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ABSTRACT. In this article, we will give a characterization of Banach bimod-
ules over C∗-algebras of compact operators that arise from operator spaces as
well as a characterization of (F)-Banach bundles amongst all (H)-Banach bun-
dles over a hyper-Stonian space. These two characterizations are concerned
with whether a certain natural map from a Banach bimodule to its canonical
bidual is isometric (we call such bimodule regular).
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INTRODUCTION

The aim of this paper is to study duality theory for essential normed bi-
modules. Given a pre-C∗-algebra A and an essential normed A-bimodule X, we
would like to have a canonical definition of the dual object Xs of X which satisfies
the following properties:

(i) Xs is also an essential normed A-bimodule (i.e. the dual object is in the
same category);

(ii) Xs depends only on X and A;
(iii) when A = K(l2) and X is defined by an operator space, Xs is defined by

the corresponding dual operator space;
(iv) when A is commutative, Xs is the essential part of LA(X, A) (i.e. the duality

agrees with the usual one for commutative algebras).
Let’s forget about the norm structure for the moment and consider a bimod-

ule M over a unital algebra R. The natural “dual object” LR(M, R) fails to be a
R-bimodule if R is not commutative. An easy way to rectify this situation is to
“add another copy of R” and consider LR(M, R) where R is the algebraic tensor
product R � R together with the R-bimodule structure: a · (b ⊗ c) · d = abd ⊗ c.
Therefore, LR(M, R) becomes a R-bimodule (given by the bimodule structure on
the second variable of R�R). However, when R is commutative, LR(M, R�R) 6=
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LR(M, R) unless R is the scalar field. A natural way to correct this is to replace
R � R with R �Z R (where Z is the center of R).

We employ this simple idea in Section 1 to define the “regular dual object”,
Xs, of an essential normed A-bimodule X (for technical reasons, we will assume
that A has a contractive approximate identity and A2 = A). There is a canonical
contraction κX : X → Xss (the dual of Xs). In general, κX is not an isometry and X
is called regular if κX happens to be an isometry. It is easy to see that Xs is always
regular and so, κX(X) is called the regularization of X. Regular bimodules are
thought to be nice objects because of the results in Sections 2 and 3. It is natural
to ask whether one can give a canonical characterisation of regularity without
explicitly involving the duality. We will show that every regular bimodule will
satisfy certain properties (known as pseudo-regularity) which do not involve the
dual object explicitly.

In Section 2, we will consider the situation when A =
⊕

λ∈Λ
K(Hλ) where

Λ is any index set and Hλ is a Hilbert space. We will show that regularity and
pseudo-regularity coincide in this case and will characterize regular Banach A-
bimodules.

In Section 3, we will consider the situation when A is a commutative von
Neumann algebra. In this case, pseudo-regular bimodules correspond to (H)-
Banach bundles and we will show that regular bimodules correspond to (F)-
Banach bundles. Hence, the regularization process gives us a canonical way to
obtain an (F)-Banach bundle from any given Banach bundle (in particular, from
an (H)-Banach bundle).

1. DUALITY AND REGULARITY OF BANACH BIMODULES

Throughout this section, A is a pre-C∗-algebra containing a contractive ap-
proximate identity { fi}i∈I such that A · A = A (i.e. any element of A is a finite
sum of elements of the form ab where a, b ∈ A). We denote by A the completion
of A and recall that an A-bimodule X is (algebraically) essential if X = A · X · A
(where A · X · A is the linear span of elements of the form a · x · b with a, b ∈ A
and x ∈ X). For any A-module X, we denote by XE the essential part A · X · A
of X.

Let B be a C∗-subalgebra of M(A) (the multiplier algebra of A) and ZA ∼=
C(Ω) be the center of M(A) (where Ω is a compact Hausdorff space). By [1],
there exists a C∗-semi-norm ‖ · ‖m on the algebraic ZA-tensor product A �ZA B

which is minimum in some sense (see 2.8 of [1]). As in [1], we denote by A
m
⊗ZA B

the Hausdorff completion of A �ZA B under ‖ · ‖m.
From now on, we will denote by a ~A 1 and a ~A b (or simply a ~ 1 and

a ~ b) the canonical images of a ∈ A and a⊗ZA b ∈ (A�ZA B) in M(A
m
⊗ZA B) and



REGULAR NORMED BIMODULES 345

A
m
⊗ZA B respectively. Note that the map that sends a ∈ A to a ~ 1 ∈ M(A

m
⊗ZA B)

is a ∗-homomorphism.

LEMMA 1.1. A
m
⊗ZA B is a normed A-bimodule under the multiplication c ·

(a ~ b) · d = cad ~ b and { fi}i∈I is an approximate identity in A for the A-bimodule

A
m
⊗ZA B. Similarly, if {gj} is a bounded approximate identity of B, then both (1 ~ gj)α

and α(1 ~ gj) converge to α for any α ∈ A
m
⊗ZA B.

The above lemma may be used implicitly throughout this article. In the

following we denote by A the normed A-bimodule A
m
⊗ZA A (the A-bimodule

structure is as given in Lemma 1.1).
We will now construct the dual bimodule of an essential normed

A-bimodule. We have already stated in the introduction what is expected for dual
bimodules. For any essential normed A-bimodule X, we denote by LA(X, A) the
space of all continuous A-bimodule maps from X to A. Note that LA(X, A) =
LA(X, A · A · A) is a A-bimodule with multiplications given by (a · T · b)(x) =
(1 ~ a)T(x)(1 ~ b) (T ∈ LA(X, A); a, b ∈ A; x ∈ X). We set

Xs := LA(X, A)E

(the essential part of LA(X, A)) and call it the regular dual of X.
It is clear that Xs is an essential normed A-bimodule (with the canonical

norm on LA(X, A)) and there is a contraction κX : X → Xss given by κX(x)(ϕ)
= ϕ(x)(12) (where (12) is the flip of the two variables in A — it is not hard to see

from the definition of
m
⊗ZA that such flip map exists).

DEFINITION 1.2. Let X be an essential normed A-bimodule. An element
x ∈ X is said to be regular in X if for any ε > 0, there exists T ∈ Xs such that
‖T‖ 6 1 and ‖x‖ 6 ‖T(x)‖ + ε. We say that X is regular if κX is an isometry.
Moreover, the closure of κX(X) in Xss together with the induced norm is called
the regularization of X and is denoted by Xreg.

In [12], a type of dual bimodule, X†, was introduced. However, X† is in gen-
eral not a Banach A-bimodule. Furthermore, the regularity defined using X† (i.e.
X → (X†)† being isometric) is in general strictly weaker than ours. In particular,
it will not give the relation between (H)-Banach bundles and (F)-Banach bundles
as obtained using our notion of regularization (see Section 3 below).

In [8], yet another type of dual bimodule X∗
D was introduced. If A ⊆ L(H)

such that A′′ is standard in L(H), then X∗
L(H) is very similar to X† (except that

Hom in [12] are bounded maps while Hom in [8] are completely bounded). If
A = K(H) or if A is commutative, then X∗

A = Xs (in both cases, elements in Xs

are automatically completely bounded) but it seems unlikely that one can use any
result in [8] to shorten the proofs in this paper.
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REMARK 1.3. Let X be an essential normed A-bimodule and X be its com-
pletion.

(i) If A is a C∗-algebra, then Xs is closed in LA(X, A) (because of the the Cohen
factorization theorem).

(ii) X is an essential Banach A-bimodule and Xs is dense in Xs (since LA(X, A)
= LA(X, A)). Thus, X is regular if and only if X is regular.

(iii) X is regular if and only if for any x ∈ X and any ε > 0, there exists
T ∈ LA(X, A) = LA(X, A · A · A) such that ‖T‖ 6 1 and ‖x‖ < ‖T(x)‖ + ε
(note that ‖ fi · T(x) · fi − T(x)‖ < ε/2 for large enough i because of Lemma 1.1).
Consequently, an essential submodule of a regular bimodule is again regular.

(iv) Since (κX)s ◦ κXs = idXs and both κXs and (κX)s : (Xss)s → Xs are contrac-
tions, κXs is always an isometry. Therefore, Xs is regular and so is Xreg (by part
(ii)). Moreover, if Y is a regular normed A-bimodule and T ∈ LA(X, Y), there
exists Treg ∈ LA(Xreg, Y) such that T = Treg ◦ κX .

It is natural to ask if one can characterise regularity without finding the reg-
ular dual. In some cases, this can be done using the notion of pseudo-regularity
as defined in the following (although this is not the case in general; see e.g. Sec-
tion 3).

DEFINITION 1.4. (i) A semi-norm p on a A-bimodule X is said to be abso-
lutely A-convex if for any a1, . . . , an, b1, . . . , bn ∈ A and any x1, . . . , xn ∈ X,

p
( n

∑
i=1

aixibi

)
6

√∥∥∥ n

∑
i=1

aia∗i
∥∥∥ max

i=1,...,n
p(xi)

√∥∥∥ n

∑
i=1

b∗i bi

∥∥∥.

Moreover, an essential normed A-bimodule is said to be absolutely A-convex if its
norm is absolutely A-convex.

(ii) An essential normed A-bimodule X is said to be pseudo-regular if it is ab-
solutely A-convex and its completion X (which is a unital M(A)-bimodule in the
canonical way) is a commutative ZA-bimodule.

If A is a C∗-algebra and X is an essential Banach A-bimodule, then Propo-
sition 2.2 of [12] tells us that one only needs to consider n = 2 in the definition of
absolute A-convexity.

EXAMPLE 1.5. (i) If A =
c0⊕

i∈I
K(Hi) (c0-direct sum), then we have A =

c0⊕
i∈I

K(Hi) ⊗K(Hi).

(ii) If A = M∞ (the space of all infinite matrices with finite numbers of non-
zero entries, considered as a subspace of K(l2)), then A = K(l2)⊗K(l2).

(iii) If A = C0(Ω) for some locally compact space Ω, then A = C0(Ω).
(iv) Let H be an infinite dimensional Hilbert space, W be an operator space,

X := W⊗̌K(H) (spatial tensor product) and X# := LK(H)(X; K(H)⊗̌K(H)). It is
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clear that for any T ∈ CB(W; K(H)), we have T ⊗ idK(H) ∈ X#. Conversely, any
ϕ ∈ X# restricts to a map

ϕ0 ∈ LK(l2)(W⊗̌K(l2); K(H)⊗̌K(l2)) ∼= CB(W; K(H))

(see e.g. 1.2 of [9]). If T ∈ CB(W; K(H)) is the corresponding element of ϕ0,
then clearly ϕ = T ⊗ idK(H). Consequently, Xs ∼= CB(W; K(H))E (see the first
paragraph).

(v) For any Hilbert space H, one can consider K(H)∗ as an essential normed
K(H)-bimodule. In this case, (K(H)∗)reg = K(H). In fact, K(H)∗ → (K(H)∗)reg
is the identification of K(H)∗ as the set of trace-class operators.

(vi) Suppose that A = K(l2) or M∞ and X is an essential normed A-bimodule.
Then a closed subset D ⊆ X is absolutely A-convex if and only if for any disjoint
projections p, q ∈ A and any a ∈ A with ‖a‖ 6 1, we have p · D · p + q · D · q ⊆ D,
a · D ⊆ D and D · a ⊆ D. In fact, the case of A = M∞ is more or less the same as
3.2 of [4] and the case of A = K(l2) follows from some completion arguments.

PROPOSITION 1.6. If X is a regular normed A-bimodule, X is pseudo-regular.

Proof. Let U and V be the closed unit balls of X and Xs respectively. The
regularity of X means that U = {x ∈ X : ‖ϕ(x)‖ 6 1 for any ϕ ∈ V}. Therefore,
X is absolutely A-convex (note that the norm on A is absolutely A-convex). For

any ϕ ∈ Xs, z ∈ ZA and x =
n
∑

k=1
akxkbk ∈ X (ak, bk ∈ A and xk ∈ X), we have

ϕ(z · x) =
n

∑
k=1

(zak ~ 1)ϕ(xk)(bk ~ 1) =
n

∑
k=1

(ak ~ 1)ϕ(xk)(bkz ~ 1) = ϕ(x · z)

and so z · x = x · z (as Xs separates points of X by Remark 1.3(iii)). Thus, X is
pseudo-regular because the multiplications are continuous.

2. THE CASE WHEN A =
⊕
i∈I

K(Hi)

We will first consider the case when A = K(H) (where H is a Hilbert space).
In the following, ⊗̌ is the spatial tensor product of two operator spaces.

THEOREM 2.1. Let X be an essential Banach K(H)-bimodule. The following
statements are equivalent:

(i) X is regular.
(ii) X is pseudo-regular.

(iii) There exists a complete operator space W such that X = W⊗̌K(H).

Proof. (i)⇒(ii). This follows from Proposition 1.6(ii).
(ii)⇒(iii). By the theorem in p. 333 of [12], there exists a Hilbert space K, a

non-degenerate ∗-representation π of K(H) on K as well as an isometry J : X →
L(K) such that J(axb) = π(a)J(x)π(b) (a, b ∈ K(H); x ∈ X). Note that there is a
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Hilbert space E such that K ∼= E⊗H as well as π(a) = 1⊗ a and so we can assume
π = 1 ⊗ id and J = id. Let W := {y ∈ L(E) : y ⊗ a ∈ X for any a ∈ K(H)}.
Clearly, W⊗̌K(H) ⊆ X. Suppose {ξi}i∈I is an orthonormal basis for H. For any
i, j ∈ I, we set

θi,j(ζ) := ξi〈ξ j, ζ〉 and ωi,j(t) := 〈ξi, tξ j〉 (ζ ∈ H; t ∈ L(H)).

Then (id ⊗ ωj,k)(x) ⊗ θi,l = (1 ⊗ θi,j)x(1 ⊗ θk,l) ∈ X (x ∈ X; i, j, k, l ∈ I) and
so (id ⊗ ωj,k)(x) ∈ W. Furthermore, since X is essential, certain finite sums of
elements of the form

(1⊗ θi,i)x(1⊗ θj,j) = (id⊗ ωi,j)(x)⊗ θi,j ∈ W⊗̌K(H)

converge to x in norm and so X = W⊗̌K(H) as required.
(iii)⇒(i). If dim H = n, then X ∼= Mn(W) as normed Mn-bimodules and

this implication follows from 2.3.4 of [3] (note that CB(W; Mn) ∼= Xs). On the
other hand, if H is infinite dimensional, then (V⊗̌K(H))s ∼= CB(V; K(H))E for
any operator space V (by Example 1.5(iv)). Therefore, we have:

W⊗̌K(H)⊆CB(W∗; K(H))E =(W∗⊗̌K(H))s =(CB(W; K(H))E)s =(W⊗̌K(H))ss

(W∗⊗̌K(H) = CB(W; K(H))E because there is an approximate unit in K(H) con-
sisting of finite rank projections). It is not hard to check that the above embedding
is precisely κX and thus X is regular.

REMARK 2.2. (i) The equivalence of Theorem 2.1(ii) and (iii) is probably
known (e.g. one can use 2.1 of [6] and Proposition 3.3 of [14] to obtain this in
the case of H = l2). However, we decided to give a proof here for clarity and
completeness.

(ii) Let {ξi}i∈I be an othonormal basis for H and A be the linear span of {θi,j :
i, j ∈ I}. One can use the completion consideration in Remark 1.3 to obtain a
similar result as the above theorem for A. In fact, there is also an elementary
proof for this fact (without using the theorem in [12]) but such a proof is much
more lengthy.

Suppose that A is the c0-direct sum
⊕

λ∈Λ

c0K(Hλ) and dλ ∈ A corresponds to

the identity in L(Hλ). Then ZA = c0(Λ) and A =
⊕

λ∈Λ

c0K(Hλ)⊗K(Hλ). Let X be

a pseudo-regular Banach A-bimodule. Then it is not hard to see that Xλ := dλ · X
is a regular Banach K(Hλ)-bimodule and X is the c0-directed sum

⊕
λ∈Λ

c0 Xλ. Using

this, one can check easily that X is also regular. Thus, we have the following
theorem.

THEOREM 2.3. Let Λ be an index set and Hλ be a Hilbert space for any λ ∈ Λ.
Suppose that A =

⊕
λ∈Λ

c0K(Hλ) and X is a pseudo-regular Banach A-bimodule. Then
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X is regular and there exists a family of operator spaces {Wλ}λ∈Λ such that X =⊕
λ∈Λ

c0 Wλ⊗̌K(Hλ).

The first two parts of the following corollary follow easily from Theorem 2.1
(or more precisely, Remark 2.2(ii)) and the final part follows from the above the-
orem.

COROLLARY 2.4. Let X be an essential normed A-bimodule.
(i) Suppose that A =

⋃
n∈N

Mn. Then X is regular if and only if there exists an operator

space W such that X =
⋃

n∈N
Mn(W).

(ii) Suppose that A = Mn. Then X is regular if and only if there exists an operator
space Y such that X ∼= Mn(Y) under the norm induced by the operator space structure
of Y.

(iii) Suppose that A = c0. Then X is regular if and only if there exists a sequence of
Banach spaces {Xk} such that X is a normed c0-submodule of

⊕
λ∈Λ

c0 Xk.

In the remainder of this section, we will give two remarks concerning the
case when A = K(l2). First of all, Theorem 2.1 allows us to detect some hidden
operator space structures. For example, if V is a complete operator space, then
any essential Banach K(l2)-submodule of K(l2)⊗̌V is of the form K(l2)⊗̌U for
some operator subspace U of V. As for another example, if Y is an essential op-
erator A-bimodule of a C∗-algebra A, one can use the K(l2)-bimodule approach
to show the existence of a canonical operator space structure on the space of dou-
ble centralizers MA(Y) that turns it into a unital operator M(A)-bimodule in a
canonical way (see e.g. p. 310 of [10]).

Secondly, “regularization” is a process that produces a canonical complete
operator space from any essential Banach K(l2)-bimodule. The following corol-
lary shows that it is actually a left adjoint of the forgetful functor from the cat-
egory of complete operator spaces to the category of essential Banach K(l2)-
bimodules (note that if W is the operator space such that Xreg = W⊗̌K(l2), then
the following corollary shows that CB(W, V) ∼= LK(l2)(X, K(l2)⊗̌V) canonically).

COROLLARY 2.5. Let X and Y be essential Banach K(l2)-bimodules. Any ϕ ∈
LK(l2)(X, Y) induces a map ϕreg ∈ LK(l2)(Xreg, Yreg) such that ϕreg ◦ κX = κY ◦
ϕ and ‖ϕreg‖ 6 ‖ϕ‖. If, in addition, Y is regular, then ‖ϕreg‖ = ‖ϕ‖. Conse-
quently, the canonical map, κ̂X : LK(l2)(Xreg, K(l2)⊗̌V) → LK(l2)(X, K(l2)⊗̌V) is an
isometry for any complete operator space V.

Proof. Consider ϕs : Ys → Xs given by ϕs( f ) = f ◦ ϕ. It is easy to see that
‖ϕs‖ 6 ‖ϕ‖. Hence we have a bounded K(l2)-bimodule map ϕss : Xss → Yss

such that

ϕss ◦ κX = κY ◦ ϕ
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and ‖ϕss‖ 6 ‖ϕs‖ 6 ‖ϕ‖. Now, the restriction of ϕss on Xreg is the required
map ϕreg. Finally, if Y is regular, κY is an isometry and so ‖ϕ‖ 6 ‖ϕreg‖‖κX‖ 6
‖ϕreg‖.

3. THE CASE WHEN A IS A COMMUTATIVE VON NEUMANN ALGEBRAS

Throughout this section, Ω is a compact Hausdorff space and X is an es-
sential Banach C(Ω)-module (i.e. commutative Banach C(Ω)-bimodule). For any
x ∈ X, we denote by X(x) the closed C(Ω)-submodule C(Ω) · x.

As noted in [12], X is pseudo-regular if and only if it is a C(Ω)-convex mod-
ule in the sense of [2], p. 40 . Therefore, this is the case if and only if X is the space
of continuous sections of an (H)-Banach bundle (see p. 8 of [2] and 2.5 of [2]). Let
us first give the following (probably well known) lemma.

LEMMA 3.1. Let f ∈ C(Ω)+ and h : Ω → R+ be an upper semi-continuous
function. Then f 6 h if and only if ‖g f ‖ 6 ‖gh‖ := sup

ω∈Ω

g(ω)h(ω) for any g ∈

C(Ω)+.

Proof. The necessity is clear. Suppose that there exist ω0 ∈ Ω and r ∈ R+
such that f (ω0) > r > h(ω0). Then W = {ω ∈ Ω : h(ω) < r < f (ω)} is an
open set containing ω0. If g is a continuous function from Ω to [0, 1] such that
0 6 g 6 1, g(ω0) = 1 and g vanishes outside W, then ‖g f ‖ > r > ‖gh‖.

REMARK 3.2. For any function h : Ω → R+, we define ‖h‖ := sup
ω∈Ω

h(ω) and

‖h‖e := inf
{

sup
ω∈∆

h(ω) : ∆ is an open dense subset of Ω
}

.

If h is upper-semi-continuous, then

‖h‖e = inf
{

sup
ω∈Ξ

h(ω) : Ξ is a dense subset of Ω
}

.

PROPOSITION 3.3. Suppose that X is a C(Ω)-convex Banach module and x ∈ X.
Define ‖x‖e := ‖|x|‖e (where |x|(ω) = ‖x(ω)‖). Then the following statements are
equivalent:

(i) ‖x‖ = ‖x‖e.
(ii) For any ε > 0, there exists f ∈ C(Ω)+ such that f 6 |x| and ‖x‖ 6 ‖ f ‖+ ε.

(iii) x is regular in X(x) = C(Ω) · x (see Definition 1.2).
Consequently, if X is regular, then ‖x‖ = ‖x‖e for any x ∈ X.

Proof. (i)⇒(ii) Since G := {ω ∈ Ω : |x|(ω) > ‖x‖e − ε} is a closed set in
Ω (as |x| is upper semi-continuous), G contains an open set V (otherwise, the
open set {ω ∈ Ω : |x|(ω) < ‖x‖e − ε} is dense which contradicts the definition
of ‖x‖e). Take any ω0 ∈ V. Let f ∈ C(Ω) be such that 0 6 f (ω) 6 ‖x‖e − ε
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(ω ∈ Ω), f (ω0) = ‖x‖e − ε and f vanishes outside V. Then clearly f 6 |x| and
‖x‖e = ‖ f ‖+ ε.

(ii)⇒(iii) For any ε > 0, let f be the function as given in statement (ii). We
first show that ϕ : X(x) → C(Ω) given by ϕ(g · x) = g f is well defined. Suppose
that g ∈ C(Ω) such that g(ω)x(ω) = 0 for any ω ∈ Ω. If g(ω) 6= 0, then x(ω) = 0
and so f (ω) = 0 which implies that g f = 0. Thus, ϕ ∈ X(x)s is a well defined
contraction such that ‖x‖ 6 ‖ϕ(x)‖+ ε.

(iii)⇒(i) It is clear that ‖x‖e 6 ‖x‖. For any ε > 0, let ϕ ∈ X(x)s such
that ‖ϕ‖ 6 1 and ‖x‖ 6 ‖ϕ(x)‖ + ε. Put f = |ϕ(x)| ∈ C(Ω)+. Then for any
g ∈ C(Ω)+, we have (g|ϕ(x)|)(ω) = |ϕ(g · x)|(ω) for any ω ∈ Ω and so,

‖g f ‖ = sup
ω∈Ω

|ϕ(g · x)(ω)| = ‖ϕ(g · x)‖ 6 ‖g · x‖ = sup
ω∈Ω

g(ω)‖x(ω)‖ = ‖g|x|‖.

Hence f 6 |x| (by Lemma 3.1) and ‖ f ‖ = ‖ f ‖e 6 ‖x‖e. Thus,

‖x‖ 6 ‖ϕ(x)‖+ ε = ‖ f ‖+ ε 6 ‖x‖e + ε.

LEMMA 3.4. Let X be a C(Ω)-convex Banach module. The map x 7→ ‖x‖e is an
absolutely C(Ω)-convex seminorm on X.

Proof. Let f1, f2 ∈C(Ω)+ with ‖ f1 + f2‖6 1 and x1, x2 ∈ X with ‖x1‖e, ‖x2‖e
6 1. For any ε > 0, there exist open dense subsets ∆1 and ∆2 such that sup

ω∈∆ i

‖xi(ω)‖

< 1 + ε (i = 1, 2). If ∆ = ∆1 ∩∆2,

‖ f1 · x1 + f2 · x2‖e 6 sup
ω∈∆

‖ f1(ω)x1(ω) + f2(ω)x2(ω)‖

6 sup
ω∈∆

f1(ω)‖x1(ω)‖+ f2(ω)‖x2(ω)‖ = 1 + ε.

REMARK 3.5. ‖ · ‖e is a norm if the underlying topology of the (H)-Banach
bundle (p, E, Ω) associated with X is Hausdorff. In fact, suppose that y ∈ X such
that ‖y‖e = 0. For any n ∈ N, the open set {ω : ‖y(ω)‖ < 1/n} is dense in Ω.
Therefore, by the Baire’s Category theorem,

Ky := {ω ∈ Ω : y(ω) = 0ω} =
⋂

n∈N
{ω : ‖y(ω)‖ < 1/n}

is dense in Ω (where 0ω is the zero of the fibre at ω). Consider the map j : Ω → E
defined by j(ω) = 0ω. By condition (4) of 1.1 in [2], we see that j is a continuous
map and so j(Ω) is compact in the Hausdorff space E. Thus, Ky = y−1(j(Ω)) is
also closed in Ω and hence Ky = Ω. This shows that y ≡ 0. Thus, ‖ · ‖e is a norm
on X.

In the following, we denote by Xess the completion of (X/N, ‖ · ‖e) (where
N = {x ∈ X : ‖x‖e = 0}). A natural question is whether X = Xess for any
absolutely C(Ω)-convex Banach module X. This is, of course, true if Ω is a finite
set. The following example shows that it is not the case in general.
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EXAMPLE 3.6. Let Ω be a compact Hausdorff space with a non-isolated
point ω ∈ Ω. One can turn C into a Banach C(Ω)-module, denoted by X, through
the multiplication f · r = f (ω)r. It is not hard to check that X is C(Ω)-convex and
so X = Γ(E) for an (H)-Banach bundle E over Ω. By the construction in [2],
pp. 35–36 we see that the fibre Eω equals C while Eν = (0) for any ν ∈ Ω \ {ω}.
There exists y ∈ Γ(E) such that y(ω) = 1. Thus,

|y|(ν) =

{
0 if ν 6= ω,
1 if ν = ω,

(which is clearly not continuous as ω is not an isolated point) and so ‖y‖e = 0 (in
fact, ‖x‖e = 0 for any x ∈ X).

THEOREM 3.7. Let Ω be a Stonian space and X be a C(Ω)-convex Banach module.
Then Xreg = Xess. Consequently, if X comes from an (F)-Banach bundle, then X is
regular.

Proof. By the argument of “(i)⇒(ii)” in Proposition 3.3, we see that for any
x ∈ X and ε > 0, there exists f ∈ C(Ω)+ with f 6 |x| and ‖ f ‖ = ‖x‖e − ε.
Moreover, by the argument of “(ii)⇒(iii)” in Proposition 3.3, the map ϕ : X(x) →
C(Ω) given by ϕ(g · x) = g f is well defined. As f 6 |x| and f is continuous,

‖g f ‖ = ‖g f ‖e 6 ‖g · x‖e

for any g ∈ C(Ω). Therefore, ϕ is a contraction from the semi-normed space
(X(x), ‖ · ‖e) to C(Ω) and so it defines a contraction in (X(x)ess)s, also denoted
by ϕ, such that ‖x0‖e 6 ‖ϕ(x0)‖ + ε (where x0 is the image of x in X(x)ess). It
is not hard to check that X(x)ess = Xess(x0). Thus, as Ω is Stonian, ϕ extends to
ψ ∈ (Xess)s such that ‖ψ‖ = ‖ϕ‖ 6 1 (by 3.10 of [5]). Hence Xess is regular.

On the other hand, suppose that Y is a regular Banach C(Ω)-bimodule and
Φ ∈ LC(Ω)(X, Y). Let E and F be (H)-Banach bundles over Ω such that X = Γ(E)
and Y = Γ(F) (note that as Y is regular, it is C(Ω)-convex and such F exists).
Then Φ induces a Banach bundle map Ψ : E → F. By Proposition 3.3, ‖y‖ = ‖y‖e
for any y ∈ Y. Thus for any z ∈ X,

‖Φ(z)‖ = ‖Ψ ◦ z‖ = ‖Ψ ◦ z‖e = inf
{

sup
ω∈∆

‖Ψ(z(ω))‖ : ∆ is dense in Ω
}

6 ‖Φ‖ · inf
{

sup
ω∈∆

‖z(ω)‖ : ∆ is dense in Ω
}

= ‖Φ‖ · ‖z‖e.

Consequently, Φ factors through an element in LC(Ω)(Xess, Y) uniquely. Since
Xess is regular, it is the regularization of X. The second statement comes from the
fact that ‖x‖ = ‖x‖e if X comes from an (F)-Banach bundle.

This theorem and Remark 3.5 show that if Ω is a Stonian space and E is a
Hausdorff (H)-Banach bundle over Ω with X = Γ(E), then κX is injective.
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REMARK 3.8. Suppose that Ω is a compact Hausdorff space, Y is a normed
C(Ω)-module and n : Y → C(Ω)+ satisfies the three conditions in p. 47 of [2].
Then n extends to the completion Ỹ of Y which also satisfies the same three con-
ditions. In fact, −n(y − z) 6 n(y)− n(z) 6 n(y − z) implies that ‖n(y)− n(z)‖ 6
‖n(y − z)‖ = ‖y − z‖ (y, z ∈ Y). It is not hard to see that this gives a well-defined
map from Ỹ to C(Ω)+ (as C(Ω)+ is complete) which satisfies the three conditions
in p. 47 of [2].

THEOREM 3.9. Let Ω be a hyper-Stonian space and X be a C(Ω)-convex Banach
module. Then Xess is the space of continuous sections of an (F)-Banach bundle.

Proof. Let {µi}i∈I be a maximal family of positive normal measures on Ω
with disjoint supports and let Ξi be the support of µi. Then Ξ :=

⋃
i∈I

Ξi is an

open dense subset of Ω and {µi}i∈I defines a Radon measure µ on Ξ such that
C(Ω) ∼= L∞(Ξ, µ) (see the argument of “(i)⇒(ii)” in III.1.18 of [13]). Denote by
USC(Ω)+ the set of all upper semi-continuous functions from Ω to R+. For any
h ∈ USC(Ω)+, we let ψ(h) be the equivalence class of h | Ξ in L∞(Ξ, µ). We first
show that

‖h‖e = ‖ψ(h)‖∞.

Let Λ ⊆ Ξ be a measurable set such that µ(Λ) = 0. Then µi(Λ) = 0 for all i ∈ I
and so Λ is nowhere dense in Ω (see III.1.15 of [13]). The set ∆ = Λ ∪ (Ω \ Ξ) is
closed and nowhere dense in Ω. Since Ω \∆ ⊆ Ξ \Λ, we see that

sup
ω∈Ω\∆

h(ω) 6 sup
ω∈Ξ\Λ

h(ω).

As Λ is an arbitrary measure zero set, ‖h‖e 6 ‖ψ(h)‖∞. Conversely, suppose
that ∆ is a closed nowhere dense subset of Ω and let Λ = ∆ ∩ Ξ. Let C be a
compact subset of Λ. Then C is also nowhere dense in Ω and µi(C) = 0 for any
i ∈ I (because of III.1.15 in [13]). Therefore, µ(C) = ∑

i∈I
µi(C) = 0 and so by the

regularity of µ, we have µ(Λ) = 0. Since

sup
ω∈Ξ\Λ

h(ω) 6 sup
ω∈Ω\∆

h(ω)

and ∆ is an arbitrary closed nowhere dense subset of Ω, we see that ‖ψ(h)‖∞ 6
‖h‖e. Now, as g 7→ ψ(g) is the canonical isomorphism from C(Ω) to L∞(Ξ, µ)
(see the argument of III.1.18 in [13]), the above shows that for any h ∈ USC(Ω)+,
there exists a unique g ∈ C(Ω)+ such that g = h on an open and dense subset of
Ξ (and hence of Ω). This induces a map

φ : USC(Ω)+ → C(Ω)+

such that ‖φ(h)‖ = ‖h‖e. For any g ∈ C(Ω)+ and h ∈ USC(Ω)+, it is not hard
to see that φ(gh) = gφ(h). If we set n(x) := φ(|x|) ∈ C(Ω)+ (x ∈ X), then
‖x‖e = ‖n(x)‖ (because |x| is upper semi-continuous). Hence, if x, y ∈ X such
that ‖x − y‖e = 0, then ‖(|x − y|) | Ξ‖∞ = 0 and so |x − y| = 0 a.e. on Ξ which
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implies that |x| = |y| on an open dense subset of Ξ. This shows that if X0
ess is the

image of X in Xess, then n induces

ñ : X0
ess → C(Ω)+

which satisfies conditions (1)–(3) in [2], p. 47. In fact, for any g ∈ C(Ω) and any
y ∈ X,

ñ(g · y0) = ñ((g · y)0) = φ(|g · y|) = |g|φ(|y|) = |g|ñ(y0)

(where (g · y)0 and y0 are the images of g · y and y respectively in Xess). By Re-
mark 3.8, we see that ñ can be extended to Xess. Thus, Xess is the space of contin-
uous sections of an (F)-Banach bundle (see e.g. pp. 47–48 of [2]).

REMARK 3.10. We would like to thank the referee for informing us about
[7] and for telling us that one can use the results in Section 6 of [7] to obtain the
above theorem in an easier way. We left it to the readers to check the details.
We decided to keep the proof as above because it is more elementary and our
approach is completely different from the results in [7].

DEFINITION 3.11. Let E and Ec be respectively an (H)-Banach bundle and
an (F)-Banach bundle over Ω and let Ψ be a Banach bundle map from E to Ec.
Then (Ec, Ψ) is called the continuous envelope of E if any Banach bundle map from
E to any (F)-Banach bundle over Ω factors through Ψ uniquely.

It is not known if (Ec, Ψ) always exists but it is the case when Ω is a hyper-
Stonian space because of Theorems 3.7 and 3.9.

COROLLARY 3.12. Suppose that Ω is a hyper-Stonian space, E is an (H)-Banach
bundle over Ω and X = Γ(E). Then Ec exists and Xess = Γ(Ec).

COROLLARY 3.13. Let Ω be a hyper-Stonian space and X be a C(Ω)-convex Ba-
nach module. The following are equivalent:

(i) X = Xess.
(ii) X is regular.

(iii) X = Γ(E) for an (F)-Banach bundle over Ω.

REMARK 3.14. As seen in Example 3.6, not every (H)-Banach bundle over a
hyper-Stonian space is an (F)-Banach bundle. Therefore, regularity and pseudo-
regularity do not coincide in this case.
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