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ABSTRACT. Let D be the open unit disk in C and let Ω be a domain in Cn.
Every holomorphic map ϕ : D → Ω induces a composition operator Cϕ :
H(Ω) → H(D), where H(Ω) and H(D) are the spaces of holomorphic func-
tions in Ω and D, respectively. We study the action of Cϕ on the Hardy spaces
Hp(Ω) and the weighted Bergman spaces Ap

α(Ω) when Ω is the unit ball or the
polydisc. More specifically, we determine the optimal range spaces, prove the
boundedness of Cϕ, and characterize the compactness of Cϕ on these spaces.
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1. INTRODUCTION

Let C be the complex plane. For any positive integer n we let

Cn = C× · · · ×C

denote the n-dimensional complex Euclidean space. If z = (z1, . . . , zn) and w =
(w1, . . . , wn) are points in Cn, we write

〈z, w〉 = z1w1 + · · ·+ znwn, and |z| =
√
|z1|2 + · · ·+ |zn|2.

For any domain Ω in Cn we use H(Ω) to denote the space of holomorphic
functions in Ω. Three domains will be used in the paper: the open unit disc in C,

D = {z ∈ C : |z| < 1},

the open unit ball in Cn,

Bn = {z ∈ Cn : |z| < 1},

and the open unit polydisc in Cn,

Dn = {z = (z1, . . . , zn) ∈ Cn : |z1| < 1, . . . , |zn| < 1}.
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Although the unit disc is the one-dimensional version of Bn and Dn, we use dif-
ferent notation for historic reasons. We use T, Sn, and Tn to denote the unit circle
in C, the unit sphere in Cn, and unit torus in Cn, respectively.

In the rest of the paper, if we do not say what Ω is, it means that it is either
Bn or Dn in Cn.

If ϕ : D → Ω is a holomorphic map, it obviously induces a composition
operator

Cϕ : H(Ω) → H(D),

that is,
(Cϕ f )(z) = ( f ◦ ϕ)(z) = f (ϕ(z)), f ∈ H(Ω), z ∈ D.

We are going to study the action of Cϕ on two types of subspaces of H(Ω): Hardy
spaces Hp(Ω) and weighted Bergman spaces Ap

α(Ω).
For p > 0 and α > −1 the weighted Bergman space Ap

α(D) of the unit disc
consists of all functions f in H(D) such that∫

D

| f (z)|p dAα(z) < ∞ where dAα(z) = (α + 1)(1 − |z|2)α dA(z),

and dA is area measure on D normalized so that A(D) = 1. It is clear that A2
α(D)

is a Hilbert space with the following inner product:

〈 f , g〉 =
∫
D

f (z) g(z) dAα(z).

See [6] and [17] for the theory of Bergman spaces in one complex variable.
Similarly, for α > −1, we define a probability measure dvα on Bn and Dn as

follows. On the unit ball Bn, we set

dvα(z) = cα(1 − |z|2)α dv(z),

where dv is the normalized volume measure on Bn and cα is a positive constant
so that vα(Bn) = 1. On the polydisc Dn, we set

dvα(z) = dAα(z1) · · ·dAα(zn) = (α + 1)n
n

∏
k=1

(1 − |zk|2)αdA(z1) · · ·dA(zn).

Then the weighted Bergman space Ap
α(Ω) is defined as

Ap
α(Ω) = H(Ω) ∩ Lp(Ω, dvα).

The special case A2
α(Ω) is a Hilbert space with inner product

〈 f , g〉 =
∫
Ω

f (z)g(z) dvα(z).

See [18] for the theory of Bergman spaces in Bn.



COMPOSITION OPERATORS 425

If dσ denotes the normalized Lebesgue measure on Sn or Tn, then for any
p > 0, the Hardy space Hp(Ω) consists of functions f in H(Ω) such that

sup
0<r<1

∫
∂Ω

| f (rζ)|p dσ(ζ) < ∞,

where ∂Ω is the Shilov boundary of Ω, that is, ∂Ω = Sn when Ω = Bn, and
∂Ω = Tn when Ω = Dn. If f ∈ Hp(Ω), the radial limit

f (ζ) = lim
r→1−

f (rζ)

exists for almost every ζ ∈ ∂Ω, and

sup
0<r<1

∫
∂Ω

| f (rζ)|p dσ(ζ) =
∫

∂Ω

| f (ζ)|p dσ(ζ).

In particular, H2(Ω) is a Hilbert space with inner product

〈 f , g〉 =
∫

∂Ω

f (ζ)g(ζ) dσ(ζ).

See [12], [13], and [18] for more information on Hardy spaces of the unit ball and
the polydisc.

We say that a sequence { fk} in Hp or Ap
α (of the polydisc or the unit ball)

converges to 0 ultra-weakly if the sequence is bounded in norm and converges to
0 uniformly on compact subsets of D or Bn. A bounded linear operator T from
Hp or Ap

α into some Lp space is ultra-weakly compact if {T fk} converges to 0 in
norm whenever { fk} converges to 0 ultra-weakly.

When p > 1, it is easy to show that the ultra-weak topology on Hp or Ap
α is

the same as the weak topology, which is also the same as the weak-star topology.
Therefore, for p > 1, an operator from Hp or Ap

α into an Lp space is ultra-weakly
compact if and only if it is compact in the usual sense. When p = 1, the ultra-weak
topology on H1 or A1

α coincides with the weak-star topology, which is strictly
weaker than the weak topology.

We can now state the main results of the paper.

THEOREM 1.1. If p > 0 and ϕ is a holomorphic mapping from D into Bn, then
the composition operator Cϕ maps Hp(Bn) boundedly into Ap

n−2(D). Furthermore, the
operator

Cϕ : Hp(Bn) → Ap
n−2(D)

is ultra-weakly compact if and only if

lim
|z|→1−

1 − |z|2

1 − |ϕ(z)|2
= 0.
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THEOREM 1.2. If p > 0, α > −1, and ϕ : D → Bn is holomorphic, then the
composition operator Cϕ maps Ap

α(Bn) boundedly into Ap
n−1+α(D). Furthermore, the

operator
Cϕ : Ap

α(Bn) → Ap
n−1+α(D)

is ultra-weakly compact if and only if

lim
|z|→1−

1 − |z|2

1 − |ϕ(z)|2
= 0.

THEOREM 1.3. If p > 0 and ϕ = (ϕ1, . . . , ϕn) is a holomorphic map from D into
Dn, then the composition operator Cϕ maps Hp(Dn) boundedly into A2

n−2(D). If p > 1,
then the operator

Cϕ : Hp(Dn) → Ap
n−2(D)

is compact if and only if

lim
|z|→1−

n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
= 0.

It is well known that the diagonal map

∆ : H(Dn) → H(D)

defined by
(∆ f )(z) = f (z, . . . , z), f ∈ H(Dn), z ∈ D,

maps Hp(Dn) boundedly onto Ap
n−2(D); see Proposition 4.5 of [2]. Earlier papers

on this problem include [8], [4], [15]. This result, together with the well-known
theory of composition operators on Hardy spaces of the unit disk, shows that Cϕ

maps Hp(Dn) boundedly into Ap
n−2(D). This also tells us that the range space

Ap
n−2(D) is the right choice for us here.

THEOREM 1.4. If p > 0, α > −1, and ϕ = (ϕ1, . . . , ϕn) is a holomorphic
map from D into Dn, then the composition operator Cϕ maps Ap

α(Dn) boundedly into
Ap

n(α+2)−2(D). Furthermore, the operator

Cϕ : Ap
α(Dn) → Ap

n(α+2)−2(D)

is ultra-weakly compact if and only if

lim
|z|→1−

n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
= 0.

THEOREM 1.5. For p > 0 and α > −1 the diagonal map ∆ maps the space
Ap

α(Dn) boundedly onto Ap
n(α+2)−2(D).
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We use a well-known technique involving Carleson type measures to reduce
the proof of the theorems to the case p = 2. When p = 2, all spaces involved are
Hilbert spaces, and we have reproducing kernels at our disposal.

2. CARLESON TYPE MEASURES

This section serves two purposes for us. First, the various characterizations
for Carleson measures will enable us to reduce the proof of Theorems 1.1–1.4 to
the case p = 2. Second, the geometric conditions for Carleson measures in the
unit ball actually enables us to prove the boundedness and compactness for our
composition operators.

Let β(z, w) denote the Bergman metric on Ω. For any z ∈ Ω and R > 0 we
use

D(z, r) = {w ∈ Ω : β(w, z) < R}
for the Bergman metric ball at z with radius R. It is well known that for any fixed
R > 0, we have:

vα(D(z, R)) ∼
n

∏
k=1

(1 − |zk|2)2+α when Ω = Dn,(2.1)

vα(D(z, R)) ∼ (1 − |z|2)n+1+α when Ω = Bn.(2.2)

LEMMA 2.1. Suppose p > 0, α > −1, and R > 0. For any positive Borel measure
µ on Ω the following conditions are equivalent:

(i) There exists a constant C1 > 0 such that, for all f ∈ Ap
α(Ω),∫

Ω

| f (z)|p dµ(z) 6 C1

∫
Ω

| f (z)|p dvα(z).

(ii) There exists a constant C2 > 0 such that, for all z ∈ Ω,

µ(D(z, R)) 6 C2vα(D(z, R)).

Proof. The result actually holds for more general domains than the unit ball
and the polydisc. For example, it is shown in [16] that the lemma holds for every
bounded symmetric domain.

If a measure µ on Ω satisfies the conditions in the above lemma, we say
that µ is a Carleson measure for Ap

α(Ω). The following is the little oh version of
Lemma 2.1.

LEMMA 2.2. Suppose p > 0, α > −1, and R > 0. For any positive Borel measure
µ on Ω the following conditions are equivalent

(i) The inclusion from Ap
α(Ω) into Lp(Ω, dµ) is ultra-weakly compact.
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(ii) The following limit exists and equals 0:

lim
z→∂Ω

µ(D(z, R))
vα(D(z, R))

.

If a measure µ on Ω satisfies the conditions in Lemma 2.2, we say that µ is a
vanishing Carleson measure for Ap

α(Ω).
In addition to the Bergman metric, we also need the following nonisotropic

“metric” on Bn:

d(z, w) = |1 − 〈z, w〉|, z, w ∈ Bn.

The function d itself is not a metric, but the restriction of
√

d on Sn is. For ζ ∈ Sn
and r > 0 we write

Qr(ζ) = {z ∈ Bn : d(z, ζ) < r}.

For any fixed α > −1, there exist positive constants c and C such that

(2.3) crn+1+α 6 vα(Qr(ζ)) 6 Crn+1+α

for all ζ ∈ Sn and all r ∈ (0, 1). See Corollary 5.24 of [18].
Carleson measures for weighted Bergman spaces of the unit ball (including

the unit disc) can also be characterized in terms of the non-isotropic metric.

LEMMA 2.3. Suppose p > 0, α > −1, r > 0, and µ is a positive Borel measure on
Bn. Then µ is a Carleson measure for Ap

α(Bn) if and only if

(2.4) sup
r,ζ

µ(Qr(ζ))
rn+1+α

< ∞.

Similarly, µ is a vanishing Carleson measure for Ap
α(Bn) if and only if

(2.5) lim
r→0+

µ(Qr(ζ))
rn+1+α

= 0 uniformly for ζ ∈ Sn.

Proof. It follows from (2.2), (2.3), and Lemma 5.23 of [18] that condition (2.4)
here implies condition (ii) in Lemma 2.1.

If µ is a Carleson measure for Ap
α(Bn), then there exists a constant C > 0

such that

(2.6)
∫
Bn

(1 − |a|2)n+1+α dµ(z)
|1 − 〈z, a〉|2(n+1+α) 6 C

for all a ∈ Bn. In fact, this is what we get if we set f (z) = (1−|a|2)(n+1+α)/p

(1−〈z,a〉)2(n+1+α)/p in

condition (i) of Lemma 2.1, because
∫
Bn

(1−|a|2)n+1+α dvα(z)
|1−〈z,a〉|2(n+1+α) = 1 for every a ∈ Bn.
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For any 0 < r < 1 and ζ ∈ Sn we write a = (1 − r)ζ. By (2.6), we have

(2.7)
∫

Qr(ζ)

(1 − |a|2)n+1+α dµ(z)
|1 − 〈z, a〉|2(n+1+α) 6 C.

Since 1 − |a|2 = 1 − (1 − r)2 = r(2 − r) > r, and for every z ∈ Qr(ζ) we have
|1 − 〈z, a〉| = |1 − 〈z, ζ〉+ r〈z, ζ〉| 6 |1 − 〈z, ζ〉|+ r|〈z, ζ〉| 6 r + r = 2r, we deduce
from (2.7) that

rn+1+α

(2r)2(n+1+α) µ(Qr(ζ)) 6 C.

This proves (2.4) for r < 1. The case r > 1 is trivial.
A similar argument proves the characterization of vanishing Carleson mea-

sures for Ap
α(Bn).

The following result characterizes Carleson measures for Hardy spaces of
the unit ball.

LEMMA 2.4. Suppose p > 0 and µ is a positive Borel measure on Bn. Then the
following conditions are equivalent:

(i) There exists a constant C1 > 0 such that, for all f ∈ Hp(Bn),∫
Bn

| f (z)|p dµ(z) 6 C1

∫
Sn

| f (ζ)|p dσ(ζ).

(ii) There exists a constant C2 > 0 such that, for all ζ ∈ Sn and r > 0,

µ(Qr(ζ)) 6 C2rn.

Proof. This follows from Hörmander’s results in [7], which are valid for
strongly pseudo-convex domains. See [10] or Section 5.2 of [18] for more details
in the case of the unit ball.

When a measure µ satisfies the conditions in Lemma 2.4, we say that µ
is a Carleson measure for Hp(Bn). We will also need the little oh version of
Lemma 2.4.

LEMMA 2.5. Suppose p > 0 and µ is a positive Borel measure on Bn. Then the
following two conditions are equivalent:

(i) The identity map is ultra-weakly compact from the Hardy space Hp(Bn) into
Lp(Bn, dµ).

(ii) The following limit holds uniformly for ζ ∈ Sn:

lim
r→0

µ(Qr(ζ))
rn = 0.

Proof. See [10] or Section 5.3 of [18].
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Measures satisfying the conditions in Lemma 2.5 are called vanishing Car-
leson measures for Hp(Bn).

The characterization of Carleson measures for Hardy spaces of the polydisc
is slightly more involved. In particular, we have to restrict our attention to the
case p > 1. The case p = 1 can be handled with some extra effort, but we are
unable to go below p = 1.

We begin with “Carleson squares” on the unit disc. Given an open interval
I on the unit circle, the Carleson square SI is defined as follows:

SI = {z = rζ : 1 − |I| < r < 1, ζ ∈ I},

where |I| is the normalized length of I (so that the unit circle has total length 1).
It is obvious that the area of SI is comparable to |I|2. For

R = I1 × I2 × · · · × In

in Tn, where each Ik is an open interval in the unit circle, let

SR = SI1 × SI2 × · · · × SIn

and call it a Carleson region in Dn. Recall that dσ is the normalized Lebesgue
measure on Tn. So it is clear that

σ(R) = |I1| × |I2| × · · · × |In|.

The following result characterizes Carleson measures for Hardy spaces of the
polydisc.

LEMMA 2.6. Suppose p > 1 and µ is a positive Borel measure on Dn. Then the
following two conditions are equivalent:

(i) There exists a constant C > 0 such that, for all f ∈ Hp(Dn),∫
Dn

| f (z)|p dµ(z) 6 C
∫
Tn

| f (ζ)|p dσ(ζ).

(ii) The limit

lim sup
δ→0+

{µ(S(V))
σ(V)

: V ⊂ Tn, σ(V) < δ
}

is finite, where V is open and

S(V) =
⋃
{SR : R = I1 × · · · × In ⊂ V}.

Proof. See [1] for the case n = 2 and [9] for the general case.

We have no intention of actually applying condition (ii) above. What we
want is the fact that condition (ii) is independent of p, which implies that condi-
tion (i) holds for some p > 1 if and only if it holds for every p > 1. The same
remark applies to the following little oh version of Lemma 2.6 as well.
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LEMMA 2.7. Suppose p > 1 and µ is a positive Borel measure on Dn. Then the
following two conditions are equivalent:

(i) The identity map is compact from the Hardy space Hp(Dn) into Lp(Dn, dµ).
(ii) The following limit equals 0:

lim sup
δ→0+

{µ(S(V))
σ(V)

: V ⊂ Tn, σ(V) < δ
}

.

Proof. See [1] and [9] again.

We now make the connection between Carleson measures and composition
operators.

Suppose α > −1 and ϕ : D → Ω is holomorphic. We define a positive Borel
measure µϕ,α on Ω as follows. If E is a Borel subset of Ω, we define

µϕ,α(E) = Aα(ϕ−1(E)) = (α + 1)
∫

ϕ−1(E)

(1 − |z|2)α dA(z).

It is then clear that we have the following change of variables formula.

LEMMA 2.8. Suppose p > 0, α > −1, and ϕ : D → Ω is holomorphic. Then

(2.8)
∫
D

| f (ϕ(z))|p dAα(z) =
∫
Ω

| f (z)|p dµϕ,α(z),

where f is any holomorphic function in Ω.

COROLLARY 2.9. Suppose p > 1, α > −1, and ϕ : D → Ω is holomorphic.
Then:

(i) The operator Cϕ maps Hp(Ω) boundedly into Ap
α(D) if and only if the measure

µϕ,α is Carleson for Hp(Ω).
(ii) The operator Cϕ : Hp(Ω) → Ap

α(D) is ultra-weakly compact if and only if the
measure µϕ,α is vanishing Carleson for Hp(Ω).

COROLLARY 2.10. Suppose p > 0, α > −1, γ > −1, and ϕ is a holomorphic
map from D into Ω. Then:

(i) The operator Cϕ maps Ap
α(Ω) boundedly into Ap

γ(D) if and only if the measure
µϕ,γ is Carleson for Ap

α(Ω).
(ii) The operator Cϕ : Ap

α(Ω) → Ap
γ(D) is ultra-weakly compact if and only if the

measure µϕ,γ is vanishing Carleson for Ap
α(Ω).

Once again, it follows from results of this section that the boundedness or
ultra-weak compactness of the operator

Cϕ : Hp(Ω) → A2
n−2(D)
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is independent of the exponent p. Similarly, the boundedness or ultra-weak com-
pactness of

Cϕ : Ap
α(Bn) → Ap

n−1+α(D) and Cϕ : Ap
α(Dn) → Ap

n(α+2)−2(D)

is independent of p. This observation will be used numerous times later in the
paper.

3. SOME ONE-DIMENSIONAL RESULTS

For any r > 0 we introduce the set

Sr = {z ∈ D : |1 − z| < r}.

This is the one-dimensional version of Qr(ζ) at the point 1 on the unit circle.
The following result is well known; see [3] in general and see Exercise 3.2.9

of [3] in particular. However, we offer a little more information here than the
usual big oh statements, and we are going to need this extra information (about
how the constant depends on ϕ) later when we prove the main theorems.

THEOREM 3.1. Suppose p > 0, α > −1, and ϕ : D → D is an analytic self-map
of the unit disc. Then the operators

Cϕ : Hp(D) → Hp(D), Cϕ : Ap
α(D) → Ap

α(D),

are bounded. Furthermore, there exists a constant C > 0, independent of r and ϕ, such
that, for all r > 0,

µϕ,α(Sr) 6 C
(1 + |ϕ(0)|

1 − |ϕ(0)|

)2+α
r2+α.

Proof. The boundedness of Cϕ on Hp(D) is a consequence of Littlewood’s
subordination principle. Also, if ϕ(0) = 0, then Littlewood’s subordination prin-
ciple along with integration in polar coordinates shows that Cϕ has norm 1 on
A2

α(D). More generally, we consider the function

ψ(z) = ϕa ◦ ϕ(z), where a = ϕ(0) and ϕa(z) =
a − z

1 − az
is a Möbius map of the disk. Then ψ is an analytic self-map of the disk that fixes
the origin. Therefore,∫

D

| f (ψ(z))|2 dAα(z) 6
∫
D

| f (z)|2 dAα(z)

for all f ∈ H(D). Replacing f by f ◦ ϕa, we obtain∫
D

| f (ϕ(z))|2 dAα(z) 6
∫
D

| f ◦ ϕa(z)|2 dAα(z)
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for all f ∈ H(D). Changing variables two times and estimating in the denomina-
tor with the triangle inequality, we have∫

D

| f (z)|2 dµϕ,α(z) =
∫
D

| f (ϕ(z))|2 dAα(z) 6
∫
D

| f ◦ ϕa(z)|2 dAα(z)

=
∫
D

| f (z)|2 (1 − |a|2)2+α dAα(z)
|1 − az|2(2+α)

6
(1 − |a|2)2+α

(1 − |a|)2(2+α)

∫
D

| f (z)|2 dAα(z)

=
(1 + |ϕ(0)|

1 − |ϕ(0)|

)2+α
∫
D

| f (z)|2 dAα(z),

where f ∈ A2
α(D). The desired result then follows from Lemma 2.3.

The following result is due to MacCluer and Shapiro; see [11] or Theo-
rem 3.22 of [3]. We write down a streamlined proof here that will also be used
later for other purposes.

THEOREM 3.2. Suppose p > 0, α > −1, and ϕ : D → D is an analytic self-map
of the unit disc. Then the composition operator

Cϕ : Ap
α(D) → Ap

α(D)

is ultra-weakly compact if and only if

(3.1) lim
|z|→1−

1 − |z|2

1 − |ϕ(z)|2
= 0.

Proof. By Section 2, it suffices for us to prove the result when p = 2. In this
case, we can consider the adjoint C∗

ϕ of Cϕ, and it is well known (see Theorem 5.1)
that

‖C∗
ϕkz‖2 =

( 1 − |z|2

1 − |ϕ(z)|2
)2+α

where kz(w) =
(1 − |z|2)(2+α)/2

(1 − wz)2+α
, z, w ∈ D,

are the normalized reproducing kernels of A2
α(D). Here and in the rest of this

proof we use ‖ · ‖ to denote the norm in A2
α(D). Since {kz} converges to 0 weakly

in A2
α(D) as |z| → 1−, we see that the compactness of Cϕ on A2

α(D) implies con-
dition (3.1).

Next assume that condition (3.1) holds and { fk} is a sequence in A2
α(D) that

converges to 0 weakly. Then the sequence { fk} is bounded in norm and converges
to 0 uniformly on compact subsets of D. We proceed to show that

(3.2) lim
k→∞

‖Cϕ fk‖ = 0.
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Given any positive number ε we choose a number δ ∈ (0, 1) such that

(3.3) 1− |z|2 < ε(1 − |ϕ(z)|2), δ < |z| < 1.

We can find a constant C1 > 0, independent of ϕ and k, such that

‖Cϕ fk‖2 6 C1

[
| fk(ϕ(0))|2+

∫
D

| f ′k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)α+2dA(z)
]
.

It is clear that fk(ϕ(0)) → 0 as k → ∞.
We write the integral

∫
D
| f ′k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)α+2 dA(z) as the sum of

Ik =
∫

|z|<δ

| f ′k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)α+2 dA(z),

Jk =
∫

δ<|z|<1

| f ′k(ϕ(z))|2|ϕ′(z)|2(1 − |z|2)α+2 dA(z).

Since { f ′k} converges to 0 uniformly on compact sets and ϕ′(z) is bounded on
|z| 6 δ, we have Ik → 0 as k → ∞.

By (3.3), we have

Jk 6 2εα+1
∫

δ<|z|<1

| f ′k(ϕ(z))|2|ϕ′(z)|2(1 − |ϕ(z)|2)α+1 log
1
|z|

dA(z).

If Nϕ(z) = ∑
{

log 1
|w| : ϕ(w) = z

}
is the Nevanlinna counting function of ϕ,

then a change of variables gives Jk 6 2εα+1 ∫
D
| f ′k(z)|2(1 − |z|2)α+1Nϕ(z) dA(z).

The classical Littlewood’s inequality states that Nϕ(z) 6 log
∣∣∣ 1−ϕ(0)z

ϕ(0)−z

∣∣∣; see Theo-

rem 2.29 of [3]. Since log
∣∣∣ 1−ϕ(0)z

ϕ(0)−z

∣∣∣ is comparable to 1−
∣∣∣ ϕ(0)−z

1−ϕ(0)z

∣∣∣2
= (1−|ϕ(0)|2)(1−|z|2)

|1−ϕ(0)z|2
,

we can find another constant C2 > 0, independent of k and ϕ, such that

Jk 6 C2

(1 + |ϕ(0)|
1 − |ϕ(0)|

)
εα+1

∫
D

| f ′k(z)|2(1 − |z|2)α+2 dA(z).

There exists a positive constant C3, independent of k and ϕ, such that∫
D

| f ′k(z)|2(1 − |z|2)α+2 dA(z) 6 C3

∫
D

| fk(z)|2 dAα(z).

Therefore, there exists a positive constant C4, independent of k and ϕ, such that

Jk 6 C4

(1 + |ϕ(0)|
1 − |ϕ(0)|

)
εα+1



COMPOSITION OPERATORS 435

for all k. It follows that

lim sup
k→∞

Jk 6 C4

(1 + |ϕ(0)|
1 − |ϕ(0)|

)
εα+1.

Since ε is arbitrary, we must have Jk → 0 as k → ∞. This proves (3.2) and com-
pletes the proof of the theorem.

4. BOUNDEDNESS

We begin with the case of the polydisc. So suppose ϕ = (ϕ1, . . . , ϕn) is a
holomorphic map of the unit disc into the polydisc. It follows from the bounded-
ness of each composition operator Cϕk on the Hardy space Hp(D) of the unit disc
(see Theorem 3.1) that the operator

f (z1, . . . , zn) 7→ f (ϕ1(z1), . . . , ϕn(zn))

is bounded on Hp(Dn). On the other hand, it follows from the main results of [4]
and [8] that the diagonal operator defined by

f (z1, . . . , zn) 7→ f (z, . . . , z)

maps Hp(Dn) boundedly into Ap
n−2(D), provided n > 1. Composing the action

of these two operators, we obtain the following result.

THEOREM 4.1. If n > 1, p > 0, and ϕ is a holomorphic map from D into Dn.
Then the composition operator Cϕ maps Hp(Dn) boundedly into Ap

n−2(D).

To prove that Cϕ maps Ap
α(Dn) into Ap

n(α+2)−2(D), we first consider the case
in which p = 2 and ϕ(z) = (z, . . . , z).

LEMMA 4.2. For any α > −1 the diagonal map ∆ maps the Bergman space
A2

α(Dn) boundedly into the Bergman space A2
n(α+2)−2(D).

Proof. Suppose

f (z) = ∑
m

amzm

is the Taylor expansion of a function in H(Dn), where m = (m1, . . . , mn) is a
multi-index of nonnegative integers and

zm = zm1
1 · · · zmn

n .
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We have:∫
Tn

| f (ζ)|2 dσ(ζ) = ∑
m
|am|2 =

∞

∑
k=0

∑
|m|=k

|am|2 for f ∈ H2(Dn), and

∫
Dn

| f (z)|2 dvα(z) = ∑
m

|am|2

(m1 + 1)α+1 · · · (mn + 1)α+1

=
∞

∑
k=0

∑
|m|=k

|am|2

(m1 + 1)α+1 · · · (mn + 1)α+1 for f ∈ A2
α(Dn).

With the convention that |m| = m1 + · · ·+ mn, we also have the following for the
diagonal operator ∆:

∫
D

|∆ f (z)|2 dAn(α+2)−2(z) =
∞

∑
k=0

∣∣∣ ∑
|m|=k

am

∣∣∣2

(k + 1)n(α+2)−1 ,

∫
D

|∆ f (z)|2 dAn−2(z) =
∞

∑
k=0

∣∣∣ ∑
|m|=k

am

∣∣∣2

(k + 1)n−1 .

Since ∆ maps H2(Dn) boundedly into A2
n−2(D) (see [8]), there must exist a con-

stant C > 0, independent of k and f , such that∣∣∣ ∑
|m|=k

am

∣∣∣2

(k + 1)n−1 6 C ∑
|m|=k

|am|2

for all k and f (this elementary identity can also be verified directly without ap-
pealing to the diagonal map). If |m| = k, it is obvious that

1
(k + 1)n(α+1) 6

1
(m1 + 1)α+1 · · · (mn + 1)α+1 .

Therefore,

∞

∑
k=0

∣∣∣ ∑
|m|=k

am

∣∣∣2

(k + 1)n(α+2)−1 6 C
∞

∑
k=0

∑
|m|=k

|am|2

(m1 + 1)α+1 · · · (mn + 1)α+1 ,

or ∫
D

|∆ f (z)|2 dAn(α+2)−2(z) 6 C
∫
Dn

| f (z)|2 dvα(z),

completing the proof of the lemma.

THEOREM 4.3. For any p > 0 and α > −1 the operator Cϕ maps Ap
α(Dn) bound-

edly into Ap
n(α+2)−2(D).
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Proof. By Section 2, we only need to prove the case p = 2. In this case,
Lemma 4.2 tells us that the diagonal map ∆ is a bounded operator from A2

α(Dn)
into A2

n(α+1)−2(D). Combining this with the fact that

f (z1, . . . , zn) 7→ f (ϕ1(z1), . . . , ϕn(zn))

is a bounded linear operator on A2
α(Dn) (which follows from the boundedness of

composition operators on weighted Bergman spaces of the unit disc, see Theo-
rem 3.1), we conclude that Cϕ is bounded from A2

α(Dn) into A2
n(α+2)−2(D).

THEOREM 4.4. For any p > 0 and α > −1 the diagonal map ∆ maps the Bergman
space Ap

α(Dn) boundedly onto the Bergman space Ap
n(α+2)−2(D).

Proof. That ∆ maps Ap
α(Dn) boundedly into Ap

n(α+2)−2(D) follows from The-
orem 4.3 by taking ϕ(z) = (z, . . . , z). We proceed to show that this map is actually
onto.

First assume that 1 < p < ∞ with 1/p + 1/q = 1. Fix a function f ∈
Ap

n(α+2)−2(D) and define a function F ∈ H(Dn) by

F(z1, . . . , zn) =
∫
D

f (w) dAn(α+2)−2(w)
n
∏

k=1
(1 − zkw)α+2

.

By Corollary 1.5 of [6], we have

∆F(z) =
∫
D

f (w) dAn(α+2)−2(w)

(1 − zw)n(α+2) = f (z).

To see F ∈ Ap
α(Dn), we take an arbitrary function G ∈ Aq

α(Dn) and use Fubini’s
theorem (by an approximation argument we may assume that G is bounded) to
obtain ∫

Dn

FG dvα =
∫
Dn

G dvα

∫
D

f (w) dAn(α+2)−2(w)
n
∏

k=1
(1 − zkw)α+2

=
∫
D

f (w) dAn(α+2)−2(w)
∫
Dn

G(z1, . . . , zn) dvα(z)
n
∏

k=1
(1 − wzk)α+2

=
∫
D

f (w)G(w, . . . , w) dAn(α+2)−2(w).

The last equality above follows from iterated use of Corollary 1.5 of [6] again.
Since the map G(w1, . . . , wn) 7→ G(w, . . . , w) = ∆G(w) is bounded from Aq

α(Dn)
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into Aq
n(α+2)−2(D), we can find a constant C > 0 such that∣∣∣ ∫

Dn

FG dvα

∣∣∣ 6 C
[ ∫

D

| f |p dAn(α+2)−2

]1/p[ ∫
Dn

|G|q dvα

]1/q
.

It follows from the duality (Ap
α(Dn))∗ = Aq

α(Dn) that F ∈ Ap
α(Dn), and so the

diagonal map ∆ maps Ap
α(Dn) onto Ap

n(α+2)−2(D).

Next assume that 0 < p 6 1 and fix a function f ∈ Ap
n(α+2)−2(D). By the

atomic decomposition for Bergman spaces (see [2] or [18]), we can write

f (z) =
∞

∑
k=1

ck
(1 − |ak|2)b−n(α+2)/p

(1 − zak)b ,

where {ak} is a certain sequence in D, {ck} ∈ lp, and b is a sufficiently large
constant. Write b = nt and define

F(z1, . . . , zn) =
∞

∑
k=1

ck
(1 − |ak|2)nt−n(α+2)/p

(1 − z1ak)t · · · (1 − znak)t .

Obviously, ∆F = f . Also, since 0 < p 6 1, it follows from Hölder’s inequality
that∫

Dn

|F|p dvα 6
∞

∑
k=1

|ck|p
∫
Dn

(1 − |ak|2)npt−n(α+2)

n
∏
j=1

|1 − zjak|pt
dvα(z)

=
∞

∑
k=1

|ck|p(1 − |ak|2)npt−n(α+2)
n

∏
j=1

∫
D

dAα(zj)
|1 − zjak|pt 6 C

∞

∑
k=1

|ck|p.

In the last inequality above we used Lemma 8.3 and the assumption that t is
sufficiently large. This proves that F ∈ Ap

α(Dn), so the diagonal map ∆ sends
Ap

α(Dn) onto Ap
n(α+2)−2(D).

Note that using the same ideas we can actually give an alternative proof
that Cϕ maps Hp(Dn) into Ap

n−2(D). In particular, we can give an alternative
proof that the diagonal map is bounded from Hp(Dn) into and onto Ap

n−2(D).
Next we consider the case of the unit ball. Our trick here is to reduce the

proof to the one-dimensional case.

THEOREM 4.5. For any p > 0 and any holomorphic ϕ : D → Bn the composition
operator Cϕ maps Hp(Bn) boundedly into Ap

n−2(D).

Proof. According to Lemmas 2.4 and 2.8, it suffices for us to show that there
exists a constant C > 0 such that, for all r > 0 and all ζ ∈ Sn,

µϕ,n−2(Qr(ζ)) 6 Crn.
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Fix ζ ∈ Sn and r > 0. Let us consider the preimage of the set Qr(ζ) under ϕ:

ϕ−1(Qr(ζ))={z ∈ D : |1 − 〈ϕ(z), ζ〉| < r}={z ∈ D : |1 − ϕζ(z)| < r}= ϕ−1
ζ (Sr),

where ϕζ(z) = 〈ϕ(z), ζ〉 is an analytic self-map of the unit disk D and Sr = {z ∈
D : |1 − z| < r} is the one-dimensional version of Qr(ζ) in D at the point 1. It
follows that

µϕ,n−2(Qr(ζ)) = µϕζ ,n−2(Sr) and
1 + |ϕζ(0)|
1 − |ϕζ(0)|

6
1 + |ϕ(0)|
1 − |ϕ(0)|

.

The desired result then follows from Theorem 3.1.

THEOREM 4.6. Suppose p > 0, α > −1, and ϕ : D → Bn is holomorphic. Then
the operator Cϕ maps Ap

α(Bn) boundedly into Ap
n−1+α(D).

Proof. The proof is similar to that of Theorem 4.5. We omit the details.

5. NECESSITY FOR COMPACTNESS

Our proof of necessity for compactness uses a standard method involving
reproducing kernels.

THEOREM 5.1. Suppose HΩ is a Hilbert space of holomorphic functions in Ω with
reproducing kernel KΩ(z, w), HD is a Hilbert space of holomorphic functions in D with
reproducing kernel KD(z, w), and ϕ : D → Ω is a holomorphic map with the property
that the composition operator Cϕ maps HΩ boundedly into HD. Then the adjoint operator
C∗

ϕ : HD → HΩ has the next property whenever KD(z, z) 6= 0, where z ∈ D,

(5.1) ‖C∗
ϕkD

z ‖2 =
KΩ(ϕ(z), ϕ(z))

KD(z, z)
,

and the following is the normalized reproducing kernel of HD at z:

kD
z (w) =

KD(w, z)√
KD(z, z)

.

Proof. For any z ∈ D we use KD
z to denote the function

KD
z (w) = KD(w, z), w ∈ D.

Similarly, for any z ∈ Ω we write

KΩ
z (w) = KΩ(w, z), w ∈ Ω.

If z ∈ D and w ∈ Ω, then

(C∗
ϕKD

z )(w) = 〈C∗
ϕKD

z , KΩ
w 〉HΩ

= 〈KD
z , KΩ

w ◦ ϕ〉HD = KΩ
w (ϕ(z)) = KΩ

ϕ(z)(w).
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It follows that ‖C∗
ϕKD

z ‖2 = KΩ(ϕ(z), ϕ(z)), and so

‖C∗
ϕkD

z ‖2 =
KΩ(ϕ(z), ϕ(z))

KD(z, z)
.

It is clear that the above result remains true if D is replaced by any other
domain in one or several complex dimensions.

In each of the four corollaries below, the normalized reproducing kernels
{kD

z } all converge to 0 weakly as |z| → 1−. Therefore, the compactness of the
composition operator Cϕ implies that

(5.2) lim
|z|→1−

KΩ(ϕ(z), ϕ(z))
KD(z, z)

= 0.

COROLLARY 5.2. Suppose n > 1, p > 0, and ϕ : D → Bn is holomorphic. If the
operator Cϕ : Hp(Bn) → Ap

n−2(D) is ultra-weakly compact, then

lim
|z|→1−

1 − |z|2

1 − |ϕ(z)|2
= 0.

Proof. If the operator Cϕ : Hp(Bn) → Ap
n−2(D) is ultra-weakly compact,

then by Section 2, the operator Cϕ : H2(Bn) → A2
n−2(D) is compact. The repro-

ducing kernels of H2(Bn) and A2
n−2(D), respectively, are

KΩ(z, w) =
1

(1 − 〈z, w〉)n and KD(z, z) =
1

(1 − zw)n .

The desired result then follows from (5.2).

COROLLARY 5.3. Suppose p > 0, α > −1, and ϕ : D → Bn is holomorphic. If
the operator Cϕ : Ap

α(Bn) → Ap
n−1+α(D) is ultra-weakly compact, then

lim
|z|→1−

1 − |z|2

1 − |ϕ(z)|2
= 0.

Proof. According Section 2, the ultra-weak compactness of the operator Cϕ :
Ap

α(Bn) → Ap
n−1+α(D) implies the compactness of the operator Cϕ : A2

α(Bn) →
A2

n−1+α(D). Since the reproducing kernels of A2
α(Bn) and A2

n−1+α(D) are respec-
tively,

KΩ(z, w) =
1

(1 − 〈z, w〉)n+1+α
and KD(z, w) =

1
(1 − zw)n+1+α

,

the desired result follows from (5.2).
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COROLLARY 5.4. Suppose n > 1, p > 1, and ϕ = (ϕ1, . . . , ϕn) is a holomorphic
map from D into Dn. If the operator Cϕ : Hp(Dn) → Ap

n−2(D) is compact, then

lim
|z|→1−

n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
= 0.

Proof. By Section 2, the compactness of the operator Cϕ : Hp(Dn)→Ap
n−2(D)

implies the compactness of the operator Cϕ : H2(Dn) → A2
n−2(D). The reproduc-

ing kernels of H2(Dn) and A2
n−2(D) are respectively,

KΩ(z, w) =
1

n
∏

k=1
(1 − zkwk)

and KD(z, w) =
1

(1 − zw)n .

The desired result follows from (5.2).

COROLLARY 5.5. Suppose p > 0, α > −1, and ϕ = (ϕ1, . . . , ϕn) is a holomor-
phic map from D into Dn. If the operator Cϕ : Ap

α(Dn) → Ap
n(α+2)−2(D) is ultra-weakly

compact, then

lim
|z|→1−

n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
= 0.

Proof. Again, the ultra-weak compactness of the operator Cϕ : Ap
α(Dn) →

Ap
n(α+2)−2(D) implies the compactness of the operator Cϕ : A2

α(Dn)→A2
n(α+2)−2(D).

The reproducing kernels of A2
α(Dn) and A2

n(α+2)−2(D) are respectively,

KΩ(z, w) =
1

n
∏

k=1
(1 − zkwk)2+α

and KD(z, w) =
1

(1 − zw)n(α+2) .

The desired result follows from (5.2) again.

6. TRACE FORMULAS

We obtain four trace formulas in this section and characterize when the op-
erator Cϕ, acting on H2(Ω) or A2

α(Ω), is Hilbert-Schmidt.

LEMMA 6.1. Suppose α > −1 and T is a positive or trace-class operator on
A2

α(D). Then we have, with the inner product being in A2
α(D),

(6.1) tr (T) =
∫
D

〈Tkα
z , kα

z 〉dλ(z),



442 MICHAEL STESSIN AND KEHE ZHU

where kα
z (w) is the normalized reproducing kernel of A2

α(D) at z, and respectively, dλ(z)
is the Möbius invariant measure on D:

kα
z (w) =

(1 − |z|2)(2+α)/2

(1 − wz)2+α
, dλ(z) =

dA(z)
(1 − |z|2)2 .

Proof. See Proposition 6.3.2 of [17] and Lemma 13 of [16].

Each of the following four theorems follows from (5.1) and (6.1). We omit
the routine details.

THEOREM 6.2. Suppose n > 1 and ϕ : D → Bn is holomorphic. Then for the
composition operator

Cϕ : H2(Bn) → A2
n−2(D)

we have

tr (CϕC∗
ϕ) =

∫
D

( 1 − |z|2

1 − |ϕ(z)|2
)n

dλ(z).

Consequently, Cϕ is Hilbert-Schmidt if and only if∫
D

( 1 − |z|2

1 − |ϕ(z)|2
)n

dλ(z) < ∞.

THEOREM 6.3. Suppose α > −1 and ϕ : D → Bn is holomorphic. Then for the
composition operator

Cϕ : A2
α(Bn) → A2

n−1+α(D)

we have

tr (CϕC∗
ϕ) =

∫
D

( 1 − |z|2

1 − |ϕ(z)|2
)n+1+α

dλ(z).

Consequently, Cϕ is Hilbert-Schmidt if and only if∫
D

( 1 − |z|2

1 − |ϕ(z)|2
)n+1+α

dλ(z) < ∞.

THEOREM 6.4. Suppose n > 1 and ϕ = (ϕ1, . . . , ϕn) is holomorphic from D into
Dn. Then for the composition operator

Cϕ : H2(Dn) → A2
n−2(D)

we have

tr (CϕC∗
ϕ) =

∫
D

( n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
)

dλ(z).
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Consequently, Cϕ is Hilbert-Schmidt if and only if∫
D

( n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
)

dλ(z) < ∞.

THEOREM 6.5. Suppose α > −1 and ϕ = (ϕ1, . . . , ϕn) is holomorphic from D
into Dn. Then for the composition operator

Cϕ : A2
α(Dn) → A2

n(α+2)−2(D)

we have

tr (CϕC∗
ϕ) =

∫
D

( n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
)α+2

dλ(z).

Therefore, the operator Cϕ is Hilbert-Schmidt if and only if∫
D

( n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
)α+2

dλ(z) < ∞.

7. SUFFICIENCY FOR COMPACTNESS WHEN Ω = Bn

Recall from Section 2 that, for α > −1 and ϕ : D → Bn holomorphic, the
Borel measure µϕ,α on Bn is defined by

µϕ,α(E) = Aα(ϕ−1(E)) = (α + 1)
∫

ϕ−1(E)

(1 − |z|2)α dA(z),

where E is any Borel set in Bn. This definition includes the case n = 1 as well.

THEOREM 7.1. Suppose n > 1, p > 0, and ϕ : D → Bn is holomorphic. If

(7.1) lim
|z|→1−

1 − |z|2

1 − |ϕ(z)|2
= 0,

then the operator Cϕ : Hp(Bn) → Ap
n−2(D) is ultra-weakly compact.

Proof. According to Lemmas 2.3 and 2.8, it suffices for us to show that the
next limit holds uniformly for ζ ∈ Sn:

(7.2) lim
r→0+

µϕ,n−2(Qr(ζ))
rn = 0.

Using notation from the proof of Theorem 4.5, we have

µϕ,n−2(Qr(ζ)) = µϕζ ,n−2(Sr), r ∈ (0, 1), ζ ∈ Sn.



444 MICHAEL STESSIN AND KEHE ZHU

Let a = 1 − r and consider the normalized reproducing kernels ka in A2
n−2(D),

that is,

ka(z) =
(1 − |a|2)n/2

(1 − za)n , z ∈ D.

As r → 0+, we have |a| → 1−, and so {ka} converges to 0 weakly in A2
n−2(D). It

is easy to find a positive constant C, independent of a and ζ, such that

µϕζ ,n−2(Sr)

rn 6 C
∫
Sr

|ka(z)|2 dµϕζ ,n−2(z)

6 C
∫
D

|ka(z)|2 dµϕζ ,n−2(z) + C
∫
D

|ka(ϕζ(z))|2 dAn−2(z).

Since
1 − |z|2

1 − |ϕζ(z)|2
6

1 − |z|2

1 − |ϕ(z)|2
,

carefully checking the proof of Theorem 3.2 shows that the limit (7.2) holds uni-
formly for ζ ∈ Sn.

THEOREM 7.2. Suppose p > 0, α > −1, and ϕ : D → Bn is holomorphic. If

lim
|z|→1−

1 − |z|2

1 − |ϕ(z)|2
= 0,

then the next composition operator is ultra-weakly compact:

Cϕ : Ap
α(Bn) → Ap

n−1+α(D).

Proof. The proof is similar to that of Theorem 7.1. We omit the details.

8. SUFFICIENCY FOR COMPACTNESS WHEN Ω = Dn

Our proof of the compactness of Cϕ on Hp(Dn) and Ap
α(Dn) depends on the

following classical norm estimate for integral operators with positive kernel.

LEMMA 8.1. If there exists a constant C > 0 and a positive function h on the unit
disc D such that ∫

D

Kr(z, w)h(w) dAβ(w) 6 Ch(z)

for all z ∈ D, then the integral operator Tr is bounded on L2(D, dAβ) and its norm
satisfies ‖Tr‖ 6 C.

Proof. This is a special case of Schur’s test. See 3.2.2 of [17].
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We also need the following generalization of the classical Hölder’s inequal-
ity.

LEMMA 8.2. Let (X, µ) be a measure space. For each 1 6 k 6 n let pk > 0 and
fk ∈ Lpk (X, dµ). If

1
p1

+
1
p2

+ · · ·+ 1
pn

= 1,

then ∣∣∣ ∫
X

n

∏
k=1

fk(x) dµ(x)
∣∣∣ 6

n

∏
k=1

[ ∫
X

| fk(x)|pk dµ(x)
]1/pk

.

Proof. See [5] or Lemma 4.44 of [18].

Finally, we are going to need the following integral estimate, which has
become indispensable for analysis on the unit ball.

LEMMA 8.3. Suppose t > −1 and σ > 0. Then there exists a constant C > 0
such that, for all z ∈ D, we have:∫

D

(1 − |w|2)t dA(w)
|1 − zw|2+t+σ

6
C

(1 − |z|2)σ
.

Proof. See [13] or Lemma 4.22 of [18].

Suppose α > −1 (yes, α = −1 is permitted here) and set

β = n(α + 2)− 2.

We assume n > 1 in the rest of this section, so that we always have β > −1.
Consider the integral operator

T : L2(D, dAβ) → L2(D, dAβ)

defined by

T f (z) =
∫
D

f (w) dAβ(w)
n
∏

k=1
(1 − ϕk(z)ϕk(w))α+2

.

For any r ∈ (0, 1) we let χr denote the characteristic function of the annulus
r 6 |z| < 1 in the complex plane. We also consider the following integral operator
on L2(D, dAβ):

Tr f (z) =
∫
D

Kr(z, w) f (w) dAβ(w), where Kr(z, w) =
χr(z)χr(w)

n
∏

k=1
|1 − ϕk(z)ϕk(w)|α+2

.

We are going to show that each Tr is bounded on L2(D, dAβ) and we are going to
estimate the norm of

Tr : L2(D, dAβ) → L2(D, dAβ)
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in terms of the constant

(8.1) Mr = sup
r6|z|<1

n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
.

THEOREM 8.4. There exist positive constants C and δ, independent of r, such that
the norm of the operator

Tr : L2(D, dAβ) → L2(D, dAβ)

satisfies ‖Tr‖ 6 CMδ
r for all 0 < r < 1, where Mr is the constant defined in (8.1).

Proof. Let h(z) = (1 − |z|2)−σ, where σ is any positive number satisfying

t = β − σ = n(α + 2)− 2 − σ > −1.

The existence of such a σ is guaranteed by the assumptions that n > 1 and α > −1.
Consider the integral

Ir(z) =
∫
D

Kr(z, w)h(w) dAβ(w), z ∈ D.

It is clear that Ir(z) 6 cβχr(z)
∫
D

(1−|w|2)t dA(w)
n
∏

k=1
|1−ϕk(z)ϕk(w)|α+2

. According to Lemma 8.2, we

have Ir(z) 6 cβχr(z)
n
∏

k=1

[ ∫
D

(1−|w|2)t dA(w)
|1−ϕk(z)ϕk(w)|n(α+2)

]1/n
. By Theorem 3.1, there exists

a constant C1 > 0, independent of r and z, such that
∫
D

(1−|w|2)t dA(w)
|1−ϕk(z)ϕk(w)|n(α+2) 6

C1
∫
D

(1−|w|2)t dA(w)
|1−ϕk(z)w|n(α+2) . By Lemma 8.3, there exists another constant C2 > 0, inde-

pendent of r and z, such that
∫
D

(1−|w|2)t dA(w)
|1−ϕk(z)w|n(α+2) 6 C2

(1−|ϕk(z)|2)σ for all z ∈ D and

1 6 k 6 n. It follows that there exists a constant C > 0, independent of r and z,
such that

Ir(z) 6
Cχr(z)

n
∏

k=1
(1 − |ϕk(z)|2)σ/n

= Cχr(z)
[ n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
]σ/n

h(z) 6 CMσ/n
r h(z).

We conclude from Lemma 8.1 that Tr is bounded on L2(D, dAβ) and its norm
satisfies ‖Tr‖ 6 CMδ

r , where δ = σ/n.

We can now finish the proof of Theorems 1.3 and 1.4. Once again, we only
need to consider the case p = 2.

THEOREM 8.5. Suppose n > 1, α > −1, and ϕ = (ϕ1, . . . , ϕn) : D → Dn

satisfies the condition

(8.2) lim
|z|→1−

n

∏
k=1

1 − |z|2

1 − |ϕk(z)|2
= 0.
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Then the composition operator Cϕ is compact from H2(Dn) into A2
n−2(D); and it is also

compact from A2
α(Dn) into A2

β(D), where β = n(α + 2)− 2.

Proof. It is easy to represent the adjoint of the composition operator Cϕ :
H2(Dn) → A2

n−2(D) as an integral operator, from which we easily obtain the
following integral representation:

(CϕC∗
ϕ f )(z) =

∫
D

f (w) dAn−2(w)
n
∏

k=1
(1 − ϕk(z)ϕk(w))

, f ∈ A2
n−2(D), z ∈ D.

Similarly, the composition operator Cϕ : A2
α(Dn) → A2

n(α+2)−2(D) has the follow-
ing integral representation:

(CϕC∗
ϕ f )(z) =

∫
D

f (w) dAn(α+2)−2(w)
n
∏

k=1
(1 − ϕk(z)ϕk(w))α+2

,

where f ∈ A2
n(α+2)−2(D) and z ∈ D. So it suffices for us to show that the integral

operator T defined a little earlier is compact on the Bergman space A2
β(D). Here

and below we want to allow α to be −1 in the definition of β, so that we can prove
the compactness of

Cϕ : H2(Dn) → A2
n−2(D) and Cϕ : A2

α(Dn) → A2
n(α+2)−2(D)

simultaneously. To this end, we suppose that { fk} is a sequence in A2
β(D) that

converges to 0 weakly as k → ∞. Then {T fk} also converges to 0 weakly in A2
β(D).

It is easy to see that a sequence in A2
β(D) converges to 0 weakly if and only if it is

bounded in the norm topology and converges to 0 uniformly on compact subsets
of D.

Fix any r ∈ (0, 1) and write

(8.3) ‖T fk‖2 =
∫

|z|<r

|T fk(z)|2 dAβ(z) +
∫
D

|χr(z)T fk(z)|2 dAβ(z),

where the norm is taken in the Bergman space A2
β(D) and χr is the characteristic

function of the annulus {z ∈ D : r < |z| < 1}. We have lim
k→∞

∫
|z|<r

|T fk(z)|2 dAβ(z)

= 0, because {T fk} converges to 0 uniformly on |z| < r.
On the other hand, we can write

χr(z)T fk(z) = Fr,k(z) + Gr,k(z),

where

Fr,k(z)=χr(z)
∫

|w|<r

fk(w) dAβ(w)
n
∏
i=1

(1 − ϕi(z)ϕi(w))α+2
, Gr,k(z)=

∫
D

χr(z)χr(w) fk(w) dAβ(w)
n
∏
i=1

(1 − ϕi(z)ϕi(w))α+2
.
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It is clear that lim
k→∞

Fr,k(z) = 0 uniformly for z ∈ D, so lim
k→∞

∫
D
|Fr,k(z)|2 dAβ(z) = 0.

It is also clear that
∫
D
|Gr,k(z)|2 dAβ(z) 6

∫
D
|Tr(| fk|)(z)|2 dAβ(z). By Theorem 8.4

and the assumption that { fk} is bounded in A2
β(D), we can find positive constants

C and δ, independent of r, such that
∫
D
|Gr,k(z)|2 dAβ(z) 6 CMδ

r for all k and all r.

Letting k → ∞ in (8.3) now, we obtain lim sup
k→∞

‖T fk‖2 6 CMδ
r . Since r is arbitrary,

and since the condition in (8.2) implies that Mr → 0 as r → 1−, we must have
lim sup

k→∞
‖T fk‖2 = 0. This shows that lim

k→∞
‖T fk‖ = 0, and so T is compact on

A2
β(D).
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