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ABSTRACT. There are examples of C*-algebras A that accept a locally convex

x-topology T coarser than the given one, such that A[7] (the completion of
A with respect to T) is a GB*-algebra. The multiplication of .4[t] may be or

not be jointly continuous. In the second case, .A[t] may fail being a locally
convex *-algebra, but it is a partial *-algebra. In both cases the structure and

the representation theory of A[7] are investigated. If A denotes the T-closure
of the positive cone A of the given C*-algebra A, then the property A N
(fﬁi) = {0} is decisive for the existence of certain faithful *-representations
of the corresponding #-algebra A[T].
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1. INTRODUCTION

A mapping p of a *-subalgebra D(p) of a *-algebra A into Ry = [0,00)
is said to be an unbounded C*-(semi)norm if it is a C*~(semi)norm on D(p). Un-
bounded C*-seminorms on *-algebras have appeared in many mathematical and
physical subjects (for example, locally convex x-algebras, the moment problem,
the quantum field theory etc.; see, e.g., [1], [18], [31], [33]). But a systematical
study seems far to be complete (cf. also Introduction of [19]). So we have tried to
study methodically unbounded C*-seminorms and to apply such studies to those
locally convex *-algebras that accept such C*-seminorms [8], [11], [12], [13]. A lo-
cally convex x-algebra is a x-algebra which is also a Hausdorff locally convex space
such that the multiplication is separately continuous and the involution is con-
tinuous. The studies of locally convex (x)-algebras started with those of locally
m-convex (x)-algebras by R. Arens [7] and E.A. Michael [25], in 1952. In fact, the
notion of a locally m-convex algebra was introduced by R. Arens [6], in 1946. For
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a complete account on locally m-convex algebras, see [26]. A locally convex *-
algebra A[7] is said to be locally C*-convex if the topology T is determined by a di-
rected family {p)} rca of C*-seminorms. A complete locally C*-convex algebra is
said to be a pro-C*-algebra [27] (or a locally C*-algebra [22]). Every pro-C*-algebra is
a projective limit of C*-algebras. But it is difficult to study general locally convex
x-algebras which are not locally C*-convex, even if the multiplication is jointly
continuous. So the third author together with K.-D. Kiirsten defined and studied
recently in [24] the so-called C*-like locally convex x-algebras, that read as fol-
lows: If A[1] is a locally convex #-algebra, a directed family I' = {p, } xea of semi-
norms determining the topology T is said to be C*-like if for any A € A there exists
X' € Asuch that pa(xy) < par()pu (), pa(x*) < pu(x) and pa(x)? < p(x°)
for any x,y € A. Of course, p,’s are not necessarily C*-seminorms; nevertheless,
an unbounded C*-norm pr of A is defined by them in the following way:

D(pr) = {x € A:suppr(x) < oo} with pr(x) :=suppa(x),x € D(pr).

AEA AEA
A locally convex x-algebra A[t] is said to be C*-like if it is complete and there is a
C*-like family I' = {pa} rca of seminorms determining the topology 7 such that
D(pr) is T-dense in A[7]. In 1967, G.R. Allan [3] introduced and studied a class of
locally convex x-algebras called GB*-algebras. In 1970, P.G. Dixon [16] modified
Allan’s definition in the class of topological *-algebras, so that this wider class
of GB*-algebras includes certain non-locally convex x-algebras. The notion of a
GB*-algebra is a generalization of a C*-algebra. Given a locally convex x-algebra
A[t] with identity 1, denote by B* the collection of all closed, bounded, absolutely
convex subsets B of A satisfying 1 € B, B* = Band B? C B. For every B € B*, the
linear span of B forms a normed x-algebra under the Minkowski functional || - ||g
of B, and it is denoted by AlgB (simply, A[B]). If A[B] is complete for every B €
B*, then A[1] is said to be pseudo-complete. If A[t] is sequentially complete, then
it is pseudo-complete. Let A[7] be a pseudo-complete locally convex *-algebra.
If B* has the greatest member By and (1 + x*x)~! € A[By] for every x € A, then
A[t] is said to be a GB*-algebra over By. If A[7] is a GB*-algebra over By, then
A[By] is a C*-algebra and | - ||, is an unbounded C*-norm of A[7]. Thus, the
study of unbounded C*-seminorms may be useful for investigations on locally
convex x-algebras of this type. Let A[t] be a locally convex x-algebra and p an
unbounded C*-norm of A[7]. Then

D(p) C A[r] c A[r] and D(p) C A, =D(p)[p] (C’-algebra),

where A[7] and Ap denote the completions of A[7] and D(p)[p], respectively. But
we have no relation of .A[7] with the C*-algebra Ay, in general.

Suppose now that the following condition (N7) holds:

(N7) The topology defined by p is stronger than the topology T on D(p)
(simply, T < p).
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Then the identity map i : D(p) — .A[1] is continuous, therefore it can be
extended to a continuous linear map iof Ay into Alt], where i is not necessarily
an injection. It is easily shown that iis an injection if and only if the following
condition (Nj) is satisfied:

(N2) T and p are compatible in the sense that, for any Cauchy net {x,} in
D(p)[p] such that x, = 0, then x, o

In this case we say that A, is imbedded in A[t] and we write
Alp] — Alt]. Moreover, we have

D(p) C Alt] — A[t], respectively D(p) C A, — Al1].

An unbounded C*-norm p is said to be normal, if it satisfies the conditions
(N1) and (Np).

The unbounded C*-norms pr and | - ||, considered above are normal.

In this paper we shall investigate the structure and the representation theory
of locally convex x-algebras with normal unbounded C*-norms. As stated above,
it is sufficient to investigate the completion Ag[7] of the C*-algebra Ay[|| - ||] with
respect to a locally convex topology T on Ag such that T < || - ||. Then the follow-
ing cases arise:

Case 1: If the multiplication in Ay is jointly continuous with respect to the
topology 7, then Ap[7] is a complete locally convex x-algebra containing the C*-
algebra A[|| - ||] as a dense subalgebra.

Case 2: If the multiplication on Ay is not jointly continuous with respect to
T, then Ay 7] is not necessarily a locally convex x-algebra, but it has the structure
of a partial *-algebra [4].

Under this stimulus, we investigate in the sequel the structure and the rep-
resentation theory of Ay[T].

2. CASE1

In this section we study the structure and the representation theory of Ay[]
as described in Case 1 before.

Suppose that Ag[|| - ||o] is a C*-algebra with identity 1, T a locally convex
topology on Ag such that T < || - ||o and Ap[7] a locally convex x-algebra with
jointly continuous multiplication (take, for instance, the C*-algebra C[0, 1] of all
continuous functions on [0, 1], with the topology T of uniform convergence on
the countable compact subsets of [0,1]). As we shall shown in Example 4.1, the
C*-algebra Ag||| - ||o] that determines the locally convex -algebra Ag[t] is not
unique. For this reason, we denote by C*(Ap, T) the set of all C*-algebras A[|| - ||]
such that Ay ¢ A C Ag[t], T < | - || and ||x|| = [|x]|o, Vx € Ap. Then C*(Ag, T) is
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an ordered set with the order:
Ax[ll - ll] = Az[ll - [l2] if and only if Ay C Az and [|x][y = [Jx[|2, Vx € A;.
But we do not know whether there exists a maximal C*-algebra in C*(Ay, 7).

LEMMA 2.1. We denote by B+ the T-closure of the unit ball U (Ag) = {x € Ay :
|x]lo < 1} of the C*-algebra Ag|| - ||o]. Then B € B* and A[B+] is a Banach x-algebra
with the norm || - ||s,, satisfying the following conditions:

(i) (14 x*x), x(1 4 x*x) "V and (1 + x*x) "\ exist in By for every x € Ag|t].
(i) Ag C A[B¢]and ||x|lo = ||x||B, for each x € Ay. Hence, U(Agy) = Br N Ag and
Ay is a closed x-subalgebra of the Banach x-algebra A[B<].
(iii) A[By] is || - |g-dense in A[B] for each B € B* containing U(Ay).

Proof. It is clear that B; € B* and A[B] is a Banach *-algebra since Ao[t] is
complete.

(i) Take an arbitrary x € Ap[t] and {x,} a net in A such that T—lig(n Xy = X.

Then since Ay is a C*-algebra, it follows first that (1 4 x5x,)~! € U(Ap), for every
«, and secondly that for any T-continuous seminorm p

p((1+x5x0) ™ = (1 +x5x5) 1)

=p((1+ x;xa)*l(xzxﬁ — xXpxa) (1 + xl’gxﬁ)*l)
g((1+ x3x0) (1 + x3x) ) (xxp — xixa)

P+ x520) "l (2 + xgxp) g q(xpxs — xyxe)

Yq(XpXp — XoXa)

NN N

for some ¢ > 0 and some T-continuous seminorm g. Thus {(1 + x}x,) '} is a
Cauchy netin Ap[t] and y = li§n(1 + x%x,) " exists in Ay[T]. Since

1= (14 xix)(1+xix,) " = (1 +xix,) M1+ xix), Va,

it follows that (1 + x*x)~! € Ag[tr] and y = (1 4 x*x)~1. Also, (1 +x*x)"! € B;
and in a similar way we have that

x(1+4 x*x)~"tand (1 + x*x) 'x belong to B:.

(i) Since U (Ag) C By, it follows that A9 C A[B+] and ||x||g, < |/x||o for each
x € Ap. From the theory of C*-algebras (see, for example, Proposition 1.5.3 of
[32]), we have || x|lo < || x|, for each x € Aj. Hence, it follows that ||x||o = ||x]|B,,
for each x € Ay, which implies that U(Ag) = B N .Ap and Aj is a closed *-
subalgebra of A[B].

(iii) Take an arbitrary B € B* containing U/ (.Ap). Since B is 7-closed, it fol-
lows that By C B, and so A[B;] C A[B] and ||x||p < ||x|8, for each x € A[B].
Let x € A[B]. By (i) we have

1,31
x(l—&—ax x) € A[B;], VneN and
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lim Hx(l + %x*x) . xHB = lim lex*x(l + %x*x) HB

n—oo n—oo n

N

1 1 -1
fim, el (1 5x) |
im n||xx x||B ( +ox x) 5

n—oo

N

B L.\
lim —|jxx x||BH<1+—x ) ‘
n—oo 1 n

T

N

lim l||xx*x|||3 =0.
n—oo 1
Hence, A[B¢]is | - ||g-dense in A[B]. This completes the proof. 1

By Lemma 2.1(i) A[B¢] is a symmetric Banach x-algebra, therefore by Ptak’s
theory for hermitian algebras [28] (see, e.g., Corollary 3.4 and Theorem 3.2 of [20])
A[B] is hermitian and the Ptdk function defined as p .| (x) := 748, (x*x)V/2,x
€ A[B<], where r4p_] is the spectral radius, is a C*-seminorm satisfying p a(g.](¥)
< ||x|/B,, for each x € A[B<] and p(g,|(x) < [|x[[o, for each x € Ap. It is natural
to consider the following question:

Question A. Is A[7] a GB*-algebra? When is Ay[7] a GB*-algebra?
An answer is provided by the following:

THEOREM 2.2. The following statements are equivalent:
(i) Ao[] is a GB*-algebra.
(ii) There exists the greatest member By in B*.
(iii) There exists a member Bg in B* containing U(Ay) such that || - ||, is a C*-norm.
If (iii) is true, then By in (iii) is the greatest member in B* and Ay[t] is a GB*-
algebra over By.

Proof. (i) = (iii) Since A[7] is a GB*-algebra, there exists the greatest mem-
ber By in B*. Then || - ||, is a C*-norm and U (Ag) C Br C By, since B; € B*.

(iii) = (ii) Let By € B* such that || - ||, is @ C*-norm and U(Ag) C Bj.
Take an arbitrary B € B* and h* = h € B. Let C be a maximal, commutative,
locally convex x-algebra containing k. Then C is a complete commutative locally
convex *-algebra. We denote by Bz the collection of all closed, bounded, abso-
lutely convex subsets By of C satisfying: 1 € By, B] = B; and B% C By. Then
B = {BoNC;By € B*}. We show that BNC C ByNC. Since C is commuta-
tive and complete, it follows from Theorem 2.10 of [3], that B;; is directed, so that
there exists By € B} such that (BN C) U (BgNC) C By. Then since the C*-algebra
A[BoNC] = A[By] NC is contained in the Banach -algebra A[B1], it follows from
Proposition 1.5.3 of [32] that

Ix[lBy = lIxl[Boric < [lx[lB,, Vx € A[Bo]NC.
On the other hand, since Bo N C C By, it follows that

lxliB, < [lxlBonc = llx[lBy, Vi € A[Bo]NC.
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Thus, we have
2.1) [x|[B, = lIxllB,, Vx € A[Bo]NC

and the C*-algebra A[Bo] N C is | - ||,-dense in the Banach x-algebra A[B;]. In-
deed, from Lemma 2.1(i)

-1
x(l + %x*x) € A[B¢], Vx € A[By]and Vn € N.

It is easily shown that {x, (1 +y*y)~! : x,y € C} is commutative, so that by the
maximality of C, {(1 +y*y)~! : y € C} C C. Furthermore, it follows from the
assumption U (Ay) C By, that A[B:] N C C A[By] NC. Hence,

x(l + %x*x)

In a similar way as in the proof of Lemma 2.1(jii) we can show that

1
€ A[B:]NC C A[Bp]NC.

1, 3\-1 1, .
Hx(l + —x x) —xH < —[lxx*x||B,-
n B, n

Hence, A(Bo]NCis || - ||g,-dense in A[B;]. By (2.1) A[Bg]NC = A[CNBy] = A[B1],
and so ByNC = By. Thus, BNC C ByNC. Therefore, h € Byand if B, = {x € B:
x* = x}, we have B;, C (By)j, which implies that ||x||%30 = [[x*x[|B, < 1 for each
x € B. Hence, B C B and By is the greatest member in B*.

(ii) = (i) This follows from Lemma 2.1(i) and so the proof is complete. 1

By Theorem 2.2 we have the next:

COROLLARY 2.3. Consider the following statements:
(i) Ao|[t] is a GB*-algebra over U(Ay).

(if) U (Ap) is T-closed.

(iii) Ao[7] is @ GB*-algebra over B.

(iv) B is the greatest member in B*.

) || - I8, is a C*-norm.

Then the following implications hold: (i) < (ii) = (iii) & (iv) < (V).

We investigate now the representation theory of .Ay[t]. We begin with some

basic terminology. For more details see [23], [30]. Let D be a dense subspace of a
Hilbert space H. Denote by £(D) all linear operators from D into D and let

LY(D):={X € L(D): D(X*) > Dand X*D C D}.
L(D) is a x-algebra, under the usual algebraic operations and the involution
X — X' := X* | D. Furthermore, LT (D) is a locally convex -algebra equipped
with the topology T (respectively 7;-) defined by the family {pg,(-) : ¢,n €
D} of seminorms with pg , (X) = [(XZ|n)], X € LY(D) (respectively the family
{pg() : { € D} of seminorms with pg(X) = | X&)+ |1XT¢|, X € £Y(D)). A
*-subalgebra of LT(D) is said to be an O*-algebra on D. Let A be a *-algebra. A
*-homomorphism 7t : A — LT(D) is called (unbounded) *-representation of A
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on the Hilbert space H, with domain D. If A has an identity, say 1, we suppose
that 77(1) = I, with I the identity operator in £ (D). From now on, we shall use
the notation: D(7r) for the domain of 7t and H for the corresponding Hilbert
space. A x-representation 7 of A is said to be faithful if w(a) = 0, a € A, implies
a = 0. A x-representation 7t of a locally convex x-algebra 4[] is said to be (T —
Tw )-continuous (respectively (T — g+ )-continuous) if it is continuous from A[7] to
7T(A)[Tw] (respectively to 7t(A)[Ts+]).

We define now a wedge Ag[t]; of Ay[t]. Take an arbitrary C*-algebra
Alll - ]] € C*(Ag,T). Then we have jfr = (Ao)i, where A1 and (Ap)4 are
positive cones in the C*-algebras A and A respectively. Indeed, take an arbi-
trary a € A. Then there is a net {x,} in A such that 7 — liprén xy = a'/2. Hence,

{x3xa} C (Ap)+ and T — lién x:xy = a. This implies that A} C (Ao)i. The con-

verse is clear. Thus, the T-closure Aiol of (Ap)+ is independent of the method of
taking C*-algebras in C*(Ag, T), therefore in the sequel we shall denote by Ag[t]+
the t-closure of (Ag)+. So Ap[T]+ is a wedge (in the sense that if x,y € Ag[7]+

and A > 0, then x + y, Ax € Ay[t]+), and Ag[t]; = P(Ap[1]) ‘ (the t-closure of
the algebraic wedge P (A[7]) = { i XpXp X € Aolt] (k=1,...,n),ne N})
k=1

A linear functional f on Ay[t] is said to be strongly positive (respectively
positive) if f(x) = 0 for each x € Ap[7]+ (respectively x € P(Ap[T])).

THEOREM 2.4. The following statements are equivalent:
(i) olt] 4 N (—Ao[t]+) = {O}.
(i) A[B7]+ N (—A[B¢]+) = {0}.
(iii) The Ptdk function p o[g,| on the Banach *-algebra A[B<] is a C*-norm (see com-
ments before Question A).
(iv) There exists a faithful x-representation of Ag|[t].
(v) There exists a faithful (T — Ts)-continuous x-representation of Ag[t].

Proof. (i) = (v) Let F be the set of all T-continuous strongly positive linear
functionals on Ag[t]. Let (715, Af, Hy) be the GNS-construction for f € 7. We put

D(m) = {(Af(xf)) € @Hf : Af(x¢) = 0 except for a finite number of f € .7-'}
feF

n(a)(Af(xf)) = (Af(axf)), ae .Zo[’(], (/\f(xf)) € D(m).

Then it is easily shown that 77 is a (T — Ts+)-continuous *-representation of Ag|[t].
We show that 7 is faithful. In fact, suppose 0 # a € Ap[t], (the hermitian part
of Ay[t]). Leta € Ay[t]. Since Ap[t]s N (—Ap[t];) = {0}, we have Ap[t], N
{—a} = ¢. Then it follows from Chapter II, Section 5, Proposition 4 in [15], that
there exists a T-continuous strongly positive linear functional f on Ay[t] such
that f(a) > 0. Leta ¢ Ap[t],. Since Ay[t]; N{a} = ¢, we can show in a
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similar way that there exists a T-continuous strongly positive linear functional f
on XO[T] such that f(a) < 0. Since (777(a)Af(1)|Af(1)) = f(a) # O this implies
that 7t¢(a) # 0, and so 7(a) # 0. Similarly, for any 0 # a € Ap[t] we have
rt(a) # 0 by considering a = ay +iap (41,42 € ./Io[r]h).

(v) = (iv) This is trivial.

(iv) = (iii) Let 77 be a faithful *-representation of Ay[t]. Since A[B]is a
symmetric Banach *-algebra by Lemma 2.1(i), it follows from Theorem 3.2 and
Corollary 3.4 in [20], that the Pték function p 4[p, is a C*-seminorm. In particular
(Raikov criterion for symmetry),

pap,(¥) = sup  [p(x)[l, x€ A[B],
pERep(A[B7])

where Rep(A[Bz]) denotes the set of all *-representations of A[B:]. Suppose
paB,(x) = 0. Since 7 | A[B;] € Rep(A[B]), we have 7(x) = 0, and so x = 0.
Thus p4p,) is a C*-norm.

(iii) = (ii) We first show that

(22) SpA[BT](x) C R+ = {)\ eR:A 2 0}, Vx € A[BT]+,
where Sp , g | (x) stands for the spectrum of x € A[B¢]. In fact, take an arbitrary

x € A[B¢]+ and anet {x,} in (Ap)+ that converges to x with respect to 7. Since
A[B¢] is hermitian ([20], Corollary 3.4), it follows that Sp A[B:] (x) CR. LetA <

0. Notice that A(A1 — x,)~' € U(Ap), for every a. Then for any T-continuous
seminorm p on Ay[t]

pAA —xa) "t = A(AT —xp) )
Mp((AT = xa) 7 (xa — xp) (AT — x5) 1)

< AU — %) ) — xp)g(A1 — xp) )
< imwm — ) U IAAT = ) Vg (e — )

Y
< — —
< Wq(xa xﬁ)

for some constant y > 0 and a T-continuous seminorm g on Ag|[7]. It follows that
A(A1 — x4)~! converges to an element y of B; with respect to T, which implies
that A(A1 — x)~! exists and equals y. Hence, A ¢ Spa(g,j(x). Thus, we have
Spag,)(x) C R,. Take an arbitrary x € A[B¢]+ N (=A[B]+). Then from (2.2), it
follows that Sp 5 (x) = {0}, therefore p 4, (x) = ra[p,](x) = 0. Since p4(g, is
a norm, we have x = 0.

(i) = (i) Take an arbitrary a € Ao[t]+ N (=Ag[t]4). Then from Lemma 2.1(i)
it follows that a(1 +a?)~' € A[B¢]; N (—A[B:];) = {0}, which implies a = 0.
This completes the proof. 1
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In the case of C*-algebras (respectively pro-C*-algebras), condition (ii) of
Theorem 2.4, is always true. Also see Example 4.4 in Section 4. In the case of sym-
metric Banach *-algebras (respectively symmetric topological x-algebras), which
in fact can be viewed as a generalization of C*-algebras [28] (respectively pro-C*-
algebras), it seems that such a property has not been investigated. Some infor-
mation about the set A, with A a certain involutive algebra can be found in [14]
and [29].

Question B. (i) Is P(Ap[1]) T-closed? That is, does the equality .4Ay|[7]
= P(Ay[t]) hold? Equivalently, for each net {x,} in (Ap); which converges to
x € Ag[t], is {x}/?} t-Cauchy?

(ii) Does one of the conditions in Theorem 2.4 always hold?

If Ay [t] is a GB*-algebra, then the above questions (i) and (ii) have positive
answers. Does the converse hold? That is, the following question arises.

Question C. If the answer to Question B is affirmative, is then Ay[t] a GB*-
algebra?

To consider Question C, we define an unbounded C*-seminorm r,, of Ay|[7]
induced by a *-representation 7 of Ay[7] as follows:

D(rx) = Ao[tlf == {x € Ao[t] : m(x) € B(Hn)},

ra(x) = [[(x)[|, x € D(rx).
Then we have the next:

LEMMA 2.5. Let 71 be a faithful x-representation of Ao[t] and B any element of
B* containing U(Ag). Then the following statements hold:
(i) Ao C A[B7] C A[B] C D(rx) = Ao[t] and ||7r(x)|| < ||x||p, Vx € A[B], as
well as || (x)[| = [[x[|8, = [lx]lo, Vx € Ao -
(ii) T(A[B]) is T5+-dense in 7t(Ag[T]), and it is also uniformly dense in 7t(Ao[T]}).
(iii) Suppose 7t is (T — Ty )-continuous. Then m(Ap[t]y) C LY (D(7)), = {X €
LY (D(m)) : X = 0}.
Proof. (i) is easily shown.
(ii) Take an arbitrary a € Ap[t]. Then it follows that
1
(1+ea*a)la= %(1 + (Vea)* (Vea)) Y (Vea) € A[B;], Ve>0
and for each ¢ € D(n)

I172((1 +ea*a)ta)¢ — m(@)E]| = e (1 +ea*a)"")m(a*a?)E|

< el|7e((1+ ea*a) )| 7e(a*a?)]|
< ell(1+eaa) g, | (aa®)E]
<

* 2
— 0,
ele(a?)é] —
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so that 7(A[B+]) is Ts+-dense in 7r(Ag[t]). Take an arbitrary a € Ay [t]y. Then
since

I72((1 +ea*a)"'a)¢ — (@)l < ellm(a*a®)|lIC]|
for each ¢ € D(m), it follows that lifgl 7t((1+ ea*a)~'a) = m(a) uniformly, which
€
implies that 71(A[B;]) is uniformly dense in 77(Ay [t];). Since A[B;] C A[B], (ii)
follows.

(iii) This follows from (T — Tw)-continuity of 7r and 7t((Ag)+) C LT (D (7))
This completes the proof. 1

We simply sketch how Lemma 2.5 looks:

m: At —_— 7 (Ao[t])
U U t-dense
Ao[t]} —_— (Ao [T]F)
U U uniformly dense
A[By] —_— mt(A[Bz])
symmetric

Banach x-algebra

U U
Aolll - ] — 7(Ao)
C*-algebra C*-algebra on H .

The following theorem gives an answer to Question C.

THEOREM 2.6. The following statements are equivalent:
@) Ay [t] is a GB*-algebra.
(ii) There exists a faithful (T — T+ )-continuous x-representation 7t of Ag[t], such that
T < Iy
Proof. (i) = (ii) Suppose Ag[t] is a GB*-algebra over By. Since A[B:]; N
(=A[B:]+) C A[Bol+ N (—A[Bo]+) = {0}, Theorm 2.4 implies the existence
of a faithful (T — 7s+)-continuous *-representation of Ao[t]. Furthermore, since
t(A[Bg]) is a C*-algebra, Lemma 2.5(ii) yields that

T(A[Bo]) = (Ao[t]f) and ra(x) = |7(x)| = ||x|B,, Vx € D(rz),

which implies T < 7.

(ii) = (i) Since T < r; and 7 is (T — Ts+)-continuous, it follows that T and
rr are compatible, whence one gets that the completion A, of D(rz)[r] is em-
bedded in Ag[t]. We denote by By the T-closure of the unit ball 2/(A,,) of the
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Cr-algebra A, . Then By € B* and from Lemma 2.5(i) we get
B C U(Ao[t]]) C By, VB € B,

which implies that By = U(Ap [t]}f), with By the greatest member in B*. Thus,
from Theorem 2.2, we conclude that Ay[t] is a GB*-algebra over U (ﬁo[r]g) and
this completes the proof. 1

It is known that every *-representation 7t of a Fréchet x-algebra A[7] is (T —
Ts+)-continuous. Indeed, take an arbitrary ¢ € D(7r) and put f#(x) := (71(x)¢|¢),
x € A. Then fz is a positive linear functional on the Fréchet *-algebra .A[t], which
is continuous by Theorem 4.3 of [17]. Furthermore, since the multiplication of a
Fréchet x-algebra is jointly continuous, it follows that 7 is (T — T+)-continuous.
From this fact, as well as Theorem 2.6, we conclude the following:

COROLLARY 2.7. Let Ag|t] be a Fréchet x-algebra. Then the following are equiv-
alent:
(i) Ao|[t] is a GB*-algebra.
(ii) There exists a faithful x-representation 1 of Ay[T] such that T < 7.

3. CASE2

In this section we shall investigate the structure and the representation the-
ory of Ay[t] as it appears in Case 2 in the Introduction. First we recall some basic
definitions and properties of partial *-algebras and quasi *-algebras (for more de-
tails, refer to [4]). A partial x-algebra is a vector space A, endowed with a vector
space involution x — x* and a partial multiplication defined by aset I' C A x A
(a binary relation) with the properties:

@) (x,y) € I implies (y*,x*) € I'.
(i) (x,y1), (x,y2) € I implies (x, Ay; + py,) € I forall A, u € C.

(iii) For any (x,y) € I', a multiplication xy € A, is defined on A, which is dis-
tributive with respect to addition and satisfies the relation (xy)* = y*x*. When-
ever (x,y) € I', we say that x is a left multiplier of y and y is a right multiplier of x,
and write x € L(y) respectively y € R(x).

Let A be a vector space and let Ay be a subspace of A, which is also a *-
algebra. A is said to be a quasi *-algebra with distinguished x-algebra A4¢ (or,
simply, over Ay) if

(i) the left multiplication ax and the right multiplication xa of an element a
of A with an element x of Ap, that extend the multiplication of Ay, are always
defined and are bilinear;

(ip) x1(x2a) = (x1x2)a, (ax1)xy = a(xyxp) and x9(axy) = (x1a)xp, for any
X1,X € Agand a € A;
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(i3) an involution * that extends the involution of Ay is defined in .A with the
property (ax)* = x*a* and (xa)* = a*x* foreachx € Agand a € A.

Let Ag[7] be a locally convex *-algebra. Then the completion Ag[7] of Ag|[7]
is a quasi *-algebra over Ay equipped with the following left and right multipli-
cations:

ax :=limx,x and xa:=limxx,, Vx & Ay anda c A,
14 14

where {x,} is a net in Ay converging to a with respect to the topology 7. Further-
more, the left and right multiplications are separately continuous. A x-invariant
subspace A of Ap[t] containing Ay is said to be a (quasi-) *-subalgebra of Ay|[t] if
ax and xa belong to A for any x € Ap and a € A. Then it is readily shown that
A is a quasi *-algebra over Ay. Moreover, A[1] is a locally convex space contain-
ing Aj as a dense subspace and the right and left multiplications are separately
continuous. Such an algebra A is said to be a locally convex quasi x-algebra over Ay.

Concerning *-representations of partial x-algebras and quasi *-algebras,
start with a dense subspace D of a Hilbert space H and denote by £'(D, H) the
set of all linear operators X from D to H such that D(X*) D D. Then L(D, H)
is a partial x-algebra with respect to the usual sum, scalar multiplication and
involution X' = X*[; and the (weak) partial multiplication X0oY = Xy, de-
fined whenever X is a left multiplier of Y (X € L(Y)), that is, if and only if
YD C D(X™)and X*D c D(Y*). A (partial) *-subalgebra of the partial -algebra
LT (D, H) is said to be a partial O*-algebra on D. A x-representation of a partial *-
algebra A is a *-homomorphism 7 of A into a partial O*-algebra £T(D, H), in the
sense of Definition 2.1.6 in [4], satisfying 71(1) = I, whenever 1 € A.

In this case too, the spaces D and H will be denoted by D(7r) and Hx
respectively. The algebraic conjugate dual D of D (i.e., the set of all conju-
gate linear functionals on D) becomes a vector space in a natural way. Denote
by £(D,D") the set of all linear maps from D to Dt. Then L(D,D') is a *-
invariant vector space under the usual operations and the involution T — T*
with (TYE,y) := (Tn, &), &y € D, where (T'¢,n) = TT(y7). Any linear operator
X defined on D is regarded as an element of £(D, D) such that (X¢&,7) = (X¢&|1),
¢, € D. For E(D,D*) we have the following;:

LEMMA 3.1. (i) LT (D, H) is regarded as a x-subalgebra of L(D, D).
(i) For any X € £Y(D) and T € L£(D, D) we may define the multiplications X o T
and T o X by

(XoTE&y):=(T&,X"y) and (ToX¢n):= (TXEn);

under these multiplications, L(D, DY) is a quasi x-algebra over LT (D).
(iii) The locally convex topology Tw on L(D, DY) is defined by the family {pey (o)
¢, n € D} of seminorms with pg ,(T) := [(T¢, )|, T € L(D, DY), and it is called



THE COMPLETION OF A C*-ALGEBRA 369

weak topology. It particular,

—_——

L(D, DY) = the set of all sesquilinear forms on D x D = LT(D)[t]
and L(D, D) [ty is a locally convex quasi x-algebra over LT(D). More generally, for
any O*-algebra M on D, M|t] is a locally convex quasi *-algebra over M.
A quasi x-representation of a quasi x-algebra A over Ay is naturally defined as a
linear map 7t of A into a quasi *-algebra £(D, D) over £(D) such that:

(i) 7T is a *-representation of the x-algebra Ay;
(i) w(a)t = m(a*),Va € A
(iii) 7(ax) = m(a) o t(x) and 7t(xa) = m(x) o 7t(a),Va € A, Vx € Ay.
It is easily shown that if 77 is a quasi *-representation of A, then 7(A) is a
quasi *-algebra over 7(Ay).

LEMMA 3.2. Let A[t] be a locally convex quasi x-algebra over Ay and 7t a quasi
s-representation of A. Suppose 7t is (T — Ty )-continuous. Then 7t(.A) is a locally convex
quasi x-algebra over (. Ap).

Proof. From Lemma 3.1(iii) and the (7 — Ty )-continuity of r we have

t(Ag) C m(A) C m(Ag)[tw] and

nt(x)omt(a) = m(xa), m(a)o m(x)= m(ax)

for each a € A and x € Ay, which implies that 77(A) is a quasi *-subalgebra of

—_~—

1t(Ap)[tw]. Hence, (A) is a locally convex quasi *-algebra over 7(Ap). So the
proof is complete. &

Let Apl[| - |lo] be a C*-algebra with 1 and T a locally convex topology on Ay
such that T < || - ||o and Ap[t] a locally convex x-algebra whose multiplication is
not jointly continuous.

In general, Aolt] is a quasi x-algebra over Ap (but not a x-algebra!). For
this reason, the theory of quasi *-algebras must be used. We remark that for
any A € C*(Ap, ), Alt] = Ay[t] as locally convex spaces, but A[1] is different
from Ap[t] as a quasi #-algebra. Moreover, the wedge Ay[t] of the quasi *-
algebra Ay[1] over Ay, defined as the T-closure of the positive cone (Ag), does
not necessarily coincide with the wedge A[t] of the quasi *-algebra A[7] over
A, in contrast with Case 1 (see the discussion before Theorem 2.4).

A linear functional f on Ay|t], such that f(x) > 0, for each x € Ay[t], is
said to be a strongly positive linear functional on the quasi *-algebra Ag[t] over Ay.
Regarding the representation theory of 4y[7] we have the next:

THEOREM 3.3. The following statements are equivalent:
(i) Ao[t]+ N (—Ao[7]+) = {0}
(ii) There exists a faithful (T — Tw)-continuous quasi -representation of the quasi
s-algebra Ay[T] over Ay.
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Proof. (i) = (ii) Let F be the set of all T-continuous strongly positive linear
functionals on the quasi *-algebra Ay[t] over Ag. For any f € F we denote by
(77, Af, Hy) the GNS-construction for f [ Ap. Let f € F. For any a € Ao[7]
we put

(Ar(a), Ap(x)) = f(x*a), x € Ao

Then since f is T-continuous, it follows that
f(x*a))? = lim JECEMIEES lim f(x"x) f (% %),

for each a € Ay[t] and x € Ay, where {x,} is a net in Ay converging to a with
respect to T; it follows that A¢(a) is well-defined and belongs to the algebraic
conjugate dual A f(A0)+ of the vector space Af(Ap). It is clear that A £ is a linear
map of Ay[7] into the vector space A f(A0)+, which is an extension of A. Put

D(n):z{(Af<xf>)f€feJ§B My xpeAgand As(xs) =0
eF

except for a finite number of f € F },
and for (Af(xs)) € D(m)

((Aplap)), (Ap(xp))) = Y (Ap(ap), Ap(xp)) 2 fxfag), ag e Aol
feF

Then (Xf(af)) € D(r)t. Furthermore, for any a € A, put

(@) (Ap(xp)) = (Ag(axp)),  (Ag(xf)) € D(n0).

It is easily shown that 77 is a quasi *-representation of the quasi *-algebra 4Ay|t]
over Ay. Moreover, the (T — ’L'W)—continuity of 7 follows from

(re(@)(Ag(xg)), (Af(ys)) Z flypaxg),

foranya € A, (Af(x¢)) and (Af(ys)) in D(7r) and from the T-continuity of f € F.
The faithfulness of 7 is shown in a similar way as in the proof of Theorem 2.4(i)
= (V).

(ii) = (i) Let 7t be a faithful (T — 7w )-continuous quasi *-representation of
Ao[t] and a € Ay[t]s N (—Ag[t]+). Then there is a net {x,} in (Ag) such that

Xy — a. By the (T — Ty)-continuity of 7r we now have

(rt(a)g, &) = liin(n(x“)ﬂfj) >0 andsimilarly (7m(—a)¢,¢) >0

for each ¢ € D(m). Hence, (t(a)¢,¢) = 0 for each ¢ € D(m), which implies
(rt(a)¢,n) = 0 forany ¢,n € D(mn), thatis 7r(a) = 0. By the faithfulness of 7T we
have a = 0. This completes the proof. 1
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It is natural to consider the question: When there exists a faithful x-repre-
sentation 7 of the quasi *-algebra Ay[t] over Ay (into £LT(D(r), Hy))? For that,
we define the following notion: A subset G of F is said to be separating if a € Ay|t]
with f(a) =0, for each f € G, implies a = 0. For example, if F is separating and
G is dense in F with respect to the weak*-topology, then G is separating.

PROPOSITION 3.4. The following statements are equivalent:
(i) There exists a faithful (T — Ty )-continuous *-representation 7t of the quasi *-
algebra Ag[t] over A (into LT (D(71), Hz)).
(i) Ag[t]+ N (= Ag[t]+) = {0} and F, is separating, where
Fo={f € F:Vac Ayt] >y, > 0 with | f(a*x)|* < yaf (x*x),¥x € Ag}.
Proof. (i) = (ii) By Theorem 3.3 we have Ay[t]+ N (—Ay[t]+) = {0}. For
each { € D(m) we put fz(a) = (m(a)¢|g), a € Ap[t]. Then it is easily shown
that {fz : { € D} is contained in F, and it is separating by the faithfulness of 7.
Hence, Fy, is separating.
(if) = (i) As shown in the proof of (i) = (ii) in Theorem 3.3, A fla) €A f(A0)+
for each f € F and a € Ay[t] . Take arbitrary f € F, and a € Ap[t]. Then since

[(Ap(@), Ap ()P = |f(x"a)* < 7af(x"2),

for each x € Aj, it follows from the Riesz theorem that A £(a) is regarded as an
element of H¢. Now we put

D(m) = {(Ap(xf))fer, = Xf € Agand Af(xf) =0
except for a finite number of f € F,}

and for a € Ay|t],
m(a)(Af(xf))) = ((Af(axf))),  (As(xf)) € D(7).

Then 7 is a *-representation of Ay[7] into £ (D(7), Hy). Furthermore, by the -
continuity of the elements of 7, it is easily shown that 7 is (T — T )-continuous,
while 7 is faithful since Fy, is separating. This completes the proof. 1

4. EXAMPLES

In this section we give some examples, illustrating the results presented in
Sections 2 and 3.

EXAMPLE 4.1. Let A[t] be a pro-C*-algebra, or more generally a C*-like
locally convex x-algebra with a C*-like family I' = {p)}rca of seminorms de-
termining the topology 7. Then pr = supp, is a C*-norm on the C*-algebra

A

Ay = D(pr) == {x € A: pr(x) < oo} and A = Ay[t]. In this case, By =
T .
U(pr) = U(pr). Here we give a concrete example.
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Let 2 be a locally compact space. We consider the following locally con-
vex *-algebras of functions on (2 with the usual operations f + g, Af, fg and the
complex conjugate as involution:

Co(Q2): the C*-algebra of all continuous functions on 2 which converge to
0 at the infinite point;

Cp(0Q): the C*-algebra of all continuous and bounded functions on (2;

B(0): the C*-algebra of all bounded functions on (2;

C(Q): the pro-C*-algebra of all continuous functions on (2 equipped with
the locally uniform topology T, defined by the family {|| - |[x : K a compact
subset of Q} of C*-seminorms with || f||x := sup [f(B)];

te
F(Q): the pro-C*-algebra of all functions on Q with the simple convergence
topology 7 defined by the family of C*-seminorms {p; : t € Q} with p;(f) =

F(B)]-

Then

G(2) ¢ G < C@Q) = GO = GQ)[u
N N
B(2) < B(Q)u] = GO = GQ)w]=7(Q).

EXAMPLE 4.2. Let A[1] be a GB*-algebra over By. Then A[Bo][|| - ||g,] is a
C*-algebra and A[By][t] = A[t]. In this case, By = U(A[BO])T = U(A[By]). The
Arens algebra (see [5]) A = L“[0,1] ﬂ LP[0,1] is a GB*-algebra with the

1<p<oo

usual operations f + g, Af, fg, usual involution f* and the topology 7., defined
by the family {|| - ||, : 1 < p < oo} of the LP-norms; moreover,

A[Bo] = L®[0,1] C L¥[0,1] = L*[0, 1][]

and

—_~—

L=, 1[] - ll,] = LP[0,1], 1< p< oo,
where L?[0,1] is a Banach quasi *-algebra over L*°[0, 1].

EXAMPLE 4.3. (i) The x-algebra B(H) of all bounded linear operators on
a Hilbert space H is a locally convex *-algebra equipped with the weak topol-

ogy Tw. We investigate the structure of B(H)[tw]|. Let S(H) be the set of all
sesquilinear forms on H x H. Then S(H) is a complete locally convex space un-
der the weak topology Tw defined by the family {pz,(-) : {,7 € H} of semi-
norms with pgz, (@) = |@(&, 1), ¢ € S(H). An element ¢ of S(H) is said to be
bounded if there exists a constant ¢y > 0 such that |¢(&,7)| < 7||¢|||l7] for each
¢, € H. Denote by S, (H) the set of all bounded sesquilinear forms on H x H,
and put S(H)+ = {¢ € S(H) : ¢ > Oifand onlyif ¢(¢,¢) > 0,Y¢ € H} and
Sp(H)+ = {¢ € Sp(H) : ¢ > 0}. Itis easily shown that ¢ € S,(H) if and only if
there exists an element A of B(H) such that ¢(&, 1) = ¢a(E, 1) := (A|y) for any
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¢,n € H,and ¢ € Sp,(H)+ ifand only if A > 0. Hence, S, (H)[Tw] is a locally con-
vex *-algebra equipped with the multiplication ¢ 4 @p := ¢ 45 and the involution
@5 = @,.; it is also isomorphic to the locally convex *-algebra B(H)[tw] with

respect to the map B(H)[tw| 2 A — ¢4 € Sp(H)[tw]. So l%[Tw] is isomorphic

to Sb(H)[ w] = S(H) and it is a locally convex quasi x-algebra over B(H) under
the multiplications

(pooa)(C,m) :=@(AL 1), (pace)(Cn) =G A'n), &neH,

for A€ B(H)and ¢ € S/b_(\_/H) [Tw]. Furthermore, it is easily shown that

—~—

B(H) [T+ N (~B(H)[t]+) = {0}

(i) Let D be a dense subspace in a Hilbert space H. We introduce on LD, H)
the strong -topology 72 defined by the family {p¢, pg : ¢ € D} of seminorms

with pe(X) := [|XE], p(X) := [IX*¢], X € LT(D, H). Then (B(H) | D) [2] =

s*
L£Y(D,H), but (B(H) | D) [tL] is not a locally convex -algebra, and so LT(D, H)
is not a locally convex *-algebra over B(H) [ D. We put

B(D):={A[D:AécB(H),AD C Dand A*D C D}.

Then £7(D,H) is a quasi x-algebra over B(D), but as %[Tg] C £Y(D,H), in
general, LT(D,H)[tZ] is not necessarily a locally convex quasi *-algebra over
B(D). Let H be an unbounded positive self-adjoint operator on H with H > I,

H = / AdEg(A) the spectral resolution of H and D*(H ﬂ D(H"). Then
n=1
for any A € B(H), Egy(n)AEg(n) € B(D®(H)), for each n € N and for n — oo

it converges to A with respect to T, D ). 50 LT (D®(H), 'H)[T? (H

convex quasi *-algebra over B (D°°(H ).

)] is a locally

EXAMPLE4.4. Let A, be a unital C*-algebra, with norm || - ||, and involution
b. Let A[|| - ||] be a right Banach module over the C*-algebra .4,, with isometric
involution * and such that A, C A. Set Ay = (A,)*. We say that {A, x, A,,b} isa
CQ*-algebra if
(i) A, is dense in A with respect to its norm | - ||;

(if) Ag = A, N Ay is dense in A, with respect to its norm || - ||,;

(iil) (xy)* = y*x*,Vx,y € Ayp;

@) lxl, = sup llax],x € 4,

acA,all<1

Since * is isometric, it is easy to see that the space Ay itself is a C*-algebra with

respect to the involution x* = (x*)’* and the norm ||x||s = ||x*||,- A CQ*-algebra
is called proper if Ay = A,. For CQ*-algebras we refer to [9], [10].
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Let {A, %, A,,b} be a proper CQ*-algebra. Then we have

lxyll < llxlllylls,  lxyll < llylllixlle, [l = lIx[l, and  (xy)* = y*x",
forany x,y € A,, and so A,][|| - ||] is a locally convex *-algebra with the involution
. Furthermore, since A = A,[| - ||], it follows that A[|| - ||] is a locally convex

quasi *-algebra over A,. Consider the set S,(.A) of all sesquilinear forms ¢ on
A x A such that:

(i1) p(a,a) 20,Va e A;

(i2) p(ax,y) = @(x,a*y),Va € A Vx,y € A,;

(i3) |p(a, b)| < [lal[|[bl], Va, b € A.
Then (A, *, A,,b) is called *-semisimple if a € A and ¢(a,a) = 0, for every ¢ €
S,(A)4, implies a = 0. Suppose (A, *,.A,,b) is a *-semisimple proper CQ*-
algebra. Then A; N (—A;) = {0}. Indeed, for any ¢ € S,(A); we define a
strongly positive linear functional on the quasi *-algebra A over A, by f,(a) =
¢(a,1),a € A. Take an arbitrary h € Ay N (—Ay). Then

fo(h) = lim fo(xn) >0,

where {x,} C (A,)+ converges to i with respect to || - ||. Thus, f,(h) = 0, for
each ¢ € S,(A)y+. We want to prove that ¢(h,h) = 0 for each ¢ € S,(A)4.
Let x € A, with ||x|| < 1. Then we may define an element ¢, of S,(A)+ by
¢x(a,b) = @(ax,bx) with a,b € A. Hence, ¢(hx,x) = 0 for each x € A,, which
implies that ¢(hx,y) = 0 for all x,y € A,. Thus,

¢(h,h) = nlim e(h,x,) =0, Ve eS5,(A); and therefore h =0,

from the *-semisimplity of (A, *, A,,b).
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ADDED IN PROOFS. While this paper was under publication, question A was proved
in full and the answer can be found in Theorem 2.1 of [21].



