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ABSTRACT. A “free Girsanov” property is proved for free Brownian motions.
It is reminiscent of the classical Girsanov theorem in probability theory.

In the free probability context, we prove that if (σs)s∈R+ is a free Brownian

motion in (M, τ), if x is a process free from the σs, if σ̃s = σs +
s∫

0
x(u)du,

then there is a trace τ̃ such that(σ̃s)s∈R+ is a free Brownian motion for τ̃ and
the two traces are “asymptotically equivalent”. This means that τ respectively
τ̃ are asymptotic limits of states Ψn respectively Ψ̃n and that for each n Ψ̃n is
obtained from Ψn by a change of probability given by an exponential density.
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1. INTRODUCTION

The context of the present work is that of free probability theory. D. Voicu-
lescu has introduced and studied the theory of free probability, giving a meaning
to free random variables, free product of states and free Brownian motions (see
the book by Voiculescu, Dykema and Nica [8], for a survey).

In classical probability theory the Girsanov theorem is a very important the-
orem for stochastic calculus (see for exemple [3]).

In view of stochastic calculus for free Brownian motions, Biane and Speicher
(see [1]) have proved an Ito formula for free stochastic integrals. The purpose of
this paper is to obtain for free Brownian motions a property which is reminiscent
of the classical Girsanov property.

The usual Girsanov theorem says that if one translates a Brownian motion

by an adapted stochastic process (W̃s = Ws +
s∫

0
θ(u)du) one can find a change
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of probability given by an exponential density such that (W̃s)s∈R+ is a Brownian
motion for this new probability.

In the context of free probability we want to prove a result which is in the
same vein.

Let (σs)s∈R+ be a free Brownian motion in (M, τ). Let x be a measurable
process with values in N a commutative subalgebra of M free from the (σs)s∈R+ .

Assume that x(u) = x(u)∗ for all u. Let σ̃s = σs +
s∫

0
x(u)du. We want to prove

the existence of a new trace τ̃ closely related to the trace τ such that (σ̃s)s∈R+ is a
free Brownian motion for the new trace τ̃ and such that the joint distribution of
(σ̃s, x(u))s,u∈R+ for τ̃ is the same as the joint distribution of (σs, x(u))s,u∈R+ for τ.

Unfortunately as the von Neumann algebra generated by a free Brownian
motion is a factor, there is only one normalized trace on it. Thus it is impossi-
ble to find a new trace on the von Neumann algebra generated by N and the σs
satisfying the required properties.

Nevertheless notice that a free Brownian motion (σs)s∈R+ in (M, τ) is just
defined by the joint distribution of the σs for τ. And Voiculescu has proved that
a free Brownian motion is an asymptotic limit of matrices of random processes.
Using this point of view, we prove the following result:

There is a new trace τ̃ on N ∗C[(σs)s∈R+ ] such that the joint distribution of
((σ̃s)s∈R+ , x(u)u∈R+) for this new trace τ̃ is the same as the joint distribution of
(σs∈R+ , x(u)u∈R+) for the trace τ (in particular (σ̃s)s∈R+ is a free Brownian motion
for the new trace) and the two traces are asymptotically equivalent.

This has the following meaning: There is a family (Z̃n(s))n∈N∗ of matrices
of random processes Z̃n(s) ∈ Mn(L∞[0, 1] ∗ L) and a family (Dn(u))n∈N∗ of di-
agonal matrices of real processes such that

(C[σs, x(u)]s,u∈R+ , τ̃) = lim
n→∞

(C[Z̃n(s), Dn(u)]s,u∈R+ , Ψ̃n)

and
(C[σs, x(u)]s,u∈R+ , τ) = lim

n→∞
(C[Z̃n(s), Dn(u)]s,u∈R+ , Ψn)

where Ψ̃n and Ψn are two traces on Mn(L∞[0, 1] ∗ L). Ψ̃n is obtained from Ψn by a
change of probability given by an exponential density hn

Ψn =
1
n

Trn(φ ∗ φ0) and Ψ̃n =
1
n

Trn(φ ∗ φ0(hn.))

(and for all p ∈ N, sup
n∈N

φ0(hp
n) < ∞) i.e. the limit joint distribution of (Z̃n(s), Dn(u))

for Ψ̃n is the joint distribution of (σs, x(u)) for τ̃ and the limit joint distribution of
(Z̃n(s), Dn(u)) for Ψn is the joint distribution of (σs, x(u)) for τ.

In order to prove this result we make use, as already mentioned, of the
asymptotic model of matrices of random processes, and we modelize the process
(x(u)) by diagonal matrices. For each n ∈ N we can apply the classical Girsanov
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theorem and this gives rise to a change of probability given by an exponential
density dn. Unfortunately, these densities dn explode as n tends to infinity and so
we have to renormalize the asymptotic model of matrices of random processes in
order to get densities hn which do not explode.

The paper is organised as follows:
After a few recalls in Section 2, we construct in Section 3 a new asymptotic

model of random matrices with values in a free product algebra, in order to make
the renormalization. This is a technical part making use of computation of free
cumulants and non crossing partitions introduced by Speicher [5].

In Section 4 making use of this new asymptotic model, we prove our main
result: A free Girsanov property for free Brownian motions.

2. SOME RECALLS

FREE PROBABILITY THEORY. We recall some definitions and results in free prob-
ability theory which can be found in the references [6], [7], [8].

DEFINITION. A ∗-free probability space (A, φ) is an involutive unital algebra
A over C with a state φ : A → C i.e. a linear functional such that φ(1) = 1 and
φ(x∗) = φ(x). Elements of A are called random variables.

DEFINITION. A family ( fi)i∈I of random variables of A is free if the family
(Ai)i∈I of ∗-algebras generated by 1 and fi is free: i.e. if φ(a1a2, . . . , an) = 0 when-
ever aj ∈ Ai(j) with i(j) 6= i(j + 1) (1 6 j 6 n− 1) and φ(aj) = 0 (1 6 j 6 n).

DEFINITION. A random variable σ in (A, φ) is semicircular centered of vari-
ance r2 if the distribution of σ is

φ(σα) =
2

πr2

r∫
−r

tα
√

r2 − t2dt.

DEFINITION. A free Brownian motion in (A, φ) is a family (σs)s∈R+ of ran-
dom variables such that:

(i) σ0 = 0;
(ii) if 0 6 s′ 6 s 6 t, σt − σs is semicircular centered of variance t − s and is

free from σs′ .

One has also the following very important connection between free semicir-
cular random variables and Gaussian random matrices:

Consider a probability space (Σ, dσ). L∞(Σ, dσ) is a unital algebra with the
state φ0 defined by φ0( f ) = E0( f ) =

∫
Σ

f dσ. Let

L =
⋂
p>1

Lp(Σ).
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We denote by φn the state defined on Mn(L) by

φn

(
∑

16i,j6n
bije(i, j, n)

)
=

1
n ∑

16i6n
(φ0)(bii) =

1
n

Trn((φ0(bi,j)16i,j6n))

(where (e(i, j, n))16i,j6n is the canonical basis and bi,j ∈ L).
Voiculescu has then proved the following theorem ([7], Theorem 2.2): let

Y(s, n) = ∑
16i,j6n

a(i, j, s, n)e(i, j, n) with a(i, j, s, n) ∈ L. Assume that

a(i, j, s, n) = a(j, i, s, n)

and that Re(a(i, j, s, n)), 1 6 i 6 j 6 n, s ∈ N, Im(a(i, j, s, n)), 1 6 i < j 6 n, s ∈ N
are independent Gaussian random variables such that:

E0(a(i, j, s, n)) = 0,

E0(Re(a(i, j, s, n))2) =
1

2n
for 1 6 i < j 6 n,

E0(Im(a(i, j, s, n))2) =
1

2n
for 1 6 i < j 6 n,

E0((a(i, i, s, n))2) =
1
n

for 1 6 i 6 n.

Consider the trace φn defined above. Let D(j, n) be elements in ∆n, the set of
constant diagonal matrices, such that sup

n∈N
‖D(j, n)‖ < ∞, for each j; and such that

for all j, (D(j, n)) has a limit distribution as n → ∞. Then the family of subsets of
random variables {Y(s, n) : s ∈ N} and {D(j, n) : j ∈ N} is asymptotically free,
and the limit distributions of the Y(s, n) are semicircle laws as n → ∞.

It follows that a model for the free Brownian motion is the following one:

(C[(σs)s∈R+ ], τ) = lim
n→∞

C
[
(Bn,s)s∈R+ ],

1
n

Trn(φ0)
]

where Bn,s =
(

1√
n Wn,i,j,s

)
16i,j6n

; the (Wn,i,j,s)16i6j6n being independent Brown-

ian motions.

CLASSICAL GIRSANOV THEOREM. For this we refer to Karatzas and Shreve [3].
Let (Ω, (Fs)06s, P) be a filtered probability space. Let (Ws)06s be a Brown-

ian motion adapted to (Fs). Let (θu)06u be an adapted process such that

E
(

exp
∞∫

0

θ2
udu

)
< ∞.
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Then W̃s = Ws −
s∫

0
θudu is a Brownian motion for the probability Q equiv-

alent to the probability P defined by Q(A) =
∫
A

Z(s)dP for all A in Fs, where

Z(s) = exp
( s∫

0
θudWu − 1

2

s∫
0
(θu)2du

)
.

3. A NEW ASYMPTOTIC MODEL FOR FREE BROWNIAN MOTION

In this section we construct for the free Brownian motion an asymptotic
model of random matrices with coefficients in a free product algebra. The moti-
vation for the construction of this new model is to use a free product algebra in
order to make a renormalization.

Consider a probability space (Σ, dσ). L∞(Σ, dσ) is a unital algebra with the
state φ0 defined by φ0( f ) = E0( f ) =

∫
f dσ. Let

L =
⋂

16p<∞
Lp(Σ).

Let µ be the Lebesgue measure on [0, 1], and the state φ defined on L∞([0, 1], µ)
by

φ( f ) =
∫

f dµ.

Now we consider the free product state φ ∗ φ0 on L∞([0, 1], µ) ∗ L∞(Σ, dσ). We
can extend φ ∗ φ0 to L∞([0, 1]) ∗ L. We then get a state still noted φ ∗ φ0 such
that L∞([0, 1]) is free from L for this state. We denote Ψn the state defined on
Mn(L∞([0, 1]) ∗ L) by

Ψn

(
∑

16i,j6n
bije(i, j, n)

)
=

1
n ∑

16i6n
(φ ∗ φ0)(bii) =

1
n

Trn((φ ∗ φ0)(bi,j)16i,j6n).

We keep the same notations as in Section 2.
We now prove the existence of a new family of matrices of random processes

with coefficients in L∞([0, 1]) ∗ L which are asymptotically free and whose limit
distributions are semi-circular laws. More precisely:

PROPOSITION 3.1. For all s ∈ N, and n ∈ N, let

Ỹ(s, n) = ∑
16i,j6n

ã(i, j, s, n)e(i, j, n)

with ã(i, j, s, n) ∈ L∞([0, 1]) ∗ L. Assume that

ã(i, j, s, n) =
n2

∑
k=1

qk,n
√

na(i, j, s, n) qk,n
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where the qk,n are orthogonal projectors in L∞[0, 1],
n2

∑
k=1

qk,n = 1 such that

φ(qk,n) =
1
n2

and the (a(i, j, s, n))s∈N,16i6j6n,n∈N are independent real normal Gaussian variables,
i.e., in particular

E0(a(i, j, s, n)) = 0,

E0((a(i, j, s, n)2) = 1,

a(i, j, s, n) = a(j, i, s, n).

Consider the trace Ψn defined above. Let Dn(j) be elements in ∆n, the set of diagonal
matrices, such that sup

n∈N
‖Dn(j)‖ < ∞, for each j; and such that for all j, (Dn(j)) has a

limit distribution as n → ∞.
Then the family of subsets {Ỹ(s, n) : s ∈ N} and {Dn(j) : j ∈ N} are asymptoti-

cally free, and the limit distribution of the Ỹ(s, n) are semicircular laws.

This proposition is comparable with the Theorem 2.2 of [7] recalled in Sec-
tion 2. The important property of this new asymptotic model is that it is renormal-
ized: we have replaced the Gaussian random variables of variance 1

n of the theo-
rem of Voiculescu by Gaussian random variables (

√
na(i, j, s, n)) of variance n.

Although the proof follows the same lines of reasonning, the proof of Voicu-
lescu must be significantly amended because the entries of these new matrices
are in a free product algebra. We have to use the free calculus developped by
Speicher [5].

We start with the following results.

LEMMA 3.2. Let i ∈ {1, . . . , j}; let (y1, y2, . . . , yj) be random variables in L.
Assume there is one i ∈ {1, . . . , j} such that yi = azi, where a is independent of all
others yk for k 6= i and of zi, and such that E0(a) = 0.

Then (φ ∗ φ0)(qy1q · · · qyjq) = 0 for each q projector in L∞([0, 1]).

Proof. The proof is done by recursion on j using the freeness.
For j = 1: (φ ∗ φ0)(qy1) = φ(q)E0(y1) = φ(q)E0(a)E0(z1) = 0.
Assume now that the result is true for j and prove it for j + 1. From the

freeness of L∞([0, 1]) and L for φ ∗ φ0, we get that

(φ ∗ φ0)((q− φ(q))(y1 − E0(y1))(q− φ(q))(y2 − E0(y2)) · · ·
(q− φ(q))(yj+1 − E0(yj+1))) = 0.

If we develop the preceeding expression there is the term (φ ∗φ0)(qy1qy2 · · · qyj+1),
and in all the other terms there is at least one φ(q) or one E0(yk). So that all these
terms can be written either α(φ ∗ φ0)(qt1qt2 · · · qtk) with k 6 j and α ∈ C; and
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the (tl)l6k satisfy the same hypothesis as the yl or E0(yi)α with α ∈ C. By re-
cursion each of these terms is equal to 0. So (φ ∗ φ0)(qy1qy2 · · · qyj+1) = 0, i.e.
(φ ∗ φ0)(qy1qy2 · · · qyj+1q) = 0 as φ ∗ φ0 is a trace and q2 = q.

COROLLARY 3.3. If si 6= s1 for any i 6= 1, then we have Ψn(Ỹ(s1, n)Dn(t1) · · ·
Ỹ(sm, n)Dn(tm)) = 0.

Proof. Ψn(Ỹ(s1, n)Dn(t1) · · · Ỹ(sm, n)Dn(tm)) is a sum of terms

(φ ∗ φ0)(q
√

na(i1, j1, s1, n)d1q
√

na(i2, j2, s2, n)d2q · · · (q
√

na(im, jm, sm, n)dm).

a(i1, j1, s1, n) is independent of all other a(ik, jk, sk, n) for k 6= 1. It follows that
E0(a(i1, j1, s1, n) = 0. So the result follows immediately from Lemma 3.2.

We prove now the following technical lemma making use of the computa-
tion of free cumulants introduced by Speicher [5].

LEMMA 3.4. Let y1, . . . , yj ∈ L. Let a ∈ L, with E0(a) = 0. Assume that a is
independent of y1, . . . , yj. Let q be a projector in L∞[0, 1]. Denote Y = y1qy2q · · · qyj.

(i) kφ(q, q) = φ(q)− φ(q)2;
(ii) k(φ∗φ0)(q, Y) = (φ ∗ φ0)(qY)− φ(q)(φ ∗ φ0)(Y);

(iii) k(φ∗φ0)(q, q, Y) = (1− 2φ(q))[(φ ∗ φ0)(qY)− φ(q)(φ ∗ φ0)(Y)];
(iv) (φ ∗ φ0)(a2Y) = E0(a2)(φ ∗ φ0)(Y);
(v) k(φ∗φ0)(a, a, Y) = 0.

Proof. (i) φ(q) = φ(q2) = φ(q)2 + kφ(q, q).
(ii) (φ ∗ φ0)(qY) = k(φ∗φ0)(q, Y) + φ(q)(φ ∗ φ0)(Y).

(iii) (φ ∗ φ0)(qY) = (φ ∗ φ0)(q2Y) = kφ(q, q)(φ ∗ φ0)(Y) + 2φ(q)kφ∗φ0(q, Y) +
kφ∗φ0(q, q, Y) + φ(q)2(φ ∗ φ0)(Y). Using (i) and (ii) we get (iii).

(iv) From [5] as L∞[0, 1] and L are free for Φ ∗ φ0, we know that the cumulants
mixing elements of L∞[0, 1] and L are 0; and furthermore, as E0(a) = 0, for a non
crossing partition giving a non zero contribution, a cannot be alone. So

(φ ∗ φ0)(a2Y) = (φ ∗ φ0)(a2yjy1qy2q · · · yj−1q)

= ∑
π

kπ(q, q, . . . , q)kπ(q, . . . , q)kπ(a2yjy1, yi1 , . . .)kπ(yil , . . .) · · · .

But a is independent of all the yi so

kπ(a2yjy1, yi1 , . . .) = E0(a2)kπ(yjy1, yi1 , . . .).

(v) (φ ∗ φ0)(a2Y) = k(φ∗φ0)(a, a)(φ ∗ φ0)(Y) + k(φ∗φ0)(a, a, Y) and E0(a2) = (φ ∗
φ0)(a2) = k(φ∗φ0)(a, a) as E0(a) = 0.

It follows then from (iv) that k(φ∗φ0)(a, a, Y) = 0.

LEMMA 3.5. Let a, q and Y ∈ L∞[0, 1] ∗ L as in Lemma 3.4. Then

(φ ∗ φ0)(qaqaqY) = φ(q)E0(a2)(φ ∗ φ0)(qY).
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Proof. We have:

Y = y1qy2q · · · qyj,

(φ ∗ φ0)(qaqaqY) = ∑
π∈NC(6)

kπ(q, a, q, a, q, Y).

Using the same arguments as in the proof of Lemma 3.4 and also the equality
kφ∗φ0(a, a, Y) = 0, we get

(φ ∗ φ0)(qaqaqY) = kφ0(a, a)φ(q)3(φ ∗ φ0)(Y) + kφ0(a, a)φ(q)kφ(q, q)(φ ∗ φ0)(Y)

+kφ0(a, a)φ(q)k(φ∗φ0)(q, q, Y) + 2kφ0(a, a)φ(q)2k(φ∗φ0)(q, Y).

And now the result follows easily from the Lemma 3.4, and the equality kφ0(a, a)
= E0(a2).

LEMMA 3.6. Let a(i, j, s, n)(16i6j6n) be independent normal Gaussian variables
in (L, φ0). Let (B, φ) a ∗-free probability space.

Let q ∈ B be a projector such that φ(q) = 1/n2. Let d(t, j, n) be elements in B
commuting with q and uniformly bounded. Then

φ ∗ φ0(qa(i1, i2, s1, n)d(t1, i2, n)qa(i2, i3, s2, n)d(t2, i3, n) · · ·
qa(im, i1, sm, n)d(tm, i1, n)) =

∑
π

kπ [ a(i1, i2, s1, n), a(i2, i3, s2, n), . . . , a(im, i1, sm, n)]O
(( 1

n2

)|πB |)
where |πB| denotes the number of blocks of the restriction πB of π to B.

If we denote by En the set of (i1, i2, . . . , im) ∈ {1, . . . , n}m such that

(φ ∗ φ0)(qa(i1, i2, s1, n)d(t1, i2, n)qa(i2, i3, s2, n)d(t2, i3, n)q · · ·
qa(im, i1, sm, n)d(tm, i1, n)) 6= 0,

then Card(En) = O(n(m/2)+1).

Proof. We use another time the free cumulants to compute

(φ ∗ φ0)(qa(i1, i2, s1, n)d(t1, i2, n)qa(i2, i3, s2, n)d(t2, i3, n) · · ·
qa(im, i1, s1, n)d(tm, i1, n)).

Using the hypothesis on the independence of the a(i, j, s, n) and the Lemma 3.2, it
follows exactly as in the proof of Theorem 2.2 of [7] that Card(En) = O(n(m/2)+1).
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Now, from the Theorem 8.2 of [5] as the a(i, j, s, n) are free from B for φ ∗ φ0,
and d(t, j, n) and q are in B, we can write:

(φ ∗ φ0)(qa(i1, i2, s1, n)d(t1, i2, n)qa(i2, i3, s2, n)d(t2, i3, n) · · ·
qa(im, i1, sm, n)d(tm, i1, n)) =

∑
π

kπ [ a(i1, i2, s1, n), . . . , a(im, i1, sm, n)]φπB [d(tm, i1, n)q, . . . , d(tm−1, im, n)q].

But φπB [d(tm, i1, n)q, . . . , d(tm−1, im, n)q] = O
((

1
n2

)|πB |)
where |πB| is the num-

ber of blocks of πB (as the d(t, j, n) are uniformly bounded).

LEMMA 3.7. Let k fixed. If π is a non crossing partition giving a non zero contri-
bution in Lemma 3.6, the number of different blocks of πB (i.e. |πB|) is greater or equal
to [ m

2 ] + 1.

Proof. We do it by recursion on m.
Step 1. If m = 1, we always obtain 0.
Step 2. If m = 2, if the term associated to the partition π is non zero, the

number of components containing the q is 2 (because E0(a(i, j, s, n)) = 0).
Step 3. Let m > 2. Assume that the result is true for m and prove it for m + 1.

Let r be the minimal distance between two q which are in a same block of π. Two
successive q can never be in the same component of π, (because E0(a(i, j, s, n)) =
0). So 2 6 r. So there is l such that the lthq and the (l + r)thq are in the same block
and all the q between are alone in one block of π. As the cumulants must be non
crossing, π can be decomposed in a partition π′ on

(a(il , il+1, sl , n), a(il+1, il+2, sl+1, n), . . . , a(il+r−1, il+r, sl+r−1, n))

and a non crossing partition π′′ on

(d(tm, i1, n)q, a(i1, i2, s1, n), d(t1, i2, n)q, . . . ,

a(il−1, il , sl−1, n), (a(il+r, il+r+1, sl+r, n), d(tl+r, il+r+1, n)q, . . . , a(im, i1, sm, n))

and blocks reduced to q.
It follows that the blocks of πB are either reduced to one element q or are

blocks of the restriction of the partition π′′ to B. By recursion, we know that the
number of components of π′′ containing the q is greater or equal to [ m−r

2 ] + 1. So
the number of components of πB is greater or equal to [ m−r

2 ] + 1 + r − 1; and as
2 6 r, [ m

2 ] + 1 6 [ m−r
2 ] + 1 + r − 1.

Before proving the Proposition 3.1, we give two other lemmas.

LEMMA 3.8. There is a constant Cm (independent of n) such that for all π, for all
(ik, jk, sk),

|kπ [a(i1, j1, s1, n), . . . , a(im, jm, sm, n)]| 6 Cm.
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Proof. Since two of a(i, j, s, n)i6j6n are either equal or independent and tak-
ing into account that E0(a(i, j, s, n)) = 0, and E0((a(i, j, s, n)2) = 1, it follows that

|φ0(a(i′1, j′1, s′1, n) · · · a(i′l , j′l , s′l , n))| 6 1.

We now prove by recursion on l that there is a constant Cl such that for each
block of length l,

|kl [a(i′1, j′1, s′1, n), . . . , a(i′l , j′l , s′l , n)]| 6 Cl .

Step 1. l = 1:

k1[a(i′1, j′1, s′1, n)] = φ0(na(i′1, j′1, s′1, n)) = 0.

Step 2. l = 2:

k2[a(i′1, j′1, s′1, n), a(i′2, j′2, s′2, n)]

= φ0(a(i′1, j′1, s′1, n)a(i′2, j′2, s′2, n))− φ0(a(i′1, j′1, s′1, n))φ0(a(i′2, j′2, s′2, n)).

So |k2[a(i′1, j′1, s′1, n), na(i′2, j′2, s′2, n)]| 6 1.
Step 3. Assume that the result is true for l and prove it for l + 1:

kl+1[a(i′1, j′1, s′1, n), . . . , a(i′l+1, j′l+1, s′l+1, n)]

= φ0(a(i′1, j′1, s′1, n) · · · a(i′l+1, j′l+1, s′l+1, n))

− ∑
π∈NC(l+1),π 6=1l+1

kπ [a(i′1, j′1, s′1, n), . . . , a(i′l+1, j′l+1, s′l+1, n)].

For each π in NC(l + 1) such that π 6= 1l+1,

kπ [a(i′1, j′1, s′1, n), . . . , a(i′l+1, j′l+1, s′l+1, n)]

=
r

∏
i=1

k|νi |[a(iα(1), jα(1), sα(1), n) · · · a(iα(1), jα(1), sα(1), n)].

By recursion |k|νi |[· · · ]| 6 C|νi | as |νi| 6 l. And this proves the existence of the
constant Cl+1.

LEMMA 3.9. Let s1, s2, . . . , sm ∈ N. Let t1, t2, . . . , tm ∈ N. Then

sup
n∈N

|Ψn(Ỹ(s1, n)Dn(t1) · · · Ỹ(sm, n)Dn(tm))| = K(m) < ∞.

Proof. We know that the (qk,n)k6n2 are orthogonal projectors in (L∞[0, 1], φ)
such that φ(qk,n) = 1

n2 . We apply Lemma 3.6:

|Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n))| 6
1
n

n2 ∑
(i1,...,im)∈En

∑
π

|kπ [
√

na(i1, i2, s1, n), . . . ,
√

na(im, i1, sm, n))]|K
( 1

n2

)|πB |)
.

From Lemma 3.7, |πB| is greater or equal to [ m
2 ] + 1.
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Now from Lemma 3.8, we get

|Ψn(Ỹ(s1, n)Dn(t1) · · · Ỹ(sm, n)Dn(tm))|6 n Card(En)Card({π})Cmn
m
2

( 1
n2

)[ m
2 ]+1

.

But from Lemma 3.6, Card(En) = O(n
m
2 +1). So

|Ψn(Ỹn(s1)Dn(t1) · · · Ỹn(sm)Dn(tm))| = O(nm−2[ m
2 ]).

Case 1. If m is odd, for each π, at least one block ν of πL is of length |ν|
odd. It follows then from an obvious recursion on |ν| odd, using the fact that the
a(i, j, s, n) are either independent or equal, that

k|ν|[(
√

na(i1, j1, s1, n), . . . ,
√

na(i|ν|, j|ν|, s|ν|, n)] = 0

so
kπ [

√
na(i1, i2, s1, n),

√
na(i2, i3, s2, n), . . . ,

√
na(im, i1, sm, n)] = 0.

Hence
Ψn(Ỹ(s1, n)Dn(t1) · · · Ỹ(sm, n)Dn(tm)) = 0.

Case 2. If m is even, m− 2[ m
2 ] = 0. So

sup
n∈N

|Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n))| = K(m) < ∞.

Now we are able to prove the Proposition 3.1. We follow the proof of Theo-
rem 2.2 of [7].

Proof of Proposition 3.1. Step 1. It is to prove that

sup
n∈N

|Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n))| < ∞.

This is exactly Lemma 3.9.
Step 2. (i) First we prove that

Ψn(Ỹ(sα(1), n)D(t1, n)Ỹ(sα(2), n)D(t2, n) · · · Ỹ(sα(m), n)D(tm, n)) = 0

if α(1) 6= α(j) for all j 6= 1.
This is Corollary 3.3.

(ii) Let α(1) = α(2) and Card(α−1(p)) 6 2 for all p in N. We want to prove
that

Ψn(Ỹ(sα(1), n)D(t1, n)Ỹ(sα(2), n)D(t2, n) · · · Ỹ(sα(m), n)D(tm, n)) =

Ψn(D(t1, n)Ψn(D(t2, n)Ỹ(sα(3), n)D(t3, n) · · · Ỹ(sα(m), n)D(tm, n)).

Indeed

Ψn(Ỹ(sα(1), n)D(t1, n)Ỹ(sα(2), n)D(t2, n) · · · Ỹ(sα(m), n)D(tm, n)) =

1
n

n2

∑
k=1

∑
i1,i2,...,im

(φ ∗ φ0)(qk,na(i1, i2, sα(1), n)d(t1, i2)qk,na(i2, i3, sα(1), n)d(t2, i3) · · ·

qk,na(im, i1, sα(m), n)d(tm, i1))n
m
2 .
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From Lemma 3.2 and Lemma 3.5, this is equal to

1
n

n2

∑
k=1

φ(qk,n) ∑
i1,i2,i4,...,im

d(t1, i2)(E0(a(i1, i2, sα(1), n)2)(φ∗φ0)(d(t2, i1)qk,na(i1, i4, sα(3), n)

d(t3, i4)) · · · qk,na(im, i1, sα(m), n)d(tm, i1))n
m
2 =

1
n3

n2

∑
k=1

∑
i2

d(t1, i2) ∑
i1,i4,...,im

(φ ∗ φ0)(d(t2, i1)qk,na(i1, i4, sα(3),nd(t3, i4))

· · · qk,na(im, i1, sα(m), n)d(tm, i1))n
m
2 =

1
n ∑

i2

d(t1, i2)
1
n

n2

∑
k=1

∑
i1,i4,...,im

(φ ∗ φ0)(d(t2, i1)qk,na(i1, i4, sα(3), n)d(t3, i4))

· · · qk,na(im, i1, sα(m), n)d(tm, i1))n
m
2 −1 =

Ψn(D(t1, n))Ψn(D(t2, n)Ỹ(sα(3), n)D(t3, n) · · · Ỹ(sα(m), n)D(tm, n)).

(iii) One proves then that

lim
n→∞

Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n)) = 0

if sk 6= sk+1 (1 6 k 6 m− 1) and sm 6= s1.
As in the proof of Theorem 2.2 of [7] if

Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n)) 6= 0

there is an automorphism γ of order 2 of 1, . . . , m without fixed point such that
for p 6= q, sp = sq if and only if p = γ(q). And then as in Lemma 3.6

Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n)) =

1
n

n2

∑
k=1

∑
(i1,i2,...,im)∈En(γ)

∑
π

kπ [ a(i1, i2, s1, n), a(i2, i3, s2, n),

· · · a(im, i1, sm, n)]O
(( 1

n2

)|πB |)
n

m
2 .

As in [7] En(γ) denotes the set of (i1, i2, . . . , im) ∈ (1, 2, . . . , n)m such that ik =
iγ(k)+1, ik+1 = iγ(k) where γ(k) and γ(k) + 1 are considered modulo m. From [7]
Card(En(γ)) 6 n

m
2 . So from Lemma 3.6, Lemma 3.7 and Lemma 3.8, we get

Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n)) = O(n(m−2[ m
2 ]−1)).

Case 1. So if m is even,

Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n)) = O
( 1

n

)
and we get the result.
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Case 2. On the other hand, if m is odd, as in the proof of Lemma 3.9,

Ψn(Ỹ(s1, n)D(t1, n) · · · Ỹ(sm, n)D(tm, n)) = 0.

This ends Step 2.
Step 3. Exactly as in Step 3 of the proof of Theorem 2.2 of [7], we apply

the Theorem 2.1 of [7], to prove that the family of random variables Ỹ(s, n) and
D(j, n) are asymptotically free, with the Ỹ(s, n) having limit distributions given
by semicircular laws of variance 1.

This ends the proof of Proposition 3.1.

This gives now the following renormalized model for the free Brownian
motion:

THEOREM 3.10. For all s ∈ R+, and n ∈ N∗, let

Z̃n(s) = ∑
16i,j6n

W̃(i,j,n)(s)e(i, j, n)

with W̃(i,j,n)(s) ∈ L∞([0, 1]) ∗ L. Assume that

W̃(i,j,n)(s) =
n2

∑
k=1

qk,n
√

nW(i,j,n)(s) qk,n

where the qk,n are orthogonal projectors in L∞[0, 1],
n2

∑
k=1

qk,n = 1 such that

φ(qk,n) =
1
n2

and the (W(i,j,n)(s)s∈R+)16i6j6n,n∈N∗ are independent Brownian motions, in particular

if s0 = 0 < s1 < s2 · · · < sk, (W(i,j,n)(sl+1)−W(i,j,n)(sl))06l6k−1

are independent Gaussian random variables centered of variance sl+1 − sl and

W(i, j, n)(s) = W(j, i, n)(s).

Consider the trace Ψn defined at the begining of the section. Let Dn(j) be elements in ∆n,
the set of diagonal matrices, such that sup

n∈N
‖Dn(j)‖ < ∞, for each j; and such that for all

j, (Dn(j)) has a limit distribution as n → ∞.
Then the family of subsets {Z̃n(s)} and {Dn(j) : j ∈ N} are asymptotically free,

and the limit distribution of the Z̃n(s) is the distribution of the free Brownian motion.

Proof. For i ∈ {0, . . . , k− 1} and n ∈ N, let 0 = s0 < s1 < s2 < · · · < sk. Let
Ỹ(i, n) = 1√

si+1−si
(Z̃n(si+1)− Z̃n(si)).

We apply the Proposition 3.1 to Ỹ(i, n) and we get the result.
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4. A FREE GIRSANOV PROPERTY

Hypothesis: Let (σs)s∈R+ be a free Brownian motion in (M, τ). Let N be
a commutative C∗-subalgebra of M free from the (σs)s∈R+ . Let x be a measur-
able process with values in N. Assume that x(u) = x(u)∗ for all u and that
∞∫
0
‖x(u)‖2du < ∞. Let σ̃s = σs +

s∫
0

x(u)du.

We want first to associate to the system (σs, x(u))s,u∈R+ an asymptotic sys-
tem (Z̃n(s), Dn(u)) in the set of random matrices with coefficients in a free prod-
uct algebra Mn(L∞[0, 1] ∗ L), and then to define on Mn(L∞[0, 1] ∗ L) two traces
Ψn and Ψ̃n such that their asymptotic limits are respectively the traces τ and τ̃,
where τ is the given trace and τ̃ is a new trace such that (σ̃s)s∈R+ is a free Brow-
nian motion for τ̃.

AN ASYMPTOTIC SYSTEM IN Mn(L∞[0, 1] ∗ L). ((σs)s∈R+) is a free Brownian mo-
tion and the x(u) = x(u)∗ belong to a commutative subalgebra of M free from
the σs. In view of Theorem 3.10, we will associate to the process σs the process of
random matrices (Z̃n(s)s∈R+) and we want to associate to the process x(u)u∈R+ a
process of diagonal matrices with real coefficients. We construct now this process.

LEMMA 4.1. Let N be a commutative C∗-algebra with a finite trace τ. There is a
family of homomorphisms Hn from N to ∆n (the set of diagonal matrices with complex
coefficients) such that for all x ∈ N,

τ(x) = lim
n→∞

1
n

Trn(Hn(x)).

Proof. From the Chapter 2 of [2] the set of states on N is the weak* closed
convex hull of the set of pure states on N. Furthermore as N is commutative, the
pure states are the characters. Denote X the set of the characters of N. Denote S
the weak* closure of

S =
{ 1

n ∑
16i6n

χi : n ∈ N∗, χi ∈ X
}

.

Using the density of
{ k

n : n ∈ N∗, 1 6 k 6 n
}

in [0, 1], it is easy to verify that S is
a convex set; so S is equal to the set of all the states on N. It follows that there is
a sequence Sn of elements of S such that the limit of Sn for the weak* topology of
N is equal to the trace τ, i.e. for all x in N, Sn(x) → τ(x) as n → ∞, with

Sn =
1
n ∑

16i6n
χi,n .
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Define now the homomorphism Hn from N to ∆n by:

Hn(x) =


χ1,n(x) 0 · · · 0

0 χ2,n(x) · · · 0

0
. . . . . .

...
0 0 · · · χn,n(x)

 .

Then

‖Hn(x)‖ 6 sup(|χi,n(x)|) 6 ‖x‖

and for every x ∈ N,

1
n

Trn(Hn(x)) =
1
n ∑

16i6n
χi,n(x) = Sn(x).

So

lim
n→∞

1
n

Trn(Hn(x)) = τ(x).

For all u ∈ R+ denote Dn(u) the diagonal matrix Dn(u) = Hn(x(u)). It is a
real matrix because x(u) is selfadjoint.

DEFINITION 4.2. The asymptotic system associated to (σs, x(u))s,u∈R+ is the
system of random matrices (Z̃n(s), Dn(u))s,u∈R+ in Mn(L∞[0, 1] ∗ L) where
(Z̃n(s))s∈R+ is the process of random matrices defined in Theorem 3.10 and
(Dn(u))u∈R+ is the process of diagonal matrices defined above.

TWO TRACES ON Mn(L∞[0, 1] ∗ L). In the preceding section we have associated
to (σs, x(u))s,u∈R+ an asymptotic system in Mn(L∞[0, 1] ∗ L). Define now two
traces Ψn and Ψ̃n on Mn(L∞[0, 1] ∗ L) such that their asymptotic limits will give
the two traces τ and τ̃.

Denote

hn = exp−
[ ∞∫

0

∑
16i6n

1√
n

Dn(u)i,idWi,i,n(u) +
∞∫

0

∑
16i6n

Dn(u)2
i,i

2n
du

]
.

LEMMA 4.3. For all n ∈ N∗ φ0(hn) = 1. For all p > 2 sup
n∈N∗

φ0(hp
n) < ∞,

lim
n→∞

φ0(hp
n) = exp

[
p2−p

2

∞∫
0

τ(x(u)2)du
]

and the family

([
W(i,j,n)(s) +

s∫
0

1√
n

(Dn(u))i,iδi,jdu
]

s∈R+

)
16i6j6n

is a family of independent Brownian motions for φ0(hn.)



388 JOCELYNE BION-NADAL

Proof. We have:

φ0(hp
n)

= E
(

exp−p
[ ∞∫

0

1√
n ∑

16i6n
(Dn(u))i,idWi,i,n(u) +

1
2n

∞∫
0

∑
16i6n

(Dn(u))2
i,i

]
du

)

= exp
[1

2

∞∫
0

∑
16i6n

(Dn(u))2
i,i p

2

n
du− p

2n

∞∫
0

∑
16i6n

(Dn(u))2
i,idu

]

= exp
[ p2 − p

2

∞∫
0

1
n

Trn(Dn(u)2)du
]
.

Since Dn(u) = Hn(x(u)), we have, for all n, 1
n Trn(Dn(u)2) 6 ‖x(u)‖2. From

Lemma 4.1, lim
n→∞

1
n Trn(Dn(u)2) = τ(x(u)2), so we get the result for φ0(hp

n) apply-

ing the dominated convergence theorem of Lebesgue.
As the Brownian motions (Wi,j,n(s))16i6j6n are independent and as for all

i 6 n,
∞∫
0

Hn(x(u))2
i,idu < ∞, it results from the usual Girsanov theorem that

([
W(i,j,n)(s) +

s∫
0

1√
n

(Dn(u))i,iδi,jdu
]

s∈R+

)
16i6j6n

are independent Brownian motions for φ0(hn.).

DEFINITION 4.4. Define now the traces Ψn and Ψ̃n on Mn(L∞([0, 1]) ∗ L)
by

Ψn

(
∑

16i,j6n
xije(i, j, n)

)
=

1
n ∑

16i6n
(φ ∗ φ0)(xii)

and

Ψ̃n

(
∑

16i,j6n
xije(i, j, n)

)
=

1
n ∑

16i6n
(φ ∗ φ0(hn.))(xii).

For simplicity we will denote

Ψn =
1
n

Trn(φ ∗ φ0) and Ψ̃n =
1
n

Trn(φ ∗ φ0(hn.)).

Ψn is the same state as in Section 3.

PROPOSITION 4.5. The joint distribution of ((Z̃n(s)s∈R+ , Hn(x)x∈N) for Ψn is

the same as the joint distribution of
((

Z̃n(s) +
s∫

0
Dn(u)du

)
s∈R+

, Hn(x)x∈N

)
for Ψ̃n.
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Proof. We have:(
Z̃n(s) +

s∫
0

Dn(u)du
)

i,j
=

n2

∑
k=1

qk,n
√

nW(i,j,n)(s) qk,n +
s∫

0

(Dn(u))i,iδi,jdu

=
n2

∑
k=1

qk,n

[√
nW(i,j,n)(s) +

s∫
0

(Dn(u))i,iδi,jdu
]

qk,n.

To compute the joint distribution of
((

Z̃n(s)+
s∫

0
Dn(u)du

)
s∈R+

, Hn(x)x∈N

)
for Ψ̃n , it is enough, as N is a unital C∗-algebra, to compute for all p ∈ N, si > 0
and xi ∈ N

Ψ̃n

(
Hn(x1)

(
Z̃n(s1) +

s1∫
0

Dn(u)du
)

Hn(x2) · · · Hn(xp)
(

Z̃n(sp) +

sp∫
0

Dn(u)du
))

=
1
n ∑

16k6n2
∑

16i16n
∑

16j16n
· · · ∑

16jp−16n
(φ ∗ φ0(hn.))

[
(Hn(x1))i1,i1 ·

(
qk,n

[√
nW(i1,j1,n)(s1) +

s1∫
0

(Dn(u))i1,i1 δi1,j1du
]
qk,n

)
·

(Hn(x2))j1,j1

(
qk,n

[√
nW(j1,j2,n)(s2) +

s2∫
0

(Dn(u))j1,j1 δj1,j2du
]
qk,n

)
· · ·

(Hn(xp))jp−1,jp−1

(
qk,n

[√
nW(jp−1,i1,n)(sp)+

sp∫
0

(Dn(u))jp−1,jp−1 δjp−1,i1du
]
qk,n

)]
.

Remark now that the qk,n are free from L for φ ∗ φ0(hn.) and also for φ ∗
φ0. Furthermore, Lemma 4.3 implies that the joint distribution of

([√
nW(i,j,n)(s)

+
s∫

0
(Dn(u))i,iδi,jdu

]
s∈R+

)
16i6j6n

for φ0(hn.) is equal to the joint distribution of

([
√

nW(i,j,n)(s)]s∈R+)16i6j6n for φ0. We then get that the preeceding sum is equal
to

=
1
n ∑

16k6n2
∑

16i16n
∑

16j16n
· · · ∑

16jp−16n
(φ ∗ φ0)((Hn(x1))i1,i1

(qk,n[
√

nW(i1,j1,n)(s1)]qk,n)(Hn(x2))j1,j1(qk,n[
√

nW(j1,j2,n)(s2)]qk,n) · · ·
(Hn(xp))jp−1,jp−1(qk,n[

√
nW(jp−1,i1,n)(sp)]qk,n))

= Ψn(Hn(x1)Z̃n(s1)Hn(x2)Z̃n(s2) · · · Hn(xp)Z̃n(sp)).

This ends the proof of the Proposition 4.5.
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MAIN RESULT. We can now prove our main result: a free Girsanov property for
the free Brownian motion.

THEOREM 4.6. Let (σs)s∈R+ , be a free Brownian motion in (M, τ). Let N be a
commutative C∗-subalgebra of M such that N is free from (σs)s∈R+ . Let x : R+ → N

measurable such that x(u) = x(u)∗ for all u and
∞∫
0
‖(x(u)‖2du < ∞. Let σ̃s =

σs +
s∫

0
x(u)du.

Then there is a trace τ̃ on the free product algebra N ∗C[(σs)s∈R+ ] such that the
joint distribution of ((σ̃s)s∈R+ , x(u)u∈R+) for τ̃ is the same as the joint distribution of
((σs)s∈R+ , x(u)u∈R+) for τ (in particular, (σ̃s)s∈R+ is a free Brownian motion for the
new trace τ̃). Furthermore the two traces are asymptotically equivalent in the following
sense: There is a family Z̃n(s) of random matrices in Mn(L∞[0, 1] ∗ L) and a family
Dn(u) in ∆n such that:

(i) (C[σs, x(t)]s,t∈R+ , τ) = lim
n→∞

(C[Z̃n(s), Dn(t)]s,t∈R+ , Ψn);

(ii)(C[σs, x(t)]s,t∈R+ , τ̃) = lim
n→∞

(C[Z̃n(s), Dn(t)]s,t∈R+ , Ψ̃n);

where Ψ̃n is obtained from Ψn by a change of probability with exponential density hn

Ψn =
1
n

Trn(φ ∗ φ0), Ψ̃n =
1
n

Trn(φ∗φ0(hn.)).

Furthermore for all p, sup
n∈N

φ0(hp
n) < ∞.

Proof. σ̃s = σs +
s∫

0
x(u)du. Denote y(s) =

s∫
0

x(u)du; then y(s) is an element

of the C∗-algebra N and Hn(y(s)) =
s∫

0
Dn(u)du.

From Proposition 4.5, the joint distribution of ((Z̃n(s) + Hn(y(s))s∈R+ ,
Hn(x)x∈N) for Ψ̃n is the same as the joint distribution of (Z̃n(s)s∈R+ , Hn(x)x∈N)
for Ψn. Hence for every non commutative polynomial P, Ψ̃n(P(Z̃n(si)+ Hn(y(si)),
Hn(xj)) = Ψn(P(Z̃n(si), Hn(xj)). From Theorem 3.10, and Lemma 4.1 this last
quantity has a limit as n tends to ∞ and this limit is equal to τ(P(σsi , xj)). So this
gives (i).

It follows also that there is a trace τ̃ well defined on C[σ̃s] ∗ N by

τ̃(P(σ̃si , xj)) = lim
n→∞

Ψ̃n(P(Z̃n(si) + Hn(y(si)), Hn(xj))

and that the joint distribution of ((σ̃s)s∈R+ , xx∈N) for τ̃ is the same as the joint
distribution ((σs)s∈R+ , xx∈N) for τ. This gives also the equality (ii).

Now we finish by the following remark: if we replace in the preceding the-

orem the random process Z̃n(s) by the random process Bn,s =
(

1√
n Wn,i,j,s

)
16i,j6n

considered by Voiculescu (cf. Section 2), the asymptotic limits for Ψn and Ψ̃n give
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both the trace τ. This is why we were obliged to construct a matrix random pro-
cess with values in a free product algebra. More precisely we have the following
result.

PROPOSITION 4.7. Let Bn,s be the matrix random process Bn,s=
(

1√
n Wn,i,j,s

)
16i,j6n

where (Wn,i,j,s)16i6j6n are independent Brownian motions. Let Ψn and Ψ̃n be the traces
of Theorem 4.6.Then:

(i’) (C[σs, x(t)]s,t∈R+ , τ) = lim
n→∞

(C[Bn,s, Dn(t)]s,t∈R+ , Ψn);

(ii’) (C[σs, x(t)]s,t∈R+ , τ) = lim
n→∞

(C[Bn,s, Dn(t)]s,t∈R+ , Ψ̃n).

Proof. Step 1. The equality (i’) results from the Theorem 2.2 of [7] as it is
recalled in Section 2 and from the Lemma 4.1.

Notice that Bn,s and Dn(t) = Hn(x(t)) are matrices with coefficients in L so
here Ψn respectively Ψ̃n are simply equal to 1

n Trn(φ0) respectively 1
n Trn(φ0(hn.));

Ψn restricted to Mn(L) is equal to the trace φn of Section 2. As in the proof of

Theorem 4.6 denote y(s) =
s∫

0
x(u)du.

Step 2. From Lemma 4.3, the joint distribution of
(

Bn,s+ 1
n Hn(y(s)), Hn(x(t))

)
for Ψ̃n is the same as the joint distribution of (Bn,s, Hn(x(t))) for Ψn.

Step 3. Let P be a non commutative polynomial. Compute now:

Ψn

([
Bn,s1 +

1
n

Hn(y(s1))
]α1

Hn(x1)
[

Bn,s2 +
1
n

Hn(y(s2)))
]α2

Hn(x2) · · ·[
Bn,sm +

1
n

Hn(y(sm))
]αm

Hn(xm)
)

= Ψn((Bn,s1)
α1 Hn(x1)(Bn,s2)

α2 Hn(x2) · · · (Bn,sm)α1 Hn(xm))

+
α1+···+αm

∑
i=1

( 1
n

)i
(Ψn(Qi(Bn,s1 , . . . , Bn,sm , Hn(x1), . . . , Hn(xm)),

where Qi is a non commutative polynomial.
From the theorem of Voiculescu recalled in Section 2, lim

n→∞
Ψn(Qi(Bn,s1 , . . . ,

Bn,sm , Hn(x1), . . . , Hn(xm)) = τ(Qi(σs1 , . . . , σsm , x1, . . . , xm)), for all i, and i.e. for

every non commutative polynomial P we have Ψn

(
P
(

Bn,si +
1
n Hn(y(si)), Hn(xj)

))
−Ψn(P(Bn,si , Hn(xj))) tends to zero as n tends to ∞, and∣∣∣Ψ̃n

((
P
(

Bn,si +
1
n

Hn(y(si)), Hn(xj)
))

− Ψ̃n(P(Bn,si , Hn(xj)))
∣∣∣ 6

φ0(h2
n)

1
2 Ψn

([
P
(

Bn,si +
1
n

Hn(y(si)), Hn(xj)
)
− P(Bn,si , Hn(xj))

]∗
·[

P
(

Bn,si +
1
n

Hn(y(si)), Hn(xj)
)
− P(Bn,si , Hn(xj))

])1/2
,

and we know from Lemma 4.3 that lim
n→∞

φ0(h2
n) = exp(τ(a2)).
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It follows that the limit joint distribution of (Bn,s, Hn(x(t))) for Ψ̃n is the

same as the limit joint distribution of
(

Bn,s + 1
n Hn(y(s)), Hn(x(t))

)
for Ψ̃n. Ap-

plying now Step 2 and 1 it follows that this limit is equal to the joint distribution
of (σs, x(t)) for τ. So we get (ii’).

The generalization of this Girsanov property (Theorem 4.6) to the case where
the process x is adapted to the free Brownian motion (σs) is a work in progress.
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[4] F. RĂDULESCU, A one parameter group of automorphisms of L(F∞)⊗ B(H) scaling
the trace, C. R. Acad. Sci. Paris 314(1992), 1027–1032.

[5] R. SPEICHER, Lectures given during the session "Free Probability and Operator
Spaces" at the Centre Emile Borel, Institut Henri Poincaré, Paris, (September 1999–
February 2000).

[6] D. VOICULESCU, Circular and Semicircular Systems and Free Product Factors, Opera-
tor Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Progr.
Math., vol. 92, Birkhauser, Boston 1990.

[7] D. VOICULESCU, Limit laws for random matrices and free products, Invent. Math.
104(1991), 201–220.

[8] D. VOICULESCU, K.J. DYKEMA, A. NICA, Free Random Variables, CRM Monograph
Series, vol. 1, Amer. Math. Soc., Providence, RI 1992.

JOCELYNE BION-NADAL, CENTRE DE MATHÉMATIQUES APPLIQUÉES (CMAP),
CNRS UMR 7641, ECOLE POLYTECHNIQUE, F-91128 PALAISEAU CEDEX, FRANCE

E-mail address: bionnada@cmapx.polytechnique.fr

Received July 9, 2004.


