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HYPONORMAL TOEPLITZ OPERATORS
WITH RATIONAL SYMBOLS
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ABSTRACT. In this paper we consider the self-commutators of Toeplitz op-
erators T, with rational symbols ¢ using the classical Hermite-Fejér inter-
polation problem. Our main theorem is as follows. Let ¢ = g+ f € L%
and let f = 0a and ¢ = 6b, where 0 is a finite Blaschke product of de-
gree d and a,b € H() := H?> © 0H?. Then H(6) is a reducing subspace of
(T4, Ty], and [Ty, Ty has the following representation relative to the direct
sum H(0) ® H(6)*:
[Ty, Tol = A(a) " WM(9)W*A(a) & Oco,

where A(a) := Pyyg)Ma |34(9) (M, is the multiplication operator with symbol
a), W is the unitary operator from C? onto H(0) defined by W := (¢1, ..., ¢4)
({#;} is an orthonormal basis for #(0)), and M(¢) is a matrix associated with
the classical Hermite-Fejér interpolation problem. Hence, in particular, T, is

hyponormal if and only if M(¢) is positive. Moreover the rank of the self-
commutator [Ty, Ty] is given by rank [Ty, Ty] = rank M(¢).

KEYWORDS: Toeplitz operators, hyponormal, classical Hermite-Fejér interpolation.
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1. INTRODUCTION

For ¢ in L®(T) of the unit circle T = 0D, the Toeplitz operator with symbol ¢
is the operator T, on the Hardy space H?(T) of the unit circle given by

Tof := P(ef) (f € HX(T)),

where P denotes the orthogonal projection which maps L?(T) onto H*(T). A
bounded linear operator A is called hyponormal if its self-commutator [A*, A] :=
A*A — AA* is positive (semidefinite). Normal Toeplitz operators were character-
ized by a property of their symbols in the early 1960’s by A. Brown and P. Hal-
mos [3] and 25 years passed before the exact nature of the relationship between
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the symbol ¢ € L% and the positivity of the self-commutator [Ty, Ty] was un-
derstood (via Cowen’s theorem [4]). We shall employ an equivalent variant of
Cowen’s theorem [4], that was first proposed by Nakazi and Takahashi [13].

COWEN’s THEOREM. For ¢ € L™, write
E(@) :={ke H”: ||kl < 1and ¢ — k¢ € H*}.
Then T, is hyponormal if and only if £(¢) is nonempty.

Cowen’s theorem is to recast the operator-theoretic problem of hyponor-
mality for Toeplitz operators into the problem of finding a solution with speci-
fied properties to a certain functional equation involving the operator’s symbol.
This approach has been put to use in the works [5], [6], [8], [9], [10], [11], [13],
[16] to study Toeplitz operators on H2(T). Particular attention has been paid to
Toeplitz operators with polynomial symbols. In particular, K. Zhu [16] has ap-
plied Cowen’s criterion and Schur’s algorithm [15] to the Schur function @y to
obtain an abstract characterization of those polynomial symbols that correspond
to hyponormal Toeplitz operators.

On the other hand, a function ¢ € L* is said to be of bounded type (or in the
Nevanlinna class) if there are functions ¢, i, in H* (D) such that

$1(2)
zZ) =
) = 02
for almost all z in T. Evidently, rational functions in L* are of bounded type. In
this paper we present an explicit description of the self-commutators of Toeplitz
operators with bounded type symbols associated with a finite Blaschke product
(or equivalently, rational symbols).

2. PRELIMINARIES AND AUXILIARY LEMMAS

Let ] be the unitary operator on L? defined by
J(f)(z) = Zf (2).
For ¢ € L™, the operator on H? defined by
Hyf = J(I = P)(¢f)
is called the Hankel operator H, with symbol ¢. If we define the function v by

0(z) := v(z), then H,, can be viewed as the operator on H? defined by
(zuv, @) = (Hyu,v) forallv € H*.
The following is a basic connection between Hankel and Toeplitz operators ([14]):

Top — TeTy = H%Hlp (q),l/) € L) and HyT, = Hé"h = Tth({) (h € H®).
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From this we can see that if k € £(¢) then

[Ty, Tp) = HoHg — HyHy = HgHg — HigHyg = Hg(1 — T Ty ) Hy.
If 6 is an inner function, the degree of 6, denoted by deg(0), is defined as n if 6 is
a finite Blaschke product of the form

oz
9(2):e1§H ,'8] (I8jl <1forj=1,...,n),
j=11- Bz
otherwise the degree of 6 is infinite. For an inner function 6, write
H () := H?> © 6H?.

Note that ker H; = 6H? and ran H; = H(0). It was shown ([1], Lemma 6) that if
T, is hyponormal and ¢ is not in H* then

¢ is of bounded type <= ¢ is of bounded type.
In [1], it was also shown that
¢ is of bounded type <= ker H, # {0} <= ¢ =0b,

where 6 is an inner function and b € H® satisfies that the inner parts of b and 6
are coprime. So we have

ker Hy, = 0H? and clran Hg, = H(D).

On the other hand, when we study the hyponormality of Toeplitz operators
T, with symbols ¢, we may assume that ¢(0) = 0 because the hyponormality of
an operator is invariant under translation by scalars. Thus if ¢ = g+ f € L®
(f,g € H?), then we will assume that f(0) = ¢(0) = 0 throughout the paper.
Therefore we can see (cf. [10], [9]) that if ¢ = g+ f € L® (f,g € H?) is of
bounded type and T, is hyponormal then we can write

f=06i6a and g=6b

for some inner functions 01 and 6, where a € H(6,6;) and b € H(67).
To prove the main result we need several auxiliary lemmas. The first lemma
gives a way to compute the rank of a product of two Hankel operators.

LEMMA 2.1. (Axler-Chang-Sarason Theorem [2]) For ¢, € L,
rank (H,Hy) = min{rank (Hy), rank (Hy)}.

The following result is a characterization of hyponormal Toeplitz operators
whose self-commutator is of finite rank.

LEMMA 2.2. (Nakazi-Takahashi Theorem [13]) A Toeplitz operator Ty, is hy-
ponormal and [Tg, Te| is a finite rank operator if and only if there exists a finite Blaschke
product k in (). In this case, we can choose k such that deg (k) = rank [Ty, Ty].

For a subspace M of H?, let Py be the orthogonal projection onto M. Then
we have:
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LEMMA 2.3. If f = 01054 for a € H(6165) then
62Pg, 12 (f) = P(61@) = 61Pyyp,)(a) +c  for some constant c.
Proof. Let g € H? be arbitrary. Then
(02Pg,112(f), &) = (Po,p2(610200), 028) = (01627, 62g) = (P(612), g).
Therefore we have that P(61a) = §2P92 12 (f). For the second equality, let a1 :=
Py(9,)(a) and ap := a — a;. Then we have
P(()lﬁ) = P(B]El) + P(Blﬁz) = 61a; + P(Glﬁz).

But since H(6162) = H(6,) © 61H(62) for inner functions 6; and 6, it follows

that ay € 6, H(60,). Therefore we can conclude that P(6q1a,) € P(H(6,)) € C. This
completes the proof. 1

LEMMA 24. Let 9 =g+ f € L®. If f = 016pa and ¢ = 01b for a € H(616,)
and b € H(61), then 61 H(62) C ran [Ty, To] C H(6:162).
Proof. Observe that
[Ty, Tol = HpHy — HeHy = Hyy Holg, — Hy yHap-
Since clran(He 5o = H(616) and clran (H; Helb) =H(61),
we can see that 917-{(02) Cran [Ty, Tp] C H(6162). W

Hgg,,) = clran Hy 6.0

LEMMA 2.5. Let ¢ = g+ f € L™, where f and g are in H%. If ¢ is of bounded
type and Ty, is hyponormal then

rank [Ty, Tp] = min {deg(k) : k is an inner function in £(¢)}.

Proof. 1f ¢ is of bounded type such that T, is hyponormal then £(¢) con-
tains at least an inner function (see [12]). If £(¢) has no finite Blaschke product
then by Lemma 2.2 we have that for all k in £(¢), rank [Ty, Ty] = oo = deg (k).
If instead £(¢) has a finite Blaschke product then it suffices to show that there
exists an inner function k in £(¢) such that rank (Hy) < rank( f) We assume to
the contrary that rank (H- f) < rank (Hy) for all inner functions k in £(¢). Since k
is an inner function we have that

[Ty, Ty| = Hfo HgHg = Hfo Hf f—HfHHHf

By Lemma 2.1 we see that

rank [Ty, Ty] = rank(H}H ) = min {rank ( f) rank (Hy)}.

But since rank (H f) < deg (k), it follows that rank [T, T] < deg (k), which con-
tradicts Lemma 2.2. This completes the proof. 1

The following lemma is a slight extension of Corollary 3.5 in [9], in which
the rank of the self-commutator is finite.
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LEMMA 2.6. Let ¢ =g+ f € L®, where f and g are in H2. Assume that
f=0616a and g¢=061b

fora € H(6162) and b € H(6y). Let ¢ := 01Pyp,)(a) + 3. Then Ty is hyponormal if
and only if Ty is. Moreover, in the cases where Ty is hyponormal,

rank [Ty, Ty = deg (62) + rank [Ty, Ty].

Proof. The first assertion follows at once from Corollary 3.5 of [9] together
with Lemma 2.3.

For the rank formula, note that £(¢) = {k16, : ky € £(¢)}. Therefore by
Lemma 2.5 we have that rank [Ty, Ty] = deg(02) + rank [Ty, Ty]. 8

3. MAIN RESULTS

In view of Lemma 2.6, when we study the hyponormality of Toeplitz opera-
tors with bounded type symbols ¢, we may assume that the symbol ¢ =3+ f €
L* is of the form

(3.1) f=060a and g=0D,

where 6 is an inner function and a,b € H(6) such that the inner parts of 4, b and
6 are coprime.

On the other hand, if ¢ = g+ f € L*, where f and g are rational functions
then we can show that ¢ can be written in the form (3.1) with a finite Blaschke
product 6. C. Gu [8] showed thatif ¢ = g+ f € L®, where f and g are rational
functions then the problem determining the hyponormality of T, is exactly the
tangential Hermite-Fejér interpolation problem. By comparison, using the clas-
sical Hermite-Fejér interpolation problem, we will give an explicit description of
the self-commutator [T, T].

To begin with, let  be a finite Blaschke product of degree d. We can write

Z — N
1—az”

. n ~ ~
(3.2) 0 =el® H(Bk)mk (where By, :=

n L, d
Sod = Y. my. For our purpose, rewrite 0 as in the form 8 = e¢ T] Bj, where
k=1 j=1

k-1

k
Bj := By 1f2ml<] Y my

=0
and, for notational convenience, m := 0. For example, the first Blaschke product
B is repeated m; times and so on. Let

g;
(3.3) ¢j =1 j@z

Bi 1Bj2---B1 (1<j<d),
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where ¢ := g1 (1 —%1z) ! and q;=(1- \zx]-|2)1/2. It is well known that {¢j}ff is
an orthonormal basis for H(6) (cf. Theorem X.1.5 of [7]).
Let 9 =g+ f € L®, where g = 6band f = 0a for a,b € H(0) and write

C(g):={ke H®:9—kp € H}.
Then k is in C(¢) if and only if 0b — kfa € H?, or equivalently,
(3.4) b—ka € OH?.

Note that (") (a;) = 0forall 0 < n < m;. Thus the condition (3.4) is equivalent to
the following equation: forall 1 <i < n,

ki,O a;o 0 0 0 0 bz 0
ki,l 611"1 Lll',() 0 0 0 bz 1
kio aip aip - a0 0 bis
(3.5) = : . : /
Kim;—2 Bmi—2 Gim—3 - - dig O biymi—2
ki m; -1 Aimi—1  Aim—2 -+ Ai2  4i1 i bimi—1
where () () ()
D(w; D (w; N
kij = k .(061)/ ﬂl’]' = m and bl/ = b .([Xl)
’ j! ’ j! ’ J!
Thus k is in C(¢) if and only if k is a function in H* for which
D (:
(36) k j('“l) = ki,j (1 < i g n, 0 < ] < m,-),

where the k;; are determined by the equation (3.5). If in addition [|k|le < 1is
required then this is exactly the classical Hermite-Fejér interpolation problem.

To construct a polynomial k(z) = p(z) satisfying (3.6), let p;(z) be the poly-
nomial of order d — m; defined by

n

piz) = TT (2=—5)™

k=1jkAi % T %k
Also consider the polynomial p(z) of degree d — 1 defined by
(3.7)
n

p(z) = ) (kig +kia(z =) +kip(z = ai)? + o 4 ki g (2 — )" ) pil2),
i=1
where the k;/]. are obtained by the following equations:

=1k p(]ik)(a>
k;,].:kij—kgol'k(j’_ik)!l (1<i<m 0<j<my)

and
kip =kip (1<i<n).
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Then p(z) satisfies (3.6) (see [7]). But p(z) may not be contractive.
On the other hand, if ¢ is a function in H*, let A(¢) be the operator on H ()
defined by

A(Y) = Pryo)My [36),
where My is the multiplication operator with symbol ¢. Now let W be the unitary
operator from C? onto H(6) defined by

W= ((Pl,(l)z, .. .,(Pd>,
where the ¢; are the functions in (3.3).
We then have:

LEMMA 3.1. ([7], Theorems X.1.5 and X.5.6) Let 6 be the Blaschke product in
(3.2) and let {¢;}4 be the orthonormal basis for H(6) in (3.3). Then

A(z) = Py )Mz |3 o)

is unitarily equivalent to the lower triangular matrix M on C? defined by

a1 0 0 0 0
171172 1 %] 0 0 0
—q1%193 92493 a3 0 0
7102034 —(q23q4 9394 oy 0
— (1003045 92030445 —q3%4q5 G495 0
: : : ' 0

d-1 d-1
—1)4 Il & _1)d-1 Il & _ o
(-1 bh(jzz ]>17d (-1 Q2<j=3 ])Qd qa-194 %4

Moreover, if p is a polynomial defined in (3.7) then A(p)W = Wp(M).
Our main theorem now follows:

THEOREM 3.2. Let ¢ = §+ f € L® and let f = 0a and ¢ = 0b, where 0 is a
finite Blaschke product and a,b € H(0). Then H(0) is a reducing subspace of [Ty, Ty],

and [Tg, Ty] has the following representation relative to the direct sum H(0) & H(0)*L:
(3.8) [Ty, Tyl = A(a) " WM(@)W*A(a) @ Oco,

where A(a) is invertible and M(¢@) := Iy g) — p(M)*p(M). Hence, in particular, T,
is hyponormal if and only if M(¢) is positive. Moreover the rank of the self-commutator
[Ty, Ty is given by

rank [Ty, Typ] = rank M(g).

Proof. From the proof of Lemma 2.4 we can see that ran [Tj, Ty C H(0).
Therefore H(0) is a reducing subspace of [Ty, Ty].

Towards the equality (3.8), let u and v be in H(6). Suppose k = p is a
polynomial in (3.7). Since ker Hy = 0H?, we have that Hyu = Hg(Pyy ) (kut)).
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Note that H; Hy is the projection onto H(6). Thus we have that
<H-H et v) = (Hgu, Hy0)

<PH(9)ku PH( )k >

= (A(k)u, A(k)o).
Thus by Lemma 3.1 we have that
(3.9) Hs, Hgy |0y = A(k)*A(k) = Wk(M) k(M)W™.
Hence by (3.9) we get

(i Hy — g ) (o) = W (I — K(M)“K(M))W*.

Since k satisfies the equality (3.5) and hence ¢ — k¢ € H®, it follows that

[T, T(PHHG)— +Hr — Hg Hg) 346

7 Hip) Imo)

Hg, H Hljea k@a”H
(HH — H, Hek)Ta|H9)
a)*

a)*

W (I ) — p(M)*p(M))W* A(a)
WM(@)W*A(a),

which gives (3.8).
For the invertibility of A(a), suppose A(a)*f = 0 for some f € H(6). Then
1(6)(@f) = 0 and hence

af =0g forsomeg € H?,

or equivalently, @f = g. Note that 8f € H?" and hence a0f € H?" N H? =
{0}. Thus we have f = 0, which implies that A(a)* is 1-1. Since A(a) is a finite
dimensional operator, A(a) is invertible. This completes the proof. 1

EXAMPLE 3.3. C. Gu [8] showed thatif ¢ = f+3 € L, where f and g
are rational functions then the problem determining the hyponormality of T, is
exactly the tangential Hermite-Fejér interpolation problem. In fact we can show
that this problem is equivalent to our problem. However our solution has an ad-
vantage which gives an explicit description of the self-commutator [T, Ty| even
though this method is not simpler than the method of [8]. To see this consider the
function ¢ = g + f, where
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. z—3  z=1
Thusif 6 := 2 . =3 then
1-5z z

|
NI
—_
|
ol

—%z —%z gl—%z 1—%2
and
_Z-3 -3 5z-3 z—3
b:= i+ 7 +6 i 0
1—3z 1-3z 1-3z 1—3z

are in H(#), and f = 6 and g = 6b. So a straightforward calculation shows that
1

5 0
p(z) satisfying (3.7) is given by p(z) = —z+ 2 and M = (\}g 1)' Thus we
3

3
have that
, 10 A 5 7
M(g) :=I—p(M)*p(M) = (0 1)—( ° 16): (1 %
6 1 6 4
Since ¢ = @1 L_and ¢, = Z\Tﬁl 112 : 12_7 form a basis for H(6), we have that

(5%

By comparison, the tangential Hermite-Fejér matrix induced by ¢ is given by
(using the notations in [8])

0 0 O
A*TA—B'TB= (0 24 24].

0 24 24

COROLLARY 34. Let ¢ = g+ f € L* and let f = 0a and ¢ = 0b, where 0
is a finite Blaschke product and a,b € H(0). If Ty is hyponormal and rank [T, To] <
deg(0) then E(¢) has exactly one element.

Proof. Suppose rank([T;, Ty]) < deg(f). By Theorem 3.2 we have that
rank (Iy(g) — p(M)*p(M)) < deg (6).

Therefore the norm of p(M) should be one. By an argument of p. 302 in [7], there
exists a unique solution k to (3.6) such that k||« < 1if and only if ||[p(M)]| =1,
E(¢) has exactly one element.
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THEOREM 3.5. Let ¢ = §+ f € L® and let f = 0a and ¢ = 0b, where 0 is a
finite Blaschke product and a,b € H(0). Let 0 be a factor of 0 and let

Po, = 01Py(g,) (D) + 61 Py(g,) (a)-

If Ty is hyponormal then Ty, is. Moreover, in the cases where Ty is hyponormal, the
rank of [T, 07 Tgg, ] is given by

T, T, ] k[T, T,
rank [T;;Gl/Tq)g]} = ;ank[ o To 1fran [ o o) < deg (61),
eg (61) if rank [Ty, Ty] > deg (61).
PTOOf. Leta; := PH(Ql)(a), by = PH(Gl)(b)l ay :=a—ayand by :=b—by. If

T, is hyponormal then by Cowen’s theorem there exists a function k € H* with
[lk|lo < 1 for which

0b—kBa=h forsomeh € H?,
or equivalently,
0(by + by —k(ay +ap)) = h <= 0(by — kay) — 0(bo — kay) = h
<= 01(b; —kay) — 01(by — kay) = 6>k,
where 0 := 6,6,. Since b; and b; are orthogonal and b; € H(67), it follows that

by € 6,H?. Thus 6:b, € H2. Similarly, we have that 014y € H?. Therefore we
have that

51(b1 — kﬂl) = 51(172 — k&lz) + 6,h € HZ,
or
§1PH(91)(b) — kélPH(el)(ﬂ) S H>.

Therefore by Cowen’s theorem Ty, is hyponormal.

For the rank formula, suppose that rank [Ty, T| < deg(6:). By the Nakazi-
Takahashi theorem, there exists a finite Blaschke product k € H* such that deg(k)
= rank [Ty, Ty] < deg(6y). Since E(p) C E(gy,) it follows k € E(gpg,). By
Lemma 2.5 and Corollary 3.4 we have that

rank [Ty, Ty] = deg(k) = rank [T;;gl, Tgq, |-
For the other case we will show that if rank [T 07 T, ]<deg(61) then rank[Tg, To]

< deg(6). To prove this suppose rank [T;;fh’ Ty, | < deg(61). By Corollary 3.4,

£ (e, ) has exactly one element. Since £(¢) C E(gp,), £(¢) also consists of one
element and hence by Lemma 2.5 we have that

rank [T, Tp] = rank [T;,gl, Tpg,] < deg(61).

This completes the proof. 1
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COROLLARY 3.6. Suppose ¢ is a trigonometric polynomial of the form ¢(z) =
N
Y anz", where a_y and ay are nonzero. Let ¢; := T + T, @. If Ty is hyponormal

n=—N
then Ty, is hyponormal for each j = 0,1,2,..., N. In the cases where Ty is hyponormal
we have
N—j ] k[T;, Ty 2 N —j,
rank [T;’T(P] = J l'fran [ @ gp] ]
S rank [Ty, Tp]  if rank [Ty, Tp] < N —j.

Proof. This follows at once from Theorem 3.5. 1
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