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1. INTRODUCTION

V. Jones introduced an index theory for II; factors in [6]. One of his motiva-
tions is Goldman'’s theorem, which says that if M is a type II; factorand N C M is
a subfactor with the Jones index [M : N| = 2, then there is a crossed product de-
composition M = N X, Zy, where Zj is the group Z/2Z of order two. Since Jones
index theory is extended to C*-algebras by Y. Watatani, it is worth to investigate
Goldman type theorems for inclusions of simple C*-algebras. In the present pa-
per, we shall study the inclusion A C B of C*-algebras with a conditional expec-
tation E : B — A of Index E = 2. In Subsection 4.2, we shall show that a Goldman
type theorem does not hold for inclusions of simple C*-algebras in general by ex-
hibiting examples of inclusions like a non-commutative sphere in an irrational
rotation C*-algebra Ay and irrational rotation C*-algebras Ay C Ay with differ-
ent angles. Therefore there occurs the following natural question: What kind of
structures are there in the inclusion of C*-algebras with index 2? We shall answer
the question in the present paper: Any inclusion of C*-algebras with index two
gives an involutive equivalence bimodule.

Let us explain the notion of involutive equivalence bimodules. Consider
a typical situation, that is, the inclusion A C B is given by the crossed product
B = A x4 Zp by some action « : Z; — Aut(A). Then the canonical conditional
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expectation E : B — A has Index E = 2. Moreover there exists the dual action
® : Zp — Aut(B) such that

(A X Zp) x5 2y = A® My(C),

where M (C) is the 2 x 2-matrix algebra over C. Itis well known that the C*-basic
construction C*(B,e4) is exactly (A x4 Zy) X4 Zy. Then the Jones projection e4
corresponds to the projection e;; = diag(1,0) and 1 — e4 corresponds to ey =
diag(0,1), where diag(A, j) is a 2 x 2-diagonal matrix with diagonal elements A,
u. Let X = e11(A ®@ My(C))exp. Then X is an A-A-equivalence bimodule in the
natural way. There exists a natural involution on X such that

xﬁ—oz* forx—oZ
“\0 0 —\0 0/

We pick up these properties to define the notion of involutive equivalence bimod-
ules. In Theorem 3.3.1, we shall show that even if B is not a crossed product of
A, the inclusion of C*-algebras with index 2 gives an involutive A-A-equivalence
bimodule. Moreover the set of inclusions of C*-algebras with index 2 has a one
to one correspondence with the set of involutive A-A-equivalence bimodules up
to isomorphisms.

In Proposition 4.1.2, we shall characterize the subclass such that B is the
twisted crossed product of A by a partially inner C*-dynamical system studied by
Green, Olsen and Pedersen. The characterization is given by the von Neumann
equivalence of e4 and 1 —e4 in C*(B,ey4).

2. PRELIMINARIES

2.1. SOME RESULTS FOR INCLUSIONS WITH INDEX 2. Let B be a unital C*-algebra
and A a C*-subalgebra of B with a common unit. Let E be a conditional expec-
tation of B onto A with 1 < IndexE < oo. Then by Watatani [12] we have the
C*-basic construction C*(B,e4) where e4 is the Jones projection induced by E.
Let E be the dual conditional expectation of C*(B,e4) onto B defined by

E(aesb) = %ab foranya,b € B,

where t = IndexE. Let F be alinear map of (1 —e4)C*(B,ea)(1—ea)to A(1—ey)
defined by

t -

F(a) = ﬁ(E oE)(a)(1—ea)
forany a € (1 —e4s)C*(B,ea)(1 —ea). By routine computations we can see that
F is a conditional expectation of (1 —e4)C*(B,eq)(1 —ea) onto A(1 —ey).
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LEMMA 2.1. With the above notations, let {(x;, x})}_, be a quasi-basis for E.
Then

{(Vt=1(1 —ea)xjeaxi(1 —ea), Vt = 1(1 —ea)xjeax; (1 —ea)}ij
is a quasi-basis for F. Furthermore IndexF = (t — 1)%(1 —ey).

Proof. This is immediate by direct computations. 1

COROLLARY 2.2. We suppose that IndexE = 2. Then
(1 - EA)C*<B,€A>(1 - EA) = A(l - EA) = A.

Proof. By Lemma 2.1 there is a conditional expectation F of (1 —e4)C*(B,
ea)(1—ey)onto A(1—ey) and

IndexF = (IndexE — 1)%(1 —ey).
Since IndexE = 2, IndexF =1 — e4. Hence by Watatani [12],
(1—ea)C"(B,ea)(1—ea) = A(1 —ea).
Ifa(l—ey) = 0,fora € A, thena = 2E(a(1 —en)) = 0. Therefore the map

a+— a(l—ey) isinjective. And hence A(1 —ey) = A as desired. 1

LEMMA 2.3. With the same assumptions as in Lemma 2.1, we suppose that IndexE
= 2. Then forany b € B,

(I—ea)b(1—ea) = E(b)(1—ea).
Proof. By Corollary 2.2 there exists 2 € A such that (1 —es)b(1 —e4) =
a(1—ey). Therefore a = 2E(a(1 —ey)) = 2E((1 —ea)b(1 —en)) = E(b). This
completes the proof. 1

PROPOSITION 2.4. With the same assumptions as in Lemma 2.1, we suppose that
IndexE = 2. Then there is a unitary element U € C*(B,e4) satisfying the following
conditions:

HUr=1

(ii) UbU* = 2E(b) — b for b € B.
Hence if we denote by B the restriction of Ad(U) to B, B is an automorphism of B with
p* =id and BF =

Proof. By Lemma 2.3, for any b € B
(1—e)b(1 —es) = E(b) (1 — e4) = E(b) — E(b)ea.
On the other hand
(1—es)b(1—eq) =b—eab—bey +E(bley

Therefore
E(b) =b—epb—bes +2E(b)ea
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Let U be a unitary element defined by U = 2e¢4 — 1. Then by the above equation
forany b € B

UbU* = 2(b — eqb — bea + 2E(b)en) —b = 2E(b) —b. &
REMARK 2.5. By the above proposition, E(b) = 1(b + B(b)).

LEMMA 2.6. Let B be a unital C*-algebra and A a C*-subalgebra of B with a
common unit. Let E be a conditional expectation of B onto A with IndexE = 2. Then we
have

C*<B,€A> =B NﬁZz.

Proof. We may assume that B x g Z, acts on the Hilbert space I?(Z,, H) faith-
fully, where H is some Hilbert space on which B acts faithfully. Let W be a unitary
element in B x5 Zp with g = Ad(W), W2 =1.Lete = (W +1). Then e is a pro-
jection in B X3 Z and ebe = E(b)e for any b € B. In fact,

ebe = i(WbW—I—bW—I—Wb—H}).

On the other hand by Remark 2.5,

1

S(W+1) = 2(WOW + bW + Wb +b),

|

E(b)e = 5(b+ B(0))

Hence ebe = E(b)e for b € B. Also A > a + ae € B xp Z; is injective. In fact,
if ae = 0, aW +a = 0. Let B be the dual action of . Then 0 = B(aW +a) =
—aW +a. Thus 2a = 0, i.e., a = 0. Hence by Watatani ([12], Proposition 2.2.11)
C*<B,€A>§B><1/3Z2. 1

REMARK 2.7. (i) By the proofs of Propositions 2.2.7 and 2.2.11 in [12] we see

that x(b) = b forany b € B, where « is the isomorphism of C* (B, e4) onto B xg Z,
in Lemma 2.6.

(ii) The above lemma is obtained in Kajiwara and Watatani ([7], Theorem 5.13).

By Lemma 2.6 and Remark 2.7, we regard f as an automorphism of C* (B, e )
with B(b) = bforany b € B, B2 = id and B(ea) = 1 — ea.

LEMMA 2.8. With the same assumptions as in Lemma 2.6,

C*(B,eq)P = B.
Proof. By Lemma 2.6 for any x € C*(B,e,), we can write x = by + byU,
where by, by, € B. We suppose that f(x) = x. Then by — boU = by + bpU. Thus

b, = 0. Hence x = b; € B. Since it is clear that B C C*<B,€A>‘B, the lemma is
proved. &
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2.2. INVOLUTIVE EQUIVALENCE BIMODULES. Let A be a unital C*-algebra and
X(= aXa) an A-A-equivalence bimodule. X is involutive if there exists a conju-
gate linear map x + x% on X, such that:

1) B =xxeX;

() (a'x-b)ﬁ =b*-xf.a*,xeX,abec A;

®) alvy) = (Fy)a vy €X;
where 4(-,-) and (-,-) 4 are the left and the right A-valued inner products on X,
respectively. We call the above conjugate linear map an involution on X.

For an A-A-equivalence bimodule X, we define its dual bimodule. Let X be

X itself when it is considered as a set. We write X when x is considered in X. X is
made into an equivalence A-A-bimodule as follows:

1) f+g:m/\f:icforanyx,y € Xand A € C;
2 b-x-a= o x b foranya,bc Aandx € X;
B) A(xy) = (v, y)a, (X, y)a = a{x,y) forany x,y € X.
LEMMA 2.9. Let V be a map of an involutive A-A-equivalence bimodule X onto

its dual bimodule X defined by V (x) = x*, where X means x as viewed as an element in
X. Then V is an A-A-equivalence bimodule isomorphism of X onto X.

Proof. This is immediate by routine computations. 1

3. CORRESPONDENCE BETWEEN INVOLUTIVE EQUIVALENCE BIMODULES
AND INCLUSIONS OF C*-ALGEBRAS WITH INDEX 2

Let A be a unital C*-algebra and we denote by (B, E) a pair of a unital C*-
algebra B including A as a C*-subalgebra of B with a common unit and a condi-
tional expectation E of B onto A with IndexE = 2. Let £ be the set of all such
pairs (B, E) as above. We define an equivalence relation ~ in £ as follows: for
(B,E),(By,E1) € L, (B,E) ~ (By,Ey) if and only if there is an isomorphism 7t of
B onto By such that 71(a) = a for any a € A and E; o m = E. We denote by [B, E|
the equivalence class of (B, E).

Let M be the set of all involutive A-A-equivalence bimodules. We define an
equivalence relation ~ in M as follows: for X, Y € M, X ~ Y if and only if there
is an A-A-equivalence bimodule isomorphism p of X onto Y with p(x*) = p(x)*.
We call p an involutive A-A-equivalence bimodule isomorphism of X onto Y. We
denote by [X] the equivalence class of X.

3.1. CONSTRUCTION OF A MAP FROM L/ ~ TO M/ ~. We shall use the same
notations as in Section 2.

Let B be a unital C*-algebra and A a C*-subalgebra of B with a common
unit. Let E be a conditional expectation of B onto A with IndexE = 2. Then, by
Watatani [12] and Corollary 2.2, we have:
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(1) EAC*<B,EA>EA = AEA = A;

2) (1 - EA)C*<B,€A>(1 - EA) = A(l — eA) = A.
Let i be an isomorphism of A onto Ae, defined by ¢(a) = aes foranya € A and
¢ an isomorphism of A onto A(1 — e,) defined by ¢ = B o . Let X(pE) = Xp =
eaC*(B,ea)(1 —en). We regard Xp as a Hilbert A-A-bimodule in the following
way: forany a,b € Aand x € Xp,a-x-b = (a)x¢(b) = axb. For any x,y € Xp,
alxy) =71 (xy"), (y)a = ¢7H(x'Y).

LEMMA 3.1. With the above notations, Xp is an A-A-equivalence bimodule.

Proof. This is immediate by routine computations. 1

Let x — x! be a conjugate linear map on Xp defined by x* = B(x*) for
any x € Xp. Since B2 = id, (x*)! = x. Since p(a) = aforanya € A, (a-x
b)t = B(b*x*a*) = b* - x*-a* for x € X, a,b € A. Furthermore, for x,y € Xp
A{x,y?) = (xf,y) 4 by an easy calculation. Therefore X3 is an element in M.

REMARK 3.2. Xp is isomorphic to (1 —e4)C*(B,ea)es as A-A-equivalence
bimodules. Indeed, the map (1 —e4)C*(B,ea)es 2 (1 —eaq)xes — eax*(1—en),
x € C*(B,e4) gives an A-A-equivalence bimodule isomorphism of (1 —e,)C*

(B,e4)es onto Xp, where i e y means y viewed as an element in Xp for any y € Xp.
Sometimes, we identify Xp with (1 —e4)C*(B,e)e4.

Let F be a map from £/ ~ to M/ ~ defined by F([B,E]) = [Xp] for any
[B,E] € L/ ~.

LEMMA 3.3. With the above notations, F is well-defined.

PTOOf. Let (B, E), (Bl, El) € L with (B,E) ~ (Bl, El) Let Xg and XB] be el-
ements in M defined by (B, E) and (B, E; ), respectively. Since (B, E) ~ (By, E1),
there is an isomorphism 7 of B onto B; such that 77(a) = a for any a4 € A and
Eiom = E. Let T be a homomorphism of the linear span of {be,c : b,c € B}
to C*(By,ea,1) defined by 7T(besc) = m(b)eas7(c) for any b,c € B. Then, for
bj,c;e B(i=1,2,...,n) and a € B, we have:

Hﬁ(lébieAci)n(a)sz ; ))Hz
= || £ Ertarei B (o))
ij
- _iE(a*an(b;‘bj)E(Cf“)H'
1,]=

On the other hand
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Hence

H'ﬁ(zi bieAci)

n

‘ - sup{Hﬁ( » bieAci>7T(a)H | Ei((a)*e(a))| = 1,a € B}

n n
= sup{H ZbieACiﬂH :||E(a*a)|| =1,a € B} = H ZbieAci’ .
i=1 i=1
Thus 77 can be extended to an isomorphism of C*(B,e4) onto C*(By,e41). Hence
7 is an involutive A-A-equivalence bimodule isomorphism of Xp onto Xp, since
7t(ea) = ea1. Infact, fora € Aand x € C*(B,ey)

m(a-eax(1—eq)) =eapa-m(x)(1—ear) =a-m(eax(l—en)).
Similarly
Tleax(1—en)-a) =T(eax(1—e4))-a.
Also, for x,y € C*(B,e4), we have:
a(FE(eax(1—ea)), Fleay(1—ea))) = ($7 ' 0 7) (eax(1 —ea)y’en)
= aleax(l—ea),eay(l—ea)),
(7E(eax(1—ea)), 7i(eay(1—ea)))a = ¢~ (1 —ea)x"eay(l —ea))
= (eax(1 —ea),eay(1 —ea))a,
since ;! = o and 7o f = By o 7. Furthermore, for any x € C*(B,e4)
((eax(1 —ea))?) = 7(eaB(x)" (1 —ea))
= (ean7(x)(1— eA/l))ﬁ = f(eax(1—en))t.
Therefore X ~ Xp, in M. 1

3.2. CONSTRUCTION OF A MAP FROM M/ ~ TO L/ ~. Let X € M. Following
Brown, Green and Rieffel [2], we can define the linking algebra L for an A-A-
equivalence bimodule X. Let

a x
LO—{b b} .a,beA,x,yGX},

where 7 means y viewed as an element in the dual bimodule X of X. In the same
way as in Brown, Green and Rieffel [2] we can see that L is a x-algebra. Also we
regard L as a *-subalgebra acting on the right Hilbert A-module X & A. Hence
we can define an operator norm in Ly acting on X & A. We define L as the above
operator norm closure of Ly. But, since X is complete, in this case L = L, = L.
Let Bx be a subset of L defined by

a x
BX_{LA&I a].aeA,xeX}.

By direct computations, we can see that By is a *-subalgebra of L and since X
is complete, By is closed in L, that is, Bx is a C*-subalgebra of L. We regard A
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“ a 0 .
as a C*-subalgebra 0 ali?® € A of Bx. Let Ex be a linear map of Bx onto

. a x a 0 a x
A defined by Ex <Lﬁ a}) = [0 a] for any [fﬁi a} € Bx. Then by easy
computations Ex is a conditional expectation of Bx onto A.

LEMMA 3.4. With the above notations, IndexEx = 2.

Proof. There are elements z1,...,2,,Y1,...,Yn € X such that Z (zi,yi)a =

1 by Rieffel ([11], the proof of Proposition 2.1) since X is an A- A equlvalence
bimodule. Fori =1,2,...,n let w; be an element in X with w; = z Then

{([(1) ﬂ[(l) ?D}u{([% lgi , );i_1,2,...,n}
is a quasi-basis for Ex by direct computations. In fact, for L;j ;C] € By
(52l ) o W =00 o)
x* a0 1 01 0 a
. , '
(5 S 8L )

0
7o

x

Also,

n j n ﬁ

Yo alxwi)yi =) x(w],yi)a = x,

i=1 i=1

n ,vﬂ n ~»ﬁ n ﬁ

Yo wiafi = Y- alxwh)iE = Y Vialxwly) = #,

i=1 i=1 i=1
where V is an A-A-equivalence bimodule isomorphism defined in Lemma 2.9.
Hence

a x][1 0 1 0] ¢ a x| |0 wi|\|0 yi| [a x
EX([% a} [0 1})[0 1]+§E<L}ﬁ a} [@3 0 > 7 ool T a)
Similarly
10 1 0l[a x|\ &[0 w 0 wyi|[a x|\ _ [a «x
[0 1}EX<[0 1} Lzﬂ aD+§ " 0115(?? o |# o)) T |® a
Thus
_[1 0], v wil |0 yi| _[2 0
IndexEX—[O 1]—1—; & 0 ]75 ol =lo 2| ]




INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C*-ALGEBRAS 11

1 O]. Then it

REMARK 3.5. Let e be an element in L(= L) defined by [0 0

is obvious that for any b € Bx,ebe = Ex(b)e. Furthermore the map [g 2} —

e [g 2 = g 8 for a € Aisinjective. And hence L is the C*-basic construction
of A C B by Watatani [12].

Let G be a map from M/ ~ to L/ ~ defined by G([X]) = [Bx, Ex]| for any
(X] € M/ ~.

LEMMA 3.6. G is well-defined.

Proof. Let X, Xy € M with X ~ X;j. Let (Bx, Ex) and (By,, Ex, ) be elements
in £ induced by X and X, respectively. Since X ~ Xj, there is an involutive A-
A-equivalence bimodule isomorphism p of X onto X;. Let 7t be a map of Bx to

By, defined by for any [;ﬂ ﬂ € Bx, (L; ﬂ) = Ligﬂ p(ax)l. Then it is

- a x
clear that 7t is linear. For {Mﬁ } € By,
X oa

d(

I
[ R
| I |
~_
*

Il

a x by
Also for [Ec”ﬁ a} and [ﬂﬁ b} € By,
a x| [b y ab+ a(x,y*)  p(ay +xb)
T\ a7 b)) b+ ’
Yy o(xb+ay)  (xf,y)s+ab
and

ab+A@@,P(ﬁy”)> p(ay + xb)
o(xb + ay) (p(x*),0(y))a +ab

ab + A(x,yﬁ) p(ay + xb)

P(ﬂﬂ\ﬁy)ﬁ (x*,y)a+ab

= (& 2l 3]

Hence 7 is a homomorphism of Bx to By,. Furthermore, by the definition of 7,

. N a 0 a 0 a x
7t is a bijection and 7 <[O a}) = [0 a} for any a € A. And for L}ﬂ {J € By

e ([5)=m ([ ]) =6 A= (2 )
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3.3. BIJECTION BETWEEN L/ ~ AND M/ ~. In this subsection, we shall show
that FoG =idy /o and Go F =idg, ..

LEMMA 3.7. Let (B, E) be an element in L and C*(B, e ) the basic construction
for (B, E). Then for each x € C*(B,en), there uniquely exists b € B such that epax =
eAb.

PTOOf. Letx= ZbieAci, where bi, Ci € B. Then eapx :ZeAbieAci = XeAE(bi)ci

i i i
=ea Y E(b;)c;. And hence b = Y E(b;)c;. If eab = e4b’, where b, b’ € B, then
i i
b= 1E(e b) = 1E(e vy =1
= ptleab) = sEleat’) =0,
where E is the dual conditional expectation of C*(B,e,) onto B. Thus we obtain
the conclusion. 1
Let (B, E) be an element in L. Let B_ be a linear subspace of B defined by
B_.={beB:E(b)=0}={beB:B(b)=-b},
where 8 is an automorphism of B defined in Proposition 2.4. By a routine com-
putation we can see that B_ is an element in M with the involution x* = x* and
the left and the right A-valued inner products defined by
alx,y) = E(xy"), (x,y)a =E(x"y) forx,yeB_.

LEMMA 3.8. With the above notations, B_ ~ Xg i.e., [B_] = [Xg] in M/ ~.

Proof. By Lemma 3.7, we can define a map ¢ from C*(B,e4) to Bby eqx =
eap(x). Foreax(1—eu) € Xp, we have

eax(1—ea) = eap(x) —eaE(g(x)) = ealp(x) — E(e(x))).
Andhence p(eax(1—en)) = ¢(x) — E(¢(x)) € B_.Itis easy to see that ¢|x, is an

A-A-bimodule isomorphism of Xp onto B_. Furthermore fore x(1—e4),eay(1—
ea) € Xp,

aleax(1—ea),eay(1—ea)) = ¢~ (E((9(x) — E(9(x)))(¢(y) — E(9(y)))*)ea)
= E((¢(x) — E(p(x)))(¢(y) — E(p(v)))")
= alp(x) — E(9(x)), ¢(v) — E(e(v)))-

Similarly, (eax(1 —ea),eay(l1 —ea))a = (¢(x) — E(p(x)), ¢(v) — E(¢(y)))a

((eax(1—ea))?) = g(Bleax(1—ea))*) = (B((1 —ea)p(x)"ea))
(eag(x)*(1—ea)) = ¢(x)" — E(p(x)")
= (p(x) — E(¢(x)))" = ¢eax(1—ea))".
Hence Xg ~ B_in M. 1

LEMMA 39. GoF =idp,..
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Proof. For (B,E) € L, it is easy to see that G([B_]) = [B, E|. Since [Xp] =
[B_] by the previous lemma, G o F([B,E|) = G([Xg]) = [B, E]. Thus the lemma
is proved. 1

LEMMA 3.10. FoG =id g/~
Proof. For X € M,

0 x
(Bx)_{XEBxEx(X)O}{L?ﬁ O]XEX}
So it is easy to see that [(Bx)—] = [X]. And hence by Lemma 3.8
FoG([X]) = F([Bx,Ex]) = [(Bx)-] = [X]. ®
THEOREM 3.11. There is a 1-1 correspondence between L/ ~ and M/ ~.

Proof. This is immediate by Lemmas 3.9 and 3.10. &

4. APPLICATIONS

4.1. CONSTRUCTION OF INVOLUTIVE EQUIVALENCE BIMODULES BY 2Z-INNER
C*-DYNAMICAL SYSTEMS. Let A be a unital C*-algebra and (A, Z, a) a 2Z-inner
C*-dynamical system which means that (A,Z, «) is a C*-dynamical system and
that there is a unitary element z € A with a(z) = z and a®> = Ad(z). In this case,
we can form the restricted crossed product A X, /y7 Z in the sense of P. Green
[4]. Let X, be the vector space A with the obvious left action of A on X, and the
obvious left A-valued inner product, but we define the right action of A on X, by
x-a = xwa(a) for any x € X, and a € A, and the right A-valued inner product by
(x,y) 4 = a~(x*y) for any x,y € X,.

LEMMA 4.1. We can define an involution x — x* on X, by
xf = a(x)z,
where z is a unitary element of A with a(z) = z and o> = Ad(z).

Proof. Since &(z) = z and a?> = Ad(z), by routine computations, we can see
that the map x +— x* defined by x# = a(x*)z is an involution on X,. &

PROPOSITION 4.2. With the above notations, we suppose that A is simple. Let
Bx, be a C*-algebra defined by X, and L the linking algebra for X, defined in Section 2.
Then the following conditions are equivalent:
(i) Bx, is simple;
(i) A'nBx, =C-1;
(iii) By, NL=C-1;
(iv) a is an outer automorphism of A.
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Proof. (i) = (ii): By Proposition 2.4, Béa = A. Since A is simple, by Pedersen
([10], Proposition 8.10.12) B is outer. Hence by Pedersen ([10], Proposition 8.10.13)
A'N Bx, = C-1.

(ii) < (iii): By Watatani ([12], Proposition 2.7.3) A’ N By, is anti-isomorphic
to By NC*(Bx,, ea). This implies the conclusion.

(ii) = (iv): We suppose that there is a unitary element w € A such that
« = Ad(w) Then foranya € A

w-a=wa(a) =aw=a-w.
So it is easy to see that

|:Z§ﬁ 7(1)):| cA'n By, .
This is a contradiction. Thus « is outer.

(iv) = (i): We can identify L with the C*-basic constraction of A C By,
by Remark 3.5. Let B be an automorphism of By, defined in the same way
as in Proposition 2.4 and let B be its dual automorphism. Then LB = Bx, by
Lemma 2.8. We suppose that E is inner. Then there is a unitary element w =

{; ﬂ € L such that B = Ad(w). Hence for any c € A
~(lc O a x| [c 0][a x]°
(o o) =[5 216 o5 ]
Hence we obtain that
[O 0} B l/a_C\a_*/ ac-y ]
0 cl facty (" yy)a

forany c € A. Putc = 1. Thena = 0and (y,y) 4 = 1. Since w is a unitary element,
by a routine computation we can see that b = 0 and 4 (y,y) = 1. This implies that
y is a unitary element in A. Since ¢ = (¢* -y, y) 4 = a(y*cy) = a(y)*a(c)a(y) for
any ¢ € A, a is inner. This is a contradiction. Hence B is outer. Since L and A
are stably isomorphic by Brown, Green and Rieffel [2], L is simple. By Pedersen

([10], Theorem 8.10.12) By, = LP is simple. &

LEMMA 4.3. Let (A,Z,x) be a 2Z-inner dynamical system with «(z) = z and
a? = Ad(z), where z is a unitary element in A. Let B be the restricted crossed product
A Xy /07, L associated with (A,7Z,«) and E the canonical conditional expectation of B

onto A. Then Xp = X, as involutive A-A-equivalence bimodules, where Xp is an
involutive A-A-equivalence bimodule induced by (B, E).

Proof. We may assume that A acts on a Hilbert space H. By Olesen and
Pedersen ([9], Proposition 3.2) we also assume that B acts on the induced Hilbert
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space Ind2; (H). Let

C= {L(Zz) “(xa)} EMZ(A):a,xeA}.

Since A acts on H, we can put C as a C*-algebra acting on H ® H. We claim
that B = C. Indeed, let p be a map from K(Z, A,z) to C defined by for any
feK(ZAz)
_| s f(1)
"= |adhe) alrion]

where K(Z, A, z) is a x-algebra of all functions f : Z — A satisfying that f(n —
2m) = f(n)z™ for any m,n € Z (see [9]). Then by routine computations p is
a homomorphism of K(Z, A,z) to C. Let U be a map from Ind%,(H) to H® H
defined by U¢ = ¢(0) © (1) forany ¢ € K(Z, A, z). Then by an easy computaion
U is a unitary operator of Ind%, (H) onto H @ H. Moreover, forany f € K(Z, A, z),
p(f) = UfU*. Hence p is an isometry of K(Z, A, z) to C and we can extend p to
an isomorphism of B onto C since K(Z, A, z) is dense in B. Thus B = C. Let F

. . a x a 0
be a linear map of C onto A defined by F ( Lc(xz) zx(a)} ) = [0 zx(a)} for any

Lc(fcz) oc(xa)} € C, where we identify A with a C*-algebra { [g uc(ozz)] 1a € A}.
Then by an easy computation (B,E) ~ (C,F) in L. Let (Bx,, Ex, ) be an element
in £ induced by the involutive A-A-equivalence bimodule X,. Let ¢ be a map
from C to By, defined by

* (|G ato]) = 1% 3]

a x . . . . .
for any [“ (x2) « (a)] € C. Then by routine computations @ is an isomorphism

of C onto Bx, with F = Ex, o ®. Thus (B,E) ~ (Bx,, Ex,). By Theorem 3.11,
Xg ~ Xyin M. 1

Let B be a unital C*-algebra and A a C*-subalgebra of B with a common unit.
Let E be a conditional expectation of B onto A with IndexE = 2. For any n € N
let M, be the n x n-matrix algebra over C and M, (A) the n x n-matrix algebra
over A. Let {(x;,x{)}/"; be a quasi-basis for E. We define g = [g;;] € M,(A) by
q;j = E(x7x;). Then by Watatani [12], q is a projection and C*(B,e4) =~ M, (A)g.
Let 7t be an isomorphism of C*(B, e4) onto gM, (A)q defined by

mt(aeab) = [E(x;a)E(bxj)] € My(A)

n
forany a,b € B. Especially for any b € B, t(b) = [E(x]bx;j)] since }_ xjeax] = 1.
i=1
PROPOSITION 4.4. With the above notations, the following conditions are equiv-
alent:
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(i) eq and 1 — e 4 are equivalent in C*(B,ey);

(ii) there exists a unitary element u € B such that {(1,1), (u,u*)} is a quasi-basis
for E;

(iii) there exists a 2Z-inner C*-dynamical system (A,Z, a) such that X, ~ Xp.

Proof. (i) = (ii): We suppose that there is a partial isometry v € C*(B,e4)

such that v*v = e4, v0* = 1 —e4. Then veqv* = 1 —e4. By Lemma 3.7, there
exists an element u in B such that ve4 = ue4 and hence ue u* =1 —e4. Let E be
the dual conditional expectation for E. Then

uu* = 2E(uequ*) =2E(1 —ey) = 1.
Therefore u is a co-isometry element in B. Since equ*uey = eqv*vey = es, we
have E(u*u) = 1 and E(1 — u*u) = 0. And hence u*u = 1 ie., u is a unitary
element in B. For any x € B
xeq = (eq +uequ”)xey = E(x)eq +uE(u*x)eq = (E(x) + uE(u*x))ea.
Thus x = E(x) + uE(u*x) by Lemma 3.7. Similarly, x = E(x) + E(xu)u*. This
implies that {(1,1), (u,u*)} is a quasi-basis for E.
(il) = (i): We suppose that {(1,1), (1, u*)} is a quasi-basis for E and that u
is a unitary element in B. Then
u=E(u)+uE(u"u) =E(u)+u.
This implies that E(u) = 0. Hence
_[E(1-1) Em) ] _[1 O
= Ew) E@w| |0 1]
Therefore C*(B,e4) ~ Mp(A). Furthermore

10 00
wen) = [y o] ma-en=[ 9.
And henceey ~ (1 —en) in C*(B,eq).
(ii) = (iil): We suppose that {(1,1), (1, u*)} is a quasi-basis for E and that
u is a unitary element in B. Then in the same way as above E(u) = 0. For any
ac A

uau® = E(uau®) + E(uau*u)u* = E(uau™) + E(u)au™ = E(uau™).
Therefore uAu* = A. Let a be an automorphism of A defined by a(a) = uau*
for any a € A. Since u?> = E(u®) + uE(u*u?) = E(u?), u? is an element in A.
Therefore (A, Z, «) is a 2Z-inner C*-dynamical system. It is easy to see that
Xy~ Au=B_={beB:E(b) =0}.

By Lemma 3.8, X; ~ X3.

(iif) = (ii) : We suppose that there exists a 2Z-inner C*-dynamical system
(A,Z, ) such that X, ~ Xp. By the previous lemma, we may suppose that B =
A X407 Z. Then there exists a unitary element u € B such that Ad(u) = «,
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u? € Aand E(u) = 0. By a routine computation we can see that {(1,1), (1, u*)}
is a quasi-basis for E. 1

COROLLARY 4.5. Let 0 be an irrational number in (0,1) and Ag the correspond-
ing irrational rotation C*-algebra. Let B be a unital C*-algebra including Ag as a C*-
subalgebra of B with a common unit. We suppose that there is a conditional expectation
E of B onto Ay with IndexE = 2. Then there is a 2Z-inner C*-dynamical system
(Ag,Z,a) such that (B,E) ~ (Ag X2z Z, F), where F is the canonical conditional
expectation of Ag X, /07, Z onto Ag.

Proof. Let e be the Jones projection induced by E. We can identify the basic
construction C*(B, e) with gM,(Ag)q in the same way as in the previous argu-
ment. Hence C* (B, ¢) has the unique normalized trace T and 7(¢) = T(1 —¢) = 3.
So it is easy to see thate ~ 1 — e in C*(B, e) since Ay has cancellation. Therefore
we obtain the conclusion by the previous proposition. 1

4.2. EXAMPLES. In this subsection, let Ay be as in Corollary 4.5 and let u, v be
two unitary generators satisfying the commutation relation:

uo = e2M0yy.

EXAMPLE 4.6. Let Ajg be the C*-subalgebra of Ag generated by u? and v.
Then we can denote Ag = {x +yu : x,y € Ay}. Let E be a map of Ag onto Ay
defined by E(x 4+ yu) = x. It is easy to see that E is a conditional expectation
of Ay onto Ay with IndexE = 2 and a quasi-basis {(1,1), (u,u*)}. Hence by
Corollary 4.5, Ay can be represented as the restricted crossed product Ay X, /27
Z, where a is an automorphism on Ay defined by « = Ad(u).

Suppose that Ay can be represented as a crossed product Az X g Z; for some
Zp-action B on Ajg. Then there exists a self-adjoint unitary element w in Ay sat-
isfying that f = Ad(w) and Ag = {x +yw : x,y € Ayp}. Let T be the unique
tracial state on Ag. By the uniqueness of T, we can see that 7(x + yw) = 7(x). Let
e be a projection in Ag defined by e = (1 + w). Then t(e) = 1. This contradicts
that T(Ag) = (ZN6Z) N (0,1). Therefore Ay can not be represented as a crossed
product Ayg X g Z; for any Zp-action  on Apg.

EXAMPLE 4.7. Let o be the involutive automorphism of Ay determined by
o(u) = u* and o(v) = v*. Let Cy denote the fixed point algebra A = {x € Ay :
o(x) = x} and By the crossed product Ag X Z;. Then By is the basic construction
of Cop C Ay. By Kumijian [8], Ko-group of By, Ko(Bg) is isomorphic to Z°. By
routine computations, we can see [e] # [1 — ¢| in Ko(Bg), where e is the Jones
projection for the inclusion Cy C Ay. Hence ¢ 4 1 —e in By. Therefore the
inclusion Cy C Ay can not be represented as the restricted crossed product Cy C
Cp Xy /27 Z for any automorphism « on Cy by Proposition 4.4.
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