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ABSTRACT. For many C∗-algebrasA, techniques have been developed to show
that all elements which have trace zero with respect to all tracial states can be
written as a sum of finitely many commutators, and that the number of com-
mutators required depends only upon the algebra, and not upon the individ-
ual elements. In this paper, we show that if the same holds for qAq whenever
q is a “sufficiently small” projection in A, then every element that is a sum
of finitely many commutators in A is in fact a sum of two. We then apply
this commutator reduction argument to certain C∗-algebras of real rank zero
with a unique trace, as well as to a class of approximately homogeneous C∗-
algebras whose K0 group has large denominators. Finally, we use these results
to show that many C∗-algebras are linearly spanned by their projections.
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1. INTRODUCTION

1.1. Let R be a unital ring. A commutator in R is an element of the form [a, b] :=
ab − ba. We shall denote by c(R) the set of all commutators in R. Of particular
interest historically has been the study of commutators in matrix rings Mn(R)
over R. Given n ∈ N and a ring R as above, we may define a trace on Mn(R) via:

trn : Mn(R) → R, trn([rij]) =
n
∑

i=1
rii. One of the earliest results is due to Shoda [41]

who showed in 1936 that if K is a field of characteristic 0 and n > 1 is an integer,
then A = [aij] ∈ Mn(K) is a commutator if and only if trn(A) = 0. This was
extended to fields of arbitrary characteristic by Albert and Muckenhoupt [1] in
1957.

It is tempting to believe that such a result should easily extend to Mn(R).
Alas, like so many of the best temptations, this one too should be avoided. As re-
cently as six years ago, M. Rosset and S. Rosset [40] exhibited a class of examples
of unital, abelian rings R and A = [aij] ∈ M2(R) such that tr2(A) = a11 + a22 = 0,
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but A 6∈ c(M2(R)). (As they prove, one can choose R = C[x, y, z], where x, y
and z are indeterminates.) In a positive direction, they also showed that if R is an
abelian, unital ring, n > 1, B ∈ Mn(R) and trn(B) = 0, then B can be expressed
as a sum of two commutators from Mn(R).

Commutators first became of interest in operator theory because of their
connection with physics. According to the postulates of quantum mechanics, the
one-dimensional physical states of a quantum system at time t are represented
by wave functions which correspond to continuously differentiable, normalized
vectors in L2(R, dx), while observables such as the quantum analogs Q of posi-
tion and P of momentum are described by hermitian linear maps acting on these
wave functions. The states which can be observed are the eigenvectors of the
observable, and for the states of position and momentum to be simultaneously
observable, Q and P would need to be simultaneously diagonalizable, which
would in turn imply that they commute. However, the action of Q is given by
Q f (x) = x f (x), while P f (x) = −ih̄ f ′(x) (where h̄ is Planck’s constant). A simple
calculation shows that [P, Q] = −ih̄I 6= 0, which is the basis of one formulation
of the Heisenberg Uncertainty Principle.

Let H be a complex, infinite-dimensional, separable Hilbert space, B(H)
denote the set of bounded operators acting on H, and by K(H) let us denote
the closed, two-sided ideal of compact operators in B(H). In 1947, Wintner [45]
proved that if P = P∗, Q = Q∗ ∈ B(H), then [P, Q] 6∈ {λI : 0 6= λ ∈ C}. Four
years later, C.R. Putnam [36] observed that Wintner’s proof works even if P and Q
are not self-adjoint. In the meantime, Wielandt [44] had developed a new method
to show that if A is any unital normed algebra, then c(A) ∩ {λ1 : 0 6= λ ∈ C} =
∅.

It was P.R. Halmos [18] who proved that, given A ∈ B(H), the operator
A ⊕ 0 ∈ B(H ⊕ H) is a commutator, and he used this to conclude that every
operator in B(H) is a sum of two commutators. He also observed [19] that by
applying Wielandt’s result to the Calkin algebra B(H)/K(H), one could deduce
that no operator of the form λI + K, where 0 6= λ ∈ C and K ∈ K(H), is a
commutator. The study of commutators in B(H) culminated in 1965 with the
tour de force of A. Brown and C. Pearcy [3] who demonstrated that Wielandt’s
Theorem provides the only obstruction to membership in c(B(H)). That is, they
proved that T ∈ B(H) is a commutator if and only if T 6∈ {λI + K : 0 6= λ ∈
C, K ∈ K(H)}.

The question of describing commutators and their spans in ideals of com-
pact operators has generated a large amount of study, with too many results to
describe here. We refer the reader to the excellent paper of K. Dykema, T. Figiel,
G. Weiss and M. Wodzicki [10] for a survey of this vast area.

1.2. With these results in hand, it was natural to consider the problem of de-
scribing commutators and their spans in subalgebras of operators. Of course, the
results obtained vary depending upon the context, and we mention but a few
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examples. Consider a von Neumann algebra M. If M is a factor, then as we
have already seen, c(M) was characterized by Shoda in the Type In case and
by Brown and Pearcy in the Type I∞ case. The Type II∞ case was handled by
H. Halpern [21], while Brown and Pearcy [4] showed that ifM is a Type III factor
acting on a separable Hilbert space, then the commutators inM coincide with the
set of non-scalar elements of M, together with 0 — that is, Wielandt’s criteria is
once again the only factor determining adherence to c(M). When M is not a fac-
tor, Pearcy and Topping [32] showed that every selfadjoint element with (canoni-
cal) central trace zero in a finite Type I von Neumann algebra is a commutator, so
that every element with central trace zero is a sum of two commutators. Subse-
quently, T. Fack and P. de la Harpe [15] showed that in any finite von Neumann
algebra with central trace τ, an element T ∈ M satisfies τ(T) = 0 if and only if

T can be expressed as T =
10
∑

k=1
[Xk, Yk], where Xk, Yk ∈ M and ‖Xk‖ 6 12 ‖T‖,

‖Yk‖ 6 12 for all 1 6 k 6 10.
In non-selfadjoint operator algebras, A.R. Sourour and the author [27] have

observed that Halmos’ proof (see for eg., Problem 234 of [20]) that every element
of B(H) is a sum of two commutators extends mutatis mutandis to any unital,
weakly closed subalgebra A ⊆ B(H) such that A has infinite multiplicity in the
sense that A ' A⊗ B(H) (i.e. the weak operator closure of the span of the ele-
mentary tensors A⊗ B acting onH⊗H). In particular, this holds for nest algebras
A = Alg(N ), where N is a nest with no finite-dimensional atoms. (We refer the
reader to [8] for more information about nest algebras.)

1.3. The study of commutators (and their linear spans) in the context of C∗-
algebras is in part related to an attempt to extend the Murray-von Neumann
equivalence theory of projections which has proven so useful in the study of
von Neumann algebras. In 1979, J. Cuntz and G.K. Pedersen [7] defined a re-
lation (which we shall denote by ≈) on the positive cone A+ of a C∗-algebra A
by setting h ≈ k if there exists a sequence (un)∞

n=1 in A so that h =
∞
∑

n=1
u∗nun

and k =
∞
∑

n=1
unu∗n, the sums converging in norm. Recall that a tracial state on A

is a positive linear functional τ on A such that ‖τ‖ = 1 and τ(xy) = τ(yx) for
all x, y ∈ A. We denote by T (A) the set of tracial states on A, which is weak∗-
compact in the case where A is unital. With Asa := {a ∈ A : a = a∗} and
A0 = {h − k : h, k ∈ Asa, h ≈ k}, they showed that A0 is a closed subspace of
Asa and that A0 = {a ∈ Asa : τ(a) = 0 for all τ ∈ T (A)}. If we denote by
sl(A) the set

⋂{ker τ : τ ∈ T (A)}, then sl(A) = A0 + iA0 = [A, A], where
[A, A] = span c(A).

For von Neumann algebras, A0 is always spanned by finite sums of self-
commutators [15]. (A self-commutator in A is an element of the form [x, x∗] -
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we denote the set of self-commutators in A by sc(A).) The corresponding state-
ment for C∗-algebras was shown by G.K. Pedersen and N.H. Petersen to fail [34].
T. Fack then considered the question of finding C∗-algebras for which this prop-
erty does hold in [14], and devised an ingenious method to prove that if A is a
unital, simple AF C∗-algebra, then every element ofA0 can be expressed as a sum
of 7 self-commutators. We shall return to this in Sections 3 and 4.

Recall that a C∗-algebraA is said to be stable if A ' A⊗K(H). In the paper
cited above, Fack also showed that ifA is stable, then any selfadjoint element inA
can be written as a sum of five self-commutators. Finally, suppose that B is a uni-
tal C∗-algebra and there exist mutually orthogonal projections p and q in A with
p ∼ q ∼ 1 (we say that the identity 1 of A is properly infinite, and hence that A is
properly infinite). Fack showed that the same conclusion holds in this case as well,
namely, that every selfadjoint element of A is a sum of five self-commutators.
An immediate consequence is that every element of a properly infinite unital C∗-
algebra, or of a stable algebra, is a sum of at most 10 commutators.

Fack’s method for simple, unital AF C∗-algebras served as the basis for
K. Thomsen’s extension of Fack’s results to inductive limits of finite direct sums
of homogeneous C∗-algebras [42]. More precisely, when A is a C∗-algebra of the
type considered in Subsection 4.2 of the present paper, Thomsen proved — using
an adaptation of Fack’s Theorem — that every element of A0 is a sum of a fixed,
finite number of self-commutators. (See Theorem 4.2 below.)

More recently, C. Pop [35] has shown that if A is a unital C∗-algebra, then A
has no tracial states if and only if there exists some n > 2 so that h ∈ Asa implies
that h is a sum of n self-commutators. Moreover, if A is properly infinite, then
every element of A can be expressed as a sum of two commutators.

1.4. In Section 2 of this paper, we show that in certain unital C∗-algebras B,
knowing that there exists a fixed m ∈ N such that every element in a corner sub-
algebra sl(qBq) (where q is a “sufficiently small projection" in B) can be expressed
as a sum of m commutators is sufficient to conclude that every such element can
be expressed as sums of two commutators. The main result of this section is the
commutator reduction argument, Theorem 2.3.

In Section 3, we use the outline of Fack’s proof for simple, unital AF C∗-
algebras to show that if A is a simple, unital C∗-algebra of real rank zero such
that A satisfies B. Blackadar’s FCQ2 (see Subsection 3.2 for the definition of this
property), and if A has a unique tracial state, then A satisfies the conditions of
the commutator reduction argument, and thus every element of sl(A) can be ex-
pressed as a sum of two commutators. In Section 4, we “fine tune" Thomsen’s
proof for the C∗-algebras of Subsection 4.2 to reveal that the commutator reduc-
tion argument applies to these as well, whence the same conclusion may once
again be drawn.
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Finally, in Section 5, we apply these results on commutators along with a
construction from [25] to show that in the algebras considered above, every ele-
ment can be expressed as a linear combination of a (relatively small) fixed finite
number of projections. In some cases, we improve the bounds obtained in [25].

2. THE REDUCTION ARGUMENT

2.1. Let us gather some of the previous notations and definitions together in
one place for convenience later on. For a C∗-algebra A, we set [a, b] = ab − ba,
a, b ∈ A, c(A) = {[a, b] : a, b ∈ A}, and sc(A) = {[a∗, a] : a ∈ A}. A tracial
state on A is a positive, norm one linear functional on A satisfying τ(xy) = τ(yx)
for all x, y ∈ A. We let sl(A) = {a ∈ A : τ(a) = 0 for all τ ∈ T (A)}. If T (A)
is empty, by convention we set sl(A) = A. Let Asa := {a ∈ A : a = a∗}.
As mentioned in Subsection 1.3 above, we define an equivalence relation on the
positive elements A+ of A via x ≈ y if there exist a sequence (un) such that

x =
∞
∑

n=1
u∗nun and y =

∞
∑

n=1
unu∗n. Letting A0 = {h− k : h, k ∈ Asa, h ≈ k}, A0 is a

closed subspace of Asa and A0 = Asa ∩ sl(A). Thus sl(A) = A0 + iA0 = [A, A],
where [A, A] = span c(A). For a subset S of A and m > 1, let us write ΣmS to
mean {s1 + · · ·+ sm : sk ∈ S , 1 6 k 6 m}, and by CS we denote the set {λs : λ ∈
C, s ∈ S}. Thus if P(A) denotes the set of projections in A, then the algebraic

span of P(A) coincides with
∞⋃

k=1
ΣkCP(A). Given projections p, q ∈ P(A), we

write p � q if there exists u ∈ A such that u∗u = p, uu∗ = p′ 6 q. If in fact p′ < q,
we write p ≺ q.

2.2. The original setting for the following lemma in [10] is simpler to visualize,
and the crux of the idea is there (Lemma 6.2). The conclusion there is that if A
is an algebra and B = Mn(A), β = diag(b1, b2, . . . , bn) ∈ B and

n
∑

k=1
bk = 0, then

β ∈ c(B). In passing to C∗-algebras — even those of real rank zero — we do not
know that a given algebra B is “divisible” in the sense of Rieffel [38]; that is, that
B ' Mn(A) for some algebra A. On the other hand, when A is a simple unital
C∗-algebra of real rank zero, then S. Zhang [46], [47] has shown the existence of

mutually orthogonal projections q1 � q2 � · · · � qn so that
n
∑

k=1
qk = 1.

The device being used here is to replace the canonical matrix units {Eij} of
Mn(C) with appropriate partial isometries wij (playing the role of Eij, 1 6 i, j 6
n), constructed from partial isometries vk (playing the role of Ek,k+1, 1 6 k 6
n− 1).

LEMMA 2.1. Let B be a unital C∗-algebra and suppose that q1, q2, . . . , qn are mu-
tually orthogonal projections in B satisfying:
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(i) 1 = q1 + q2 + · · ·+ qn;
(ii) q1 � q2 � · · · � qn.

Fix partial isometries vk, 1 6 k 6 n − 1 so that vkv∗k = qk, v∗k vk 6 qk+1. For 1 6
i < j 6 n, let wij = vivi+1 · · · vj−1 ∈ qiBqj and let wjj = qj, 1 6 j 6 n. Suppose

bk ∈ qkBqk, 1 6 k 6 n and that
n
∑

k=1
w∗

knbkwkn = 0. Then β =
n
∑

k=1
bk ∈ c(B).

Proof. Set sj =
j

∑
k=1

(w∗
kjbkwkj)vj, 1 6 j 6 n − 1. Then

[ n−1
∑

j=1
sj,

n−1
∑

k=1
v∗k

]
= β,

which is best seen by calculating


0 s1
. . . . . .

. . . sn−1
0

 ,


0

v∗1
. . .
. . . . . .

v∗n−1 0




=


s1v∗1

s2v∗2 − v∗1s1
. . .

sn−1v∗n−1 − v∗n−2sn−2
−v∗n−1sn−1

 .

Then for 2 6 j 6 n− 1, we have

sjv∗j − v∗j−1sj−1 =
j

∑
k=1

w∗
kjbkwkj −

j−1

∑
k=1

v∗j−1(w∗
k,j−1bkwk,j−1)vj−1

=
j

∑
k=1

w∗
kjbkwkj −

j−1

∑
k=1

w∗
kjbkwkj = w∗

jjbjwjj = bj.

Moreover, s1v∗1 = b1, while

−v∗n−1sn−1 = −
n−1

∑
k=1

w∗
knbkwkn = w∗

nnbnwnn = bn,

completing the proof.

LEMMA 2.2. Let B be a unital C∗-algebra and suppose that q1, q2, . . . , qn are mu-
tually orthogonal projections in B satisfying 1 = q1 + q2 + · · · + qn. Let b ∈ B and
suppose that qkbqk ∈ c(qkBqk), 1 6 k 6 n. Then b ∈ c(B).

Proof. Suppose that qkbqk = [xk, yk] where xk, yk ∈ qkBqk for each 1 6 k 6 n.
If xk 6= 0, then we can replace xk by xk/‖xk‖ and yk by yk ‖xk‖, which allows us
to assume a priori that ‖xk‖ = 1. (If xk = 0, we first replace xk by qk.) In particular,
we have that σqkBqk (xk) ⊆ D = {z ∈ C : |z| 6 1}.
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Let dk = xk + 3kqk, so that σqkBqk (dk) ⊆ 3k + D = {z ∈ C : |z − 3k| 6 1}.
If j 6= k, then σqjBqj(dj) ∩ σqkBqk (dk) is empty. At the same time, we still have that
[dk, yk] = [xk, yk] = qkbqk for all k. From this it follows that for 1 6 j 6= k 6 n, the
Rosenblum operator

τdj ,dk
: qjBqk → qjBqk

z 7→ djz− zdk

is invertible, as follows easily from, for e.g. Corollary 3.2 of [22]. As such, for each
1 6 j 6= k 6 n, we can find zjk ∈ qjBqk so that τdj ,dk

(zjk) = qjbqk.
For 1 6 j 6 n, let zjj = yj. Setting

d =
n

∑
k=1

dk, z = ∑
16j,k6n

zjk = ∑
16j,k6n

qjzjkqk,

a routine calculation shows that

[d, z] = ∑
16j,k6n

djzjk − zjkdk = ∑
16j,k6n

qjbqk = b.

As pointed out in [39], the formula for zjk is given by

zjk =
1

2πi

∫
Γ

(dj − w1)−1(qjbqk)(dk − w1)−1dw,

where Γ is any closed contour in C such that σqjBqj(dj) lies in the bounded compo-
nent of C\Γ and σqkBqk (dk) lies in the unbounded component. If we choose Γ to
be a circle of radius 3/2 centered at 3j, then an elementary calculation shows that
‖zjk‖ 6 6‖qjbqk‖. This estimate will be included in the calculation of Remark 5.3.

A simple case of the following result is handled in Proposition 2.7 below,
and the reader may prefer to look at that result first.

THEOREM 2.3 (The commutator reduction argument). Let B be a unital C∗-
algebra and suppose that q1, q2, . . . , qn are mutually orthogonal projections in B satisfy-
ing:

(i) 1 = q1 + q2 + · · ·+ qn;
(ii) q1 � q2 � · · · � qn−m ∼ qn−m+1 ∼ · · · ∼ qn for some 1 6 m 6 n− 1.

As before, let vk be partial isometries for which vkv∗k = qk, v∗k vk 6 qk+1, 1 6 k 6
n− m− 1, and vkv∗k = qk, v∗k vk = qk+1 if n− m 6 k 6 n− 1. For 1 6 i < j 6 n,
let wij = vivi+1 · · · vj−1 ∈ qiBqj and let wjj = qj, 1 6 j 6 n. For b ∈ B, write

bjk = qjbqk, 1 6 j, k 6 n and suppose that
n
∑

k=1
w∗

knbkkwkn ∈ Σmc(qnBqn). Then

b ∈ Σ2c(B).
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Proof. We shall set

β1 = ∑
16j 6=k6n

qjbqk =


0

. . . bjk

bjk
. . .

0

 ;

β2 = diag(b11, b22, . . . , bn−1 n−1,−
n−1

∑
k=1

w∗
knbkkwkn);

β3 = diag(0, 0, . . . , 0,
n

∑
k=1

w∗
knbkkwkn).

Then b = β1 + β2 + β3. By assumption,
n
∑

k=1
w∗

knbkkwkn ∈ Σmc(qnBqn), and so we

can find xi, yi ∈ qnBqn, 1 6 i 6 m so that
n
∑

k=1
w∗

knbkkwkn =
m
∑

i=1
[xi, yi].

Let β4 =
m
∑

k=1
−[x′k, y′k]+

m
∑

k=1
[xi, yi], where x′k = w(n−m−1)+k,nxkw∗

(n−m−1)+k,m,

y′k = w(n−m−1)+k,nykw∗
(n−m−1)+k,n, 1 6 k 6 m, and β5 =

n
∑

k=1
[x′k, y′k]. That is, we

have:

β4 = diag(0, 0, . . . , 0,−[x′1, y′1], . . . ,−[x′m, y′m],
m

∑
k=1

[xi, yi])

β5 = diag(0, 0, . . . , 0, [x′1, y′1], . . . , [x′m, y′m], 0).

Clearly β3 = β4 + β5, whence b = (β1 + β5) + (β2 + β4).
By Lemma 2.2, β1 + β5 ∈ c(B). By Lemma 2.1, β2 + β4 ∈ c(B). Hence

b ∈ Σ2(c(B)).

THEOREM 2.4. Let B be a C∗-algebra. Suppose that z = z∗ ∈ c(A). Then
z ∈ Σ2sc(A). Thus Σmc(A) ⊆ Σ2msc(A) for all m > 1.

Proof. Choose x, y ∈ A so that z = [x, y]. Let x = a + ib, y = c + id be the
Cartesian decomposition of x and y into their real and imaginary parts. Then

z = [a + ib, c + id] = [a, c]− [b, d] + i([a, d] + [b, c]).

Noting that h = h∗, k = k∗ implies that [h, k]∗ = −[h, k] and that (i[h, k])∗ =
i[h, k] = (1/2)[(h + ik)∗, (h + ik)], we get

z =
z + z∗

2
= i([a, d] + [b, c])

=
[( 1√

2
(a + id)

)∗
,
( 1√

2
(a + id)

)]
+

[( 1√
2
(b + ic)

)∗
,
( 1√

2
(b + ic)

)]
∈ Σ2sc(A).



SUMS OF COMMUTATORS 119

The second statement follows trivially from the first.

Although the following result is subsumed by the results of Section 4, nev-
ertheless we produce it here because those results involve a number of technical-
ities which are only required in the more general setting, and which obscure the
simplicity of the underlying technique in this more restricted yet still interesting
case.

THEOREM 2.5 (Un apéritif). Let B be a unital, simple, infinite dimensional AF
C∗-algebra. Then every element in sl(B) is a sum of two commutators, and every selfad-
joint element of sl(B) is a sum of 4 self-commutators. In particular, sl(B) = Σ2(B) and
B0 = Σ4sc(B).

Proof. Note that under these conditions on B, it was shown by Fack [14] that
every element of B0 can be expressed as a sum of 7 or fewer self-commutators.
From this it clearly follows that every trace zero element is a sum of at most 14
commutators.

Since B is an infinite dimensional, simple unital AF C∗-algebra, it has real
rank zero and so by [47], for all n > 1 we can find mutually orthogonal projections

q1 � q2 ∼ q3 ∼ · · · ∼ q2n+1 so that 1 =
2n+1

∑
k=1

qk. For our purposes, choosing n = 4

is sufficient. Suppose b ∈ sl(B) and let bjk = qjbqk, 1 6 j, k 6 17. If we let vk, wjk
denote the operators from Theorem 2.3, then for any trace τ on B, we get

0 = τ(b) =
17

∑
k=1

τ(bkk) =
17

∑
k=1

τ(w∗
k,17bkkwk,17).

Since any trace on q17Bq17 extends to a unique trace on B (as pointed out by Fack,
q17 is an order unit in K0(B)+, or alternatively, see Lemma 3.8 below), it follows

that
17
∑

k=1
w∗

k17bkkwk17 ∈ sl(q17Bq17).

But q17Bq17 is both simple (see, for eg. Theorem 3.2.8 of [29]) and an AF-
C∗-algebra ([11] or [30]). Furthermore, q17 serves as an identity for this algebra.
By Fack’s result ([14], Theorem 3.1), every trace zero element of q17Bq17 lies in
Σ14c(q17Bq17). By the commutator reduction argument, Theorem 2.3, b ∈ Σ2c(B).
Since b ∈ sl(B) was arbitrary, sl(B) ⊆ Σ2c(B). By Theorem 2.4, B0 = sl(B) ∩
Bsa ⊆ Σ4sc(B).

Finally, we note that Σ2c(B) ⊆ sl(B) and Σ4sc(B) ⊆ B0 are both clear,
whence the second statement easily follows.

DEFINITION 2.6. Let B be a C∗-algebra. If sl(B) = Σmc(B) for some m ∈ N,
then we set γ(B) = min{m ∈ N : sl(B) = Σmc(B)}. Otherwise we set γ(B) = ∞.

We also define γsa(B) = min{m ∈ N : B0 = Σmsc(B)} if such an m exists,
and γsa(B) = ∞ otherwise.

We shall refer to γ(B) (respectively γsa(B)) as the commutator index (respec-
tively self-commutator index) of B.
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PROPOSITION 2.7. Let B be a unital C∗-algebra and suppose that γ(B) < ∞.
Then the commutator index of Mγ(B)+1(B) is less than or equal to 2, and the self-
commutator index of Mγ(B)+1(B) is less than or equal to 4.

Proof. We begin with a couple of well-known and straightforward observa-
tions. First note that for all n > 1, Mn(B) ' B ⊗Mn(C) and there is a bijective
correspondence between the tracial states of B and those of Mn(B) given by

Φ : T (B) → T (B ⊗Mn)
τ 7→ τn := τ ⊗ trn

where trn denotes the unique normalized tracial state on Mn(C). As a conse-

quence, for b = [bij] ∈ Mn(B) and τ ∈ T (B), τn(b) =
n
∑

j=1
τ(bjj).

Let {Eij} denote the canonical matrix units for Mγ(B)+1(C), 1 6 i, j 6
γ(B) + 1. We set qi = 1⊗ Eii, 1 6 i 6 γ(B) + 1 and vk = 1⊗ Ek,k+1, 1 6 k 6
γ(B) as in Theorem 2.3. We then define wij as in that theorem and observe that
wk,γ(B)+1w∗

k,γ(B)+1 = qkk for all 1 6 k 6 γ(B) + 1. Hence for b ∈ sl(Mγ(B)+1(B)),
we have

τ
( γ(B)+1

∑
k=1

w∗
k,γ(B)+1bkkwk,γ(B)+1

)
=

γ(B)+1

∑
k=1

τ(wk,γ(B)+1w∗
k,γ(B)+1bkk)

=
γ(B)+1

∑
k=1

τ(bkk) = τγ(B)+1(b) = 0.

Thus
γ(B)+1

∑
k=1

w∗
k,γ(B)+1bkkwk,γ(B)+1 ∈ sl(B) = Σγ(B)c(B). By the Reduction

Argument, Theorem 2.3, b ∈ Σ2c(Mγ(B)+1(B)), which completes the proof of the
first statement. The second statement follows immediately from Theorem 2.4.

2.3. Suppose that A is a unital C∗-algebra and T (A) is empty. As mentioned in
paragraph 2.1, A = sl(A). In [35], C. Pop proves that when A is such an alge-
bra, the commutator index γ(A) is finite, and he remarks that, assuming that the
value of γ(A) is known, it would be interesting to determine the smallest value
of m such that the commutator index of Mm(A) is 2; i.e. Mm(A) = Σ2c(Mm(A)).
The previous proposition implies that the smallest such integer m can be no larger
than γ(A) + 1.

If 1 ∈ A is a C∗-algebra and 1 is properly infinite, then Fack [14] showed
that Asa = A0 = Σ5sc(A), whence A = sl(A) = Σ10c(A). The estimate was
reduced from 10 to 2 by Pop in [35], using entirely different means. The result
below reproduces Pop’s estimate, but first starting from Fack’s.

COROLLARY 2.8 ([35]). Suppose that 1 ∈ A is properly infinite. Then A =
Σ2c(A).



SUMS OF COMMUTATORS 121

Proof. Since 1 ∈ A is properly infinite, we can find a sequence p1, p2, . . . , p16
of mutually orthogonal projections, each equivalent to 1 and hence to each other,

such that
16
∑

k=1
pk < 1. Let p0 = 1−

16
∑

i=1
pk. Then p0 < 1 ∼ p16, and so p0 ≺ p16.

Moreover, p16Ap16 is ∗-isomorphic to A, and hence is properly infinite.
By Fack’s result as quoted in the paragraph preceding the corollary, p16Ap16 =
Σ10c(p16Ap16). It then follows from Theorem 2.3 that A = Σ2c(A).

3. REAL RANK ZERO

3.1. As mentioned in Subsection 1.2 above, T. Fack’s results to the effect that ev-
ery element of A0 lies in Σ7c(A) for simple, unital, AF C∗-algebras was extended
to certain limits of finite direct sums of homogeneous C∗-algebras by K. Thomsen
(see Theorem 4.2 below). In this section, we show that the outline of Fack’s proof
can also be used to obtain a similar result for a class of simple, unital C∗-algebras
of real rank zero, possessing a unique tracial state. While the conclusions of the
lemmas and theorems are often direct analogs of those of Fack (indeed, in some
cases they are identical), the proofs are quite different. We suspect that the basic
methodology can be adapted to other classes of C∗-algebras as well.

DEFINITION 3.1. A C∗-algebraA is said to be of real rank zero if every selfad-
joint element of A can be approximated by selfadjoint elements with finite spec-
trum.

We remark that although this was not the original definition, it is equivalent
to it [5].

3.2. Since every element of a C∗-algebra A is a linear combination of its real and
imaginary parts, it immediately follows that if A is of real rank zero, then the
span of the projections in A is dense. The converse is known to be false [34]. As
an application of the results obtained in this subsection, we shall see that in some
cases, the algebra is linearly spanned by its projections.

There is a well-established notion of comparability of projections in factor
von Neumann algebras [23]. In trying to generalize such a theory to C∗-algebras,
B. Blackadar [2] described a number of different notions of comparability which
he referred to as Fundamental Comparability Questions (FCQ). The second of these,
FCQ2, is particularly relevant to the present setting.

DEFINITION 3.2. A simple, unital C∗-algebra A is said to satisfy FCQ2 if,
for all projections p, q ∈ A, τ(p) < τ(q) for all τ ∈ T (A) implies that p ≺ q.

One result which we shall use repeatedly in the sequel is the following, due
to S. Zhang. Recall that a C∗-algebra A is said to be non-elementary if it is neither
a matrix algebra over C, nor the algebra of compact operators K(H) on some
infinite dimensional, separable Hilbert space H.
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THEOREM 3.3 ([47], Theorem I). Let A be a non-elementary, simple C∗-algebra
with real rank zero. If p is a projection inA, then for any integer n > 1 and any non-zero
projection r of A, there exist subprojections p1, p2, . . . , p2n , p2n+1 of p so that

p = (p1 ⊕ p2 ⊕ · · · ⊕ p2n)⊕ p2n+1,

where p1, . . . , p2n are mutually orthogonal, equivalent subprojections of p and p2n+1 is
a projection equivalent to both a subprojection of r and a subprojection of p1.

REMARK 3.4. Note that this implies that if τ is any tracial state on A and
p ∈ P(A) is as above, then 1/(2n + 1)τ(p) 6 τ(pk) 6 1/(2n)τ(p) for all 1 6 k 6
2n + 1. From this and the fact that we can choose n > 1 arbitrarily big, it easily
follows that for any 0 6 α < β 6 1, there exists a projection q < p so that

α τ(p) < τ(q) < β τ(p) for all τ ∈ T (A).

The following result is surely known, and is included for completeness.

LEMMA 3.5. Suppose A is a unital C∗-algebra satisfying FCQ2. Let r be a pro-
jection in A. Then rAr satisfies FCQ2.

Proof. Suppose p, q ∈ rAr are projections. Suppose ϕ(p) < ϕ(q) for all
ϕ ∈ T (rAr). Given τ ∈ T (A), τr = τ|rAr is a trace on rAr, so that τ(p) =
τr(p) < τr(q) = τ(q). Since A has FCQ2, there exist u ∈ A so that uu∗ = p,
u∗u = p′ < q.

Since p, q ∈ rAr, u = pu = ru, u = up′ = ur and so p < q in rAr. That is,
rAr satisfies FCQ2.

PROPOSITION 3.6. Suppose that A is a unital, simple C∗-algebra with real rank
zero and a unique tracial state τ. Suppose furthermore that A satisfies FCQ2.

If a ∈ A0, then for all ε > 0 there exist u, w ∈ A with ‖u‖, ‖w‖ 6 2‖a‖1/2 so
that

‖a− [u, u∗]− [w, w∗]‖ < ε.

In particular, a ∈ Σ2sc(A).

Proof. Let 0 < ε. Since A has real rank zero, we can find b = b∗ ∈ A with
‖b‖ = ‖a‖ so that:

(i) b has finite spectrum {λ1, λ2, . . . , λn} with λi 6= λj if i 6= j;
(ii) ‖a− b‖ < ε; and

(iii) τ(b) = 0.

Let {pi}n
i=1 denote the spectral projections corresponding to λi, 1 6 i 6 n. Then

pi pj = 0 = pj pi if i 6= j, and b =
n
∑

i=1
λi pi.

Let γ > 0, and choose m0 ∈ N large enough so that [2m0 /n]− 1 > 2m0 /2n >
1/γ, where [x] denotes the maximum integer less than or equal to x.
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By Zhang’s Theorem 3.3 above, we can find mutually orthogonal projec-
tions

q2m0 +1 � q2m0 ∼ q2m0−1 ∼ · · · ∼ q1

with 1 =
2m0

∑
i=1

qi. In particular, τ(q2m0 +1) 6 τ(q1) 6 1/2m0 and 1/(2m0 + 1) 6

τ(q1).
For each 1 6 i 6 n, let κi be the maximum positive integer so that κiτ(q1) <

τ(pi). By FCQ2, we can find mutually orthogonal projections ri,1 ∼ ri,2 ∼ · · · ∼
ri,κi ∼ q1 so that

ri := ri,1 + ri,2 + · · ·+ ri,κi < pi.

Our assumption that (κi + 1)τ(q1) > τ(pi) implies that if si := pi − ri, then
τ(si) 6 τ(qi) 6 1/2m0 .

Let r = r1 + r2 + · · ·+ rn. Then rAr ' Mκ(q1Aq1), where κ =
n
∑

i=1
κi. More-

over, for all 1 6 i, j 6 n, pirj = rj pi = δijrj, where δij denotes the Kronecker delta
function. Therefore br = rb. With respect to the matrix decomposition of rAr
corresponding to r = r1,1 + r1,2 + · · ·+ r1,κ1 + r2,1 + · · ·+ rn,κn , we have

rbr = diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λn, . . . , λn),

where each λi appears κi times.
Now

|τ(rbr)| = |τ(rbr)− τ(b)| =
∣∣∣ n

∑
i=1

λiτ(ri)−
n

∑
i=1

λiτ(pi)
∣∣∣

6
n

∑
i=1

|λi|τ(si) 6
n

∑
i=1

‖b‖
2m0

=
n‖b‖
2m0

< γ ‖b‖.

Let b0 = rbr − (τ(rbr)/τ(r)) r, so that τ(b0) = 0. Now 1− τ(r) =
n
∑

i=1
τ(si) 6

n/2m0 6 γ, so that τ(r) > 1− γ. Thus

‖b0 − rbr‖ 6
∣∣∣τ(rbr)

τ(r)

∣∣∣ 6
γ ‖b‖
1− γ

=
γ ‖a‖
1− γ

.

If we now think of b0 as an element of Mκ(C) (since b0 = q1 ⊗ b00 for
some b00 ∈ Mκ(C)), then by Lemma 3.5 of [14], we can find u ∈ Mκ(C) ⊆
Mκ(q1Aq1) ⊆ A so that ‖u‖ 6

√
2‖b0‖1/2 6

√
2(‖rbr‖ + γ ‖a‖/(1− γ))1/2 6√

2(‖a‖+ γ ‖a‖/(1− γ))1/2 6
√

2(((1 + γ)/(1− γ))‖a‖)1/2, and b0 = [u, u∗].

Let s =
n
∑

i=1
si. Then τ(s) =

n
∑

i=1
τ(si) 6 n/2m0 . As before, sb = bs and thus

b = rbr + sbs. By FCQ2, we can find at least ν = [2m0 /n]− 1 mutually orthogonal

copies of s, each orthogonal to s, say s ∼ t1 ∼ t2 ∼ · · · ∼ tν so that 1 > s +
ν

∑
i=1

ti

and each ti = ti,1 + ti,2 + · · ·+ ti,n where ti,j ∼ sj, 1 6 j 6 n, 1 6 i 6 ν.
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With respect to the decomposition y = (s1 + s2 + · · · + sn) + (t1,1 + t1,2 +
· · · + t1,n) + · · · + (tν,1 + tν,2 + · · · + tν,n), we can write sbs ∈ yAy as sbs =
diag(λ1, λ2, . . . , λn, 0, 0, . . . , 0). Let αi = −λi/ν, 1 6 i 6 n, and with respect
to the same matrix decomposition, set

c = diag(λ1, λ2, . . . , λn, α1, . . . , αn, α1, . . . , αn, . . . , α1, . . . , αn).

For each 1 6 j 6 n,

(sj + t1,j + t2,j + · · ·+ tν,j)A(sj + t1,j + t2,j + · · ·+ tν,j) ' Mν+1(sjAsj).

Since diag(λj, αj, αj, . . . , αj) is a scalar matrix with trace zero with respect to this
decomposition, once again we can invoke Lemma 3.5 of [14] to find wj ∈ (sj +
t1,j + t2,j + · · ·+ tν,j)A(sj + t1,j + t2,j + · · ·+ tν,j) so that ‖wj‖ 6 2|λj|1/2 6 2‖b‖1/2

= 2‖a‖1/2 and diag(λj, αj, αj, . . . , αj) = [wj, w∗
j ].

Thus c = [w, w∗] where w = w1 + w2 + · · ·+ wn. Note that ‖w‖ = max ‖wj‖
6 2‖a‖1/2, and

‖c− sbs‖ < max{|αj| : 1 6 j 6 n} 6 max
{∣∣∣λj

ν

∣∣∣ : 1 6 j 6 n
}

6
‖a‖

ν
=

‖a‖[
2m0

n

]
− 1

.

We conclude that

‖b− [u, u∗]− [w, w∗]‖ 6 ‖rbr− [u, u∗]‖+ ‖sbs− [w, w∗]‖

6 ‖rbr− b0‖+ ‖sbs− c‖ 6
γ ‖a‖
1− γ

+
‖a‖[

2m0
n

]
− 1

<
γ ‖a‖
1− γ

+ γ ‖a‖ = γ ‖a‖
(2− γ

1− γ

)
,

where ‖u‖ 6
√

2[((1 + γ)/(1− γ))‖a‖]1/2, ‖w‖ 6 2‖a‖1/2.
Thus the theorem holds if we choose γ > 0 small enough so that (1 + γ)

/(1− γ) < 2 and γ(2− γ)/(1− γ) < ε/‖a‖. Clearly this is possible.
Finally, since ε > 0 was arbitrary, b ∈ Σ2scA.

In the next lemma, it will be convenient to adopt the notations of [47] with
regards to projections, namely: if p ∈ P(A), we denote the equivalence class of
projections in A with representative p by [p]. For p, q ∈ P(A), we write [p] 6 [q]
(respectively [p] < [q]) to mean that p is equivalent to a subprojection (respec-
tively a proper subprojection) of q. A local addition on the set of such equivalence
classes is defined as follows: [p] + [q] is defined if there exist p′, q′ ∈ P(A) with
p′ ∼ p, q′ ∼ q and p′q′ = 0, in which case [p] + [q] := [p′ + q′]. For m ∈ N,
m[p] = [p] + [p] + · · ·+ [p] (m times), provided that this exists.
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We shall also make use of the following numerical estimate. The routine
verification thereof is left to the reader. Suppose σ, ρ > 10 are two integers satis-
fying (ρ + 1)/σ < 4/5. If α > 5, then

(2α + 1)(ρ + 1) + 1
(2α+1)σ− (2α + 1)(ρ + 1)

<
4
5

.

For simple, unital AF C∗-algebras, the existence of a family of projections
satisfying the conditions of the next lemma is due to T. Fack [14]. For the in-
ductive limits to be considered in the next section, the result is due to K. Thom-
sen [42].

LEMMA 3.7. Let A be a simple, unital C∗-algebra with real rank zero.
Then there exist sequences (pn)∞

n=1, (qn)∞
n=1, (rn)∞

n=1 in A satisfying:

(i) 1 = p1 + q1 + r1;
(ii) pn � qn � rn for all n > 1;

(iii) rn−1 = pn + qn for all n > 2;
(iv) the rn’s are all mutually orthogonal.

Proof. The basic idea is as follows: first we shall partition the identity as
a sum of three projections 1 = p1 + q1 + r1 of “approximately equal size” (as
measured by their traces), satisfying p1 � q1 � r1. To apply induction we assume
that p1, p2, . . . , pk, q1, . . . , qk, r1, . . . , rk have been constructed. We then partition rk
almost in half, as rk = pk+1 + qk+1, with pk+1 � qk+1 (very roughly speaking,
τ(pk+1) u ((2α − 1)/2α)τ(rk), τ(qk+1) u ((2α + 1)/2α)τ(rk) for sufficiently large

α = α(k)). We shall then construct rk+1 < 1−
k
∑

j=1
rj with τ(rk+1) > τ(qk+1). This

last step forces us to maintain both lower and upper bounds on τ(rk+1), and this
is where the above numerical estimate comes into play.

First we use Zhang’s Theorem to find projections y1, y′ ∈ A so that 1 =
1024[y1] + [y′] where [y′] < [y1]. Choose e1 with [e1] = [y′] + 4[y1] < 5[y1].

We then choose r1 with [r1] = 350[y1], and choose a projection q1 < 1− r1
with [q1] = 340[y1], whence q1 ≺ r1, and let p1 = 1− (q1 + r1) so that [p1] =
334[y1] + [y′] < [q1]. Thus (i) is satisfied and (ii) is satisfied with n = 1.

Let ρ1 = 350, σ1 = 670. Write s1 = 1 − r1 so that [s1] = σ1[y1] + [e1]
where [e1] < 5[x]. Observe that ρ1/(ρ1 + σ1) = 350/1020 < 2/5, (ρ1 + 1)/σ1 =
351/670 < 4/5, and σ1, ρ1 > 10.

Suppose that we have chosen p1, . . . , pk, q1, . . . , qk, r1, . . . , rk so that:

(a) 1 = p1 + q1 + r1;
(b) pj � qj � rj, 1 6 j 6 k;
(c) rj−1 = pj + qj, 2 6 j 6 k;
(d) the rj’s are orthogonal, 1 6 j 6 k, and
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(e) there exist ρk, σk > 10 satisfying (ρk + 1)/σk < 4/5, ρk/(ρk + σk) < 2/5 and

a projection yk so that [rk] = ρk[yk], and sk := 1−
k
∑

j=1
rj satisfies [sk] = σk[yk] + [ek],

where [ek] < 5[y1].

(We have just seen that this is possible when k = 1, which begins our in-
duction step. That (a) holds is therefore clear.) Then we claim that we can find
pk+1, qk+1, and rk+1 which satisfy (a) through (e), which completes the induction,
and thus the proof, since we only need satisfy (a) through (d)!

Choose mk ∈ N so that 2mk > σk. Using Zhang’s Theorem, we can find
projections zk, z′k ∈ A so that z′k � zk and 5[y1]− [ek] = 2mk [zk] + [z′k] > σk[zk] +
[z′k]. Now choose αk > k + 5 so that

2αk + 1
2αk+1

ρk + 1
σk

<
2
5

.(3.1)

This is possible because (σk + 1)/σk < 4/5 and (2αk + 1)/2αk+1 tends to 1/2 as αk
tends to infinity.

A second application of Zhang’s Theorem yields projections yk+1, y′k+1 ∈
A so that [yk] = 2αk+1[yk+1] + [y′k+1], where [y′k+1] 6 [yk+1] and [y′k+1] < [zk],
whence σk[y′k+1] < 5[y1]− [ek].

Thus

[rk] = ρk[yk] = ρk(2αk+1[yk+1] + [y′k+1]),

[sk] = σk[yk] + [ek] = σk(2αk+1[yk+1] + [y′k+1]) + [ek].

Choose qk+1 < rk with [qk+1] = ρk(2αk + 1)[yk+1], and set pk+1 = rk − qk+1.
Clearly (c) is satisfied with j = k + 1. Now

[pk+1] = ρk(2αk+1[yk+1]+[y′k+1])− ρk(2αk +1)[yk+1] = ρk((2αk − 1)[yk+1]+[y′k+1]).

Since [y′k+1] < [yk+1], pk+1 � qk+1. Since ρk/(ρk + σk) < 2/5, we have σk >
ρk + 1, so that (2αk + 1)(ρk + 1) < 2αk+1σk. Thus we can choose rk+1 < sk with
[rk+1] = (ρk + 1)(2αk + 1)[yk+1], which implies that rk+1 is orthogonal to all of
the other rj’s, 1 6 j 6 k. That is, (d) holds for j = k + 1. It is also clear that
qk+1 � rk+1; thus (b) also holds for j = k + 1.

Let ρk+1 = (2αk + 1)(ρk + 1) > 10, and set

sk+1 = 1−
k+1

∑
j=1

rj = sk − rk+1

[sk+1] = σk(2αk+1[yk+1] + [y′k+1]) + [ek]− (ρk + 1)(2αk + 1)[yk+1]

= (2αk+1σk − (2αk + 1)(ρk + 1))[yk+1] + σk[y′k+1] + [ek].

If we choose ek+1 with [ek+1] = σk[y′k+1] + ek, then we have [ek+1] < 5[y1].
Letting σk+1 = 2αk+1σk − (2αk + 1)(ρk + 1) > (2αk+1)(ρk + 1) − (2αk + 1)(ρk +
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1) = (2αk − 1)(ρk + 1) > 10 we have finally,

ρk+1
ρk+1 + σk+1

=
(2αk + 1)(ρk + 1)

(2αk + 1)(ρk + 1) + (2αk+1σk − (2αk + 1)(ρk + 1))

=
(2αk + 1)

2αk+1
(ρk + 1)

σk
<

2
5

,

by our choice of αk in Equation (3.1) above. Also,

ρk+1 + 1
σk+1

=
(2αk + 1)(ρk + 1) + 1

2αk+1 σk − (2αk + 1)(ρk + 1)
<

4
5

,

as mentioned in the preamble to the lemma. This completes the induction step,
and hence the proof.

The following known result will prove useful.

LEMMA 3.8. Let A be a simple, unital C∗-algebra and r be a non-zero projection
in A. Then every tracial state on rAr has an extension to a bounded trace on A.

A proof can be found in the paper [6] in the proof of Proposition 5.2, where
it is shown that if x ∈ rAr and x ∈ A0, then x ∈ (rAr)0.

LEMMA 3.9. Let A be a simple, unital C∗-algebra with real rank zero and satis-
fying FCQ2. Suppose that A has a unique tracial state τ. If a ∈ A0, then there exists

x1, . . . , x8 ∈ A so that a =
8
∑

i=1
[xi, x∗i ]. That is, a ∈ Σ8sc(A). Thus sl(A) ⊆ Σ16c(A).

Proof. The proof is an adaptation of T. Fack’s proof of Theorem 3.1 in [14],
and of K. Thomsen’s modification of it ([42], Theorem 1.8).

Choose projections (pn)∞
n=1, (qn)∞

n=1, (rn)∞
n=1 satisfying the conditions of

Lemma 3.7. We can assume without loss of generality that ‖a‖ < 1. By Lemma 3.4
of [14], there exist u, v ∈ A with ‖u‖ 6 2‖a‖1/2 and ‖v‖ 6 13‖a‖1/2 so that
a = [u, u∗] + [v, v∗] + a1, where a1 ∈ r1Ar1 and ‖a1‖ < 3. Now a1 ∈ A0, so
a1 ∈ (r1Ar1)0, by the comment preceding this lemma.

We recursively define elements u(i, n) ∈ rnArn, i = 1, 2, an ∈ (rnArn)0,
vn, wn ∈ (rn + rn+1)A(rn + rn+1) so that

an = [u(1, n), u(1, n)∗] + [u(2, n), u(2, n)∗] + [vn, v∗n] + [wn, w∗
n] + an+1,

where ‖an‖ 6 3/n, ‖u(i, n)‖ < 2
√

3/n, i = 1, 2, ‖vn‖, ‖wn‖ < 1/2n, n ∈ N.
Suppose that both a1, . . . , an, u(1, 1), . . . , u(1, n− 1), u(2, 1), . . . , u(2, n− 1) ,

v1, . . . , vn−1 and w1, . . . , wn−1 have been constructed.
Now an ∈ (rnArn)0 and rnArn is simple, unital and has real rank zero [5].

Furthermore, rnArn satisfies FCQ2 by Lemma 3.5. Now, by Proposition 3.6, given
0 < δ satisfying 13

√
δ 6 2−n, there exist u(1, n), u(2, n) ∈ rnArn with ‖u(i, n)‖ 6

2‖an‖1/2 < 2
√

3/n, i = 1, 2 so that

‖an − [u(1, n), u(1, n)∗]− [u(2, n), u(2, n)∗]‖ < δ.
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If z = an − [u(1, n), u(1, n)∗]− [u(2, n), u(2, n)∗], then z ∈ (rnArn)0 and ‖z‖ < δ.
By Lemma 3.4 of [14], there exist vn, wn ∈ (rn + rn+1)A(rn + rn+1) such that
‖vn‖ 6 2‖z‖1/2, ‖wn‖ 6 13‖z‖1/2 for which an+1 := z − [vn, v∗n] − [wn, w∗

n] ∈
rn+1Arn+1 and ‖an+1‖ 6 3‖z‖.

It is not hard to see that since (rnArn)0 ⊆ ((rn + rn+1)A(rn + rn+1))0, we
get an+1 ∈ ((rn + rn+1)A(rn + rn+1))0. But every tracial state of rn+1Arn+1 ex-
tends to a positive bounded trace on (rn + rn+1)A(rn + rn+1). Thus an+1 ∈
(rn+1Arn+1)0. Moreover, ‖u(i, n)‖ 6 2

√
3/n, i = 1, 2 while ‖vn‖, ‖wn‖ 6 2−n.

This completes the induction step.

Set x1 = u, x2 = v, x3 =
∞
∑

n=1
u(1, n), x4 =

∞
∑

n=1
u(2, n), x5 = ∑

i even
vi, x6 =

∑
i odd

vi, x7 = ∑
i even

wi, and x8 = ∑
i odd

wi.

3.3. An examination of the proof shows that we may take ‖xi‖ 6 13‖a‖1/2,
1 6 i 6 8. We shall return to this later.

THEOREM 3.10. Let A be a simple, unital C∗-algebra of real rank zero and satis-
fying FCQ2. Suppose that A has a unique tracial state τ. Then sl(A) = Σ2c(A), and
A0 = Σ4sc(A).

Proof. The proof is an application of the commutator reduction argument,
Theorem 2.3 above, and is modeled after the proof for AF C∗-algebras in Section 2.
SinceA is simple and of real rank zero, we can apply Zhang’s Theorem 3.3 to find

mutually orthogonal projections q1 � q2 ∼ q3 ∼ · · · ∼ q33 so that 1 =
33
∑

i=1
qi.

Suppose a ∈ sl(A) and let ajk = qjaqk, 1 6 j, k 6 33. If we let vk, wj,k denote
the operators from Lemma 2.1, then for any trace τ on A, we get

τ(a) =
33

∑
k=1

τ(akk) =
33

∑
k=1

τ(w∗
k,33akkwk,33).

Since any trace on q33Aq33 extends to a trace on A by Lemma 3.8, it follows im-

mediately that
33
∑

k=1
w∗

k,33bkkwk,33 ∈ sl(q33Bq33).

But q33Aq33 is simple ([29], Theorem 3.2.8), is of real rank zero ([5]) and sat-
isfies FCQ2. Furthermore, q33 serves as an identity for this algebra. By Lemma 3.9,
every trace zero element of q33Aq33 lies in Σ16c(q33Aq33).

By Theorem 2.3, b ∈ Σ2c(A). Since b ∈ sl(A) was arbitrary, we are done.
The second statement follows immediately from this, combined with
Theorem 2.4.

We thank D. Hadwin for pointing out that the previous theorem applies to
the case of type II1 factor von Neumann algebras:
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COROLLARY 3.11. LetM be a finite II1 factor von Neumann algebra. Then every
element of trace zero in M is a sum of two commutators, and every selfadjoint element of
trace zero is a sum of four or fewer self-commutators.

To the best of our knowledge, the best previous estimates belonged to T. Fack
and P. de la Harpe [15], who showed that every trace zero element in such a factor
is a sum of 10 or fewer commutators, and to C. Pearcy and D. Topping [32], who
showed that in a certain class of II1 factors known as type II1 factors of Wright, ev-
ery selfadjoint trace zero element is a single commutator, and hence, every trace
zero element is a sum of two commutators.

4. APPROXIMATELY HOMOGENEOUS C∗-ALGEBRAS

4.1. In this section we shall be applying the commutator reduction argument,
Theorem 2.3 to a class of approximately homogeneous (AH) C∗-algebras appear-
ing in K. Thomsen’s generalization of Fack’s results [42]. Before defining that
class, we shall need a definition, due to Nistor [31].

DEFINITION 4.1. Let (G, G+) be an ordered group. We say that G has large
denominators if for any 0 6 a ∈ G and n ∈ N, there exist b ∈ G and m ∈ N so that
nb 6 a 6 mb.

4.2. An element A of the class of algebras we wish to consider here is a unital
C∗-algebra which is direct limit of algebras An of the form

An '
kn⊕

j=1

C(Xn,j)⊗Mt(n,j),

where Xn,j is a compact, Hausdorff, connected space and t(n, j) ∈ N for all 1 6
j 6 kn and n > 1.

We shall say that the sequence (An)n is of bounded dimension if there ex-
ists d ∈ N such that sup

n,j
{dim(Xn,j)} 6 d, where dim (Xn,j) refers to the cover-

ing dimension of Xn,j. We shall refer to A as being of bounded dimension d if it
can be expressed as a limit whose building blocks have bounded dimension d.
Without loss of generality, we may assume that each connecting homomorphism
ϕn : An → An+1 is unital. (We refer the reader to [13] for details about covering
dimension, and to [43] for more information about the K0-groups appearing in
the next statement.)

THEOREM 4.2 ([42], Theorem 1.8). Let A be a unital AH C∗-algebra of the type
considered in Section 4.2. Assume that A is of bounded dimension d and that K0(A) has
large denominators.
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If a ∈ A0 then there exist d + 7 elements x1, x2, . . . , xd+7 ∈ A such that a =
d+7
∑

i=1
[xi, x∗i ].

4.3. As pointed out by Thomsen, if A is an inductive limit as in Subsection 4.2
and A is simple, then A has large denominators unless A is finite-dimensional.
Thus this result properly generalizes that of Fack.

If we wish to apply the same argument we used in Theorem 2.5 to this class
of C∗-algebras, we are confronted with an obstacle, namely: the reduction argu-
ment requires us to find “small" projections q is A such that sl(qAq) ⊆ Σmc(qAq)
for some m > 1. When A was a simple, unital AF C∗-algebra, then so was qAq,
and so Fack’s Theorem applied equally well to both A and qAq, allowing us to
choose m = 14. In the present case, it is no longer obvious that the fact that
sl(A) ⊆ Σ14+2dc(A) implies that sl(qAq) ⊆ Σmc(qAq) for any m > 1. What is
required is a more detailed analysis of Thomsen’s proof, along with a couple of
modifications which allow us to conclude that this does indeed hold.

A key to the proof (this is where Thomsen used the fact that K0(A) has
“large denominators”) is the existence of the families {pn}n, {qn}n, and {rn}n of
projections satisfying the conditions of Lemma 3.7. In this setting, the existence
is provided by Lemma 1.7 of [42].

REMARK 4.3. The key observation that will allow us to extend Thomsen’s
result to our setting is that his proof of Theorem 4.2 actually shows something
stronger, namely: suppose that n0 > 1 and that s = s∗ = s2 ∈ A is a projection
such that s > rj for all j > n0. Suppose furthermore that a = a∗ ∈ (rn0Arn0)0.
Then a is a sum of d + 5 self-commutators from sAs.

Thomsen’s proof is a modification of the proof of Fack’s result ([14], Theo-
rem 3.1), and is the basis for Theorem 3.9 above. Rather than reproducing this
proof yet again, we shall restrict ourselves to pointing out the relevant minor
modifications. As such, the following comments refer to Theorem 1.8 of [42], and
we maintain the notation used there.

When a and s are as above, it suffices to observe that in Thomsen’s proof we
can choose u = v = 0, u(i, n) = 0 if n < n0, i = 3, 4, . . . , d + 3 and vi = wi = 0 if
n < n0.

Then x1 = u = 0, x2 = v = 0 both lie in sAs (trivially), and since u(i −
2, n) ∈ sAs for all n > n0, we get xi =

∞
∑

n=1
u(i − 2, n) ∈ sAs, 3 6 i 6 d + 3. We

then let

xd+4 = ∑
i>n0,i even

vi , xd+6 = ∑
i>n0,i even

wi ,

xd+5 = ∑
i>n0,i odd

vi , xd+6 = ∑
i>n0,i odd

wi ,

and note that vi, wi ∈ sAs if i > n0, so that xd+4, xd+5, xd+6, xd+7 ∈ sAs.
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We now employ a technical device which will allow us to exploit this minor
generalization.

LEMMA 4.4. Let A be a unital AH C∗-algebra of the type considered in Subsec-
tion 4.2. Suppose that A is of bounded dimension d and that K0(A) has large denomi-
nators. Let 1 < µ ∈ N be fixed. Given 0 < α1 < β1 < α2 < β2 < 1/(2µ + 1), we
can find an integer ν > µ and two families {qi}ν

i=0 and {pj}λ
j=1 of mutually orthogonal

projections in A satisfying:

(i) 1 = q0 + q1 + · · ·+ qν;
(ii) qν � qν−1 � · · · � qµ ∼ qµ−1 ∼ · · · ∼ q1 ∼ q0;

(iii) α2 < τ(q0) < β2 for all τ ∈ T (A);
(iv) q0 = p1 + p2 + · · ·+ pλ;
(v) pλ � pλ−1 � · · · � p1;

(vi) α1 < τ(p1) < β1 for all τ ∈ T (A).

Proof. In essence, the proof of this result reduces to proving it in a suffi-
ciently large finite-dimensional C∗-algebra, that is, in a direct sum of full matrix
algebras, where it is simply an issue of ranks of projections, and then invoking
the fact proven in [42] that A contains such an algebra.

As pointed out in p. 230 of [42], the assumption that K0(A) has large de-
nominators is equivalent to the fact that for all i ∈ N and all minimal non-zero
central projections eil ∈ Ai, we have

lim
j→∞

(min{rankϕji(eil)k : 1 6 k 6 nj : rankϕji(eil)k 6= 0}) = ∞.

Given 0 < α1 < β1 < α2 < β2 < 1, we can find M ∈ N such that M > µ + 1,
so that 1/M < min(β1 − α1, β2 − α2).

Let i ∈ N. Fix J > 0 so that j > J implies that

(min{rankϕji(eil)k : 1 6 k 6 nj : rankϕji(eil)k 6= 0}) > M.

Since each ϕji is unital, and since 1 = ei1 + ei2 + · · ·+ eini , it follows that for any
k ∈ {1, 2, . . . , nJ} there exists lk ∈ {1, 2, . . . , ni} so that ϕJi(eilk )k 6= 0. From this it
follows that rankϕJi(eilk )k > M, whence t(J, k) > M for all 1 6 k 6 nJ .

ThusA contains a finite-dimensional unital C∗-algebraB so thatB'∗
nJ⊕

k=1
Mrk ,

where rk > M for all 1 6 k 6 nj. Indeed, let B =
nJ⊕

k=1
1k ⊗Mt(J,k) where 1k denotes

the constant function 1k(x) = 1 for all x ∈ XJ,k, 1 6 k 6 nj.
For each such k, 1/rk 6 1/M < min(β1 − α1, β2 − α2), and (µ + 1)β2 < 1.

Choose the largest integer ρk so that ρk/rk < β2. It is straightforward to verify
that

ρk
rk

> α2 and (µ + 1)ρk < rk .



132 L.W. MARCOUX

Thus we can find µ + 1 mutually orthogonal projections q0,k, q1,k, . . . , qµ,k ∈
Mrk so that

α2 <
rankqj,k

rk
=

ρk
rk

< β2, 0 6 j 6 µ.

Note that qi,k ∼ qj,k for all 0 6 i, j 6 µ, since their ranks agree.
Let γk = (rk − (µ + 1)ρk), 1 6 k 6 nJ , and set γ = max{γ1, γ2, . . . , γnJ}. If Ik

denotes the identity operator in Mrk , then we can write Ik −
( µ

∑
j=0

qj,k

)
as the sum

of γk rank one projections qµ+1,k, qµ+2,k, . . . , qµ+γk ,k. For γk < l 6 γ, let qµ+l,k = 0,
and consider

qj =
nJ

∑
k=1

qj,k, 0 6 j 6 γ.

Since qµ+γ,k � qµ+γ−1,k � · · · � qµ,k ∼ qµ−1,k ∼ · · · ∼ q1,k ∼ q0,k for each k,
it follows that

qµ+γ � qµ+γ−1 � · · · � qµ ∼ qµ−1 ∼ · · · ∼ q1 ∼ q0.

Moreover, since Ik =
µ+γk

∑
j=0

qj,k =
µ+γ

∑
j=0

qj,k, it follows that I =
µ+γ

∑
j=0

qj.

To obtain the projections p1, p2, . . . , pλ, we apply a similar argument. Since
1/rk 6 1/M < min(β1 − α1, β2 − α2) and since β2 < α1, we can choose a subpro-
jection p1,k of q0,k so that

α1 <
rank p1,k

rk
< β1, 1 6 k 6 nJ .

Let λk = 1+(rank q0,k−rank p1,k) for 1 6 k 6 nJ , and set λ = max{λ1, λ2, . . . , λnJ}.
We can then write q1,k − p1,k as a sum of λk − 1 rank one subprojections of q0,k,
say {p2,k, p3,k, . . . , pλk ,k}. For λk < l 6 λ, we let pl,k = 0 and consider

pm =
nJ

∑
k=1

pm,k, 1 6 m 6 λ.

Since pλ,k � pλ−1,k � · · · � p1,k for all 1 6 k 6 nJ , it follows that pλ � pλ−1 �

· · · � p1. Moreover, since q0,k − p1,k =
λk
∑

j=2
pj,k =

λ

∑
j=2

pj,k for all k, we also have

q0 =
λ

∑
m=1

pm.

Finally, any trace τ ∈ T (A) restricts to a trace on B. Since these are convex
combinations of the normalized (extremal) traces onto each factor Mrk , and since
the normalized trace on Mrk is unique, it follows that α1 < τ(p1) < β1 and α2 <
τ(q0) < β2 for all τ ∈ T (A).

The following result must certainly be known. We state it for ease of refer-
ence:
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LEMMA 4.5. Suppose thatA is a unital C∗-algebra which satisfies FCQ2. Suppose
also that p, q and r are projections in A which satisfy:

(i) τ(p) < τ(r) < τ(q) for all τ ∈ T (A);
(ii) p < q.

Then r ∼ t where p < t < q.

Proof. Since τ(p) < τ(r) for all τ ∈ T (A), FCQ2 implies that p ∼ p0 for
some projection p0 < r. Thus s0 := r − p0 is a projection and r = p0 + s0. Now
τ(s0) = τ(r− p0) = τ(r)− τ(p0) = τ(r)− τ(p) < τ(q)− τ(p) = τ(q− p) for all
τ ∈ T (A). Again, by FCQ2, there exists a projection s so that s0 ∼ s < q− p.

But then p, s, p0, s0 are projections in A with p ∼ p0, s ∼ s0, ps = sp =
0 = p0s0 = s0 p0. By Lemma 5.2.3 of [43], p < p + s ∼ p0 + s0 = r, and p + s <
p + (q− p) = q. Letting t = p + s completes the proof.

REMARK 4.6. If A be a unital AH C∗-algebra of the type considered in Sub-
section 4.2, and if A has bounded dimension d and K0(A) has large denomina-
tors, then A has slow dimension growth in the sense of Martin and Pasnicu [28]. By
Theorem 3.7 of that paper along with the comments preceding that theorem, A
satisfies FCQ2. This will be used in the following two results.

LEMMA 4.7. Let A be a unital AH C∗-algebra of the type considered in Subsec-
tion 4.2. Suppose that A is of bounded dimension d and that K0(A) has large denomina-
tors. Then there exists ν > 100d and mutually orthogonal projections q0, q1, . . . , qν ∈ A
so that:

(i) 1 =
ν

∑
k=0

qk;

(ii) qν � qν−1 � · · · � q100d ∼ · · · ∼ q1 ∼ q0;
(iii) if a = a∗ ∈ q0Aq0 satisfies τ(a) = 0 for all τ ∈ T (A), then a ∈ Σd+7c(q0Aq0).

Proof. Let µ = 200d; α2 = 1/(400d), β2 = 1/(300d). Choose n0 ∈ N so that
1/2n0−1 < α2, and then choose α1 = 1/(200 · 2n0), β1 = 1/(100 · 2n0).

We can then use Lemma 4.4 to find projections q0, q1, . . . , qν and p1, p2, . . . , pλ
satisfying the conditions of that lemma.

Using Lemma 1.7 of [42], we can choose projections that {pn}∞
n=1, {qn}∞

n=1,
{rn}∞

n=1 satisfying the conditions of Lemma 3.7. Note that Thomsen’s construc-
tion of rn implies that τ(rn) 6 1/2n for all n > 1 and τ ∈ T (A). Moreover,
the fact that 1 = p1 + q1 + r1 and p1 � q1 � r1 implies that τ(r1) > 1/3 for all
τ ∈ T (A). Since pn � qn � rn and rn−1 = pn + qn, n > 2, we also have

1
2

τ(rn−1) 6 τ(qn) 6 τ(rn), n > 2,

whence (1/3)(1/2n−1) 6 τ(rn) 6 1/2n, n > 1. From this it follows that
∞
∑

n=n0

τ(rn)

6
∞
∑

n=n0

1/2n = 1/2n0−1 < α2 < τ(q0) for all τ ∈ T (A).
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Next,

τ(p1) < β1 =
1

100
1

2n0
<

1
3

1
2n0−1 6 τ(rn0) 6

1
2n0−1 < α2 < τ(q0) for all τ ∈ T (A).

By Lemma 4.5, rn0 ∼ rn0 where p1 < rn0 < q0. Let k > 1 and suppose that
we have fixed rn0+i, 1 6 i 6 k− 1. Then

τ(rn0+k) < τ(q0)−
k−1

∑
i=1

τ(rn0+i) = τ(q0)−
k−1

∑
i=1

τ(rn0+i)

= τ
(

q0 −
k−1

∑
i=1

rn0+i

)
for all τ ∈ T (A),

and hence by FCQ2, rn0+k ∼ rn0+k < q0 −
k−1
∑

i=1
rn0+i.

The significance of this to us is that by replacing rn0+k by rn0+k, k > 0, we
may assume a priori that q0 > rn0+k, k > 0.

Suppose that a = a∗ ∈ q0Aq0 and that τ(a) = 0 for all τ ∈ T (A). Now
q0 = p1 + p2 + · · · + pλ, where pλ � pλ−1 � · · · � p1. By Lemma 1.1 and
Lemma 1.2 of [42],

a = [x1, y1] + [x2, y2] + a1,

where a1 = a∗1 ∈ p1Ap1, x1, y1, x2, y2 ∈ q0Aq0. By Remark 4.3, a1 ∈ Σd+5c(q0Aq0).
Thus a ∈ Σd+7c(q0Aq0), completing the proof.

THEOREM 4.8. Let A be a unital AH C∗-algebra of the type considered in Sub-
section 4.2. Assume that A has bounded dimension d, and that K0(A) has large denom-
inators. Then every element in sl(A) is a sum of two commutators, and every selfadjoint
element in sl(A) is a sum of at most four self-commutators.

Proof. By Lemma 4.7, there exists ν > 100d as well as mutually orthogonal
projections q0, q1, . . . , qν ∈ A so that:

(a) 1 =
ν

∑
k=0

qk;

(b) qν � qν−1 � · · · � q100d ∼ · · · ∼ q1 ∼ q0;
(c) if a = a∗∈ q1Aq1 satisfies τ(a) = 0 for all τ ∈T (A), then a∈Σd+7c(q1Aq1).
This tells us that a ∈ sl(qAq) implies that a ∈ Σ2d+14c(qAq). The remainder

of the argument is similar to that used in Theorem 2.5 and in Theorem 3.10.

4.4. A number of algebras which were originally defined by other means have
been shown to be isomorphic to inductive limits of the type we are considering
here. Among these are the Bunce-Deddens algebras [16] and the irrational rota-
tion algebras [12] which have been shown to be expressible as inductive limits of
the above type with Xn,j = T, the unit circle in C, for all n and j. The same is
true of the crossed product C∗-algebra C(X) oϕ Z, where ϕ : X → X is a mini-
mal homeomorphism of the Cantor set X ([37] combined with a result of Elliott;
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see Theorem VIII.7.5 of [9]). All of these are examples of simple C∗-algebras. As
well, all unital AF C∗-algebras A for which K0(A) has large denominators — oc-
curring by setting each Xn,j to be a singleton for all n and j — whether or not
these are simple.

COROLLARY 4.9. Let A be one of the following algebras. Then every element of
sl(A) is a sum of at most two commutators, and each self-adjoint element of sl(A) is a
sum of at most four self-commutators in:

(i) Bunce-Deddens algebras.
(ii) The irrational rotation algebras.

(iii) The crossed product C∗-algebra C(X) oϕ Z, where ϕ : X → X is a minimal
homeomorphism of the Cantor set X.

(iv) Unital AF C∗-algebras for which K0 has large denominators. In particular, this is
true for all infinite dimensional UHF C∗-algebras.

5. AN APPLICATION

5.1. In this section we shall combine the above results along with those of [25]
to show that in a large number of C∗-algebras, every element can be expressed
as a linear combination of a relatively small number of projections. Given a C∗-
algebra A, we shall denote by N(2)(A) the set {n ∈ A : n2 = 0}.

In [25] the following results were proven:

THEOREM 5.1. LetA be a unital C∗-algebra with mutually orthogonal projections
p1, p2, p3 satisfying 1 = p1 + p2 + p3 and pi � 1− pi, 1 6 i 6 3. Then:

(i) c(A) ⊆ Σ21N
(2)(A);

(ii) c(A) ⊆ Σ84CP(A);

As pointed out in [25], if p1 ∼ p2, then it is possible to improve the estimates
on the number of nilpotents of order two as well as the number of projections
occurring above. Unfortunately, the matrix r appearing in Theorem 3.5(ii) of that
paper is missing the [x33, y33] coordinate, and the estimate of “13" nilpotents of
order two and “52" projections given there must be adjusted to “14" nilpotents
and “56" projections, as the following argument shows.

Given x, y ∈ A, 1 = p1 + p2 + p3 where the pi’s are mutually orthogonal
projections, let xij = pixpj, yij = piypj and consider r = [rij] := [[xij], [yij]]. As
is shown in the proof of Lemma 3.4 of [25], we can find an element m0 ∈ Σ6N

(2)

and elements tij ∈ piApj, 1 6 i 6= j 6 3 so that

r−m0 =

[x11, y11] t12 t13
t21 [x22, y22] t23
t31 t32 [x33, y33]

 .
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But then

r−m0 =

 x11y11 x11 0
−y11x11y11 −y11x11 0

0 0 0

 +

 x22y22 x22 0
−y22x22y22 −y22x22 0

0 0 0


+

0 0 0
0 −y33x33 y33
0 −x33y33x33 x33y33

 +

0 0 0
0 y33x33 −y33x33
0 y33x33 −y33x33


+

−w −w 0
w w 0
0 0 0

 +

0 u t13
0 0 0
0 0 0


+

0 0 0
v 0 −y33 + y33x33 + t23
0 0 0

 +

 0 0 0
0 0 0

t31 t32 + x33y33x33 − y33x33 0

 ,

where w = y11x11 + x22y22, u = t12 + w − x11 − x22, and v = t21 + y11x11y11 +
y22x22y22 − w.

Thus every commutator is a sum of 14 nilpotents of order two. In fact,
through tedious but elementary bookkeeping, one can show that if ‖x‖, ‖y‖ 6 1,
then each of the nilpotents appearing above is bounded in norm by 16. The ar-
gument from the above cited paper shows that every such nilpotent of order two
appearing above is a linear combination of at most 4 projections, and that the co-
efficients of the projections appearing for each such nilpotent may be bounded
in magnitude by 8. Thus if ‖x‖, ‖y‖ 6 1, then [x, y] can be expressed as a lin-
ear combination of 56 projections, and the magnitude of the projections may be
bounded by 8. The point is not that the estimates are particularly low, but rather
that they exist, and can be explicitly computed.

As an immediate corollary to this, we obtain:

COROLLARY 5.2. Suppose that A is a unital, simple C∗-algebra of real rank
zero with a unique tracial state τ. Assume that A satisfies FCQ2. Then sl(A) =
Σ28N

(2)(A), and
A = Σ113CP(A).

That is, every element of A can be written as a linear combination of 113 or fewer projec-
tions in A.

Proof. We can use Zhang’s Theorem 3.3 to write 1 =
9
∑

i=1
qi where q9 � q8 ∼

q7 ∼ · · · ∼ q1 and qi qj = 0 if 1 6 i 6= j 6 9. Let p1 = q1 + q2 + q3, p2 =
q4 + q5 + q6, p3 = q7 + q8 + q9. Then p1 ∼ p2 and pi � 1− pi, 1 6 i 6 3. By
Theorem 5.1 above, c(A) ⊆ Σ56CP(A) ∩ Σ14N

(2)(A).
By Theorem 3.10, sl(A)=Σ2c(A)⊆Σ112CP(A)∩Σ28N

(2)(A). Since N(2)(A)
⊆ sl(A), the reverse inclusion also holds. Finally, if a ∈ A is arbitrary, then
a0 := a− τ(a)1 ∈ sl(A), and so a = a0 + τ(a)1 ∈ Σ113CP(A).
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REMARK 5.3. Suppose that in Corollary 5.2 we know that ‖a‖ 6 1. Then
|τ(a)| 6 ‖a‖ 6 1, and so ‖a0‖ 6 2. Recall from the remarks of Subsection 3.3 that

we can write Re(a0) =
8
∑

i=1
[xi, x∗i ] where ‖xi‖ 6 13‖a0‖1/2, 1 6 i 6 8, and that a

similar result holds for the imaginary part of a0.
In fact, another tedious but routine calculation based upon Lemmas 2.1

and 2.2 as well as Theorem 2.3 and 3.9 reveals that if b ∈ sl(A) and ‖b‖ 6 1, then
we can write b = [d, z] + [s, v] where ‖d‖ 6 100, ‖z‖ 6 (5577) + 64 max ‖τ−1

di ,dj
‖ 6

5961, ‖s‖ 6 356, 928 and ‖v‖ 6 1. Thus we can write a0 = α1[d0, z0] + α2[s0, v0]
where α1 = (200(5961)) = 1, 192, 200, α2 = (2(356, 928)) = 713, 856, and also
‖d0‖, ‖z0‖, ‖s0‖, ‖v0‖ 6 1.

Combining this with the comments following Theorem 5.1, we see that
[d0, z0] and [s0, v0] can be expressed as linear combinations of 56 projections each,
and that in each case, the coefficients appearing in that linear combination may be
bounded by 8. Thus a can be written as a linear combination of 113 projections,
and the coefficients of those projections may be bounded by 8(max{α1, α2}) =
9, 537, 600! The reader may well imagine that we make no claims whatsoever
as to the sharpness of these estimates — only that they exist, and that they are
useful.

For example, one simple yet interesting consequence of this fact is that if X

is a Banach space and ϕ : A → X is a linear map, then ϕ is continuous if and only
if ‖ϕ‖P(A) := sup{‖ϕ(p)‖ : p ∈ P(A)} < ∞.

COROLLARY 5.4. Suppose that A is a unital, simple C∗-algebra of real rank zero
with no tracial states. Then there exists a constant m0 > 1 so thatA = Σ56m0CP(A) =
Σ14m0N

(2)(A).

Proof. By [35], there exists a constant m0 so thatA = Σm0c(A). The existence
of projections p1, p2, p3 satisfying 1 = p1 + p2 + p3 and pi � (1− pi), 1 6 i 6 3
follows as in the previous corollary. ThusA = Σ56 m0CP(A) = Σ14m0N

(2)(A), by
Theorem 5.1 and the comments following it.

As the above proof demonstrates, the result holds more generally in any
unital C∗-algebra which does not admit a tracial state, and for which projections
satisfying the conditions of Theorem 5.1 can be found.

Even when we can not find projections satisfying the conditions of that the-
orem, all is not lost.

PROPOSITION 5.5. Suppose that 1 ∈ A is a simple C∗-algebra which does not
admit a tracial state. If A has a non-trivial projection, then:

(i) A is the linear span of its projections, and therefore
(ii) there exist n, k ∈ N so that for all a ∈ A with ‖a‖ 6 1, and for all ε > 0, there

exist projections p1, p2, . . . , pn ∈ P(A), λ1, λ2, . . . , λn ∈ C with |λi| 6 k, 1 6 i 6 n
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such that ∥∥∥a−
n

∑
i=1

λi pi

∥∥∥ < ε.

In particular, ΣnCP(A) is dense in A.

Proof. (i) By Proposition 4.3 of [26],
∞⋃

m=1
ΣmCP(A) is either contained in C1

or it contains [A,A] := span c(A). In the first case, clearly 1 is the only non-zero
projection in A. In the second case, Pop’s Theorem [35] implies that [A,A] = A,

whence A =
∞⋃

m=1
ΣmCP(A); i.e. A = span P(A).

(ii) Let 0 6 r ∈ N. Let us denote by (rD) the set {z ∈ C : |z| 6 r}. Thus for
m > 1,

Σm(rD)P(A) =
{ m

∑
i=1

λi pi : pi ∈ P(A), λi ∈ C, |λi| 6 r, 1 6 i 6 m
}

.

By part (i), A is spanned by its projections. Thus, given a ∈ A, a =
m
∑

i=1
λi pi ∈

Σm(rD)P(A) for some m ∈ N and for |r| = [max{|λi| + 1 : 1 6 i 6 m}]. It
follows that

A =
∞⋃

n=1

∞⋃
r=1

Σn(rD)P(A) =
∞⋃

n=1

∞⋃
r=1

(Σn(rD)P(A)).

Since A is a complete metric space, the Baire Category Theorem tells us that it
is not the countable union of nowhere dense sets. Thus there exist r0, n0 so that
Σn0(r0D)P(A) has interior.

A routine calculation shows that Σ2n0(rD)P(A) contains a disk Aε := {a ∈
A : ‖a‖ < ε} centered at the origin, and hence it contains Aε/2. But then

A1 ⊆ Σ2n0

(2r0

ε
D

)
P(A).

Setting n = 2n0, k = [2r0/ε] + 1, we see that this is equivalent to the first state-
ment of part (ii). The last statement is a simple consequence of this.

We emphasize that the conclusion of part (ii) holds whenever a C∗-algebra
A is linearly spanned by its projections.

5.2. In relation to closed sets, it was shown in [26] that a closed subspace L of A
which is invariant under conjugation by unitaries in the connected component of
the identity is necessarily a Lie ideal; that is, given m ∈ L and x ∈ A, [m, x] ∈ L.

Since Proposition 4.3 of [26] is really a statement about Lie ideals in simple,
unital C∗-algebras, it follows that the conclusion of Proposition 5.5 (ii) holds if we
replace projections by any unitarily invariant subset of A which is not contained
in C1.
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For example, we can take x ∈ A to be any non-scalar element and set
U (x) = {u∗xu : u ∈ A unitary}. Then the same argument shows that there
exists n ∈ N such that

A = ΣnCU (x),

and that there exists some control over the magnitude of the coefficients in the
linear combination in terms of the norm of the element that we are approximat-
ing.

COROLLARY 5.6. Let A be a unital AH C∗-algebra of the type considered in Sub-
section 4.2. Assume that A is of bounded dimension d and that K0(A) has large denom-
inators. Then:

(i) sl(A) = Σ28N
(2)(A); and

(ii) if the projections span a dense subset of A and A has exactly m extremal tracial
states for some 1 6 m < ∞, then A = Σ112+mCP(A).

Proof. (i) Recall from the proof of Lemma 4.4 that given M > 0, A contains

a finite dimensional unital C∗-subalgebra B '
n⊕

k=1
Mrk where rk > M for all 1 6

k 6 n. In particular, with M > 3, it is straightforward to find mutually orthogonal
projections pi, i = 1, 2, 3 in B ⊆ A satisfying 1 = p1 + p2 + p3, p1 ∼ p2, and
pi � 1− pi for each i. By Theorem 4.8,

sl(A) ⊆ Σ2c(A).

By Theorem 5.1, sl(A) = Σ28N
(2)(A).

(ii) Using (i) and Theorem 5.1 above, we see that c(A) ⊆ Σ56CP(A), and
hence sl(A)⊆ Σ112CP(A) by Theorem 4.8. Now, sl(A) =

⋂{ker τ : τ an extremal
tracial state} is a closed subspace of A of codimension m. Since span P(A) ⊇
sl(A) is the sum of a finite dimensional space and a closed subspace of A, then
span P(A) is closed, i.e. span P(A) = A.

The remainder of the argument follows exactly as in Theorem 4.11(ii) of [25].
That is, we let π : A → A/sl(A) be the canonical quotient map between Banach
spaces. Choose x1, . . . , xm ∈ A so that {π(xi)}m

i=1 is a basis for A/sl(A). Choose
projections {qj}s

j=1 ⊆ A so that {xi}m
i=1 ⊆ span{qj}s

j=1. Since {π(qj)}s
j=1 spans

A/sl(A), we can find m linearly independent vectors in this set — which we may
relabel {π(qj)}m

j=1.

Given a ∈ A, write a =
m
∑

j=1
λjqj + b, b ∈ sl(A). Then a ∈ Σ112+mCP(A).

REMARK 5.7. We point out that even when 1 ∈ A is a simple C∗-algebra
inductive limit as in Subsection 4.2 with bounded dimension d and large denom-
inators, the linear span of the projections in A need not be dense. For example,
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in [17], K.R. Goodearl shows that one can choose X a non-empty, separable, com-
pact Hausdorff space (not totally disconnected) and An ' Mkn(C(X)) for appro-
priate kn, for which it is possible to fix the embedding ϕn of An into An+1 so
that:

(i) 1 ∈ A is simple, and
(ii) the span of the projections in A is not dense, and A is of real rank 1.

In particular, one can choose X = T, so that A is a limit circle algebra.
Finally, in relation to the results of this section we mention that N. Kataoka

[24] has shown that if J is a closed, ideal in a properly infinite (or stable) C∗-
algebra A, then every element of J is a sum of nilpotents of order two in J . No
bound on the number of terms required to express an element of J as a sum of
such nilpotents is given.
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