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ABSTRACT. We generalize the notion of “diagonal” from the class of CSL alge-
bras to masa bimodules. We prove that a reflexive masa bimodule decomposes
as a sum of two bimodules, the diagonal and a module generalizing the w∗-
closure of the Jacobson radical of a CSL algebra. The latter module turns out
to be reflexive, a result which is new even for CSL algebras. We show that the
projection onto the direct summand contained in the diagonal is contractive
and preserves compactness and reduces rank of operators. Stronger results
are obtained when the module is the reflexive hull of its rank-one subspace.
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1. INTRODUCTION

In this paper we attempt a generalisation of the concept of the diagonal of
a CSL algebra to reflexive spaces of operators which are modules over maximal
abelian selfadjoint algebras (masas).

Recall [2] that a CSL algebra is an algebra A of operators on a Hilbert space
H which can be written in the form

A = {A ∈ B(H) : AP = PAP for all P ∈ S}

where S is a commuting family of projections. Note that A contains any masa
containing S ′′. More generally, a reflexive masa bimodule U of operators from H
to another Hilbert space K can be written in the form

U = {T ∈ B(H, K) : TP = φ(P)TP for all P ∈ S}

where S is a commuting family of projections on H and φ maps them to com-
muting projections on K (see below for details). The diagonal A∩A∗ of a CSL
algebra A is a von Neumann algebra, which equals the commutant

S ′ = {A ∈ B(H) : AP = PA for all P ∈ S}
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of the corresponding invariant projection family. The natural corresponding ob-
ject for a reflexive masa bimodule U is a ternary ring of operators (TRO)

∆(U ) = {T ∈ B(H, K) : TP = φ(P)T for all P ∈ S}

which is also a reflexive masa bimodule. This “diagonal” ∆(U ) is the primary
object of study of the present paper.

We decompose U as a sum U0 + ∆(U ), where U0 also turns out to be reflexive
(Theorem 5.2). This is new even for the case of CSL algebras; note, however, that
for nest algebras reflexivity of w∗-closed bimodules is automatic [7]. An analo-
gous decomposition for the case of nest subalgebras of von Neumann algebras is
in [11]. We also prove (Corollary 5.3) that the bimodule U0 has in our context the
role corresponding to the w∗-closure of the Jacobson radical of a CSL algebra.

The diagonal ∆(U ) is proved to be generated by a partial isometry and nat-
ural von Neumann algebras associated to U (Theorem 4.1).

The above decomposition may be further refined to a direct sum: U = U0 ⊕
M where M is a TRO ideal of the diagonal ∆(U ) (Theorem 3.4), containing the
compact operators of the diagonal (Proposition 6.3). In case U is strongly reflexive
(that is, coincides with the reflexive hull of the rank one operators it contains) we
show (Theorem 7.4) that M coincides with the w∗-closed linear span of the finite
rank operators of the diagonal, an equality which fails in general. As in the case
of von Neumann algebras, we show that every TRO decomposes in an “atomic”
and a “nonatomic” part. The “atomic” part of the diagonal ∆(U ) is contained
(properly in general) in M (Proposition 6.3).

We also study the projection θ : U −→ M defined by the above direct sum
decomposition. We prove that it is contractive and maps compact operators to
compact operators and finite rank operators to operators of at most the same
rank. In case U is strongly reflexive, we show that θ = D|U , where D is the
natural projection onto the “atomic” part of the diagonal ∆(U ).

A main tool used to obtain these results is an appropriate sequence of pro-
jections (Un) on B(H, K) which depend on U . This sequence behaves analogously
to the net of “diagonal sums” used in nest algebras (see for example [2]). In nest
algebra theory, the net of diagonal sums of a compact operator converges in norm
to a compact operator in the “atomic” part of the diagonal. This has been gener-
alised to CSL algebras by Katsoulis [10]. Here we show (Proposition 6.10) that for
every compact operator K, the sequence (Un(K)) converges in norm to D(K).

We present some definitions and concepts used in this work. All Hilbert
spaces will be assumed separable.

If S is a set of operators R1(S) denotes the subset of S consisting of rank 1
operators and the zero operator. If H is a Hilbert space and S ⊂ B(H), the set of
orthogonal projections of S is denoted by P(S).

If H1, H2 are Hilbert spaces, C1(H1, H2) are the trace class operators andR a
subset of C1(H1, H2), we denote by R0 the set of operators which are annihilated
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by R :
R0 = {T ∈ B(H2, H1) : tr(TS) = 0 for all S ∈ R}.

Let H1, H2 be Hilbert spaces and U a subset of B(H1, H2). The reflexive hull
of U is defined [12] to be the space

Ref(U ) = {T ∈ B(H1, H2) : Tx ∈ [Ux] for each x ∈ H1}.

Simple arguments show that

Ref(U ) = {T ∈ B(H1, H2) : for all projections E, F such that EUF = 0⇒ ETF = 0}.

A subspace U is called reflexive if U = Ref(U ). It is called strongly reflexive if there
exists a set L ⊂ B(H1, H2) of rank 1 operators such that U = Ref(L).

Now we present some concepts introduced by Erdos [5].
Let Pi = P(B(Hi)), i = 1, 2. Define φ = Map(U ) to be the map φ : P1 →

P2 which associates to every P ∈ P1 the projection onto the subspace [TPy : T ∈
U , y ∈ H1]−. The map φ is ∨-continuous (that is, it preserves arbitrary suprema)
and 0 preserving.

Let φ∗ = Map(U ∗),S1,φ = {φ∗(P)⊥ : P ∈ P2},S2,φ = {φ(P) : P ∈ P1}.
Erdos has proved that S1,φ is meet complete and contains the identity projection,
S2,φ is join complete and contains the zero projection, while φ|S1,φ : S1,φ → S2,φ is
a bijection. In fact

(1.1) (φ|S1,φ )−1(Q) = φ∗(Q⊥)⊥

for all Q ∈ S2,φ and

Ref(U ) = {T ∈ B(H1, H2) : φ(P)⊥TP = 0 for each P ∈ S1,φ}.

We call the families S1,φ,S2,φ the semilattices of U .
A CSL is a complete lattice of commuting projections which contains the

identity and the zero projection.
If A1 ⊂ B(H1), and A2 ⊂ B(H2) are algebras, a subspace U ⊂ B(H1, H2) is

called an A1,A2-bimodule if A2UA1 ⊂ U .
A subspace M of B(H1, H2) is called a ternary ring of operators (TRO) if

MM∗M ⊂ M. Katavolos and Todorov [9] have proved that a TRO M is w∗-
closed if and only if it is wot-closed if and only if it is reflexive. In this case, if
χ = Map(M), then

M = {T ∈ B(H1, H2) : TP = χ(P)T for all P ∈ S1,χ}.

They also proved that for every strongly reflexive TRO M there exist families of
mutually orthogonal projections (Fn), (En) such that

M =
∞

∑
n=1

⊕
EnB(H1, H2)Fn.

We present a new proof of this result in Corollary 6.9.
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The following proposition is easily proved.

PROPOSITION 1.1. Let H1, H2 be Hilbert spaces, A1 ⊂ B(H1),A2 ⊂ B(H2)
masas and U a A1,A2-bimodule. Then

Ref(U ) = {T ∈ B(H1, H2) : E ∈ P(A2), F ∈ P(A1), EUF = 0 ⇒ ETF = 0}.

The next section contains some preliminary results.

2. DECOMPOSITION OF A REFLEXIVE TRO

In this section we show that a reflexive TRO decomposes into a “nonatomic”
and a “totally atomic” part.

Let H1, H2 be Hilbert spaces, M ⊂ B(H1, H2) be a w∗-closed TRO and B1 =
(M∗M)′′,B2 = (MM∗)′′.

REMARK 2.1. We suppose that M0 is a w∗-closed TRO ideal of M; namely,
M0 is a linear subspace of M and

M0M∗M ⊂M0, MM∗M0 ⊂ M0.

It follows that MM∗
0M ⊂ M0 [4]. Now, we observe that there exist projections

Qi in the centre of Bi, i = 1, 2 such that M0 = MQ1 = Q2M. Hence M0 is a
B1,B2-bimodule.

Indeed, let J1 = [M∗
0M0]−w∗ and J2 = [M0M∗

0]
−w∗ . We can easily verify

that Ji is an ideal of Bi, i = 1, 2. Hence there is a projection Qi in the centre of Bi
so that Ji = BiQi, i = 1, 2.

One easily checks that

MB1 ⊂ M, B2M ⊂M,

MJ1 ⊂ M0, J2M ⊂M0.

We observe that MQ1 ⊂ MJ1 ⊂ M0. For every T ∈ M0, T∗T ∈ J1, so
T∗T = T∗TQ1 and thus T = TQ1. Hence T ∈ MQ1. We conclude that M0 ⊂
MQ1 and hence equality holds. Similarly one shows that M0 = Q2M.

Since [R1(M)]−w∗ is a strongly reflexive TRO, by Proposition 3.5 in [9] there
exist mutually orthogonal projections (Fn) in the centre of B1 and (En) in the

centre of B2 such that [R1(M)]−w∗ =
∞
∑

n=1

⊕
EnB(H1, H2)Fn. We write E =

∨
n

En,

F =
∨
n

Fn.

THEOREM 2.2. The space M decomposes in the following direct sum

M = (M∩ (R1(M)∗)0)⊕ [R1(M)]−w∗ .
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The spaces M∩ (R1(M)∗)0 and [R1(M)]−w∗ are TRO ideals of M. Moreover

[R1(M)]−w∗ = MF = EM = EMF,

M∩ (R1(M)∗)0 = MF⊥ = E⊥M = E⊥MF⊥.

Proof. We observe that [R1(M)]−w∗ is a TRO ideal of M. By Remark 2.1
there exists a projection Q in the centre of B1 such that [R1(M)]−w∗ = MQ.

For every m ∈ N, we have EmB(H1, H2)Fm ⊂ MQ. It follows that
EmB(H1, H2)Fm = EmB(H1, H2)FmQ, so Fm = FmQ. We conclude that

∨
m

Fm =

F 6 Q. Since F ∈ B1 we get MF ⊂ M, therefore MF = MFQ ⊂ MQ. It follows
that

[R1(M)]−w∗ = MQ ⊃ MF ⊃ [R1(M)]−w∗F = [R1(M)]−w∗ .

We proved that [R1(M)]−w∗ = MF.
If M ∈ M and R ∈ R1(M), then R = RF so tr(MF⊥R∗) = tr(M(RF⊥)∗) =

tr(M0) = 0. We conclude that

MF⊥ ⊂ M∩ (R1(M)∗)0.

Hence M = MF⊥ +MF ⊂ M∩ (R1(M)∗)0 + [R1(M)]−w∗ ⊂ M. It follows that

M = (M∩ (R1(M)∗)0) + [R1(M)]−w∗ .

We shall prove that this sum is direct. If T ∈ [R1(M)]−w∗ ∩ (R1(M)∗)0

then T =
∞
∑

n=1
EnTFn. If R is a rank 1 operator then tr(TR) =

∞
∑

n=1
tr(EnTFnR) =

∞
∑

n=1
tr(TFnREn).

But for all n ∈ N, tr(TFnREn) = tr(T(EnR∗Fn)∗) = 0 since EnR∗Fn ∈
R1(M) and T ∈ (R1(M)∗)0. Thus tr(TR) = 0 for every rank 1 operator R, hence
T = 0. This shows that [R1(M)]−w∗ ∩ (R1(M)⊥)∗ = 0. We have shown that
M = (M∩ (R1(M)∗)0)⊕ [R1(M)]−w∗ .

Since M =MF⊥ ⊕MF, [R1(M)]−w∗ =MF and MF⊥ ⊂ M∩ (R1(M)∗)0

we conclude that MF⊥ = M∩ (R1(M)∗)0.
The equalities E⊥M = M∩ (R1(M)∗)0, EM = [R1(M)]−w∗ are proved

similarly.

PROPOSITION 2.3. Suppose that θ : M→M is the projection onto [R1(M)]−w∗

defined by the decomposition in Theorem 2.2. Then θ(T) =
∞
∑

n=1
EnTFn for every T ∈ M.

Proof. Since M decomposes as the direct sum of the B1,B2-bimodules M∩
(R1(M)∗)0 and [R1(M)]−w∗ , θ is a B1,B2-bimodule map:

θ(B2TB1) = B2θ(T)B1
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for every T ∈ M, B1 ∈ B1, B2 ∈ B2. Since (Fn) ⊂ B1, (En) ⊂ B2 we have that:

θ(T) =
∞

∑
n=1

Enθ(T)Fn =
∞

∑
n=1

θ(EnTFn) =
∞

∑
n=1

EnTFn.

3. DECOMPOSITION OF A REFLEXIVE MASA BIMODULE

Let H1, H2 be Hilbert spaces, Pi = P(B(Hi)), i = 1, 2, Di ⊂ B(Hi), i = 1, 2
be masas, U ⊂ B(H1, H2) be a reflexive D1,D2-bimodule. Write

φ = Map(U ), φ∗ = Map(U ∗),

S2,φ = φ(P1), S1,φ = {P⊥ : P ∈ φ∗(P2)},

A2 = (S2,φ)′, A1 = (S1,φ)′.

Observe that Si,φ ⊂ Di hence Di ⊂ Ai, i = 1, 2. We define

U0 = [φ(P)TP⊥ : T ∈ U , P ∈ S1,φ]−w∗ ,

∆(U ) = {T : TP = φ(P)T for all P ∈ S1,φ}.

We remark that U0 and ∆(U ) are D1,D2-bimodules contained in U and ∆(U )
is a reflexive TRO. We call ∆(U ) the diagonal of U .

This object, in case the masa bimodule is a CSL algebra coincides with the
usual diagonal of the algebra.

EXAMPLE 3.1. Every bimodule over nest algebras is unitarily equivalent to
a bimodule U ⊂ B(L2(X, µ), L2(Y, ν)) for Borel spaces (X, µ), (Y, ν). This bimod-
ule has support, in the sense of Erdos, Katavolos, Shulman [6], a set of the form
{(x, y) ∈ X × Y : f (x) 6 g(y)} for approriate real valued Borel functions f , g
(see [13]). It can be shown that the diagonal ∆(U ) is the reflexive masa bimodule
whose support is the set {(x, y) ∈ X ×Y : f (x) = g(y)}.

THEOREM 3.2. U = U0 + ∆(U ).

Proof. As noted in the introduction

U = {T ∈ B(H1, H2) : φ(P)⊥TP = 0 for all P ∈ S1,φ}.

Since the Hilbert spaces H1, H2 are separable we can choose a sequence (Pn) ⊂
S1,φ such that

U = {T ∈ B(H1, H2) : φ(Pn)⊥TPn = 0 for all n ∈ N}.

We define

Vn : B(H1, H2) → B(H1, H2) : Vn(T) = φ(Pn)TPn + φ(Pn)⊥TP⊥n , n ∈ N.

One easily checks that Vn is idempotent and a norm contraction.
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We also define Un = Vn ◦Vn−1 ◦ · · · ◦V1, n ∈ N. If T ∈ U , then

T = U1(T) + φ(P1)TP⊥1 ,

U1(T) = U2(T) + φ(P2)U1(T)P⊥2 ,

by induction
Un−1(T) = Un(T) + φ(Pn)Un−1(T)P⊥n

for all n ∈ N. Adding the previous equalities we obtain

T = Un(T) + Mn

where

Mn = φ(P1)TP⊥1 + φ(P2)U1(T)P⊥2 + · · ·+ φ(Pn)Un−1(T)P⊥n ∈ U0

for all n ∈ N.
The sequence (Un(T)) is bounded since ‖Un(T)‖ 6 ‖Un−1(T)‖ 6 · · · 6 ‖T‖

for all n ∈ N. So there exists a subsequence (Unm (T)) that converges in the weak*-

topology to an operator L. Then Mnm = T −Unm (T) w∗→ T − L = M ∈ U0.
We observe that φ(Pi)⊥Un(T)Pi = φ(Pi)Un(T)P⊥i = 0 for i = 1, 2, . . . , n.

It follows that φ(Pi)⊥LPi = φ(Pi)LP⊥i = 0 for all i ∈ N. The conclusion is that
L ∈ ∆(U ) and T = M + L ∈ U0 + ∆(U ).

REMARK 3.3. The following are equivalent:
(i) U is a TRO.

(ii) U = ∆(U ).
(iii) U0 = 0.

THEOREM 3.4. There exist projections Qi ∈ Di, i = 1, 2 such that:

U = U0 ⊕ (I −Q2)∆(U )(I −Q1) = U0 ⊕ (I −Q2)∆(U ) = U0 ⊕∆(U )(I −Q1).

Proof. We make the following observations:
Step 1. U∆(U )∗∆(U ) ⊂ U , ∆(U )∆(U )∗U ⊂ U .
Let T ∈ U , M, N ∈ ∆(U ). For every P ∈ S1,φ we have

φ(P)⊥TM∗NP = φ(P)⊥TM∗φ(P)N = φ(P)⊥TPM∗N = 0M∗N = 0.

Thus TM∗N ∈ U . Similarly we have that MN∗T ∈ U .
Step 2. U0∆(U )∗∆(U ) ⊂ U0, ∆(U )∆(U )∗U0 ⊂ U0.
Let T ∈ U , M, N ∈ ∆(U ). For every P ∈ S1,φ we have

φ(P)TP⊥M∗N = φ(P)TM∗φ(P)⊥N = φ(P)TM∗NP⊥.

It follows by Step 1 that TM∗N ∈ U so φ(P)TP⊥M∗N ∈ U0. Taking the w∗-closed
linear span we get SM∗N ∈ U0 for all S ∈ U0, M, N ∈ ∆(U ). Similarly we have
that ∆(U )∆(U )∗U0 ⊂ U0.

Step 3. The space U0 ∩∆(U ) is a TRO ideal of ∆(U ).
Since ∆(U ) is a TRO (U0 ∩∆(U ))∆(U )∗∆(U ) ⊂ ∆(U ). By Step 2 we have that

(U0 ∩∆(U ))∆(U )∗∆(U ) ⊂ U0. It follows that (U0 ∩∆(U ))∆(U )∗∆(U ) ⊂ U0 ∩∆(U ).
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Analogously we get ∆(U )∆(U )∗ (U0 ∩ ∆(U )) ⊂ U0 ∩ ∆(U ). We conclude that the
space U0 ∩∆(U ) is a TRO ideal of ∆(U ). Thus there exist projections Qi ∈ Di, i =
1, 2, such that U0 ∩∆(U ) = ∆(U )Q1 = Q2∆(U ) (Remark 2.1).

By Theorem 3.2 we have

U = U0 + ∆(U ) = U0 + ∆(U )Q1 + ∆(U )(I −Q1) = U0 + ∆(U )(I −Q1).

Clearly U0 ∩∆(U )(I −Q1) = 0. Similarly one shows that U = U0 ⊕ (I −Q2)∆(U )
and it therefore follows that U = U0 ⊕ (I −Q2)∆(U )(I −Q1).

REMARK 3.5. The projection θ : U → U onto (I −Q2)∆(U )(I −Q1) defined
by the decomposition in Theorem 3.4 is a contraction.

Indeed, if T ∈ U , as in Theorem 3.2 we have T = M + S where M ∈
∆(U ), S ∈ U0 and ‖M‖ 6 ‖T‖ (see the proof). Since θ(T) = (I − Q2)M(I − Q1),
we obtain ‖θ(T)‖ 6 ‖T‖.

Let Ni = Alg(Si,φ) = {T : P⊥TP = 0 for all P ∈ Si,φ}, i = 1, 2, and Li =
[PTP⊥ : T ∈ Ni, P ∈ Si,φ]−w∗ , i = 1, 2.

LEMMA 3.6. (i) A2∆(U )A1 ⊂ ∆(U ).
(ii) ∆(U )∗A2∆(U ) ⊂ A1, ∆(U )A1∆(U )∗ ⊂ A2.

(iii) U = N2UN1.
(iv) U0 = N2U0N1.
(v) UL1 ⊂ U0, L2U ⊂ U0.

(vi) ∆(U )∗U ⊂ N1, U∆(U )∗ ⊂ N2.
(vii) ∆(U )∗U0 ⊂ L1, U0∆(U )∗ ⊂ L2.

Proof. Claims (i),(ii) are obvious and (iii) is Lemma 1.1 in [9].
(iv) If N1 ∈ N1, N2 ∈ N2, T ∈ U and P ∈ S1,φ then

N2φ(P)TP⊥N1 = φ(P)N2φ(P)TP⊥N1P⊥ ∈ U0

since N2φ(P)TP⊥N1 ∈ U by (iii). Taking the w∗-closed linear span we getN2U0N1
⊂ U0.

(v) If N1 ∈ N1, T ∈ U and P ∈ S1,φ then

TPN1P⊥ = φ(P)TPN1P⊥ ∈ U0

since TPN1 ∈ UN1 ⊂ U . Taking the w∗-closed linear span we get TK ∈ U0 for
every K ∈ L1. The second inclusion follows by symmetry.

(vi) If M ∈ ∆(U ), T ∈ U , P ∈ S1,φ we have PM∗TP = M∗φ(P)TP = M∗TP
so M∗T ∈ N1. Similarly one shows that TM∗ ∈ N2.

(vii) If M ∈ ∆(U ), T ∈ U , P ∈ S1,φ we have M∗φ(P)TP⊥ = PM∗TP⊥ ∈ L1
since M∗T ∈ ∆(U )∗U ⊂ N1. Taking the w∗-closed linear span we get M∗S ∈ L1
for every S ∈ U0. Similarly one shows that U0∆(U )∗ ⊂ L2.

PROPOSITION 3.7. The following are equivalent:
(i) U = U0.
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(ii) ∆(U )∗∆(U ) ⊂ L1 ∩A1.
(iii) ∆(U )∆(U )∗ ⊂ L2 ∩A2.

Proof. If U = U0 then ∆(U ) ⊂ U0, hence ∆(U )∗∆(U ) ⊂ ∆(U )∗U0 ⊂ L1 by the
previous lemma. Since ∆(U )∗∆(U ) ⊂ A1 we get ∆(U )∗∆(U ) ⊂ L1 ∩A1.

If conversely ∆(U )∗∆(U ) ⊂ L1 ∩A1, then ∆(U )∗∆(U )(I −Q1) ⊂ L1 ∩A1, so
by the previous lemma ∆(U )∆(U )∗∆(U )(I−Q1) ⊂ UL1 ⊂ U0 (Q1 is the projection
in Theorem 3.4).

Since U0 ∩∆(U ) is a TRO ideal of ∆(U ) (Theorem 3.4) we have that

∆(U )∆(U )∗∆(U )Q1 = ∆(U )∆(U )∗(∆(U ) ∩ U0) ⊂ ∆(U ) ∩ U0 ⊂ U0.

We conclude that ∆(U )∆(U )∗∆(U ) ⊂ U0. Since ∆(U ) is a TRO its subspace ∆(U )
∆(U )∗∆(U ) is norm-dense [4]. Therefore ∆(U ) ⊂ U0 and so U = U0.

The equivalence (i)⇔(iii) is proved similarly.

PROPOSITION 3.8. The following are equivalent:
(i) U = U0 ⊕∆(U ).

(ii) ∆(U ) (L1 ∩A1) = 0.
(iii) (L2 ∩A2) ∆(U ) = 0.

Proof. Note by Lemma 3.6 that ∆(U )(L1 ∩ A1) ⊂ ∆(U )A1 ⊂ ∆(U ) and
∆(U )(L1 ∩ A1) ⊂ UL1 ⊂ U0. Thus if the sum U = U0 + ∆(U ) is direct then
∆(U ) (L1 ∩A1) = 0.

Suppose conversely that ∆(U )(L1 ∩ A1) = 0. Using again Lemma 3.6 we
have that (U0 ∩ ∆(U ))∗(U0 ∩ ∆(U )) ⊂ ∆(U )∗∆(U ) ⊂ A1 and (U0 ∩ ∆(U ))∗(U0 ∩
∆(U )) ⊂ ∆(U )∗U0 ⊂ L1 so (U0 ∩ ∆(U ))∗(U0 ∩ ∆(U )) ⊂ L1 ∩ A1 hence (U0 ∩
∆(U ))(U0 ∩ ∆(U ))∗(U0 ∩ ∆(U )) ⊂ ∆(U )(L1 ∩ A1) = 0. But since U0 ∩ ∆(U ) is a
TRO (Theorem 3.3), its subspace (U0 ∩ ∆(U ))(U0 ∩ ∆(U ))∗(U0 ∩ ∆(U )) is norm-
dense [4]. Therefore U0 ∩∆(U ) = 0. This shows that (i) and (ii) are equivalent.

The proof of the equivalence of (i) and (iii) is analogous.

4. THE DIAGONAL

Let U ,U0, ∆(U ), φ be as in Section 3 and χ = Map(∆(U )).

THEOREM 4.1. There exists a partial isometry V ∈ ∆(U ) such that

∆(U ) = [A2VA1]−w∗

(recall that Ai = (Si,φ)′).

Proof. If T ∈ ∆(U ) and T = U|T| is the polar decomposition of T, then
U ∈ ∆(U ) and |T| ∈ A1 (Proposition 2.6 in [9]).
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By Zorn’s lemma there exists a maximal family of partial isometries (Vn) ⊂
∆(U ) such that: V∗

n Vn⊥V∗
mVm, VnV∗

n⊥VmV∗
m for n 6= m. The partial isometry V =

∞
∑

n=1
Vn belongs to ∆(U ).

First we show that

(4.1) ∆(U ) = {T ∈ B(H1, H2) : E ∈P(A′1), F ∈P(A′2), FVE = 0⇒ FTE = 0}.

Let T be such that, if FVE = 0 for E ∈ P(A′1) and F ∈ P(A′2), then FTE = 0.
Since φ(P)⊥VP = φ(P)VP⊥ = 0 for every P ∈ S1,φ and Si,φ ⊂ A′i, i = 1, 2 we
have φ(P)⊥TP = φ(P)TP⊥ = 0 for every P ∈ S1,φ so T ∈ ∆(U ).

For the converse let T ∈ ∆(U ) and T = U|T| be the polar decomposition of
T. If E ∈ P(A′1), F ∈ P(A′2) are such that FVE = 0, since |T| ∈ A1, we have
FTE = FU|T|E = FUE|T|. Hence it suffices to show that FUE = 0.

We observe that:

V∗V(FUE)∗FUE = (V∗V)EU∗FUE = E(V∗V)U∗FUE (V∗V ∈ A1)

= EV∗(VU∗)FUE = EV∗F(VU∗)UE (VU∗ ∈ A2)

= 0VU∗UE = 0

hence

(4.2) (FUE)∗FUE 6 I −V∗V.

Similarly, one shows that

(4.3) FUE(FUE)∗ 6 I −VV∗.

Since FUE is a partial isometry in ∆(U ), the maximality of V and (4.2),(4.3)
imply that FUE = 0. Thus claim (4.1) holds.

Let M = [A2VA1]−w∗ . We observe that M is a TRO which is contained in
∆(U ). SinceM is w∗-closed, it is reflexive. If ζ = Map(M), for every projection P,

ζ(P) = [A2VA1Py : Ai ∈ Ai, i = 1, 2, y ∈ H1]−.

We observe that ζ(P) ∈ A′2 for every projection P so S2,ζ ⊂ A′2. Similarly if ζ∗ =
Map(M∗) then S2,ζ∗ ⊂ A′1 but S1,ζ = {P⊥ : P ∈ S2,ζ∗} so we have that S1,ζ ⊂ A′1.
Now since V ∈ M we conclude that ζ(P)⊥VP = 0 for every P ∈ S1,ζ . From
claim (4.1) we obtain ζ(P)⊥∆(U )P = 0 for every P ∈ S1,ζ , so since M is reflexive
∆(U ) ⊂ M.

By the previous theorem it follows that if M is a w∗-closed TRO masa bi-
module and ζ = Map(M) then there exists a partial isometry V ∈ M so that
M = [(S2,ζ)′V(S1,ζ)′]−w∗ . But we shall prove a stronger result:

THEOREM 4.2. Let M be a w∗-closed TRO masa bimodule and the algebras B1 =
[M∗M]−w∗ ,B2 = [MM∗]−w∗ . Then there exists a partial isometry V such that M =
[B2VB1]−w∗ .
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Proof. Let Di ⊂ B(Hi), i = 1, 2 be masas such that D2MD1 ⊂ M and put
ζ = Map(M). We shall prove that B′2MB′1 ⊂ M. In Theorem 2.10 of [9], it is
shown that

B′2 = (MM∗)′ ⊂ D2|ζ(I) ⊕ B(ζ(I)⊥(H2))

and
B′1 = (M∗M)′ ⊂ D1|ζ∗(I) ⊕ B(ζ∗(I)⊥(H1)).

So it suffices to show that

(D2|ζ(I) ⊕ B(ζ(I)⊥(H2))) M (D1|ζ∗(I) ⊕ B(ζ∗(I)⊥(H1))) ⊂ M.

But this is true because

D2MD1 ⊂ M, ζ(I) ∈ D2, ζ∗(I) ∈ D1 and M = ζ(I)Mζ∗(I).

Now, we shall follow the proof of the previous theorem: By Zorn’s lemma
there exists a maximal family of partial isometries (Vn) ⊂ M such that V∗

n Vn

⊥V∗
mVm, VnV∗

n⊥VmV∗
m for n 6= m. The partial isometry V =

∞
∑

n=1
Vn, belongs to M.

We shall show that

(4.4) M ⊂ {T ∈ B(H1, H2) : E ∈ P(B′1), F ∈ P(B′2), FVE = 0 ⇒ FTE = 0}.

Let T ∈ M and let T = U|T| be the polar decomposition of T. By Propo-
sition 2.6 in [9], |T| ∈ (M∗M)′′ and U ∈ M. If E ∈ P(B′1), F ∈ P(B′2) are
such that FVE = 0, since |T| ∈ (M∗M)′′ and E ∈ B′1 = (M∗M)′, we have
FTE = FU|T|E = FUE|T|. Hence it suffices to show that FUE = 0.

As in the proof of the previous theorem we have that V∗V⊥(FUE)∗(FUE)
and VV∗⊥(FUE)(FUE)∗. But FUE ∈ B′2MB′1 ⊂ M, so by the maximality of V
we have that FUE = 0.

LetW = [B2VB1]−w∗ . We observe thatW ⊂M. For the converse, we follow
the proof of the previous theorem and we use relation (4.4).

An alternative proof of the previous theorem was communicated to us by
I. Todorov, based on his paper [14].

THEOREM 4.3. The semilattices of ∆(U ) are the following:

S1,χ = χ∗(I)⊥ ⊕ χ∗(I)P((S1,φ)′′),

S2,χ = χ(I)P((S2,φ)′′).

The map χ : S1,χ −→ S2,χ is such that

(4.5) χ(χ∗(I)⊥ ⊕ χ∗(I)Q) = χ(I)φ(Q) for every Q ∈ S1,φ.

Proof. In Theorem 4.1 we showed that there exists a partial isometry V in
∆(U ) such that ∆(U ) = [(S2,φ)′V(S1,φ)′]−w∗ . So if P ∈ S1,χ then χ(P) is the pro-
jection onto [(S2,φ)′V(S1,φ)′P(H1)]−. We conclude that χ(P) ∈ (S2,φ)′′. Hence
S2,χ ⊂ (S2,φ)′′.
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If H is a Hilbert space, B is a subset of B(H) and Q a projection in B′ the set
{T|Q(H) : T ∈ B} is denoted by B|Q.

We have shown that (S2,χ)′′|χ(I) ⊂ (S2,φ)′′|χ(I).
Let P ∈ S1,φ. Since ∆(U )P = φ(P)∆(U ) it follows that χ(P) = φ(P)χ(I). So

χ(I)S2,φ ⊂ S2,χ hence, (S2,φ)′′|χ(I) ⊂ (S2,χ)′′|χ(I). We proved that

(S2,φ)′′|χ(I) = (S2,χ)′′|χ(I).

Since ∆(U ) is a TRO, using Theorem 2.10 in [9] (see the proof) we have that

S2,χ|χ(I) = P((S2,χ)′′|χ(I)).

It follows that
S2,χ = χ(I)P((S2,φ)′′).

Applying this to ∆(U )∗ = ∆(U ∗),

S2,χ∗ = χ∗(I)P((S2,φ∗ )′′).

Since S1,φ = {Q⊥ : Q ∈ S2,φ∗} (see the introduction) we have that

S2,χ∗ = χ∗(I)P((S1,φ)′′).

But

S1,χ = {Q⊥ : Q ∈ S2,χ∗} = {(χ∗(I)Q)⊥ : Q ∈ P((S1,φ)′′)}

= {χ∗(I)⊥ ⊕ χ∗(I)Q : Q ∈ P((S1,φ)′′)}.

If Q ∈ S1,φ then

χ(χ∗(I)⊥ ⊕ χ∗(I)Q) = χ(χ∗(I)Q) (χ(χ∗(I)⊥) = 0)

= χ(Q) (∆(U )χ∗(I) = ∆(U ))

= φ(Q)χ(I) (∆(U )Q = φ(Q)∆(U )).

REMARK 4.4. The smallest ortholattice containing the commutative family
χ(I)S2,φ is easily seen to be χ(I)P((S2,φ)′′), which equals S2,χ; similarly the fam-
ily χ∗(I)⊥ ⊕ χ∗(I)S1,φ generates the complete ortho-lattice S1,χ. Therefore, since
χ|S1,χ is a complete ortho-lattice isomorphism (Theorem 2.10 in [9]) equality (4.5)
determines the map χ.

PROPOSITION 4.5. The families χ∗(I)S1,φ and χ(I)S2,φ are complete lattices and
the map

ϑ : χ∗(I)S1,φ → χ(I)S2,φ with ϑ(χ∗(I)P) = χ(I)φ(P)

is a complete lattice isomorphism.

Proof. We use Theorem 4.3 and the fact [9] that the map χ|S1,χ is a complete
ortholattice isomorphism .

Let (Pi)i∈I ⊂ S1,φ. We claim that

(4.6)
∧
i∈I

χ(I)φ(Pi) = χ(I)φ
( ∧

i∈I

Pi

)
.
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Indeed, by (4.5),∧
i∈I

χ(I)φ(Pi) =
∧
i∈I

χ(χ∗(I)⊥ ⊕ χ∗(I)Pi)

=χ
( ∧

i∈I

(χ∗(I)⊥ ⊕ χ∗(I)Pi)
)

= χ
(

χ∗(I)⊥ ⊕ χ∗(I)
( ∧

i∈I

Pi

))
.

Since
∧
i∈I

Pi ∈ S1,φ we get that χ
(

χ∗(I)⊥ ⊕ χ∗(I)
( ∧

i∈I
Pi

))
= χ(I)φ

( ∧
i∈I

Pi

)
again

using (4.5).
By (1.1), there exist (Qi)i∈I ⊂ S1,φ∗ such that φ∗(Qi)⊥ = Pi for every i ∈ I.

We shall prove that

(4.7)
∨
i∈I

χ∗(I)Pi = χ∗(I)
(

φ∗
( ∧

i∈I

Qi

))⊥
.

Since ∆(U ∗) = ∆(U )∗ we have that χ∗ = Map(∆(U ∗)) and so applying equation
(4.6) to χ∗ we have that∧

i∈I

χ∗(I)φ∗(Qi) =χ∗(I)φ∗
( ∧

i∈I

Qi

)
⇒

∨
i∈I

(χ∗(I)φ∗(Qi))
⊥ =χ∗(I)φ∗

( ∧
i∈I

Qi

)⊥
⇒

∨
i∈I

(χ∗(I)⊥ ⊕ χ∗(I)(φ∗(Qi))
⊥) =χ∗(I)⊥ ⊕ χ∗(I)

(
φ∗

( ∧
i∈I

Qi

))⊥
⇒

∨
i∈I

(χ∗(I)⊥ ⊕ χ∗(I)Pi) =χ∗(I)⊥ ⊕ χ∗(I)
(

φ∗
( ∧

i∈I

Qi

))⊥
⇒

∨
i∈I

χ∗(I)Pi =χ∗(I)
(

φ∗
( ∧

i∈I

Qi

))⊥
.

From equalities (4.6) and (4.7) we conclude that the families χ∗(I)S1,φ, and
χ(I)S2,φ are complete lattices.

Since χ(χ∗(I)⊥ ⊕ χ∗(I)Q) = χ(I)φ(Q) for every Q ∈ S1,φ and χ|S1,χ is 1-1,
the map ϑ is a bijection. It remains to show that ϑ is sup and inf continuous.

Let (Pi)i∈I ⊂ S1,φ and (Qi)i∈I ⊂ S1,φ∗ be such that φ∗(Qi)⊥ = Pi, equiva-
lently by equation (1.1) φ(Pi)⊥ = Qi for every i ∈ I. Then, since

∧
i∈I

Pi ∈ S1,φ, by

the definition of ϑ we have

ϑ
( ∧

i∈I

χ∗(I)Pi

)
= ϑ

(
χ∗(I)

( ∧
i∈I

Pi

))
= χ(I)φ

( ∧
i∈I

Pi

)
=

∧
i∈I

χ(I)φ(Pi) =
∧
i∈I

ϑ(χ∗(I)Pi).
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Using equations (4.7) and (1.1) we have that

ϑ
( ∨

i∈I

χ∗(I)Pi

)
= ϑ

(
χ∗(I)

(
φ∗

( ∧
i∈I

Qi

))⊥)
= χ(I)φ

((
φ∗

( ∧
i∈I

Qi

))⊥)
= χ(I)

( ∧
i∈I

Qi

)⊥
=

∨
i∈I

χ(I)Q⊥
i

=
∨
i∈I

χ(I)φ(Pi) =
∨
i∈I

ϑ(χ∗(I)Pi).

We call the diagonal ∆(U ) essential if χ(I) = I and χ∗(I) = I. By the previous
proposition if the diagonal is essential the semilattices of the bimodule are CSL’s
and its map is a complete lattice isomorphism. The implications of this result are
studied in a paper in preparation.

5. THE SPACE U0 IS REFLEXIVE

Let U , U0, ∆(U ) and φ be as in Section 3 and χ = Map(∆(U )), ψ = Map(U0).

LEMMA 5.1. If ∆(U ) is essential, i.e. χ(I) = I, χ∗(I) = I, then S1,ψ ⊂ S1,φ and
S2,ψ ⊂ S2,φ.

Proof. Since ∆(U ) is essential by Theorem 4.5 the semilattices S1,φ,S2,φ, are
CSL’s.

If E is a projection, then Alg(S2,φ)U0E ⊂ U0E (Lemma 3.6). It follows that
ψ(E)⊥Alg(S2,φ)ψ(E) = 0. Hence ψ(E) ∈ Lat(Alg(S2,φ)). Since commutative sub-
space lattices are reflexive [1], it follows that ψ(E) ∈ S2,φ. Thus S2,ψ ⊂ S2,φ.
Analogously U0Alg(S1,φ) ⊂ Alg(S1,φ) so Alg(S⊥1,φ)U ∗0 ⊂ U ∗0 . As above we obtain
S2,ψ∗ ⊂ S⊥1,φ hence S1,ψ ⊂ S1,φ.

THEOREM 5.2. The space U0 is reflexive.

Proof. Firstly, we suppose that ∆(U ) is essential (χ(I) = I, χ∗(I) = I). Now,
by Theorem 4.3 we have that S1,χ = P((S1,φ)′′),S2,χ =P((S2,φ)′′) and χ|S1,φ = φ.

If E ∈ S1,φ, then φ(E), ψ(E) ∈ P((S2,φ)′′) so there exists a unique F ∈
P((S1,φ)′′) such that χ(F) = φ(E)− ψ(E). We observe that χ(F) 6 φ(E) = χ(E).
Since χ is a lattice isomorphism, F 6 E and so ψ(F) 6 ψ(E); therefore χ(F)⊥ψ(F).
It follows that ∆(U )F(H1)⊥Ref(U0)F(H1) and ∆(U )F∩Ref(U0)F = 0.

By Theorem 3.1, U = U0 + ∆(U ), hence UF = Ref(U0)F ⊕∆(U )F and UF =
U0F⊕∆(U )F. It follows that U0F = Ref(U0)F and therefore U0F is reflexive.

Let

P =
∨
{F ∈ P((S1,φ)′′) : χ(F) = φ(E)− ψ(E), E ∈ S1,φ}.
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By the previous arguments the space U0P is reflexive. Since χ is ∨-continuous we
have that

χ(P) =
∨
{φ(E)− ψ(E), E ∈ S1,φ}.

Let Q = χ(P)⊥. Since Qφ(E) = Qψ(E) for all E ∈ S1,φ, it follows that

QU = {T : Qφ(E)⊥TE = 0 for all E ∈ S1,φ}

= {T : Qψ(E)⊥TE = 0 for all E ∈ S1,φ}.

Using the previous lemma (S1,ψ ⊂ S1,φ) we obtain that QU is contained in the
space:

{T : Qψ(E)⊥TE = 0 for all E ∈ S1,ψ} = QRef(U0) = Ref(QU0) ⊂ QU .

This shows that QU = Ref(QU0).
Katavolos and Todorov [9] have proved that ∆(U ) ⊂ (U )min where (U )min

is the smallest w∗-closed masa bimodule such that Ref((U )min) = U .
So Q∆(U ) ⊂ Q(U )min = (QU )min. But since QU0 is a w∗-closed masa bi-

module such that Ref(QU0) = QU it follows that Q∆(U ) ⊂ QU0. Now Q∆(U ) =
χ(P)⊥∆(U ) = ∆(U )P⊥, hence ∆(U )P⊥ ⊂ U0. So U = U0 + ∆(U )P⊥ + ∆(U )P =
U0 + ∆(U )P and therefore UP⊥ = U0P⊥. We conclude that U0P⊥ is reflexive. Since
U0P is reflexive too, U0 is reflexive.

Now, relax the assumption that ∆(U ) is essential. Let W = χ(I)U|χ∗(I). This
is a masa bimodule in B(χ∗(I)(H1), χ(I)(H2)).

We have that

W = {T : χ(I)φ(L)⊥TL|χ∗(I) = 0 for all L ∈ S1,φ}.

By Proposition 4.5 the families S1,φ|χ∗(I),S2,φ|χ(I) are complete lattices and the
map S1,φ|χ∗(I) → S2,φ|χ(I) : P|χ∗(I) → φ(P)|χ(I) is a complete lattice isomorphism.
By the Lifting theorem of J. Erdos [5] it follows that the (semi)lattices ofW are the
families S1,φ|χ∗(I),S2,φ|χ(I).

Therefore, W0 = [χ(I)φ(L)TL⊥|χ∗(I) : T ∈ W , L ∈ S1,φ]−w∗ = χ(I)U0|χ∗(I).
Since

χ(I)∆(U )|χ∗(I) = {T : TP|χ∗(I) = φ(P)|χ(I)T for all P ∈ S1,φ} = ∆(W)

the diagonal of W is essential. It follows by the first part of the proof that the
space χ(I)U0χ∗(I) is reflexive.

But χ(I)⊥U = χ(I)⊥U0 and Uχ∗(I)⊥ = U0χ∗(I)⊥ so the spaces χ(I)⊥U0 and
U0χ∗(I)⊥ are reflexive. Finally the space U0 is reflexive.

For the rest of this section let S be a CSL and U = Alg(S). Let J be the
ideal [PTP⊥ : T ∈ U , P ∈ S ]−‖·‖, let U0 = J −w∗ and ψ = Map(U0). It is known
that J ⊂ Rad(U ), where Rad(U ) is the radical of U . The equality J = Rad(U ) is
an open problem (Hopenwasser’s conjecture), [8], [3]. I. Todorov [13] has proved
that J and Rad(U ) have the same reflexive hull. We improve this by showing the
next corollary.
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COROLLARY 5.3. The spaces J and Rad(U ) have the same w∗-closure.

Proof.

U0 = J −w∗ ⊂ Rad(U )−w∗ ⊂ Ref(Rad(U )) = Ref(J ) = U0.

COROLLARY 5.4. Rad(U )−w∗ = {T : ψ(E)⊥TE = 0 for all E ∈ S}.

Proof. Rad(U )−w∗ = U0 = {T : ψ(E)⊥TE = 0 for every projection E} ⊂
{T : ψ(E)⊥TE = 0 for all E ∈ S}. Using Lemma 5.1 the last space is contained in
the space: {T : ψ(E)⊥TE = 0 for all E ∈ S1,ψ} = U0 = Rad(U )−w∗ .

Now we are ready to give the form of the decomposition of U in the case
that U is a CSL algebra:

PROPOSITION 5.5. Let Q =
∨
{E− ψ(E) : E ∈ S} then

U = Rad(U )−w∗ ⊕QS ′.

Proof. We observe that Q⊥E = Q⊥ψ(E) for all E ∈ S , so we have:

Q⊥U = {T : Q⊥E⊥TE = 0 for all E ∈ S} = {T : Q⊥ψ(E)⊥TE = 0 for all E ∈ S}.

By the previous corollary the last space is the space Q⊥Rad(U )−w∗ . So we have
that Q⊥S ′ ⊂ Q⊥Rad(U )−w∗ ⊂ Rad(U )−w∗ . Since U = Rad(U )−w∗ + S ′ we obtain
U = Rad(U )−w∗ + QS ′.

It suffices to show that Rad(U )−w∗ ∩ QS ′ = 0. Taking E ∈ S and T ∈ U0 ∩
(E − ψ(E))S ′ we have T = (E − ψ(E))T = ψ(E)⊥ET = ψ(E)⊥TE = 0, because
T ∈ U0. If T ∈ U0 ∩ QS ′ then (E − ψ(E))T ∈ U0 ∩ (E − ψ(E))S ′ = 0. So (E −
ψ(E))T = 0 for all E ∈ S . But T = (

∨
{E − ψ(E) : E ∈ S})T. It follows that

T = 0.

6. DECOMPOSITIONS OF COMPACT OPERATORS IN REFLEXIVE MASA BIMODULES

Let U , U0, ∆(U ), φ, D1, D2, Q1 be as in Section 3 and χ = Map(∆(U )) .
We denote by K the set of compact operators and by Cp the set of p-Schatten

class operators in B(H1, H2).

PROPOSITION 6.1. If T∈R1(U ), there exist L∈R1(∆(U )) and S∈ [R1(U0)]−‖·‖1

such that T = L + S.

Proof. Write U = {X : φ(Pn)⊥XPn = 0 for all n ∈ N} for an appropriate
sequence (Pn) ⊂ S1,φ and let T ∈ R1(U ). As in the proof of Theorem 3.2

T = L1 + φ(P1)TP⊥1 , where L1 = φ(P1)TP1 + φ(P1)⊥TP⊥1 .

Since φ(P1)⊥TP1 = 0 and T has rank 1, either φ(P1)⊥T = 0 or TP1 = 0, hence
either L1 = φ(P1)TP1 or L1 = φ(P1)⊥TP⊥1 . Now

L1 = L2 + φ(P2)L1P⊥2 , where L2 = φ(P2)L1P2 + φ(P2)⊥L1P⊥2 .
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Since φ(P2)⊥L1P2 = 0, either L2 = φ(P2)L1P2 or L2 = φ(P2)⊥L1P⊥2 . Similarly

Ln−1 = Ln + φ(Pn)Ln−1P⊥n , where Ln = φ(Pn)Ln−1Pn + φ(Pn)⊥Ln−1P⊥n .

As before, either Ln = φ(Pn)Ln−1Pn or Ln = φ(Pn)⊥Ln−1P⊥n for all n ∈ N.
We conclude that there exist sequences of projections (Qn) ⊂ D2, (Rn) ⊂ D1

such that Ln =
( n∧

i=1
Qi

)
T
( n∧

i=1
Ri

)
, n ∈ N. We observe that T = Ln + Mn where

Mn = φ(P1)TP⊥1 + φ(P2)L1P⊥2 + · · ·+ φ(Pn)Ln−1P⊥n , n ∈ N.

Since
n∧

i=1
Qi

sot→
∞∧

i=1
Qi,

n∧
i=1

Ri
sot→

∞∧
i=1

Ri and T has rank 1,

Ln
‖·‖1→

( ∞∧
i=1

Qi

)
T
( ∞∧

i=1

Ri

)
= L, say.

Now φ(Pi)⊥LnPi = φ(Pi)LnP⊥i = 0, i = 1, 2, . . . , n for all n ∈ N, therefore
φ(Pi)⊥LPi = φ(Pi)LP⊥i = 0 for all i ∈ N. Thus L ∈ R1(∆(U )).

We have Mn = T − Ln
‖·‖1→ T − L = S ∈ [R1(U0)]−‖·‖1 .

PROPOSITION 6.2. U0 ⊂ (R1(∆(U ))∗)0.

Proof. For every T ∈ U , P ∈ S1,φ and R ∈ R1(∆(U )) we have

tr(φ(P)TP⊥R∗) = tr(T(φ(P)RP⊥)∗) = tr(T0) = 0.

Taking the w∗-closed linear span we get tr(SR∗) = 0 for all S ∈ U0.

PROPOSITION 6.3. (i) R1(∆(U )) ⊂ ∆(U )(I −Q1).
(ii) ∆(U ) ∩ K = [R1(∆(U ))]−‖·‖ ⊂ ∆(U )(I −Q1).

Proof. Let R ∈ R1(∆(U )), as in Theorem 3.4, then RQ1 ∈ ∆(U )Q1 = U0 ∩
∆(U ) ⊂ U0. By the previous proposition we have: tr(RQ1R∗) = 0 ⇒ tr(R∗RQ1)
= 0 ⇒ RQ1 = 0 ⇒ R = R(I −Q1). We conclude that R1(∆(U )) ⊂ ∆(U )(I −Q1).

For part (ii), observe that if K ∈ ∆(U )∩K then K can be approximated in the
norm topology by sums of rank 1 operators in ∆(U ) (Proposition 3.4 in [9]).

REMARK 6.4. We will see below that if U is a strongly reflexive masa bimod-
ule then [R1(∆(U ))]−w∗ = ∆(U )(I − Q1). This is not true in general. For example
take U to be a TRO which is not strongly reflexive. Then [R1(∆(U ))]−w∗ is strictly
contained in ∆(U )(I −Q1) = U .

PROPOSITION 6.5. ∆(U ) ⊂ (R1(U0)∗)0.

Proof. Let T ∈ R1(U0). As in Proposition 6.1 we decompose T = L + M
where L ∈ R1(∆(U )) and M ∈ [R1(φ(Pn)UP⊥n ) : n ∈ N]−‖·‖1 ⊂ U0. So L =
T − M ∈ U0 ∩ R1(∆(U )).

Using Proposition 6.3, U0 ∩ R1(∆(U )) ⊂ U0 ∩∆(U )(I − Q1) which vanishes
by Theorem 3.4 so L = 0 and hence T = M.
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We conclude that

(6.1) R1(U0) ⊂ [R1(φ(Pn)UP⊥n ) : n ∈ N]−‖·‖1 .

Let A ∈ ∆(U ). We want to show that tr(A∗R) = 0 for every R ∈ R1(U0).
Using (6.1) it suffices to show that tr(A∗R) = 0 for every R ∈ R1(φ(Pn)UP⊥n ) and
n ∈ N. If R is a rank 1 operator such that R = φ(Pn)RP⊥n then

tr(A∗R) = tr(A∗φ(Pn)RP⊥n ) = tr(P⊥n A∗φ(Pn)R)

= tr((φ(Pn)AP⊥n )∗R) = tr(0R) = 0.

Let P ∈ S1,φ. We suppose that
∨
{φ(L) : L ∈ S1,φ, φ(L) < φ(P)} < φ(P).

Since S2,φ is join complete there exists P0 ∈ S1,φ such that

φ(P0) =
∨
{φ(L) : L ∈ S1,φ, φ(L) < φ(P)}.

We call the projection P − P0 an atom of U and we denote the projection
φ(P)− φ(P0) by δ(P− P0).

PROPOSITION 6.6. Let F be an atom of U .
(i) The projection F is minimal in the algebra (S1,φ)′′.

(ii) The projection χ(I)δ(F) is minimal in the algebra χ(I)(S2,φ)′′.
(iii) χ(I)δ(F)B(H1, H2)F ⊂ ∆(U ).
(iv) χ(I)⊥δ(F)B(H1, H2)F ⊂ U0.

Proof. (i) Let P, P0 ∈ S1,φ be such that φ(P0) =
∨
{φ(L) : L ∈ S1,φ, φ(L) <

φ(P)} < φ(P) and F = P− P0. If Q ∈ S1,φ either P 6 Q or QP < P. If P 6 Q then
QF = F. If QP < P then (since QP ∈ S1,φ and φ is 1-1 on S1,φ) φ(QP) < φ(P) ⇒
φ(QP) 6 φ(P0) ⇒ QP 6 P0, so QF = 0.

We conclude that QFB(H1)F=FB(H1)QF for all Q∈S1,φ, therefore FB(H1)F
⊂ (S1,φ)′, hence F is a minimal projection in (S1,φ)′′.

(ii) Since P, P0 ∈ S1,φ we have that φ(P)∆(U ) = ∆(U )P and φ(P0)∆(U ) =
∆(U )P0 hence

δ(F)∆(U ) = ∆(U )F and so χ(I)δ(F) = χ(F).

Let Q ∈ S1,φ.

(6.2) If QF = 0 then χ(I)δ(F)φ(Q) = 0.

Indeed, since δ(F)∆(U ) = ∆(U )F we obtain δ(F)∆(U )Q = 0. We have that
δ(F)χ(Q) = 0 hence χ(I)δ(F)φ(Q) = 0.

(6.3) If QF = F then χ(I)δ(F)φ(Q) = χ(I)δ(F).

Indeed, δ(F)∆(U ) = ∆(U )F hence δ(F)∆(U )Q = ∆(U )F. We have that δ(F)χ(Q)
= χ(F) hence χ(I)δ(F)φ(Q) = χ(I)δ(F).

Using equations (6.2), (6.3) as in (i) we have that χ(I)δ(F) is a minimal pro-
jection in χ(I)(S2,φ)′′.

(iii) Let T ∈ B(H1, H2) and Q ∈ S1,φ. From equations (6.2), (6.3) it follows
that φ(Q)χ(I)δ(F)TF = χ(I)δ(F)TFQ, so χ(I)δ(F)TF ∈ ∆(U ).
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(iv) If T ∈ U then χ(I)⊥T ∈ U0. Indeed, by Theorem 3.2 there exist T1 ∈
U0, T2 ∈ ∆(U ) so that T = T1 + T2. But T2 = χ(I)T2 so χ(I)⊥T = χ(I)⊥T1 ∈ U0.

Now it suffices to show that δ(F)B(H1, H2)F ⊂ U . Let T ∈ B(H1, H2) and
Q ∈ S1,φ. If FQ = 0 then φ(Q)⊥δ(F)TFQ = 0. If FQ = F then P− P0 6 Q hence
δ(F) = φ(P) − φ(P0) 6 φ(P − P0) 6 φ(Q) so φ(Q)⊥δ(F)TFQ = 0. We conclude
that δ(F)TF ∈ U .

REMARK 6.7. There exists a simple example of a reflexive masa bimodule
U so that δ(F)B(H1, H2)F ⊂ U0 for any atom F in U . Take U to be the set of 3× 3
matrixes with zero diagonal. This is an instance of the different behaviour of
algebras and bimodules: it is known that if U is a CSL algebra in a Hilbert space
H and F is an atom in U then FB(H)F ⊂ ∆(U ).

We thank Dr. I. Todorov for suggesting the “atomic decomposition”in the
theorem below.

THEOREM 6.8. Suppose that {Fn : n ∈ N} = {F : F atom o f U}, then

[R1(∆(U ))]−w∗ =
∞

∑
n=1

⊕
χ(I)δ(Fn)B(H1, H2)Fn.

Proof. By the previous proposition it follows that

[R1(∆(U ))]−w∗ ⊃
∞

∑
n=1

⊕
χ(I)δ(Fn)B(H1, H2)Fn.

Let R = x⊗ y∗ ∈ ∆(U ). For every Q ∈ S1,φ we have that x⊗ (Qy)∗ = (φ(Q)x)⊗ y∗

so φ(Q)x 6= 0 ⇔ Qy 6= 0 ⇔ φ(Q)x = x ⇔ Qy = y.
The projection P =

∧
{Q ∈ S1,φ : Qy = y} belongs to S1,φ. If Q ∈ S1,φ so

that φ(Q) < φ(P) then φ(Q)x = 0. (If φ(Q)x = x then Qy = y so Q > P.)
Let P0 ∈ S1,φ with φ(P0) =

∨
{φ(L) : L ∈ S1,φ, φ(L) < φ(P)}. We observe

that φ(P0)x = 0 and φ(P)x = x, hence φ(P0) < φ(P). We conclude that F = P− P0
is an atom of U . The equalities (P− P0)y = y and (φ(P)− φ(P0))x = x imply that
R = δ(F)RF. But R = χ(I)R so R = χ(I)δ(F)RF. The proof is complete.

Every strongly reflexive TRO is a masa bimodule [9]. So using the previous
theorem we have a new proof of the following result in [9].

COROLLARY 6.9. If M is a strongly reflexive TRO, ζ = Map(M) and {An :
n ∈ N} = {A : A atom o f M}, then

M =
∞

∑
n=1

⊕
ζ(An)B(H1, H2)An.

Let (Pn) ⊂ S1,φ be a sequence such that

U = {T ∈ B(H1, H2) : φ(Pn)⊥TPn = 0 for all n ∈ N}.
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Let Vn, Un : B(H1, H2) −→ B(H1, H2), n ∈ N be as in the proof of Theorem 3.1. By
Theorem 6.8

[R1(∆(U ))]−w∗ =
∞

∑
n=1

⊕
EnB(H1, H2)Fn,

where En = χ(I)δ(Fn) for all n ∈ N.
Thus [R1(∆(U ))]−w∗ is the range of the contractive projection D defined by

D : B(H1, H2) −→ B(H1, H2) : D(T) =
∞

∑
n=1

EnTFn.

PROPOSITION 6.10. If K ∈ K, then the sequence (Un(K)) converges to D(K) in
norm.

Proof. We observe that (Vn|C2) is a commuting sequence of orthogonal pro-
jections in the Hilbert space C2. Hence (Un|C2) is a decreasing sequence of or-
thogonal projections. Therefore if T ∈ C2 the sequence (Un(T)) converges in the
Hilbert-Schmidt norm ‖ · ‖2.

Let K ∈ K. Given ε > 0 there exist Kε ∈ C2 such that ‖K − Kε‖ < ε/3 and
n0 ∈ N such that ‖Un(Kε)−Um(Kε)‖2 < ε/3 for every n, m > n0. Then

‖Un(K)−Um(K)‖
6 ‖Un(K)−Un(Kε)‖+ ‖Un(Kε)−Um(Kε)‖+ ‖Um(Kε)−Um(K)‖
6 ‖K − Kε‖+ ‖Un(Kε)−Um(Kε)‖2 + ‖K − Kε‖ < ε

for every n, m > n0. Thus (Un(K)) converges in operator norm. Let D1(K) be its
norm limit.

Since φ(Pi)⊥Un(K)Pi = φ(Pi)Un(K)P⊥i = 0 for every i = 1, 2, . . . , n, the limit
D1(K) belongs to the diagonal ∆(U ). Since ‖Un(K)‖ 6 ‖K‖ for all n ∈ N, D1 is
a contraction. We observe that if K ∈ ∆(U ) ∩ K then Un(K) = K for all n ∈ N
hence D1 projects onto ∆(U ) ∩ K. Now D1|C2 is the orthogonal projection onto
∆(U ) ∩ C2, being the infimum of the sequence (Un|C2).

We also observe that D|C2 is an orthogonal projection in the Hilbert space

C2. If T ∈ ∆(U ) ∩ C2 then by Proposition 6.3 T =
∞
∑

n=1
EnTFn = D(T).

Thus D|C2 and D1|C2 are both orthogonal projections onto ∆(U ) ∩ C2, hence
D|C2 = D1|C2 . Since C2 is norm dense in K and D|K, D1 are norm continuous,
D|K = D1.

PROPOSITION 6.11. Suppose that
∨
n

Fn = F. Then the sequence (Un(T)F) con-

verges strongly to the operator D(T) for every T ∈ B(H1, H2).

Proof. First we observe that if x ∈ Fm(H1), m ∈ N, then the operator x ⊗ x∗

is in (S1,φ)′. Indeed, if y ∈ Em(H2) then R = y ⊗ x∗ ∈ ∆(U ). It follows that
R∗R = ‖y‖2x⊗ x∗ ∈ ∆(U )∗∆(U ) ⊂ (S1,φ)′.
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Let T ∈ B(H1, H2) and x ∈ Fm(H1), m ∈ N, ‖x‖ = 1. By Proposition 6.10

Ui(Tx⊗ x∗)
‖·‖→ D(Tx⊗ x∗) i → ∞,

hence

Ui(Tx⊗ x∗)(x)
‖·‖→ D(Tx⊗ x∗)(x) i → ∞,(6.4)

D(Tx⊗ x∗)(x) =
∞

∑
n=1

En(Tx⊗ x∗)Fn(x) = EmT(x),(6.5)

D(T)(x) =
∞

∑
n=1

EnTFn(x) = EmT(x).(6.6)

We have that

Vi(Tx⊗ x∗) = φ(Pi) (T x⊗ x∗) Pi + φ(Pi)
⊥(T x⊗ x∗) P⊥i i ∈ N,

since x⊗ x∗ ∈ (S1,φ)′,

Vi(Tx⊗ x∗) = (φ(Pi) T Pi) (x⊗ x∗) + (φ(Pi)
⊥T P⊥i ) (x⊗ x∗) i ∈ N,

hence

(6.7) Ui(Tx⊗ x∗) = Ui(T)x⊗ x∗ ⇒ Ui(Tx⊗ x∗)(x) = Ui(T)(x) i ∈ N.

Using (6.4), (6.5), (6.6), (6.7)

Ui(T)(x)
‖·‖→ D(T)(x), i → ∞ for all x ∈

[ ∞⋃
m=1

Fm(H1)
]
.

Since the Ui are contractions Ui(T)(x)
‖·‖→ D(T)(x), for all x ∈ F(H1). Since

D(T)F = D(T), the proof is complete.

REMARK 6.12. The sequence (Un(T)) has similar properties to the net of
finite diagonal sums in the case of nest algebras. Propositions 6.10, 6.11 are anal-
ogous to Propositions 4.3, 4.4 in [2].

THEOREM 6.13. For every compact operator K ∈ U there exist unique compact
operators K1 ∈ U0, K2 ∈ ∆(U ) such that K = K1 + K2. Moreover K2 = D(K).

Proof. Let K2 = D(K) and K1 = K − K2. Now K1 = lim(K − Un(K)) by
Proposition 6.10. As in Theorem 3.2 K−Un(K) ∈ U0 for all n ∈ N. Hence K1 ∈ U0.

The decomposition K = K1 + K2 in U0 + (∆(U ) ∩ K) is unique because by
Proposition 6.3, ∆(U ) ∩ K ⊂ ∆(U )(I − Q1), while by Theorem 3.4, U = U0 ⊕
∆(U )(I −Q1).

COROLLARY 6.14. For every finite rank operator F ∈ U there exist unique finite
rank operators F1 ∈ U0, F2 ∈ ∆(U ) such that F = F1 + F2. Moreover rankF2 6 rankF
and F2 = D(F).
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Proof. It can be shown that for each n ∈ N we have rank(Un(F)) 6 rank(F).
Therefore if F2 = ‖ · ‖-lim Un(F) then rank(F2) 6 rank(F) and F2 = D(F). Setting
F1 = F− F2 we obtain the desired decomposition.

COROLLARY 6.15. Let 1 6 p < ∞ and K ∈ U ∩Cp. There exist unique operators
K1 ∈ U0 ∩ Cp, K2 ∈ ∆(U ) ∩ Cp such that K = K1 + K2. Moreover ‖K2‖p 6 ‖K‖p.

Proof. As in Theorem 6.13 K = K1 + D(K) where K1 ∈ U0. We observe that
D(K) ∈ Cp and ‖D(K)‖p 6 ‖K‖p.

7. DECOMPOSITION OF A STRONGLY REFLEXIVE MASA BIMODULE

Let U , U0, ∆(U ), φ, D1, D2 be as in Section 3 and χ = Map(∆(U )). We now
assume that U is a strongly reflexive masa bimodule.

PROPOSITION 7.1. The space U0 is strongly reflexive.

Proof. Let T ∈ U , P ∈ S1,φ. Since U is a strongly reflexive masa bimodule

there exists a net (Ri) ⊂ [R1(U )] such that Ri
wot→ T (Corollary 2.5 in [6]). So

we have that φ(P)RiP⊥
wot→ φ(P)TP⊥. Since (φ(P)RiP⊥) ⊂ [R1(U0)] we conclude

that φ(P)TP⊥ ∈ [R1(U0)]−wot. We proved that φ(P)UP⊥ ⊂ [R1(U0)]−wot for all
P ∈ S1,φ. Hence U0 = [R1(U0)]−wot.

REMARK 7.2. The diagonal of a strongly reflexive masa bimodule is not nec-
essarily strongly reflexive. For example if U is a nonatomic nest algebra, then
∆(U ) does not contain rank 1 operators.

PROPOSITION 7.3. (i) U0 = U ∩ (R1(∆(U ))∗)0.
(ii) U0 ∩∆(U ) = ∆(U ) ∩ (R1(∆(U ))∗)0.

Proof. By Proposition 6.2 we have U0 ⊂ (R1(∆(U ))∗)0. It suffices to show
that U ∩ (R1(∆(U ))∗)0 ⊂ U0.

Since U ∩ (R1(∆(U ))∗)0 is a masa bimodule, as in Theorem 3.2 we can de-
compose it in the following sum:

U ∩ (R1(∆(U ))∗)0 = U0 ∩ (R1(∆(U ))∗)0 + ∆(U ) ∩ (R1(∆(U ))∗)0.

Now we must prove that ∆(U ) ∩ (R1(∆(U ))∗)0 ⊂ U0. Using Theorem 2.2, there
exist projections P1 ∈ D1, P2 ∈ D2 such that [R1(∆(U ))]−w∗ = P2∆(U )P1 and
∆(U ) ∩ (R1(∆(U ))∗)0 = P⊥2 ∆(U )P⊥1 .

Let T ∈ ∆(U ) ∩ (R1(∆(U ))∗)0. Since U is a strongly reflexive masa bimodule

there exists a net (Ri) ⊂ [R1(U )] such that Ri
wot→ T [6]. By Proposition 6.1 there

exist Mi ∈ [R1(∆(U ))], Li ∈ U0 such that Ri = Mi + Li. Thus Mi + Li
wot→ T so

P⊥2 MiP⊥1 + P⊥2 LiP⊥1
wot→ P⊥2 TP⊥1 and thus P⊥2 LiP⊥1

wot→ T. It follows that T ∈ U0.

THEOREM 7.4. U = U0 ⊕ [R1(∆(U ))]−w∗ .
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Proof. By Theorem 2.2,

∆(U ) = ∆(U ) ∩ (R1(∆(U )∗)0 ⊕ [R1(∆(U ))]−w∗

so by Proposition 7.3 ∆(U ) = U0 ∩ ∆(U ) + [R1(∆(U ))]−w∗ . Since U = U0 + ∆(U )
we have that U = U0 + [R1(∆(U ))]−w∗ . By Proposition 6.3 and Theorem 3.4 the
last sum is direct.

Propositions 3.7 and 3.8 have the following consequences:

COROLLARY 7.5. (i) The following are equivalent:
(a) R1(∆(U )) = 0.
(b) ∆(U )∗∆(U ) ⊂ L1 ∩A1.
(c) ∆(U )∆(U )∗ ⊂ L2 ∩A2.

(ii) The following are equivalent:
(a) ∆(U ) is strongly reflexive.
(b) ∆(U ) (L1 ∩A1) = 0.
(c) (L2 ∩A2) ∆(U ) = 0.

Theorems 6.8, 7.4 and Corollary 5.3 give the following form of the decom-
position of U when it is a strongly reflexive CSL algebra.

COROLLARY 7.6. If S is a completely distributive CSL in a Hilbert space H and
{An : n ∈ N} = {A : A atom of S} then:

Alg(S) = Rad(Alg(S))−w∗ ⊕
∞

∑
n=1

⊕
AnB(H)An.

Recall the notation [R1(∆(U ))]−w∗ =
∞
∑

n=1

⊕
χ(I)δ(Fn)B(H1, H2)Fn, where

{Fn : n ∈ N} = {F : F atom of U} and

D : B(H1, H2) −→ B(H1, H2) : D(T) =
∞

∑
n=1

χ(I)δ(Fn)TFn.

PROPOSITION 7.7. Let θ : U → U be the projection onto [R1(∆(U ))]−w∗ defined
by the decomposition in Theorem 7.4. Then θ = D|U .

Proof. Since U decomposes as the direct sum of the masa bimodules U0 and
[R1(∆(U ))]−w∗ , the map θ is a masa bimodule map:

θ(D2TD1) = D2θ(T)D1

for every T ∈ U , D1 ∈ D1, D2 ∈ D2. Hence if T ∈ U we have

θ(T)=
∞

∑
n=1

χ(I)δ(Fn)θ(T)Fn =
∞

∑
n=1

θ(χ(I)δ(Fn)TFn)=
∞

∑
n=1

χ(I)δ(Fn)TFn =D(T).

PROPOSITION 7.8. U0 = {T ∈ U : χ(I)δ(F)TF = 0 for every atom F of U}.
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Proof. Let F be an atom of U . If P ∈ S1,φ, as in Proposition 6.6 either PF =
F ⇒ P⊥F = 0 or PF = 0 ⇒ χ(I)δ(F)φ(P) = 0. So χ(I)δ(F)φ(P)TP⊥F = 0 for
all P ∈ S1,φ and T ∈ U , thus χ(I)δ(F)U0F = 0 for every atom F. It follows that
U0 ⊂ {T ∈ U : χ(I)δ(F)TF = 0, for every atom F in U}.

For the converse, let T ∈ U be such that χ(I)δ(F)TF = 0 for every atom F in
U . By the previous proposition D(T) = 0, hence T ∈ U0.

It is known that the linear span of the rank 1 operators in a strongly reflexive
masa bimodule is wot dense in the module. This is not true generally for the
ultraweak topology [6]. For this problem we have the equivalence in Proposi-
tion 7.10. Firstly, we need the following lemma.

LEMMA 7.9. If U is a reflexive masa bimodule (not necessarily strongly reflexive)
then:

[R1(U )]−w∗ = [R1(U0)]−w∗ ⊕ [R1(∆(U ))]−w∗ .

Proof. Since R1(∆(U )) ⊂ ∆(U )(I−Q1) (Proposition 6.3), by Theorem 3.4 the
previous sum is direct.

Clearly
[R1(U )]−w∗ ⊃ [R1(U0)]−w∗ ⊕ [R1(∆(U ))]−w∗ .

For the converse, let T ∈ [R1(U )]−w∗ . There is a net (Ri) ⊂ [R1(U )] with

Ri
w∗−→ T. As in Proposition 6.1, we may decompose Ri = Li + Mi where Li ∈

[R1(U0)]−‖·‖1 and Mi ∈ [R1(∆(U ))] for all i.
Since Mi = D(Ri) (Corollary 6.14) and D is w∗-continuous the net (Mi)

converges to some M ∈ [R1(∆(U ))]−w∗ . So Li = Ri − Mi
w∗−→ T − M = L ∈

[R1(U0)]−w∗ . Thus T = L + M ∈ [R1(U0)]−w∗ ⊕ [R1(∆(U ))]−w∗ .

PROPOSITION 7.10. If U is a strongly reflexive masa bimodule, then:

U = [R1(U )]−w∗ ⇔ U0 = [R1(U0)]−w∗ .

Proof. Suppose U = [R1(U )]−w∗ . Then by Theorem 7.4 we have U = U0 ⊕
[R1(∆(U ))]−w∗ . Using Lemma 7.9 we obtain U0 = [R1(U0)]−w∗ .

If conversely U0 = [R1(U0)]−w∗ then again by Theorem 7.4

U = U0 ⊕ [R1(∆(U ))]−w∗ = [R1(U0)]−w∗ ⊕ [R1(∆(U ))]−w∗ = [R1(U )]−w∗

by Lemma 7.9.
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