b and dim R(TS) = d.
On the other hand, it is easy to prove that if Ỹ2 is another subspace such that

R(S) = (N(T) ∩ R(S))⊕ Ỹ2, then dim Ỹ2 = d and T induces an isomorphism

Ỹ2 = R(S)/(N(T) ∩ R(S))
∼=−→ R(TS).

Finally, interchanging S and T, similar properties for the operator S can be proved.

Next follows the definition of regular operator, see for example [5].

DEFINITION 2.3. Let X and Y be two Banach spaces and let T ∈ L(X, Y).
The operator T is called regular or relatively Fredholm, if there is T′ ∈ L(Y, X) for
which

T = TT′T.

If T is a regular bounded and linear map, the operator T′ in Definition 2.3 is
called a generalized inverse, or pseudo inverse, for T. If, in addition, T is a general-
ized inverse for T′, that is if

T′ = T′TT′,
then T′ is called a normalized generalized inverse, see Section 3.8 of [5] and [6]. It
is well known that if T′ is a generalized inverse for T, then

T′′ = T′TT′

is a normalized generalized inverse for T, see Section 3.8 of [5] and [6].
On the other hand, when the range of T is closed, the condition of being a

regular operator is equivalent to the fact that N(T) and R(T) are complemented
subspaces in X and Y respectively, see Theorem 3.8.2 of [5].

In the following proposition Fredholm pairs whose operators have comple-
mented ranges and null spaces are studied.

PROPOSITION 2.4. Let X and Y be two Banach spaces and (S, T) ∈ P(X, Y). The
following assertions are equivalent:

(i) R(T) is a complemented subspace in X;
(ii) N(S) is a complemented subspace in X;

(iii) N(S) + R(T) is a complemented subspace in X;
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(iv) N(S) ∩ R(T) is a complemented subspace in X.
Similarly, the following assertions are equivalent:

(i) R(S) is a complemented subspace in Y;
(ii) N(T) is a complemented subspace in Y;

(iii) N(T) + R(S) is a complemented subspace in Y;
(iv) N(T) ∩ R(S) is a complemented subspace in Y.

In particular, if S (respectively T) is a regular operator, then T (respectively S) also
is a regular operator.

Proof. According to Remark 2.2, all the subspaces involved in the first part
of the proposition are closed. Moreover, there are finite dimensional subspaces
X1 and X2 such that

N(S) = (N(S) ∩ R(T))⊕ X1, R(T) = (N(S) ∩ R(T))⊕ X2,

and
N(S) + R(T) = (N(S) ∩ R(T))⊕ (X1 ⊕ X2).

Now, it is clear that (i), (ii), and (iii) imply (iv). On the other hand, according
to Theorem 6.3.5 of [5], (iv) implies (i), (ii) and (iii).

A similar argument proves the second part of the proposition.

Next follows the definition of regular Fredholm pair.

DEFINITION 2.5. Let X and Y be two Banach spaces and let S ∈ L(X, Y),
T ∈ L(Y, X) be such that (S, T) ∈ P(X, Y). If the operators S and T are regular,
that is if S and T have the equivalent properties of Proposition 2.4, then (S, T) is
called a regular Fredholm pair.

The set of all regular Fredholm pairs is denoted by RP(X, Y).
In particular, if (S, T) ∈ RP(X, Y) is a Fredholm symmetrical pair, then

(S, T) is said a regular Fredholm symmetrical pair. Note that in this case (S, T) and
(T, S) are regular Fredholm chains, see Section 10.6 of [5] and [6].

REMARK 2.6. Note that, according to Proposition 2.4, if (S, T) ∈ P(X, Y),
then the property of being a regular Fredholm pair is equivalent to the fact that
either the operator S or the operator T is regular. Furthermore, if (S, T) ∈ P(X, Y),
then there are closed subspaces X̃ and Ỹ, in X and Y respectively, such that

X = (R(T)⊕ X1)⊕ X̃ = (N(S)⊕ X2)⊕ X̃ = (N(S) + R(T))⊕ X̃

= ((N(S) ∩ R(T))⊕ (X1 ⊕ X2))⊕ X̃,

and

Y = (R(S)⊕Y1)⊕ Ỹ = (N(T)⊕Y2)⊕ Ỹ = (N(T) + R(S))⊕ Ỹ

= ((N(T) ∩ R(S))⊕ (Y1 ⊕Y2))⊕ Ỹ,

where Xj and Yj, j = 1, 2, are the finite dimensional subspaces considered in
Remark 2.2.
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In addition, if S2 and S̃ are the restrictions of S to X2 and to X̃ respectively,
and if S = S2 ⊕ S̃, then according to Remark 2.2,

S : X2 ⊕ X̃
∼=−→ R(S), R(S) = S(X2)⊕ S(X̃) = R(ST)⊕ R(S̃).

Similarly, if T2 and T̃ are the restrictions of T to Y2 and to Ỹ respectively, and
if T = T2 ⊕ T̃, then according to Remark 2.2,

T : Y2 ⊕ Ỹ
∼=−→ R(T), R(T) = T(Y2)⊕ T(Ỹ) = R(TS)⊕ R(T̃).

REMARK 2.7. Four examples of regular Fredholm pairs will be considered.
In first place, let X and Y be two Banach spaces and (S, T) belong to P(X, Y).
According to [2], or Remark 2.2, and to Theorem 3.8.2 of [5], it is clear that if X
and Y are Hilbert spaces, then P(X, Y) = RP(X, Y). On the other hand, according
to Theorem 6.3.4 of [5], if R(S) and R(T) are finite dimensional subspaces of the
Banach spaces Y and X respectively, then (S, T) belongs to RP(X, Y).

Next consider (X , d) a complex of Banach spaces of finite length, that is a se-
quence

0 → Xn
dn−→ Xn−1 → · · · → X1

d1−→ X0 → 0,

where Xp are Banach spaces, p = 0, . . . , n, and the bounded operators dp ∈
L(Xp, Xp−1) are such that dp−1dp = 0, p = 1, . . . , n. Define the homology groups
of (X , d) as Hp(X , d) = N(dp)/R(dp+1), p = 0, . . . , n. A complex (X , d) is said
Fredholm if all its homology groups are finite dimensional. If this is the case, then
it is possible to associate to (X , d) the integer

ind (X , d) =
n

∑
p=0

(−1)p dim Hp(X , d),

which is called the index or the Euler characteristic of (X , d).
In [3] a Fredholm symmetrical pair was associated to each Fredholm com-

plex. In fact, as above consider a complex of Banach spaces (X , d) and set

X =
⊕
p=2k

Xp, Y =
⊕

p=2k+1

Xp,

and define the maps S ∈ L(X, Y) and T ∈ L(Y, X) as follows:

S =
⊕
p=2k

dp, T =
⊕

p=2k+1

dp,

where k > 0, and Xp = 0 when p > n + 1.
Since (X , d) is a complex, TS = 0 and ST = 0. Furthermore, (X , d) is a

Fredholm complex if and only if dim N(S)/R(T) and dim N(T)/R(S) are finite
dimensional, which is equivalent to the fact that (S, T) is a Fredholm symmetrical
pair. In addition,

ind (X , d) = ind (S, T).
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Now, a complex of Banach spaces (X , d) is called Fredholm split if there are
continuous linear operators

Xp−1
hp−1−−→ Xp

hp−→ Xp+1,

such that
dp+1hp + hp−1dp = Ip − kp,

where kp ∈ K(Xp), p = 0, . . . , n. When kp = 0 for p = 0, . . . , n, (X , d) is said a
split complex. According to Theorem 2.7 of [4], it is easy to prove that a complex
(X , d) is Fredholm split if and only if the above associated pair (S, T) is a regular
Fredholm symmetrical pair.

Finally, consider (K, δ) a Fredholm chain of Banach spaces, that is a sequence

0 → Kn
δn−→ Kn−1 → · · · → K1

δ1−→ K0 → 0,

where Kp are Banach spaces, and the bounded operators δp ∈ L(Kp,Kp−1) are
such that

N(δp)/(N(δp) ∩ R(δp+1)) and R(δp+1)/(N(δp) ∩ R(δp+1))

are finite dimensional subspaces of Kp, p = 0, . . . , n.
Recall that in [7] it was introduced the more general concept of semi-Fredholm

chains. However, since the main concern of this article consists in Fredholm ob-
jects, only Fredholm chains will be considered. Furthermore, observe that since
dim R(δp−1δp) is finite dimensional, p = 1, . . . , n, a Fredholm chain (K, δ) is a
particular case of what in [8] was called an essential complex of Banach spaces.

As in the case of Fredholm complexes of Banach spaces, it is possible to
associate an index to any Fredholm chain. In fact, if (K, δ) is such an object, then
define its index as

ind (K, δ) =
n

∑
p=0

(−1)p(dim N(δp)/(N(δp) ∩ R(δp+1))

− dim R(δp+1)/(N(δp) ∩ R(δp+1))),

see [7].
Now, given a Fredholm chain (K, δ), define X, Y, S ∈ L(X, Y) and T ∈

L(Y, X) as it has been done above for a Fredholm complex of Banach spaces.
Then, as in [7], (K, δ) is a Fredholm chain if and only if the associated pair (S, T)
is a Fredholm pair. In addition,

ind (K, δ) = ind (S, T).

In this work, in order to keep the analogy with complexes of Banach spaces,
it will be said that a Fredholm chain (K, δ) is split if N(δp) is a complemented
subspaces of Kp, p = 0, . . . , n. Note that, as in Proposition 2.4, this condition is
equivalent to the fact that R(δp+1), or N(δp) + R(δp+1), or N(δp) ∩ R(δp+1) is a
complemented subspace of Kp, p = 0, . . . , n. Moreover, thanks to Proposition 2.3
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of [8], a split Fredholm chain is a Fredholm essential complex in the sense of Defini-
tion 2.2 in [8].

Now, it is not difficult to prove that (K, δ) is a split Fredholm chain if and
only if the above associated pair (S, T) is a regular Fredholm pair.

REMARK 2.8. Given Banach spaces X and Y, and T ∈ L(X, Y) a Fredholm
operator, then any pseudo inverse T′ for T is a Fredholm operator and ind (T′) =
− ind (T), see Theorems 6.4.4 and 6.5.5 of [5]. Nevertheless, as the following
example shows, these results do not hold any more for regular Fredholm pairs. In
fact, there is a regular Fredholm pair (S, T), with S′ ∈ L(Y, X) and T′ ∈ L(X, Y)
pseudo inverses for S and T respectively, such that (S′, T′) does not belong to
P(Y, X).

Consider finite dimensional Banach spaces Xj and Yj, j = 1, 2, such that
dim X2 = dim Y2, and Banach spaces X̃, Ỹ and Nj, j = 1, 2, such that there are
isomorphic operators

S̃ : X̃
∼=−→ N2, T̃ : Ỹ

∼=−→ N1.
For example, take X̃ = N2 and Ỹ = N1, and S and T the identity map of X̃ and Ỹ
respectively.

Define the Banach spaces

X = X1 ⊕ N1 ⊕ X2 ⊕ X̃, Y = Y1 ⊕ N2 ⊕Y2 ⊕ Ỹ,

and the linear continuous maps S ∈ L(X, Y) and T ∈ L(Y, X) as follows:

S |X1⊕N1≡ 0, S |X2= S2 : X2 → Y2, S |X̃= S̃ : X̃ → N2,

T |Y1⊕N2≡ 0, T |Y2= T2 : Y2 → X2, T |Ỹ= T̃ : Ỹ → N1,

where S2 and T2 are any isomorphic maps.
It is easy to prove that (S, T) ∈ RP(X, Y) and that ind (S, T) = dim X1 −

dim Y1.
On the other hand, consider the following operators T′ ∈ L(X, Y) and S′ ∈

L(Y, X):

T′ |X1⊕X̃≡ 0, T′ |N1⊕X2= (T2 ⊕ T̃)−1 : N1 ⊕ X2 → Y2 ⊕ Ỹ,

S′ |Y1≡ 0, S′ |N2⊕Y2= (S2 ⊕ S̃)−1 : N2 ⊕Y2 → X2 ⊕ X̃,

and S′ |Ỹ : Ỹ → N1 any isomorphism.
An easy calculation proves that T′ is a normalized generalized inverse for T

and S′ is a pseudo inverse for S. However, since

R(S′) = N1 ⊕ X2 ⊕ X̃, N(T′) = X1 ⊕ X̃, N(T′) ∩ R(S′) = X̃,

it is clear that
R(S′)/(N(T′) ∩ R(S′)) = X2 ⊕ N1.

Therefore, if N1, which is isomorphic to Ỹ, is an infinite dimensional Banach
space, then (S′, T′) does not belong to P(Y, X).
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Nevertheless, in the following proposition it is proved that if (S, T) ∈
RP(X, Y), then there always exist normalized generalized inverses for S and T,
S′ and T′ respectively, such that (S′, T′) ∈ RP(Y, X).

PROPOSITION 2.9. Let X and Y be two Banach spaces and let (S, T) ∈ RP(X, Y).
Then, there is (S′, T′) ∈ RP(Y, X) such that:

(i) ind (S′, T′) = − ind (S, T);
(ii) S′ and T′ are normalized generalized inverses for S and T respectively.

Proof. Consider X, Y, S and T presented as in Remark 2.6, and define the
operators S′ and T′ as follows:

S′ |Y1⊕Ỹ≡ 0, S′ |R(S)= ι1 ◦ S−1 : R(S) → X,

T′ |X1⊕X̃≡ 0, T′ |R(T)= ι2 ◦ T −1 : R(T) → Y,

where ι1 : X2 ⊕ X̃ → X and ι2 : Y2 ⊕ Ỹ → Y are the natural inclusion maps.
A straightforward calculation proves that S′ and T′ are normalized gen-

eralized inverses for S and T respectively. In particular, S′ and T′ are regular
operators. Furthermore, since

N(S′) ∩ R(T′) = Ỹ, N(T′) ∩ R(S′) = X̃,

it is clear that

N(S′)/(N(S′) ∩ R(T′)) = Y1, R(T′)/(N(S′) ∩ R(T′)) = Y2,

N(T′)/(N(T′) ∩ R(S′)) = X1, R(S′)/(N(T′) ∩ R(S′)) = X2.

Therefore, (S′, T′) is a regular Fredholm pair and

ind (S′, T′) = − ind (S, T).

Before ending this section, the perturbation properties of regular Fredholm
pairs are considered. It is clear that the main results of [2], Theorems 3.1 and
3.2, are still true for regular Fredholm pairs. On the other hand, thanks to The-
orem 6.3.4 in [5], also Proposition 2.3 in [2] remains true for regular Fredholm
pairs.

In the next section regular Fredholm pairs will be entirely classified.

3. THE CLASSIFICATION OF REGULAR FREDHOLM PAIRS

In order to classify regular Fredholm pairs, two sequences of subspaces are
introduced.

DEFINITION 3.1. Let X and Y be two Banach spaces and (S, T) belong to
RP(X, Y). The sequences (RS,n)n∈N0 and (RT,n)n∈N0 are defined in the following
way: If n = 0, then

RS,0 = Y, RT,0 = X,
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and if RS,n and RT,n are defined, then

RS,n+1 = S(RT,n), RT,n+1 = T(RS,n).

REMARK 3.2. (RS,n)n∈N0 and (RT,n)n∈N0 are decreasing sequences of Y and
X respectively. In fact,

RS,1 = R(S) ⊆ Y = RS,0, RT,1 = R(T) ⊆ X = RT,0.

On the other hand, if RS,n ⊆ RS,n−1 and RT,n ⊆ RT,n−1, for a fixed n > 1,
then

RS,n+1 = S(RT,n) ⊆ S(RT,n−1) = RS,n,

RT,n+1 = T(RS,n) ⊆ T(RS,n−1) = RT,n.

Furthermore, since RS,2 = R(ST) and RT,2 = R(TS), RS,n and RT,n are finite
dimensional subspaces of Y and X respectively, n > 2.

Next follows a description of the above sequences of subspaces.

PROPOSITION 3.3. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). Then given n ∈ N there are subspaces of X, Nn and Xn

2 , and of Y, Mn and
Yn

2 , such that:
(i) RS,n = Mn ⊕Yn

2 , RT,n = Nn ⊕ Xn
2 ;

(ii) Mn = RS,n ∩ N(T), Nn = RT,n ∩ N(S);
(iii) Yn

2 = RS,n ∩Yk
2 , Xn

2 = RT,n ∩ Xk
2, k = 1, . . . , n− 1;

(iv) (Mn)n∈N and (Nn)n∈N are decreasing sequences of subspaces contained in N(T)
and N(S) respectively, moreover, Mn and Nn are finite dimensional subspaces for n > 2;

(v) (Yn
2 )n∈N and (Xn

2 )n∈N are decreasing sequences of finite dimensional subspaces
contained in Y2 and X2 respectively;

(vi) S (respectively T) induces an isomorphism

Xn
2

∼=−→ RS,n+1 (respectively Yn
2

∼=−→ RT,n+1).

Proof. When n = 1 define

M1 = N(T) ∩ R(S), X1
2 = X2, N1 = N(S) ∩ R(T), Y1

2 = Y2,

where X2 and Y2 are the subspaces considered in Remark 2.2 and Remark 2.6.
It is clear that these subspaces verify the above assertions. Next suppose

that the propositon is true for n > 1. Since T (respectively S) induces an isomor-
phism

RS,n+1/(N(T) ∩ RS,n+1)
∼=−→ RT,n+2,

(respectively RT,n+1/(N(S) ∩ RT,n+1)
∼=−→ RS,n+2,

there are finite dimensional subspaces V and W of Y and X respectively, such that

RS,n+1 = (N(T) ∩ RS,n+1)⊕V, RT,n+1 = (N(S) ∩ RT,n+1)⊕W,
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and T (respectively S) induces an isomorphism

V
∼=−→ RT,n+2 (respectively W

∼=−→ RS,n+2).

Observe that, according to an argument similar to one used in Remark 2.2,
it is possible to choose V ⊆ Yn

2 and W ⊆ Xn
2 . Then, define

Mn+1 = N(T) ∩ RS,n+1, Nn+1 = N(S) ∩ RT,n+1, Yn+1
2 = V, Xn+1

2 = W.

Clearly Yn+1
2 ⊆ RS,n+1 ∩ Yn

2 ⊆ RS,n+1 ∩ Yk
2 ⊆ RS,n+1 ∩ Y2, for k = 1, . . . , n.

On the other hand, if a ∈ RS,n+1 ∩ Y2, since RS,n+1 = (N(T) ∩ RS,n+1) ⊕ Yn+1
2 ,

then there are m ∈ N(T) ∩ RS,n+1 and y ∈ Yn+1
2 such that a = m + y. However,

since m ∈ N(T) and a − y ∈ Y2, for Yn+1
2 ⊆ Yn

2 ⊆ Y2, then m = 0 and a = y ∈
Yn+1

2 . Therefore, Yn+1
2 = RS,n+1 ∩Yk

2 = RS,n+1 ∩Y2, for k = 1, . . . , n.
Similarly, Xn+1

2 = RT,n+1 ∩ Xk
2 = RT,n+1 ∩ X2, for k = 1, . . . , n.

The other points of the proposition are clear.

Our next step consists in the description of the relationship between RS,n
and RS,n+1, and between RT,n and RT,n+1. However, to this end, it is necessary to
introduce two new sequences of subspaces.

DEFINITION 3.4. Let X and Y be two Banach spaces and (S, T) belong to
RP(X, Y). The sequences of subspaces of Y and X, (RS̃,n)n∈N and (RT̃,n)n∈N re-
spectively, are defined in the following way.

If n = 1, then

RS̃,1 = R(S̃) = S(X̃), RT̃,1 = R(T̃) = T(Ỹ),

where X̃, Ỹ, S̃ and T̃ are the spaces and operators introduced in Remark 2.6, and
if n > 2,

RS̃,n+1 = S(RT̃,n), RT̃,n+1 = T(RS̃,n).

Observe that RS̃,n ⊆ RS,n and RT̃,n ⊆ RT,n, for n ∈ N.

In the next proposition the sequences introduced in Definition 3.4 are char-
acterized.

PROPOSITION 3.5. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). Then there are four sequences of subspaces, two of X, (Nn)n∈N and (Xn

2 )n∈N,
and two of Y, (Mn)n∈N and (Yn

2 )n∈N, such that for n ∈ N:
(i) RS̃,n = Mn ⊕Yn

2 , RT̃,n = Nn ⊕Xn
2 ;

(ii) Mn = RS̃,n ∩ N(T) ⊆ Mn, Nn = RT̃,n ∩ N(S) ⊆ Nn;
(iii) Yn

2 = RS̃,n ∩Yn
2 ⊆ Yn

2 , Xn
2 = RT̃,n ∩ Xn

2 ⊆ Xn
2 ;

(iv) T (respectively S) induces an isomorphism

Yn
2

∼=−→ RT̃,n+1, (respectively Xn
2

∼=−→ RS̃,n+1);

(v) RS,n = RS,n+1 ⊕ RS̃,n, RT,n = RT,n+1 ⊕ RT̃,n;
(vi) Mn = Mn+1 ⊕Mn, Nn = Nn+1 ⊕Nn;
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(vii) Yn
2 = Yn+1

2 ⊕Yn
2 , Xn

2 = Xn+1
2 ⊕Xn

2 ;
(viii) when n = 1 there are subspaces of X̃, X̃N and X̃2, and of Ỹ, ỸN and Ỹ2, such that

X̃2 and Ỹ2 are finite dimensional,

X̃ = X̃N ⊕ X̃2, Ỹ = ỸN ⊕ Ỹ2,

and the following operators are isomorphic maps:

S̃ : X̃N
∼=−→ M1, S̃ : X̃2

∼=−→ Y1
2,

T̃ : ỸN
∼=−→ N1, T̃ : Ỹ2

∼=−→ X1
2.

Proof. Given n ∈ N, consider the isomorphism induced by T

RS̃,n/(N(T) ∩ RS̃,n)
∼=−→ RT̃,n+1.

Since RT̃,n+1 ⊆ RT,n+1 ⊆ RT,2 = R(TS), there is Ln, a finite dimensional
subspace of RS̃,n such that RS̃,n = (N(T) ∩ RS̃,n)⊕ Ln. In addition, T induces an
isomorphism

Ln
∼=−→ RT̃,n+1.

Furthermore, since RS̃,n ⊆ RS,n = Mn ⊕ Yn
2 = (RS,n ∩ N(T))⊕ Yn

2 , accord-
ing to an argument similar to the one used in Remark 2.2, it is possible to choose
Ln ⊆ Yn

2 .
Now, it is clear that Ln ⊆ RS̃,n ∩ Yn

2 . On the other hand, if a ∈ RS̃,n ∩ Yn
2 ,

then there are m ∈ N(T) ∩ RS̃,n and l ∈ Ln such that a = m + l. However,
since a − l ∈ Yn

2 ∩ (N(T) ∩ RS̃,n) ⊆ Yn
2 ∩ (N(T) ∩ RS,n) = Yn

2 ∩ Mn, m = 0 and
a = l ∈ Ln. Therefore, Ln = RS̃,n ∩Yn

2 .
Next define

Mn = RS̃,n ∩ N(T), Yn
2 = Ln.

It is clear that assertions (i)–(iv) have been proved for S. A similar argument
proves the same points for the operator T.

In order to prove (v), an inductive argument wil be used.
According to Remark 2.6,

RS,1 = RS,2 ⊕ RS̃,1, RT,1 = RT,2 ⊕ RT̃,1.

Next suppose that the point (v) is true for the operators S and T and for a
fixed n > 1. Then, according to Proposition 3.3 (i), (ii) and (vi), and to Proposi-
ton 3.5 (i), (ii) and (iv), which have just been proved,

RS,n+1 = S(RT,n) = S(RT,n+1 ⊕ RT̃,n) = S((Nn+1 ⊕ Xn+1
2 )⊕ (Nn ⊕Xn

2 ))

= S(Xn+1
2 ⊕Xn

2 ) = S(Xn+1
2 )⊕ S(Xn

2 ) = RS,n+2 ⊕ RS̃,n+1.

Similarly, RT,n+1 = RT,n+2 ⊕ RT̃,n+1.
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Next, according to Proposition 3.3 (i) and to Proposition 3.5 (i) and (v),
which have just been proved, it is easy to conclude that

Mn ⊕Yn
2 = (Mn+1⊕Mn)⊕ (Yn+1

2 ⊕Yn
2 ), Nn ⊕Xn

2 = (Nn+1⊕Nn)⊕ (Xn+1
2 ⊕Xn

2 ).

In particular,

Mn = Mn+1 ⊕Mn, Nn = Nn+1 ⊕Nn.

Yn
2 = Yn+1

2 ⊕Yn
2 , Xn

2 = Xn+1
2 ⊕Xn

2 .

Finally, consider n = 1. According to Remark 2.6,

S̃ : X̃
∼=−→ RS̃,1 = M1 ⊕Y1

2.

Therefore, if
X̃N = S̃−1(M1), X̃2 = S̃−1(Y1

2),

then X̃ = X̃N ⊕ X̃2,
S̃ : X̃N

∼=−→ M1, S̃ : X̃2
∼=−→ Y1

2,

and since Y1
2 ⊆ Y2, X̃2 is finite dimensional subspace of X.

A similar argument proves the case n = 1 for the operator T.

As a result of Propositions 3.3 and 3.5, descriptions of X, Y, S, and T are
obtained.

REMARK 3.6. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). If n ∈ N, then according to Remark 2.6 and Propositions 3.3 and 3.5, X
and Y may be presented as

X =
[

X1 ⊕
(

Nn ⊕
n−1⊕
i=1

Ni
)]

⊕
[

Xn
2 ⊕

n−1⊕
i=1

Xi
2

]
⊕ [X̃N ⊕ X̃2],

Y =
[
Y1 ⊕

(
Mn ⊕

n−1⊕
i=1

Mi
)]

⊕
[
Yn

2 ⊕
n−1⊕
i=1

Yi
2

]
⊕ [ỸN ⊕ Ỹ2],

and the maps S and T as

S |X1⊕(Nn⊕⊕n−1
i=1 Ni)≡ 0, S |Xn

2
: Xn

2
∼=−→ RS,n+1 = Mn+1 ⊕Yn+1

2 ,

S |Xi
2

: Xi
2
∼=−→ RS̃,i+1 = Mi+1 ⊕Yi+1

2 , S |X̃N
: X̃N

∼=−→ M1, S |X̃2
: X̃2

∼=−→ Y1
2,

T |Y1⊕(Mn⊕⊕n−1
i=1 Mi)≡ 0, T |Yn

2
: Yn

2
∼=−→ RT,n+1 = Nn+1 ⊕ Xn+1

2 ,

T |Yi
2

: Yi
2
∼=−→ RT̃,i+1 = Ni+1 ⊕Xi+1

2 , T |ỸN
: ỸN

∼=−→ N1, T |Ỹ2
: Ỹ2

∼=−→ X1
2,

where i = 1, . . . , n− 1.

REMARK 3.7. Let X and Y be two Banach spaces and (S, T) ∈ RP(X, Y).
Consider the sequences of subspaces of X and Y (RS,n)n∈N and (RT,n)n∈N re-
spectively. Since RS,n ⊆ RS,2 = R(ST) for n > 2, there is n0 > 2 such that
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RS,n0 = RS,n0+1. Furthermore, according to this observation, it is easy to prove
that there is l ∈ N such that RS,l = RS,l+k for k > 0.

Similarly, there is m ∈ N such that RT,m = RT,m+k for k > 0.
Now, if RS,l = RS,l+k for k > 0, then RT,l+1 = RT,l+1+k for k > 0. Similarly,

if RT,m = RT,m+k for k > 0, then RS,m+1 = RS,m+1+k for k > 0. Therefore, if p and
q denote the first natural numbers such that RS,p = RS,p+k and RT,q = RT,q+k for
k > 0, then p, q ∈ N, and there are the following possibilities:

(i) p = q;
(ii) if p < q, then q = p + 1;

(iii) if q < p, then p = q + 1.

The previous remark leads to a definition which is central in the classifica-
tion of regular Fredholm pairs.

DEFINITION 3.8. Let X and Y be two Banach spaces, (S, T) ∈ RP(X, Y) and
p and q as in Remark 3.7. It will be said that the number of the pair (S, T) is n, if
n = min{p, q}, and it will be said that the case of the pair (S, T) is I − n if p = q,
I I − n if p < q, and I I I − n if q < p.

Observe that the above construction is symmetric in X and Y and in S and
T. Consequently, in order to study regular Fredholm pairs, interchanging X with
Y and S with T if necessary, it is enough to consider only cases I − n and I I − n.

In the following theorems the classification of regular Fredholm pairs is
achieved. Note that the notations of Remark 3.7 will be used. First of all, reg-
ular Fredholm pairs whose numbers are equal to 1 are considered.

THEOREM 3.9. Let X and Y be two Banach spaces and (S, T) belong to RP(X, Y).
Suppose that the number of (S, T) is 1.

If the case of (S, T) is I − 1, then the spaces X and Y can be presented as

X = X1 ⊕ X2
2 , Y = Y1 ⊕Y2

2 ,

and the operators S and T as

S |X1≡ 0, S |X2
2

: X2
2

∼=−→ Y2
2 ,

T |Y1≡ 0, T |Y2
2

: Y2
2

∼=−→ X2
2 .

If the case of (S, T) is I I − 1, then the spaces X and Y can be presented as

X = [X1 ⊕N1]⊕ X2
2 , Y = Y1 ⊕Y2

2 ⊕ ỸN ,

and the operators S and T as

S |X1⊕N1≡ 0, S |X2
2

: X2
2

∼=−→ Y2
2 ,

T |Y1≡ 0, T |Y2
2

: Y2
2

∼=−→ X2
2 , T |ỸN

: ỸN
∼=−→ N1.
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If the case of (S, T) is I I I − 1, then the spaces X and Y can be presented as

X = X1 ⊕ X2
2 ⊕ X̃N , Y = [Y1 ⊕M1]⊕Y2

2 ,

and the operators S and T as

S |X1≡ 0, S |X2
2

: X2
2

∼=−→ Y2
2 , S |X̃N

: X̃N
∼=−→ M1,

T |Y1⊕M1≡ 0, T |Y2
2

: Y2
2

∼=−→ X2
2 .

The spaces involved in the above decompositions are the ones of Remark 3.6.

Proof. Suppose that the case of (S, T) is I − 1. Since R(S) = RS,1+k, k > 0,
according to Proposition 3.5 (v), RS̃,k = 0 for k > 1. In particular, RS̃,1 = S(X̃) =
0, and since S̃ : X̃ → R(S̃) is an isomorphic map, according to Proposition 3.5
(viii), X̃ = 0, M1 = 0 and Y1

2 = 0.
Similarly, since 1 = p = q, RT̃,k = 0 for k > 1, Ỹ = 0, N1 = 0 and X1

2 = 0.
Therefore, according to Remark 3.6, X and Y can be presented as

X = [X1 ⊕ N2]⊕ X2
2 , Y = [Y1 ⊕ M2]⊕Y2

2 ,

and S and T as

S |X1⊕N2≡ 0, S |X2
2

: X2
2

∼=−→ M2 ⊕Y2
2 ,

T |Y1⊕M2≡ 0, T |Y2
2

: Y2
2

∼=−→ N2 ⊕ X2
2 .

Now, according to the above presentation, dim X2
2 = dim Y2

2 , M2 = 0 and
N2 = 0.

Next suppose that p = 1 and q = p + 1 = 2. According to Remark 3.7,
this is equivalent to the fact that R(S) = RS,1+k and RT,2 = RT,2+k, where k is a
positive integer. Therefore, according to Proposition 3.5 (v), RS̃,1+k = 0 for k > 0.

In particular, and according to Proposition 3.5 (viii), RS̃,1 = 0, X̃ = 0, M1 = 0
and Y1

2 = 0. Similarly, and according to Proposition 3.5 (v), RT̃,2+k = 0 for k > 0.
In particular, RT̃,2 = 0, and according to Proposition 3.5 (vi) and (vii), N2 = 0,
X2

2 = 0, N2 = N3 and X2
2 = X3

2 . As a consequence, according to Remark 3.6, the
spaces X and Y can be presented as

X = [X1 ⊕ (N2 ⊕N1)]⊕ [X2
2 ⊕X1

2], Y = [Y1 ⊕ M2]⊕Y2
2 ⊕ Ỹ,

and S and T as

S |X1⊕(N2⊕N1)≡ 0, S |X2 : X2
∼=−→ M2 ⊕Y2

2 ,

T |Y1⊕M2≡ 0, T |Y2
2

: Y2
2

∼=−→ N2 ⊕ X2
2 , T |Ỹ : Ỹ

∼=−→ N1 ⊕X1
2.

Now, since RS̃,2 = 0, according to Proposition 3.5 (iv), X1
2 = 0. Therefore,

X2 = X2
2 , dim X2

2= dim Y2
2 , N2 = 0, M2 = 0, and according to Proposition 3.5

(viii), Ỹ2 = 0.
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Interchanging X with Y and S with T, the proof of the case I I I − 1 can be
carried out with an argument similar to the one of the case I I − 1.

Observe that in the case I− 1, X and Y are always finite dimensional Banach
spaces.

Next, regular Fredholm pairs whose numbers are greater or equal to 2 are
classified.

THEOREM 3.10. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). Suppose that the case of (S, T) is I − n. Then, if n = p = q > 2 is the
number of the pair (S, T), the spaces X and Y can be presented as

X =
[

X1 ⊕
p−1⊕
i=1

Ni
]
⊕

[
Xp−1

2 ⊕
p−2⊕
i=1

Xi
2

]
⊕ [X̃N ⊕ X̃2],

Y =
[
Y1 ⊕

p−1⊕
i=1

Mi
]
⊕

[
Yp−1

2 ⊕
p−2⊕
i=1

Yi
2

]
⊕ [ỸN ⊕ Ỹ2],

and the operators S and T as

S |
X1⊕

⊕p−1
i=1 Ni≡ 0, S |

Xp−1
2

: Xp−1
2

∼=−→ Yp−1
2 , S |Xi

2
: Xi

2
∼=−→ Mi+1 ⊕Yi+1

2 ,

S |Xp−2
2

: Xp−2
2

∼=−→ Mp−1, S |X̃N
: X̃N

∼=−→ M1, S |X̃2
: X̃2

∼=−→ Y1
2,

T |
Y1⊕

⊕p−1
i=1 Mi≡ 0, T |

Yp−1
2

: Yp−1
2

∼=−→ Xp−1
2 , T |Yi

2
: Yi

2
∼=−→ Ni+1 ⊕Xi+1

2 ,

T |Yp−2
2

: Yp−2
2

∼=−→ Np−1, T |ỸN
: ỸN

∼=−→ N1, T |Ỹ2
: Ỹ2

∼=−→ X1
2,

where i = 1, . . . , p − 3, and the spaces involved in the above decomposition are the ones
of Remark 3.6.

In addition, if n = 2, then X1
2, Y1

2, Ỹ2 and X̃2 are null spaces.

Proof. Let p = q > 2 be the number of the pair (S, T). Since RS,p = RS,p+k
and RS,p+k = RS,p+k+1 ⊕ RS̃,p+k for k > 0, then RS̃,p+k = 0 for k > 0, that is

Mp+k = 0 and Yp+k
2 = 0 for k > 0. Furthermore, since according to Proposi-

tion 3.5 (iv) and (vii),

S : Xp−1+k
2

∼=−→ RS̃,p+k, Xp−1+k
2 = Xp+k

2 ⊕Xp−1+k
2 ,

then Xp−1+k
2 = 0 and Xp−1

2 = Xp−1+k
2 for k > 0. In particular, according to

Proposition 3.5 (vii),

X2 = Xp−1
2 ⊕

p−2⊕
i=1

Xi
2.
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On the other hand, since p = q, similar properties can be obtained for T and
X. Therefore, Np+k = 0, Xp+k

2 = 0, Yp−1+k
2 = 0, Yp−1

2 = Yp−1+k
2 for k > 0, and

Y2 = Yp−1
2 ⊕

p−2⊕
i=1

Yi
2.

In addition, since according to Proposition 3.3 (i) and (vi),

S : Xp−1
2

∼=−→ RS,p = Mp ⊕Yp
2 = Mp ⊕Yp−1

2 ,

T : Yp−1
2

∼=−→ RT,p = Np ⊕ Xp
2 = Np ⊕ Xp−1

2 ,

it is clear that Mp = 0, Np = 0 and

S : Xp−1
2

∼=−→ Yp−1
2 , T : Yp−1

2
∼=−→ Xp−1

2 .

Finally, if p = q = 2, then RS̃,2 = 0 and RT̃,2 = 0. Consequently, according

to Proposition 3.5 (i) and (viii), X1
2, Y1

2, X̃2 and Ỹ2 are null spaces.

THEOREM 3.11. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). Suppose that the case of (S, T) is I I − n. Then, if n = p = q − 1 > 2
is the number of the pair (S, T), the spaces X and Y can be presented as

X =
[

X1 ⊕
p⊕

i=1

Ni
]
⊕

[
Xp−1

2 ⊕
p−2⊕
i=1

Xi
2

]
⊕ [X̃N ⊕ X̃2],

Y =
[
Y1 ⊕

p−1⊕
j=1

Mj
]
⊕

[
Yp

2 ⊕
p−1⊕
j=1

Yj
2

]
⊕ [ỸN ⊕ Ỹ2],

and the operators S and T as

S |X1⊕
⊕p

i=1 Ni≡ 0, S |
Xp−1

2
: Xp−1

2
∼=−→ Yp

2 , S |Xi
2

: Xi
2
∼=−→ Mi+1 ⊕Yi+1

2 ,

S |X̃N
: X̃N

∼=−→ M1, S |X̃2
: X̃2

∼=−→ Y1
2,

T |
Y1⊕

⊕p−1
j=1 Mj≡ 0, T |Yp

2
: Yp

2
∼=−→ Xp−1

2 , T |Yj
2

: Yj
2
∼=−→ Nj+1 ⊕Xj+1

2 ,

T |Yk
2

: Yk
2
∼=−→ Nk+1, T |ỸN

: ỸN
∼=−→ N1, T |Ỹ2

: Ỹ2
∼=−→ X1

2,

where i = 1, . . . , p − 2, j = 1, . . . , p − 3, k = p − 2, p − 1, and the spaces involved in
the above decomposition are the ones of Remark 3.6.

In addition, if p = 2, then X1
2 and Ỹ2 are null spaces.

Proof. Let p = q − 1 > 2 be the number of the pair (S, T). Consequently,
q = p + 1, and since RS,p = RS,p+k and RT,p+1 = RT,p+1+k for k > 0, as in
Theorem 3.10, RS̃,p+k = 0 and RT̃,p+1+k = 0 for k > 0. In particular, according to
Proposition 3.5 (i),

Mp+k = 0, Np+1+k = 0,
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for k > 0.
On the other hand, according to Proposition 3.5 (iv) and (vii),

S : Xp−1+k
2

∼=−→ RS̃,p+k, T : Yp+k
2

∼=−→ RT̃,p+k+1,

and
Xp−1+k

2 = Xp+k
2 ⊕Xp−1+k

2 , Yp+k
2 = Yp+k+1

2 ⊕Yp+k
2 .

Consequently,

Xp−1+k
2 = 0, Yp+k

2 = 0, Xp−1
2 = Xp−1+k

2 , Yp
2 = Yp+k

2 ,

for k > 0. Therefore,

X2 = Xp−1
2 ⊕

p−2⊕
i=1

Xi
2, Y2 = Yp

2 ⊕
p−1⊕
j=1

Yj
2.

Now, since Xp−1
2 = Xp+1

2 and since

S : Xp−1
2

∼=−→ RS,p = Mp ⊕Yp
2 , T : Yp

2
∼=−→ RT,p+1 = Np+1 ⊕ Xp+1

2 ,

it is clear that Mp = 0, Np+1 = 0, and

S : Xp−1
2

∼=−→ Yp
2 , T : Yp

2
∼=−→ Xp−1

2 .

Finally, if p = 2, then RS̃,2 = 0. Consequently, according to Proposition 3.5

(i) and (viii), X1
2 and Ỹ2 are null spaces.

THEOREM 3.12. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). Suppose that the case of (S, T) is I I I − n. Then, if q = p − 1 > 2 is
the number of the pair (S, T), the spaces X and Y can be presented as

X =
[

X1 ⊕
q−1⊕
i=1

Ni
]
⊕

[
Xq

2 ⊕
q−1⊕
i=1

Xi
2

]
⊕ [X̃N ⊕ X̃2],

Y =
[
Y1 ⊕

q⊕
j=1

Mj
]
⊕

[
Yq−1

2 ⊕
q−2⊕
j=1

Yj
2

]
⊕ [ỸN ⊕ Ỹ2],

and the operators S and T as

S |
X1⊕

⊕q−1
i=1 Ni≡ 0, S |Xq

2
: Xq

2
∼=−→ Yq−1

2 , S |Xi
2

: Xi
2
∼=−→ Mi+1 ⊕Yi+1

2 ,

S |Xk
2

: Xk
2
∼=−→ Mk+1, S |X̃N

: X̃N
∼=−→ M1, S |X̃2

: X̃2
∼=−→ Y1

2,

T |Y1⊕
⊕q

j=1 Mj≡ 0, T |
Yq−1

2
: Yq−1

2
∼=−→ Xq

2, T |Yj
2

: Yj
2
∼=−→ Nj+1 ⊕Xj+1

2 ,

T |ỸN
: ỸN

∼=−→ N1, T |Ỹ2
: Ỹ2

∼=−→ X1
2,

where i = 1, . . . , q − 3, k = q − 2, q − 1, j = 1, . . . , q − 2, and the spaces involved in
the above decomposition are the ones of Remark 3.6.
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In addition, if q = 2, then Y1
2 and X̃2 are null spaces.

Proof. Interchanging X with Y and S with T, the proof can be carried out
with an argument similar to the one of Theorem 3.11.

REMARK 3.13. Let X and Y be Banach spaces and (S, T) ∈ RP(X, Y). Sup-
pose that the case of (S, T) is I − 2. According to Theorem 3.10, X and Y may be
described as

X = (X1 ⊕N1)⊕ X1
2 ⊕ X̃N , Y = (Y1 ⊕M1)⊕Y1

2 ⊕ ỸN ,

and the the operators S and T can be presented as

S |X1⊕N1≡ 0, S : X1
2

∼=−→ Y1
2 , S : X̃N

∼=−→ M1,

T |Y1⊕M1≡ 0, T : Y1
2

∼=−→ X1
2 , T : ỸN

∼=−→ N1.

Moreover, since dim X2 = dim X1
2 = dim Y1

2 = dim Y2, ind (S, T) = dim X1
−dim Y1.

Now, if X′ and Y′ are Banach spaces and if (S′, T′) ∈ RP(X′, Y′) is a regular
Fredholm symmetrical pair, then it is not difficult to prove that

X′ = X′
1 ⊕ N ⊕ X̃, Y′ = Y′

1 ⊕ M ⊕ Ỹ,

where X′
1 and Y′

1 are finite dimensional subspaces. Furthermore, the operators S′

and T′ are such that

S′ |X′
1⊕N≡ 0, S′ : X̃

∼=−→ M, T′ |Y′
1⊕M≡ 0, T′ : Ỹ

∼=−→ N,

which implies that ind (S′, T′) = dim X1 −dim Y1. Therefore, a regular Fredholm
symmetrical pair is nothing but a very particular type of regular Fredholm pair,
that is a pair whose case is I − 2 and such that X2 = 0 and Y2 = 0.

REMARK 3.14. Observe that if X and Y are Banach spaces and (S, T) belongs
to RP(X, Y), then, according to Theorems 3.9–3.12, X is a finite dimensional Ba-
nach space if and only if Y is.

On the other hand, if X, Y, S and T are constructed as in Theorems 3.9–3.12,
then (S, T) ∈ RP(X, Y) and the number and case of (S, T) are the ones considered
in the corresponding theorem. Therefore, thanks to Theorems 3.9–3.12, regular
Fredholm are entirely classified.

4. THE INDEX OF REGULAR FREDHOLM PAIRS AND WEYL PAIRS

In this section the index of a regular Fredholm pair is studied. It is proved
that the index provides a fundamental tool in the description of the spaces and
maps of such a pair. Furthermore, Weyl pairs, that is Fredholm pairs whose index
is null, are considered.
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THEOREM 4.1. Let X and Y be two Banach spaces and (S, T) belong to RP(X, Y).
Suppose that the number of the pair (S, T) is greater or equal 2. Consider n = 2 and the
corresponding decomposition of the spaces X and Y given in Remark 3.6, that is

X = [X1 ⊕ (N2 ⊕N1)]⊕ [X2
2 ⊕X1

2]⊕ [X̃N ⊕ X̃2],

Y = [Y1 ⊕ (M2 ⊕M1)]⊕ [Y2
2 ⊕Y1

2]⊕ [ỸN ⊕ Ỹ2].

Then

ind (S, T) = dim (X1 ⊕ N2)− dim (Y1 ⊕ Ỹ2)

= dim (X1 ⊕ X̃2)− dim (Y1 ⊕ M2).

In addition, if the number of the pair (S, T) is 1, then

ind (S, T) = dim X1 − dim Y1.

Proof. According to Definition 2.1 and Remark 2.2, the index of the pair
(S, T) is the number

ind (S, T) = dim X1 − dim X2 − dim Y1 + dim Y2.

Now, according to Proposition 3.3 (vi), T : Y2
∼=−→ RT,2 = N2 ⊕X2

2 . Moreover,

according to Proposition 3.5 (viii), T : Ỹ2
∼=−→ X1

2. Consequently

dim Y2 − dim X2 = dim N2 − dim X1
2 = dim N2 − dim Ỹ2,

and
ind (S, T) = dim(X1 ⊕ N2)− dim(Y1 ⊕ Ỹ2).

Since ind (T, S) = − ind (S, T), a similar argument proves the second equal-
ity.

The last assertion is a consequence of Theorem 3.9.

REMARK 4.2. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). Suppose that the number of the pair (S, T) is greater or equal 2. Con-
sider again, as in Theorem 4.1, n = 2 and the corresponding description of the
spaces X and Y given in Remark 3.6.

Now, according to Proposition 3.5 (vii) and (viii), Y2 = Y2
2 ⊕Y1

2, and

S : X̃2
∼=−→ Y1

2, S : X̃N
∼=−→ M1, T : ỸN

∼=−→ N1.

In addition, according to Proposition 3.3 (vi),

S : X2
∼=−→ RS,2 = M2 ⊕Y2

2 .

Consequently, the subspaces of X and Y that in the above presentation are
not related by isomorphic maps are X1 ⊕ N2 and Y1 ⊕ Ỹ2 respectively.

Similarly, interchanging X with Y and S with T, the subspaces of X and Y
that in the above presentation are not related by isomorphic maps are Y1 ⊕ M2

and X1 ⊕ X̃2 respectively.
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On the other hand, if the number of the pair is 1, according to Theorem 3.9,
the subspaces of X and Y that are not related by isomorphic maps are X1 and Y1.

As a result, the index has a fundamental role in the description of regular
Fredholm pairs. In fact, the index is a measure of the subspaces of X and Y that
in the above decomposition are not related by isomorphisms.

REMARK 4.3. Let X and Y be two Banach spaces and let (S, T) belong to
RP(X, Y). Suppose that the number of the pair (S, T) is greater or equal 2. Con-
sider, as in Theorem 4.1, n = 2 and the corresponding decompositon of X and Y
given in Remark 3.6. Next suppose that ind (S, T) = 0. According to Theorem
4.1, this is equivalent to the fact that X1 ⊕N2 is isomorphic to Y1 ⊕ Ỹ2 and X1 ⊕ X̃2
to Y1 ⊕ M2. However, since according to Proposition 3.5 (viii), N1 is isomorphic
to ỸN and M1 to X̃N , then N(S) is isomorphic Y/R(S) and N(T) to X/R(T). Con-
sequently, according to Theorem 3.8.6 of [5], S and T are decomposably regular or
relatively Weyl operators, that is S and T are regular maps which have isomorphic
pseudoinverses S′ ∈ L(Y, X) and T′ ∈ L(X, Y) respectively, see Definition 3.8.5
of [5]. Similarly, if the number of the pair (S, T) is 1, and if ind (S, T) = 0, then,
according to Theorems 3.9 and 4.1, S and T are decomposably regular operators.
As an analogy to Weyl operators, Weyl pairs are introduced, see Section 6.5 of [5].

DEFINITION 4.4. Let X and Y be two Banach spaces and (S, T) belong to
P(X, Y). The pair (S, T) is said a Weyl pair, if ind (S, T) = 0. The set of all Weyl
pairs is denoted by W(X, Y). In addition, if (S, T) belongs to W(X, Y)∩RP(X, Y),
then (S, T) is called a regular Weyl pair. The set of all regular Weyl pairs is denoted
by RW(X, Y).

REMARK 4.5. Let X and Y be two Banach spaces and S ∈ L(X, Y). Accord-
ing to Remark 2.2, it is clear that if S is a Weyl operator, then (S, 0) belongs to
RW(X, Y).

On the other hand, it is well known that in order for S ∈ L(X, Y) to be a
Weyl operator it is necessary and sufficient that S is Fredholm and decomposably
regular, see for example Theorem 6.5.2 of [5]. However, as the following exam-
ple shows, there are regular Fredholm pairs whose operators are decomposably
regular and whose index is not null.

Let I and J arbitrary infinite disjoint sets and consider the Hilbert spaces
N = l2(I) and M = l2(J). Let I1 be a finite non void set such that I1 ∩ I = ∅ =
I1 ∩ J, and consider the Hilbert space X1 = l2(I1). Next define the Hilbert spaces

X = X1 ⊕ N ⊕ M, Y = M ⊕ N,

and the operators S ∈ L(X, Y) and T ∈ L(Y, X)

S |X1⊕N≡ 0, S = IM : M → M, T |M≡ 0, T = IN : N → N,

where IM and IN denotes the identity maps of M and N respectively.
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It is clear that S and T are regular operators. Moreover, (S, T) belongs
to RP(X, Y), actually, (S, T) is a regular Fredholm symmetrical pair, and ind
(S, T) = dim X1, which is non null, for I1 is a non void set.

Now, since I1 is a finite set and I is an infinite set, X1 ⊕ N is isomorphic
to N. Consequently, N(S) is isomorphic to Y/R(S), that is S is a decomposably
regular operator, see Theorem 3.8.6 of [5]. Similarly, X1 ⊕ M is isomorphic to M.
Therefore, N(T) is isomorphic to X/R(T), that is T is a decomposably regular
operator, see Theorem 3.8.6 of [5].

5. CHARACTERIZATIONS OF REGULAR FREDHOLM PAIRS

In this section three characterizations of regular Fredholm pairs are proved.
In the first one such objects are characterized in terms of regular Fredholm sym-
metrical pairs. This characterization plays a central role in the proof of the second
one, where regular Fredholm pairs are characterized in terms of exact chains of
multiplication operators. Finally, in the third one, the objects under consideration
are characterized in terms of invertible Banach space operators.

In order to prove the first characterization some preparation is needed.

REMARK 5.1. Consider X and Y two Banach spaces, and S ∈ L(X, Y) and
T ∈ L(Y, X) two operators such that R(ST) and R(TS) are finite dimensional
subspaces of Y and X respectively. Then, it is possible to define the Banach spaces
X = X/R(TS) and Y = Y/R(ST), and the linear and continuous maps S ∈
L(X ,Y) and T ∈ L(Y ,X ), the factorizations of S and T through the respective
invariant subspaces. It is clear that S ◦ T = 0 and T ◦ S = 0. Furthermore,
according to Remark 2.1 of [2],

N(S)/R(T) ∼= N(S)/(N(S) ∩ R(T)), N(T)/R(S) ∼= N(T)/(N(T) ∩ R(S)).

Therefore, the pair (S, T) belongs to P(X, Y) if and only if (S, T) is a Fredholm
symmetrical pair, see Remark 2.1 of [2].

THEOREM 5.2. Let X and Y be two Banach spaces and (S, T) belong to P(X,Y).
Then, with the notations of Remark 5.1, (S, T) belongs to RP(X, Y) if and only if (S, T)
is a regular Fredholm symmetrical pair.

Proof. First of all, note that if (S, T) ∈ RP(X, Y), then according to Re-
mark 5.1, in order to prove that (S, T) is a regular Fredholm symmetrical pair,
it is enough to prove that S and T are regular operators.

Consider n = 2 and the corresponding decomposition of X and Y of Re-
mark 3.6, that is

X = (X1 ⊕ N2 ⊕N1)⊕ (X2
2 ⊕X1

2)⊕ X̃, Y = (Y1 ⊕ M2 ⊕M1)⊕ (Y2
2 ⊕Y1

2)⊕ Ỹ,

and recall that

R(ST) = RS,2 = M2 ⊕Y2
2 , R(TS) = RT,2 = N2 ⊕ X2

2 .
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Therefore, X/R(TS) and Y/R(ST) can be identified with

X = X1 ⊕N1 ⊕X1
2 ⊕ X̃, Y = Y1 ⊕M1 ⊕Y1

2 ⊕ Ỹ.

Moreover, since

R(S) = R(S)/R(ST), R(T) = R(T)/R(TS),

N(S) = S−1(R(ST))/R(TS) = (N(S) + R(T))/R(TS),

N(T) = T−1(R(TS))/R(ST) = (N(T) + R(S))/R(ST),

these spaces can be identified with

R(S) = M1 ⊕Y1
2, N(S) = X1 ⊕N1 ⊕X1

2

R(T) = N1 ⊕X1
2, N(T) = Y1 ⊕M1 ⊕Y1

2.

Therefore, according to Theorem 3.8.2 of [5], S and T are regular operators.
On the other hand, suppose that S is a regular operator. Then, there is V, a

closed linear subspace of X , such that

N(S)⊕V = X .

Let π : X → X be the canonical projection and V1 = π−1(V)∩ R(TS). Since
V1 is a finite dimensional subspace of the Banach space π−1(V), there is a closed
linear subspace W1 ⊆ π−1(V) such that

V1 ⊕W1 = π−1(V).

Now, since π is a surjective map and since π(V1) = 0,

π(W1) = π(π−1(V)) = V.

Furthermore, according to Remark 2.1 of [2],

π(N(S) + R(T) + W1) = π(N(S) + R(T)) + π(W1) = N(S) + V = X .

Consequently, N(S) + R(T) + W1 + R(TS) = X. However, since R(TS) ⊆
R(T), (N(S) + R(T)) + W1 = X.

Next consider L = (N(S) + R(T)) ∩ W1. Since π(L) ⊆ N(S) ∩ V = 0,
L ⊆ R(TS). Consequently, L ⊆ W1 ∩ R(TS) = 0. Therefore,

(N(S) + R(T))⊕W1 = X.

Similarly, if T is a regular operator, then there is W2, a closed subspace of Y,
such that

(N(T) + R(S))⊕W2 = Y.

Finally, since (S, T) ∈ P(X, Y), according to Proposition 2.4, (S, T) is a reg-
ular Fredholm pair.

Next follows the preparation needed for the second characterization.
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REMARK 5.3. Let X and Y be two Banach spaces and S ∈ L(X, Y). Then,
given another Banach space Z, it is possible to define the left and right multipli-
cation operators induced by S, that is

LS : L(Z, X) → L(Z, Y), LS(V) = SV,

RS : L(Y, Z) → L(X, Z), RS(W) = WS,

where V ∈ L(Z, X) and W ∈ L(Y, Z).
It is clear that ‖LS‖ 6 ‖S‖. Furthermore, since LS(K(Z, X)) ⊆ K(Z, Y) and

RS(K(Y, Z)) ⊆ K(X, Z), it is possible to introduce the operators

L̃S : C(Z, X) → C(Z, Y), R̃S : C(Y, Z) → C(X, Z),

where

C(Z, X) = L(Z, X)/K(Z, X), C(Z, Y) = L(Z, Y)/K(Z, Y),

C(Y, Z) = L(Y, Z)/K(Y, Z), C(X, Z) = L(X, Z)/K(X, Z),

and the maps L̃S and R̃S are the factorizations of LS and RS through the respective
closed ideal of compact operators.

Similarly, if T ∈ L(Y, X), then, given another Banach space Z, it is possible
to define LT and RT , the left and right multiplication operators induced by T,
that is

LT : L(Z, Y) → L(Z, X), LT(V) = TV,

RT : L(X, Z) → L(Y, Z), RT(W) = WT,

where V ∈ L(Z, Y) and W ∈ L(X, Z). Furthermore, as above, it is also possible
to define

L̃T : C(Z, Y) → C(Z, X), R̃T : C(X, Z) → C(Y, Z),
the factorizations of LT and RT through the respective closed ideal of compact
operators.

Next suppose that R(ST) and R(TS) are finite dimensional subspaces of Y
and X respectively. Then

L̃S L̃T = L̃ST = 0, L̃T L̃S = L̃TS = 0,

that is the pairs of operators (L̃S, L̃T) and (L̃T , L̃S) are chains, see Section 10.3 of
[5] or [6].

Finally, consider U ∈ L(X2, X3) and V ∈ L(X1, X2), where X1, X2 and X3
are three Banach spaces, and suppose that (U, V) is a chain, that is UV = 0.
The chain (U, V) is called exact, if R(V) = N(U). In addition, it is said that
(U, V) is an invertible chain, if there are continuous linear maps V1 ∈ L(X2, X1)
and U1 ∈ L(X3, X2) such that

U1U + VV1 = I,

where I denotes the identity map of X2, see Definition 10.3.1 of [5] or [6].

Next follows the second characterization of regular Fredholm pairs.
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THEOREM 5.4. Let X and Y be two Banach spaces, and consider S ∈ L(X, Y) and
T ∈ L(Y, X) two operators such that R(ST) and R(TS) are finite dimensional subspaces
of Y and X respectively. With the same notations of Remark 5.3, the following assertions
are equivalent:

(i) the pair (S, T) belongs to RP(X, Y);
(ii) the operators S and T are regular, and (L̃S, L̃T) (respectivly (L̃T , L̃S)) is an in-

vertible chain for any Banach space Z;
(iii) the operators S and T are regular, and (L̃S, L̃T) (respectivly (L̃T , L̃S)) is an in-

vertible chain for the Banach space X (respectivly Y);
(iv) the operators S and T are regular, and (L̃S, L̃T) (respectivly (L̃T , L̃S)) is an exact

chain for the Banach space X (respectivly Y).
Similarly, the following assertions are equivalent:

(i) the pair (S, T) belongs to RP(X, Y);
(ii) the operators S and T are regular, and (R̃S, R̃T) (respectivly (R̃T , R̃S)) is an in-

vertible chain for any Banach space Z;
(iii) the operators S and T are regular, and (R̃S, R̃T) (respectivly (R̃T , R̃S)) is an in-

vertible chain for the Banach space Y (respectivly X);
(iv) the operators S and T are regular, and (R̃S, R̃T) (respectivly (R̃T , R̃S)) is an exact

chain for the Banach space Y (respectivly X).

Proof. First of all, observe that since R(ST) and R(TS) are finite dimensional
Banach space, there exist X and Y , two closed subspaces of X and Y respectively,
such that X = X ⊕ R(TS) and Y = Y ⊕ R(ST). Moreover, if S and T are pre-
sented as matrices, that is if

S =
(

S11 0
S21 S22

)
, T =

(
T11 0
T21 T22

)
,

and if X/R(TS) and Y/R(ST) are identified with X and Y respectively, then the
maps S and T in Remark 5.1 can be identified with S11 and T11 respectively.

In addition, if Z is an arbitrary Banach space, since

L(Z, X) = L(Z,X )⊕ L(Z, R(TS)), L(Z, Y) = L(Z,Y)⊕ L(Z, R(ST)),

K(Z, X) = K(Z,X )⊕ K(Z, R(TS)), K(Z, Y) = K(Z,Y)⊕ K(Z, R(ST)),

then,
C(Z, X) = C(Z,X ), C(Z, Y) = C(Z,Y).

Furthermore, it is clear that

L̃S = L̃S11 , L̃T = L̃T11 .

Now, if (S, T) belongs to RP(X, Y), then according to Theorem 5.2 and to the
above identifications, (S11, T11) is a regular Fredholm symmetrical pair. There-
fore, according to Theorem 10.6.2 of [5], there are operators S1 and S2 in L(Y ,X ),
T1 and T2 in L(X ,Y), and two operators with finite dimensional rank, K1 ∈ L(X )
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and K2 ∈ L(Y), such that

S1S11 + T11T1 = I1 − K1, T2T11 + S11S2 = I2 − K2,

where I1 and I2 denote the identity maps of X and Y respectively.
Consequently,

L̃S1 L̃S11 + L̃T11 L̃T1 = I1, L̃T2 L̃T11 + L̃S11 L̃S2 = I2,

where I1 and I2 denote the identity maps of C(Z,X ) and C(Z,Y) respectively.
However, since C(Z,X ) = C(Z, X), C(Z,Y) = C(Z, Y), L̃S11 = L̃S and

L̃T11 = L̃T , then (L̃S, L̃T) and (L̃T , L̃S) are invertible chains in the sense of Defini-
tion 10.3.1 in [5] or [6].

It is clear that (ii) implies (iii) and (iii) implies (iv).
Next suppose that (iv) holds. Since S and T are regular maps, there are

operators S′ ∈ L(Y, X) and T′ ∈ L(X, Y) such that S = SS′S and T = TT′T.
Now, if, as above, X and Y are decomposed as direct sums

X = X ⊕ R(TS), Y = Y ⊕ R(ST),

and if S and S′ are presented as matrices, that is if

S =
(

S11 0
S21 S22

)
, S′ =

(
S′11 S′12
S′21 S′22

)
,

then a straightforward calculation proves that

S11 = S11S′11S11 + S11S1,

where S1 ∈ L(X ) is an operator whose range is finite dimensional.
On the other hand, since C(X ) = C(X ,X ) = C(X, X) = C(X), C(X ,Y) =

C(X, Y), L̃S11 = L̃S and L̃T11 = L̃T , the chain (L̃S11 , L̃T11) is exact. However, if I
denotes the identity of C(X ), since

L̃S11(I − [S′11S11]) = 0,

then there is B ∈ L(X ,Y) such that

L̃T11([B]) = I − [S′11S11],

that is
T11B + S′11S11 = I − K,

where I is the identitiy map of X , and K ∈ L(X ) is a compact operator.
Now, since (S11, T11) is a chain, that is R(T11) ⊆ N(S11), and since

T11B(N(S11)) = (I − K)(N(S11)),

then (I − K)(N(S11)) ⊆ N(S11). However, N(S11) is a Banach space and I − K is
a Fredholm operator in N(S11). Consequently, dim N(S11)/(I − K)(N(S11)) is fi-
nite dimensional, and since (I−K)(N(S11)) ⊆ R(T11) ⊆ N(S11), then dim N(S11)
/R(T11) is finite.



336 ENRICO BOASSO

A similar argument proves that dim N(T11)/R(S11) is finite. Therefore,
(S11, T11) is a Fredholm symmetrical pair. However, according to the above iden-
tifications and to Remark 5.1, (S, T) ∈ P(X, Y), and since S and T are regular
operators, (S, T) is a regular Fredholm pair.

Similar arguments prove the second part of the theorem.

THEOREM 5.5. Let X and Y be two Banach spaces and consider S ∈ L(X, Y) and
T ∈ L(Y, X), two regular operators such that R(ST) and R(TS) are finite dimensional
subspaces of Y and X respectively. Then, with the same notations of Remark 5.3 and
Theorem 5.4, if S′ and T′ are generalized inverses for S and T respectively, necessary and
sufficient for (S, T) to belong to RP(X, Y) is that

L̃S′ L̃S + L̃T L̃T′ and L̃T′ L̃T + L̃S L̃S′

are invertible operators for any Banach space Z.
Similarly, necessary and sufficient for (S, T) to belong to RP(X, Y) is that

R̃S′ R̃S + R̃T R̃T′ and R̃T′ R̃T + R̃SR̃S′

are invertible operators for any Banach space Z.

Proof. Since R(ST) and R(TS) are finite dimensional Banach spaces, (L̃S, L̃T)
and (L̃T , L̃S) are chains for any Banach space Z. Furthermore, since S = SS′S and
T = TT′T,

L̃S = L̃S L̃S′ L̃S, L̃T = L̃T L̃T′ L̃T ,
that is L̃S′ and L̃T′ are generalized inverses for L̃S and L̃T respectively.

Now, acording to Theorem 1 in [6], necessary and sufficient for

L̃S′ L̃S + L̃T L̃T′ and L̃T′ L̃T + L̃S L̃S′

to be invertible is the fact that (L̃S, L̃T) and (L̃T , L̃S) are invertible chains. How-
ever, according to Theorem 5.4, this last assertion is equivalent to the fact that
(S, T) belongs to RP(X, Y).

A similar argument proves the second part of the theorem.
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