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ABSTRACT. We propose some norm estimations for sums of positive oper-
ators on Hilbert spaces, extending the ones given by Davidson-Power and
Kittaneh for two operators. Such inequalities are useful in the theory of best
approximations in C∗-algebras, complex interpolation, the theory of general-
ized inverses and operator approximation. We prove that the equality case in
generalized triangle inequalities is obtained when equality holds in the corre-
sponding Cauchy-Schwarz type inequalities, extending a recent result of Kit-
taneh. Certain applications concerning orthogonal projections or operators
having orthogonal ranges are given.
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1. INTRODUCTION

If J is a (closed, two-sided) ideal of a C∗-algebra A and a ∈ A \J is the
J -strict limit of a bounded net {jα} ⊂ J , Davidson and Power [1] proved that
the norm of a + J can be attained by an element in the closed convex hull of
{jα}. One of the main ingredients was the following norm inequality for positive
operators A and B on a Hilbert space H :

(1.1) ‖A + B‖ 6 max{‖A‖, ‖B‖}+ ‖AB‖1/2,

where ‖ · ‖ denotes the usual operator norm. Kittaneh [5] proved that ‖AB‖1/2

can be replaced in (1.1) by ‖A1/2B1/2‖:

(1.2) ‖A + B‖ 6 max{‖A‖, ‖B‖}+ ‖A1/2B1/2‖.

However, another inequality, which is sharper than both (1.2) and the triangle
inequality, have been recently discovered by the same author [6]:

(1.3) ‖A + B‖ 6
1
2

(
‖A‖+ ‖B‖+

√
(‖A‖ − ‖B‖)2 + 4‖A1/2B1/2‖2

)
.
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Kittaneh observed in [6] that a similar inequality holds true if our operators
A and B have orthogonal ranges (instead of being positive):

(1.4) ‖A + B‖2 6
1
2

(
‖A‖2 + ‖B‖2 +

√
(‖A‖2 − ‖B‖2)2 + 4‖AB∗‖2

)
.

It is our aim in Section 2 to extend the Kittaneh’s result (1.3) for arbitrarily
finite sums of positive operators (Theorem 2.1, Corollaries 2.6 and 2.9). More
precisely, if A1, A2, . . . , An are positive operators on H we prove that

(1.5)
∥∥∥ n

∑
k=1

Ak

∥∥∥ 6 ‖(‖A1/2
i A1/2

j ‖)16i,j6n‖,

inequality which is sharper than the corresponding triangle inequality. In partic-
ular, we deduce that

(1.6)
∥∥∥ n

∑
k=1

Ak

∥∥∥ 6
n

max
j=1

n

∑
i=1

‖A1/2
i A1/2

j ‖,

which extends (1.1) and (1.2).
As applications of these norm estimations we provide some sufficient con-

ditions on operator invertibility and show how our inequalities for sums of pos-
itive operators give rise to inequalities for sums of operators having orthogonal
ranges. More exactly, if A1, A2, . . . , An have pairwise orthogonal ranges we prove
that

(1.7)
∥∥∥ n

∑
k=1

Ak

∥∥∥2
6 ‖(‖Ai A∗

j ‖)16i,j6n‖,

inequality which is an extension of (1.4). The given proofs are simpler than the
original ones (for two operators) obtained in [1], [5] and [6].

If A and B are positive operators on H then equality holds in the associ-
ated triangle inequality (i.e. ‖A + B‖ = ‖A‖ + ‖B‖) if and only if the equality
case holds in a Cauchy-Schwarz type inequality (i.e. ‖AB‖ = ‖A‖‖B‖; cf. Propo-
sitions 3.3 and 3.4 of [6]). We prove that, more generally, for positive operators
A1, A2, . . . , An on H the equality

(1.8)
∥∥∥ n

∑
k=1

Ak

∥∥∥ =
n

∑
k=1

‖Ak‖

can be still expressed in terms of the product A1 A2 · · · An norm:∥∥∥ n

∏
k=1

Ak

∥∥∥ =
n

∏
k=1

‖Ak‖.

In addition, we show that (1.8) is equivalent to∥∥∥ n

∑
k=1

ak Ark
k

∥∥∥ =
n

∑
k=1

ak‖Ak‖rk ,

for certain (and also for any) ak, rk > 0 (k = 1, 2, . . . , n). Further applications and
extensions conclude the paper.
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As mentioned before such norm inequalities are important tools in the the-
ory of best approximation in C∗-algebras [1], in complex interpolation ([11], Chap-
ter 2) or in the theory of generalized inverses and operator approximation [7], [8],
[9]. It is expected that our generalizations and extensions would provide a larger
set of applications.

2. A GENERALIZED DAVIDSON-POWER-KITTANEH INEQUALITY

Let Hk, k = 1, 2, . . . , n be complex Hilbert spaces. Any linear and bounded

operator T on
n⊕

k=1
Hk can be represented as a n × n operator matrix, namely

T = (Tij)16i,j6n with Tij ∈ B(Hj, Hi) (the Banach space of all bounded linear
operators from Hj into Hi with the norm topology). In their study on norm-
inequalities for operator matrices, Hou and Du showed in [3] that, for such an
operator matrix,

(2.1) ‖T‖ 6 ‖(‖Tij‖)16i,j6n‖.

This is the main ingredient in proving a general norm inequality for sums of
positive operators which is sharper than the triangle inequality and extends (1.1),
(1.2) and (1.3). We want to remark that our proofs are even simpler than the ones
given, for two operators, in [1], [5] and [6].

THEOREM 2.1. Let Tk ∈ B(Hk, H ), k = 1, 2, . . . , n be bounded linear Hilbert
space operators. Then

(2.2)
∥∥∥ n

∑
k=1

TkT∗k
∥∥∥ 6 ‖(‖T∗i Tj‖)16i,j6n‖.

In particular, for n = 2, we have

(2.3) ‖T1T∗1 + T2T∗2 ‖ 6
1
2

(
‖T1‖2 + ‖T2‖2 +

√
(‖T1‖2 − ‖T2‖2)2 + 4‖T∗1 T2‖2

)
.

Proof. Let T = (T1, T2, . . . , Tn) ∈ B
( n⊕

k=1
Hk, H

)
. Then

∥∥∥ n

∑
k=1

TkT∗k
∥∥∥ = ‖TT∗‖ = ‖T∗T‖ = ‖(T∗i Tj)16i,j6n‖.

In addition, by (2.1),

‖(T∗i Tj)16i,j6n‖ 6 ‖(‖T∗i Tj‖)16i,j6n‖,

which completes the proof of (2.2).
The matrix in the right-hand side of (2.2) is hermitian. Its norm equals its

spectral radius which, for n = 2, is

1
2

(
‖T1‖2 + ‖T2‖2 +

√
(‖T1‖2 − ‖T2‖2)2 + 4‖T∗1 T2‖2

)
.
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REMARK 2.2. (i) As mentioned before, (2.2) is sharper than the triangle in-
equality. To see this note that, for any unit vector α = (α1, . . . , αn) ∈ Cn,

‖(‖T∗i Tj‖)16i,j6nαT‖2 =
n

∑
i=1

∣∣∣ n

∑
j=1

‖T∗i Tj‖αj

∣∣∣2
6

n

∑
i=1

( n

∑
j=1

‖Ti‖‖Tj‖|αj|
)2

= ‖(‖Ti‖‖Tj‖)16i,j6n(|α1|, . . . , |αn|)T‖2

6 ‖(‖Ti‖‖Tj‖)16i,j6n‖2.

Consequently,

‖(‖T∗i Tj‖)16i,j6n‖ 6 ‖(‖Ti‖‖Tj‖)16i,j6n‖ = ‖(‖T1‖, . . . , ‖Tn‖)∗(‖T1‖, . . . , ‖Tn‖)‖

= (‖T1‖, . . . , ‖Tn‖)(‖T1‖, . . . , ‖Tn‖)∗ =
n

∑
k=1

‖Tk‖2.

(ii) If ‖(‖T∗i Tj‖)16i,j6n‖ <
n
∑

k=1
‖Tk‖2 then

〈 n

∑
k=1

(‖Tk‖2 − TkT∗k )h, h
〉

=
n

∑
k=1

‖Tk‖2 −
〈( n

∑
k=1

TkT∗k
)

h, h
〉

>
n

∑
k=1

‖Tk‖2 −
∥∥∥ n

∑
k=1

TkT∗k
∥∥∥

>
n

∑
k=1

‖Tk‖2 − ‖(‖T∗i Tj‖)16i,j6n‖ > 0,

for every unit vector h ∈ H . We deduce that
n
∑

k=1
(‖Tk‖2 − TkT∗k ) is invertible.

In particular, if P1, . . . , Pn are orthogonal projections on a Hilbert space and

‖(‖PiPj‖)16i,j6n‖ < n then
n
∑

k=1
(1− Pk) is invertible.

The right-hand side of (2.2) is usually difficult to compute (for large n’s).
The following estimation could be, in this sense, more useful by the applications
point of view:

COROLLARY 2.3. Let Tk ∈ B(Hk, H ), k = 1, 2, . . . , n be bounded linear Hilbert
space operators. Then

(2.4)
∥∥∥ n

∑
k=1

TkT∗k
∥∥∥ 6

n
max
j=1

n

∑
i=1

‖T∗i Tj‖.

Proof. The operator norm of the hermitian matrix (T∗i Tj)16i,j6n is majorized
by any of its complete algebra norms on B(Cn) (being spectral norms), in partic-
ular by its B(`∞) norm, which is

n
max
j=1

n

∑
i=1

‖T∗i Tj‖.
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REMARK 2.4. Let Ak, k = 1, 2, . . . , n be positive operators on a Hilbert
space. If Tk = A1/2

k , k = 1, 2, . . . , n, then (2.2) becomes∥∥∥ n

∑
k=1

Ak

∥∥∥ 6 ‖(‖A1/2
i A1/2

j ‖)16i,j6n‖,

which is a generalization of (1.3) for arbitrarily finite sums of positive operators.
In addition, by (2.4), we obtain the inequality∥∥∥ n

∑
k=1

Ak

∥∥∥ 6
n

max
j=1

n

∑
i=1

‖A1/2
i A1/2

j ‖,

which extends (1.1) and (1.2).

The following two results, obtained as consequences of Theorem 2.1 and/or
Corollary 2.3 are, in a certain sense, extensions of (2.2) and/or (2.4):

COROLLARY 2.5. Let Tk ∈ B(Hk, H ), k = 1, 2, . . . , n be bounded linear opera-
tors. Then ∥∥∥ n

∑
k=1

TkT∗k
∥∥∥ 6

m
max
k=1

m

∑
l=1

∥∥∥(
∑

i∈Pk

TiT∗i
)1/2(

∑
j∈Pl

TjT∗j
)1/2∥∥∥,

for any partition P = {P1, P2, . . . , Pm} of {1, 2, . . . , n}.

Proof. We apply Corollary 2.3 for operators S1, S2, . . . , Sm defined by

Sk = (Ti)i∈Pk :
⊕
i∈Pk

Hi → H , k = 1, 2, . . . , m.

We just have to observe that SkS∗k = ∑
i∈Pk

TiT∗i and

‖S∗l Sk‖2 = ‖S∗l SkS∗k Sl‖ =
∥∥∥S∗l

(
∑

i∈Pk

TiT∗i
)

Sl

∥∥∥
=

∥∥∥(
∑

i∈Pk

TiT∗i
)1/2

SlS∗l
(

∑
i∈Pk

TiT∗i
)1/2∥∥∥

=
∥∥∥(

∑
i∈Pk

TiT∗i
)1/2(

∑
j∈Pl

TjT∗j
)1/2∥∥∥2

,

for k, l = 1, 2, . . . , m.

COROLLARY 2.6. Let Tk ∈ B(Hk, H ) and Sk ∈ B(H , Hk), k = 1, 2, . . . , n be
bounded linear Hilbert space operators. Then∥∥∥ n

∑
k=1

TkSk

∥∥∥2
6 ‖(‖T∗i Tj‖)16i,j6n‖1/2‖(‖SiS∗j ‖)16i,j6n‖1/2.
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Proof. Let T = (T1, T2, . . . , Tn) and S =


S1
S2
...

Sn

. Then TS =
n
∑

k=1
TkSk and

‖TS‖2 6 ‖T‖2‖S‖2 =
∥∥∥ n

∑
k=1

TkT∗k
∥∥∥∥∥∥ n

∑
k=1

S∗k Sk

∥∥∥
6 ‖(‖T∗i Tj‖)16i,j6n‖1/2‖(‖SiS∗j ‖)16i,j6n‖1/2.

Let Pk, k = 1, 2, . . . , n be orthogonal projections on a Hilbert space. Then,
by Theorem 2.1 and Corollary 2.3,

(2.5)
∥∥∥ n

∑
k=1

Pk

∥∥∥ 6 ‖(‖PiPj‖)16i,j6n‖ 6
n

max
j=1

n

∑
i=1

‖PiPj‖.

If P1 and P2 are orthogonal projections (not both null) on a Hilbert space then
‖P1 + P2‖ = 1 + ‖P1P2‖ ([2], [12]). We can observe that, in this case, equality
holds in the inequalities (2.5). This need not be the case for n > 3 as stated by the
following example:

EXAMPLE 2.7. Let P 6= 0, 1 be an orthogonal projection on a Hilbert space,
P1 = 1, P2 = P and P3 = 1− P. Then ‖P1 + P2 + P3‖ = 2, while

‖(‖PiPj‖)16i,j6n‖ =

∥∥∥∥∥∥
1 1 1

1 1 0
1 0 1

∥∥∥∥∥∥ = 3.

We shall give some applications of the main theorem concerning operators
having orthogonal ranges. Such operators and their corresponding norm estima-
tions are usually encountered when minimizing norms of linear polynomials in
terms of generalized inverses [7], [8], [9].

If operators Tk, k = 1, 2, . . . , n have orthogonal ranges (ran Ti ⊥ ran Tj for
i 6= j) then it is obvious that

n
max
j=1

n

∑
i=1

‖T∗i Tj‖ =
n

max
j=1

‖Tj‖2 =
∥∥∥ n

∑
k=1

TkT∗k
∥∥∥.

Therefore the equality case holds in the inequalities (2.2) and (2.4). On the other
hand, since ( n

∑
k=1

Tk

)∗( n

∑
k=1

Tk

)
=

n

∑
k=1

T∗k Tk,

one can apply Theorem 2.1 to operators T∗k , k = 1, 2, . . . , n to obtain the following
extension of the Kittaneh’s result (1.4):
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COROLLARY 2.8. Let Tk, k = 1, 2, . . . , n be bounded linear operators on a Hilbert
space H with ran Ti ⊥ ran Tj, for i 6= j. Then∥∥∥ n

∑
k=1

Tk

∥∥∥2
6 ‖(‖TiT∗j ‖)16i,j6n‖.

Employing operator matrix techniques one can further deduce:

COROLLARY 2.9. Let T = {Tij}16i6m
16j6n

⊂ B(H ) be a given m × n operator

matrix on a Hilbert space such that ran Tpj ⊥ ran Tqj, for p, q = 1, 2, . . . , m, p 6= q and
j = 1, 2, . . . , n. Then

(2.6)
m

max
i=1

∥∥∥ n

∑
j=1

T∗ij Tij

∥∥∥ 6
∥∥∥(∥∥∥ m

∑
k=1

TkiT∗kj

∥∥∥)∥∥∥.

Proof. One can apply Theorem 2.1 for operators

S1 =


T∗11
T∗21

...
T∗m1

 , S2 =


T∗12
T∗22

...
T∗m2

 , . . . , Sn =


T∗1n
T∗2n

...
T∗mn

 .

Observe that, by hypothesis,

SjS∗j =


T∗1jT1j 0 . . . 0

0 T∗2jT2j . . . 0
...

...
. . .

...
0 0 . . . T∗mjTmj

 , j = 1, 2, . . . , n.

Then ∥∥∥ n

∑
j=1

SjS∗j
∥∥∥ =

m
max
i=1

∥∥∥ n

∑
j=1

T∗ij Tij

∥∥∥.

Finally,

S∗i Sj =
m

∑
k=1

TkiT∗kj, i, j = 1, 2, . . . , n.

We remark that (2.2) can be reobtained by taking m = 1 in (2.6).

3. THE TRIANGLE “EQUALITY”

Our next aim is to provide necessary and sufficient conditions on a finite
sequence {A1, A2, . . . , An} of positive operators in order to obtain the equality
case (1.8) in a generalized triangle inequality.

The first step was already made:
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PROPOSITION 3.1. ([6]) Let A and B be positive operators on H . The following
conditions are equivalent:

(i) ‖A + B‖ = ‖A‖+ ‖B‖;
(ii) ‖A1/2B1/2‖ = ‖A‖1/2‖B‖1/2;

(iii) ‖AB‖ = ‖A‖‖B‖.

The following lemma has been an important tool in proving arithmetic-
geometric mean type inequalities [4], [10], but also for norm inequalities for sums
of positive operators [5], [6]. Though it holds for every unitarily invariant norm,
we state it (as only needed here) for the usual operator norm:

LEMMA 3.2. If A and B are operators on H such that AB is selfadjoint then

‖AB‖ 6 ‖Re (BA)‖.

The main ingredients for our main theorem are gathered in two lemmas
involving triples of positive operators.

The proof of the first one is similar to that in Proposition 3.3 of [6]:

LEMMA 3.3. Let A, B, C be positive operators on H . Then if ‖A1/2CB1/2‖ =
‖C1/2 A1/2‖‖C1/2B1/2‖ we have

(3.1) ‖C1/2(A + B)1/2‖2 = ‖C1/2 A1/2‖2 + ‖C1/2B1/2‖2.

Proof. Take xn, yn (n > 0) unit vectors in H such that

〈A1/2CB1/2yn, xn〉 → ‖A1/2CB1/2‖.

Then, by passing to limit in the following set of inequalities,

|〈C1/2B1/2yn, C1/2 A1/2xn〉| 6 ‖C1/2 A1/2xn‖‖C1/2B1/2‖

6 ‖C1/2 A1/2‖‖C1/2B1/2‖,

we obtain that ‖C1/2 A1/2xn‖ → ‖C1/2 A1/2‖ and, similarly, ‖C1/2B1/2yn‖ →
‖C1/2B1/2‖.

Moreover,

‖C1/2(A + B)1/2‖2 = ‖C1/2(A + B)C1/2‖

=
∥∥∥∥(

C1/2 A1/2 C1/2B1/2

0 0

) (
A1/2C1/2 0
B1/2C1/2 0

)∥∥∥∥
=

∥∥∥∥(
A1/2C1/2 0
B1/2C1/2 0

) (
C1/2 A1/2 C1/2B1/2

0 0

)∥∥∥∥
=

∥∥∥∥(
A1/2CA1/2 A1/2CB1/2

B1/2CA1/2 B1/2CB1/2

)∥∥∥∥ .

We deduce that

(3.2)
∣∣∣∣〈(

A1/2CA1/2 A1/2CB1/2

B1/2CA1/2 B1/2CB1/2

) (
axn
byn

)
,
(

axn
byn

)〉∣∣∣∣ 6 ‖C1/2(A + B)1/2‖2,
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for a = ‖C1/2 A1/2‖
(‖C1/2 A1/2‖2+‖C1/2B1/2‖2)1/2 and b = ‖C1/2B1/2‖

(‖C1/2 A1/2‖2+‖C1/2B1/2‖2)1/2 . Expanding
and letting n → ∞ in (3.2) we obtain that

‖C1/2(A + B)1/2‖2 > ‖C1/2 A1/2‖2 + ‖C1/2B1/2‖2.

The converse inequality is obvious. Therefore, (3.1) holds, as required.

LEMMA 3.4. Let A, B, C be positive operators on H . If ‖(A + B)C‖ = (‖A‖+
‖B‖)‖C‖ then ‖ACB‖ = ‖A‖‖C‖‖B‖.

Proof. Observe that, in our hypothesis,

(‖A‖+ ‖B‖)‖C‖ = ‖(A + B)C‖ 6 ‖(A + B)C1/2‖‖C‖1/2 6 (‖A‖+ ‖B‖)‖C‖.

Hence ‖(A + B)C1/2‖ = (‖A‖ + ‖B‖)‖C‖1/2. A similar argument shows that
‖(A + B)1/2C1/2‖ = (‖A‖+ ‖B‖)1/2‖C‖1/2 also holds. Consequently,

(‖A‖+ ‖B‖)‖C‖ = ‖C1/2(A + B)C1/2‖ 6 ‖C1/2 AC1/2‖+ ‖C1/2BC1/2‖

6 ‖C1/2 AC1/2‖+ ‖B‖‖C‖ 6 (‖A‖+ ‖B‖)‖C‖.

This forces (3.1), ‖C1/2 AC1/2‖ = ‖C‖‖A‖ and, by symmetry, ‖C1/2BC1/2‖ =
‖C‖‖B‖.

Since C1/2 AC1/2 and C1/2BC1/2 are positive, we deduce that

‖C1/2 ACBC1/2‖ = ‖C1/2 AC1/2‖‖C1/2BC1/2‖ = ‖A‖‖C‖2‖B‖
(by Proposition 3.1 (i)⇒(iii)). Moreover,

‖A‖‖C‖2‖B‖ = ‖C1/2 ACBC1/2‖ 6 ‖C‖1/2‖ACB‖‖C‖1/2 6 ‖A‖‖C‖2‖B‖
imply that ‖ACB‖ = ‖A‖‖C‖‖B‖. The proof is complete.

REMARK 3.5. If A, B, C are as above then

‖A + B + C‖ 6 ‖A + B‖+ ‖C‖ 6 ‖A‖+ ‖B‖+ ‖C‖.

We obtain that

(3.3) ‖A + B + C‖ = ‖A‖+ ‖B‖+ ‖C‖
if and only if ‖A + B‖ = ‖A‖+ ‖B‖ (or ‖AB‖ = ‖A‖‖B‖) and ‖A + B + C‖ =
‖A + B‖ + ‖C‖ (or ‖(A + B)C‖ = ‖A + B‖‖C‖). Consequently, (3.3) can be
rewritten in equivalent form as

(3.4) ‖(A + B)C‖ = (‖A‖+ ‖B‖)‖C‖.

COROLLARY 3.6. Let A, B, C be positive operators on H . The following condi-
tions are equivalent:

(i) ‖A + B + C‖ = ‖A‖+ ‖B‖+ ‖C‖;
(ii) ‖ABC‖ = ‖A‖‖B‖‖C‖;

(iii) ‖BCA‖ = ‖B‖‖C‖‖A‖;
(iv) ‖CAB‖ = ‖C‖‖A‖‖B‖.
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Proof. If (i) holds then, by (3.4) and Lemma 3.4, we obtain (iii).
Conversely, by (iii), the following inequalities

‖B‖‖C‖‖A‖ = ‖BCA‖ 6 ‖B‖1/2‖B1/2CA1/2‖‖A‖1/2

6 ‖B‖1/2‖B1/2C1/2‖‖C1/2 A1/2‖‖A‖1/2 6 ‖B‖‖C‖‖A‖

allow that ‖B1/2CA1/2‖ = ‖B1/2 A1/2‖‖A1/2C1/2‖, ‖B1/2C1/2‖ = ‖B‖1/2‖C‖1/2

and ‖A1/2C1/2‖ = ‖A‖1/2‖C‖1/2. We use Lemma 3.3 to prove that

‖C1/2(A + B)C1/2‖ = (‖A‖+ ‖B‖)‖C‖.

Moreover, by Lemma 3.2,

‖(A + B)C‖ > ‖C1/2(A + B)C1/2‖ = (‖A‖+ ‖B‖)‖C‖.

The converse inequality being obvious we obtain (3.4). Hence, by Remark 3.5, we
get the conclusion.

We are now in position to prove our main result in this section:

THEOREM 3.7. Let Ak, k = 1, 2, . . . , n be positive operators on H . The following
conditions are equivalent:

(i)
∥∥∥ n

∑
k=1

Ak

∥∥∥ =
n
∑

k=1
‖Ak‖;

(ii)
∥∥∥ n

∏
k=1

Aσ(k)

∥∥∥ =
n
∏

k=1
‖Aσ(k)‖, for a certain σ ∈ Sn;

(iii)
∥∥∥ n

∏
k=1

Aσ(k)

∥∥∥ =
n
∏

k=1
‖Aσ(k)‖, for every σ ∈ Sn.

Proof. We proceed by induction. Suppose that, for any given positive inte-

ger m and any positive operators Ak, k = 1, 2, . . . , m, on H ,
∥∥∥ m

∑
k=1

Ak

∥∥∥ =
m
∑

k=1
‖Ak‖

if and only if
∥∥∥ m

∏
k=1

Ak

∥∥∥ =
m
∏

k=1
‖Ak‖. By a similar argument with the one used in

Remark 3.5 one can easily deduce that, for any given positive operator B on H ,∥∥∥ m

∑
k=1

Ak + B
∥∥∥ =

m

∑
k=1

‖Ak‖+ ‖B‖

if and only if

(3.5)
∥∥∥( m

∑
k=1

Ak

)
B
∥∥∥ =

( m

∑
k=1

‖Ak‖
)
‖B‖.

Let C =
m−1
∑

k=1
Ak. Then (3.5) can be rewritten in an equivalent form:

(3.6) ‖(C + Am)B‖ = (‖C‖+ ‖Am‖)‖B‖ and ‖C‖ =
m−1

∑
k=1

‖Ak‖.
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By Remark 3.5 and Corollary 3.6, (3.6) becomes

‖CAmB‖ = ‖C‖‖Am‖‖B‖ =
( m−1

∑
k=1

‖Ak‖
)
‖Am‖‖B‖.

Since ‖CAmB‖ = ‖C|BAm|‖ and ‖AmB‖ = ‖|BAm|‖ we obtain

‖C|BAm|‖ =
( m−1

∑
k=1

‖Ak‖
)
‖|BAm|‖ =

( m−1

∑
k=1

‖Ak‖
)
‖Am‖‖B‖.

Equivalently, by the induction hypothesis,

‖A1 A2 · · · AmB‖ = ‖A1 A2 · · · Am−1|BAm|‖ = ‖A1‖‖A2‖ · · · ‖Am−1‖‖|BAm|‖
= ‖A1‖‖A2‖ · · · ‖Am‖‖B‖.

The proof is now complete.

To obtain a generalized version of Proposition 3.1 (ii)⇔(iii) (cf. Proposi-
tion 3.4 of [6]), we need the following result:

PROPOSITION 3.8. Let Ak, k = 1, 2, . . . , n be positive operators on H . If∥∥∥ n
∏

k=1
Ak

∥∥∥ =
n
∏

k=1
‖Ak‖ then

∥∥∥ n
∏

k=1
Ark

σ(k)

∥∥∥ =
n
∏

k=1
‖Aσ(k)‖rk , for any r1, r2, . . . , rn > 0

and σ ∈ Sn.

Proof. Since, in our hypothesis,
∥∥∥ n

∏
k=1

Ak

∥∥∥ =
∥∥∥ n

∏
k=1

Aσ(k)

∥∥∥, for any σ ∈ Sn, it

suffices to consider the case r1 = r2 = · · · = rn−1 = 1 and rn > 0.
Step 1. If rn 6 1 then the following inequalities

‖A1‖ · · · ‖An‖ = ‖A1 · · · Arn
n A1−rn

n ‖

6 ‖A1 · · · Arn
n ‖‖An‖1−rn 6 ‖A1‖ · · · ‖An‖rn‖An‖1−rn

show that

(3.7) ‖A1 · · · An−1 Arn
n ‖ = ‖A1‖ · · · ‖An−1‖‖An‖rn .

Step 2. Next suppose that, for a given r > 0, (3.7) holds when rn is replaced
by r. Then

(‖A1‖ · · · ‖An−1‖‖An‖r)2 = ‖A1 · · · An−1 Ar
n‖2 = ‖A1 · · · An−1 A2r

n An−1 · · · A1‖
6 ‖A1 · · · An−1 A2r

n ‖‖An−1‖ · · · ‖A1‖
6 (‖A1‖ · · · ‖An−1‖‖An‖r)2,

that is ‖A1 · · · An−1 A2r
n ‖ = ‖A1‖ · · · ‖An−1‖‖An‖2r.

Step 3. If rn > 1 then we can choose a positive integer m with rn
2m < 1. By

Step 1, (3.7) holds when rn is replaced by rn
2m . We just have to apply m times Step 2

to finally obtain (3.7).

Our promised generalized version of Proposition 3.4 in [6] follows:
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COROLLARY 3.9. Let Ak, k = 1, 2, . . . , n be positive operators on H . The fol-
lowing conditions are equivalent:

(i)
∥∥∥ n

∏
k=1

Ak

∥∥∥ =
n
∏

k=1
‖Ak‖;

(ii)
∥∥∥ n

∏
k=1

Ark
σ(k)

∥∥∥ =
n
∏

k=1
‖Aσ(k)‖rk , for certain r1, r2, . . . , rn > 0 and σ ∈ Sn;

(iii)
∥∥∥ n

∏
k=1

Ark
σ(k)

∥∥∥ =
n
∏

k=1
‖Aσ(k)‖rk , for any r1, r2, . . . , rn > 0 and σ ∈ Sn.

COROLLARY 3.10. Let Ak, k = 1, 2, . . . , n be as above. If
∥∥∥ n

∑
k=1

Ak

∥∥∥ =
n
∑

k=1
‖Ak‖

then
∥∥∥ n

∑
k=1

ak Ark
k

∥∥∥ =
n
∑

k=1
ak‖Ak‖rk , for any a1, a2, . . . , an, r1, r2, . . . , rn > 0.

We observe that, for given positive operators Aj, j = 1, 2, . . . , n,

(3.8)
∥∥∥ n

∑
j=1

Aj

∥∥∥ 6
( n

max
k=1

‖Ak‖
)1/2 n

∑
l=1

‖Al‖1/2.

It is easy to observe that equality holds in (3.8) if and only if (1.8) holds true
and

(3.9) ‖Al‖ =
n

max
k=1

‖Ak‖,

for any l = 1, 2, . . . , n. Hence

(3.10)
∥∥∥ n

∑
j=1

Aj

∥∥∥ = n
( n

max
k=1

‖Ak‖
)

=
n

∑
j=1

‖Aj‖

or, equivalently, by Theorem 3.7,

(3.11)
∥∥∥ n

∏
j=1

Aj

∥∥∥ =
n

∏
j=1

‖Aj‖ =
( n

max
k=1

‖Ak‖
)n

.

We can now formulate:

COROLLARY 3.11. Let Aj, j = 1, 2, . . . , n be positive operators on H . The fol-
lowing conditions are equivalent:

(i)
∥∥∥ n

∑
j=1

Aj

∥∥∥ =
( n

max
k=1

‖Ak‖
)1/2 n

∑
l=1

‖Al‖1/2;

(ii)
∥∥∥ n

∑
j=1

Aj

∥∥∥ = n
( n

max
k=1

‖Ak‖
)

;

(iii)
∥∥∥ n

∏
j=1

Aj

∥∥∥ =
( n

max
k=1

‖Ak‖
)n

.
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