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1. INTRODUCTION

V. Jones introduced an index theory for II1 factors in [6]. One of his motiva-
tions is Goldman’s theorem, which says that if M is a type II1 factor and N ⊂ M is
a subfactor with the Jones index [M : N] = 2, then there is a crossed product de-
composition M = N oα Z2, where Z2 is the group Z/2Z of order two. Since Jones
index theory is extended to C∗-algebras by Y. Watatani, it is worth to investigate
Goldman type theorems for inclusions of simple C∗-algebras. In the present pa-
per, we shall study the inclusion A ⊂ B of C∗-algebras with a conditional expec-
tation E : B → A of Index E = 2. In Subsection 4.2, we shall show that a Goldman
type theorem does not hold for inclusions of simple C∗-algebras in general by ex-
hibiting examples of inclusions like a non-commutative sphere in an irrational
rotation C∗-algebra Aθ and irrational rotation C∗-algebras A2θ ⊂ Aθ with differ-
ent angles. Therefore there occurs the following natural question: What kind of
structures are there in the inclusion of C∗-algebras with index 2? We shall answer
the question in the present paper: Any inclusion of C∗-algebras with index two
gives an involutive equivalence bimodule.

Let us explain the notion of involutive equivalence bimodules. Consider
a typical situation, that is, the inclusion A ⊂ B is given by the crossed product
B = A oα Z2 by some action α : Z2 → Aut(A). Then the canonical conditional
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expectation E : B → A has Index E = 2. Moreover there exists the dual action
α̂ : Z2 → Aut(B) such that

(A oα Z2) oα̂ Z2 ∼= A⊗ M2(C),

where M2(C) is the 2× 2-matrix algebra over C. It is well known that the C∗-basic
construction C∗〈B, eA〉 is exactly (A oα Z2) oα̂ Z2. Then the Jones projection eA
corresponds to the projection e11 = diag(1, 0) and 1 − eA corresponds to e22 =
diag(0, 1), where diag(λ, µ) is a 2× 2-diagonal matrix with diagonal elements λ,
µ. Let X = e11(A ⊗ M2(C))e22. Then X is an A-A-equivalence bimodule in the
natural way. There exists a natural involution on X such that

x] =
(

0 z∗

0 0

)
for x =

(
0 z
0 0

)
.

We pick up these properties to define the notion of involutive equivalence bimod-
ules. In Theorem 3.3.1, we shall show that even if B is not a crossed product of
A, the inclusion of C∗-algebras with index 2 gives an involutive A-A-equivalence
bimodule. Moreover the set of inclusions of C∗-algebras with index 2 has a one
to one correspondence with the set of involutive A-A-equivalence bimodules up
to isomorphisms.

In Proposition 4.1.2, we shall characterize the subclass such that B is the
twisted crossed product of A by a partially inner C∗-dynamical system studied by
Green, Olsen and Pedersen. The characterization is given by the von Neumann
equivalence of eA and 1− eA in C∗〈B, eA〉.

2. PRELIMINARIES

2.1. SOME RESULTS FOR INCLUSIONS WITH INDEX 2. Let B be a unital C∗-algebra
and A a C∗-subalgebra of B with a common unit. Let E be a conditional expec-
tation of B onto A with 1 < IndexE < ∞. Then by Watatani [12] we have the
C∗-basic construction C∗〈B, eA〉 where eA is the Jones projection induced by E.
Let Ẽ be the dual conditional expectation of C∗〈B, eA〉 onto B defined by

Ẽ(aeAb) =
1
t

ab for any a, b ∈ B,

where t = IndexE. Let F be a linear map of (1− eA)C∗〈B, eA〉(1− eA) to A(1− eA)
defined by

F(a) =
t

t− 1
(E ◦ Ẽ)(a)(1− eA)

for any a ∈ (1− eA)C∗〈B, eA〉(1− eA). By routine computations we can see that
F is a conditional expectation of (1− eA)C∗〈B, eA〉(1− eA) onto A(1− eA).
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LEMMA 2.1. With the above notations, let {(xi, x∗i )}n
i=1 be a quasi-basis for E.

Then

{
√

t− 1(1− eA)xjeAxi(1− eA),
√

t− 1(1− eA)x∗i eAx∗j (1− eA)}n
i,j=1

is a quasi-basis for F. Furthermore IndexF = (t− 1)2(1− eA).

Proof. This is immediate by direct computations.

COROLLARY 2.2. We suppose that IndexE = 2. Then

(1− eA)C∗〈B, eA〉(1− eA) = A(1− eA) ∼= A.

Proof. By Lemma 2.1 there is a conditional expectation F of (1− eA)C∗〈B,
eA〉(1− eA) onto A(1− eA) and

IndexF = (IndexE− 1)2(1− eA).

Since IndexE = 2, IndexF = 1− eA. Hence by Watatani [12],

(1− eA)C∗〈B, eA〉(1− eA) = A(1− eA).

If a(1 − eA) = 0, for a ∈ A, then a = 2Ẽ(a(1 − eA)) = 0. Therefore the map
a 7→ a(1− eA) is injective. And hence A(1− eA) ∼= A as desired.

LEMMA 2.3. With the same assumptions as in Lemma 2.1, we suppose that IndexE
= 2. Then for any b ∈ B,

(1− eA)b(1− eA) = E(b)(1− eA).

Proof. By Corollary 2.2 there exists a ∈ A such that (1 − eA)b(1 − eA) =
a(1− eA). Therefore a = 2Ẽ(a(1− eA)) = 2Ẽ((1− eA)b(1− eA)) = E(b). This
completes the proof.

PROPOSITION 2.4. With the same assumptions as in Lemma 2.1, we suppose that
IndexE = 2. Then there is a unitary element U ∈ C∗〈B, eA〉 satisfying the following
conditions:

(i) U2 = 1;
(ii) UbU∗ = 2E(b)− b for b ∈ B.

Hence if we denote by β the restriction of Ad(U) to B, β is an automorphism of B with
β2 = id and Bβ = A.

Proof. By Lemma 2.3, for any b ∈ B

(1− eA)b(1− eA) = E(b)(1− eA) = E(b)− E(b)eA.

On the other hand

(1− eA)b(1− eA) = b− eAb− beA + E(b)eA.

Therefore
E(b) = b− eAb− beA + 2E(b)eA.
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Let U be a unitary element defined by U = 2eA − 1. Then by the above equation
for any b ∈ B

UbU∗ = 2(b− eAb− beA + 2E(b)eA)− b = 2E(b)− b.

REMARK 2.5. By the above proposition, E(b) = 1
2 (b + β(b)).

LEMMA 2.6. Let B be a unital C∗-algebra and A a C∗-subalgebra of B with a
common unit. Let E be a conditional expectation of B onto A with IndexE = 2. Then we
have

C∗〈B, eA〉 ∼= B oβ Z2.

Proof. We may assume that B oβ Z2 acts on the Hilbert space l2(Z2, H) faith-
fully, where H is some Hilbert space on which B acts faithfully. Let W be a unitary
element in B oβ Z2 with β = Ad(W), W2 = 1. Let e = 1

2 (W + 1). Then e is a pro-
jection in B oβ Z2 and ebe = E(b)e for any b ∈ B. In fact,

ebe =
1
4
(WbW + bW + Wb + b).

On the other hand by Remark 2.5,

E(b)e =
1
2
(b + β(b))

1
2
(W + 1) =

1
4
(WbW + bW + Wb + b).

Hence ebe = E(b)e for b ∈ B. Also A 3 a 7→ ae ∈ B oβ Z2 is injective. In fact,
if ae = 0, aW + a = 0. Let β̂ be the dual action of β. Then 0 = β̂(aW + a) =
−aW + a. Thus 2a = 0, i.e., a = 0. Hence by Watatani ([12], Proposition 2.2.11)
C∗〈B, eA〉 ∼= B oβ Z2.

REMARK 2.7. (i) By the proofs of Propositions 2.2.7 and 2.2.11 in [12] we see
that κ(b) = b for any b ∈ B, where κ is the isomorphism of C∗〈B, eA〉 onto B oβ Z2
in Lemma 2.6.

(ii) The above lemma is obtained in Kajiwara and Watatani ([7], Theorem 5.13).

By Lemma 2.6 and Remark 2.7, we regard β̂ as an automorphism of C∗〈B, eA〉
with β̂(b) = b for any b ∈ B, β̂2 = id and β̂(eA) = 1− eA.

LEMMA 2.8. With the same assumptions as in Lemma 2.6,

C∗〈B, eA〉β̂ = B.

Proof. By Lemma 2.6 for any x ∈ C∗〈B, eA〉, we can write x = b1 + b2U,
where b1, b2 ∈ B. We suppose that β̂(x) = x. Then b1 − b2U = b1 + b2U. Thus

b2 = 0. Hence x = b1 ∈ B. Since it is clear that B ⊂ C∗〈B, eA〉β̂, the lemma is
proved.
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2.2. INVOLUTIVE EQUIVALENCE BIMODULES. Let A be a unital C∗-algebra and
X(= AXA) an A-A-equivalence bimodule. X is involutive if there exists a conju-
gate linear map x 7→ x] on X, such that:

(1) (x])] = x, x ∈ X;
(2) (a · x · b)] = b∗ · x] · a∗, x ∈ X, a, b ∈ A;
(3) A〈x, y]〉 = 〈x], y〉A, x, y ∈ X;

where A〈·, ·〉 and 〈·, ·〉A are the left and the right A-valued inner products on X,
respectively. We call the above conjugate linear map an involution on X.

For an A-A-equivalence bimodule X, we define its dual bimodule. Let X̃ be
X itself when it is considered as a set. We write x̃ when x is considered in X̃. X̃ is
made into an equivalence A-A-bimodule as follows:

(1) x̃ + ỹ = x̃ + y λx̃ = λ̃x for any x, y ∈ X and λ ∈ C;

(2) b · x̃ · a = ˜a∗ · x · b∗ for any a, b ∈ A and x ∈ X;
(3) A〈x̃, ỹ〉 = 〈x, y〉A, 〈x̃, ỹ〉A = A〈x, y〉 for any x, y ∈ X.

LEMMA 2.9. Let V be a map of an involutive A-A-equivalence bimodule X onto
its dual bimodule X̃ defined by V(x) = x̃], where x̃ means x as viewed as an element in
X̃. Then V is an A-A-equivalence bimodule isomorphism of X onto X̃.

Proof. This is immediate by routine computations.

3. CORRESPONDENCE BETWEEN INVOLUTIVE EQUIVALENCE BIMODULES
AND INCLUSIONS OF C∗-ALGEBRAS WITH INDEX 2

Let A be a unital C∗-algebra and we denote by (B, E) a pair of a unital C∗-
algebra B including A as a C∗-subalgebra of B with a common unit and a condi-
tional expectation E of B onto A with IndexE = 2. Let L be the set of all such
pairs (B, E) as above. We define an equivalence relation ∼ in L as follows: for
(B, E), (B1, E1) ∈ L, (B, E) ∼ (B1, E1) if and only if there is an isomorphism π of
B onto B1 such that π(a) = a for any a ∈ A and E1 ◦ π = E. We denote by [B, E]
the equivalence class of (B, E).

LetM be the set of all involutive A-A-equivalence bimodules. We define an
equivalence relation ∼ in M as follows: for X, Y ∈ M, X ∼ Y if and only if there
is an A-A-equivalence bimodule isomorphism ρ of X onto Y with ρ(x]) = ρ(x)].
We call ρ an involutive A-A-equivalence bimodule isomorphism of X onto Y. We
denote by [X] the equivalence class of X.

3.1. CONSTRUCTION OF A MAP FROM L/ ∼ TO M/ ∼. We shall use the same
notations as in Section 2.

Let B be a unital C∗-algebra and A a C∗-subalgebra of B with a common
unit. Let E be a conditional expectation of B onto A with IndexE = 2. Then, by
Watatani [12] and Corollary 2.2, we have:
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(1) eAC∗〈B, eA〉eA = AeA ∼= A;
(2) (1− eA)C∗〈B, eA〉(1− eA) = A(1− eA) ∼= A.

Let ψ be an isomorphism of A onto AeA defined by ψ(a) = aeA for any a ∈ A and
φ an isomorphism of A onto A(1− eA) defined by φ = β̂ ◦ ψ. Let X(B,E) = XB =
eAC∗〈B, eA〉(1− eA). We regard XB as a Hilbert A-A-bimodule in the following
way: for any a, b ∈ A and x ∈ XB, a · x · b = ψ(a)xφ(b) = axb. For any x, y ∈ XB,
A〈x, y〉 = ψ−1(xy∗), 〈x, y〉A = φ−1(x∗y).

LEMMA 3.1. With the above notations, XB is an A-A-equivalence bimodule.

Proof. This is immediate by routine computations.

Let x 7→ x] be a conjugate linear map on XB defined by x] = β̂(x∗) for
any x ∈ XB. Since β̂2 = id, (x])] = x. Since β̂(a) = a for any a ∈ A, (a · x ·
b)] = β̂(b∗x∗a∗) = b∗ · x] · a∗ for x ∈ X, a, b ∈ A. Furthermore, for x, y ∈ XB

A〈x, y]〉 = 〈x], y〉A by an easy calculation. Therefore XB is an element in M.

REMARK 3.2. X̃B is isomorphic to (1− eA)C∗〈B, eA〉eA as A-A-equivalence

bimodules. Indeed, the map (1− eA)C∗〈B, eA〉eA 3 (1− eA)xeA 7→ ˜eAx∗(1− eA),
x ∈ C∗〈B, eA〉 gives an A-A-equivalence bimodule isomorphism of (1 − eA)C∗

〈B, eA〉eA onto X̃B, where ỹ means y viewed as an element in X̃B for any y ∈ XB.
Sometimes, we identify X̃B with (1− eA)C∗〈B, eA〉eA.

Let F be a map from L/ ∼ to M/ ∼ defined by F ([B, E]) = [XB] for any
[B, E] ∈ L/ ∼.

LEMMA 3.3. With the above notations, F is well-defined.

Proof. Let (B, E), (B1, E1) ∈ L with (B, E) ∼ (B1, E1). Let XB and XB1 be el-
ements in M defined by (B, E) and (B1, E1), respectively. Since (B, E) ∼ (B1, E1),
there is an isomorphism π of B onto B1 such that π(a) = a for any a ∈ A and
E1 ◦ π = E. Let π̃ be a homomorphism of the linear span of {beAc : b, c ∈ B}
to C∗〈B1, eA,1〉 defined by π̃(beAc) = π(b)eA,1π(c) for any b, c ∈ B. Then, for
bi, ci ∈ B (i = 1, 2, . . . , n) and a ∈ B, we have:∥∥∥π̃

( n

∑
i=1

bieAci

)
π(a)

∥∥∥2
=
∥∥∥ n

∑
i=1

π(bi)E1(π(cia))
∥∥∥2

=
∥∥∥ n

∑
i,j=1

E1(π(a∗c∗i ))E1(π(b∗i bj))E1(π(cja))
∥∥∥

=
∥∥∥ n

∑
i,j=1

E(a∗c∗i )E(b∗i bj)E(cja)
∥∥∥.

On the other hand∥∥∥ n

∑
i=1

bieAcia
∥∥∥2

=
∥∥∥ n

∑
i=1

biE(cia)
∥∥∥2

=
∥∥∥ n

∑
i,j=1

E(a∗c∗i )E(b∗i bj)E(cja)
∥∥∥.
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Hence∥∥∥π̃
( n

∑
i=1

bieAci

)∥∥∥ = sup
{∥∥∥π̃

( n

∑
i=1

bieAci

)
π(a)

∥∥∥ : ‖E1(π(a)∗π(a))‖ = 1, a ∈ B
}

= sup
{∥∥∥ n

∑
i=1

bieAcia
∥∥∥ : ‖E(a∗a)‖ = 1, a ∈ B

}
=
∥∥∥ n

∑
i=1

bieAci

∥∥∥.

Thus π̃ can be extended to an isomorphism of C∗〈B, eA〉 onto C∗〈B1, eA,1〉. Hence
π̃ is an involutive A-A-equivalence bimodule isomorphism of XB onto XB1 since
π̃(eA) = eA,1. In fact, for a ∈ A and x ∈ C∗〈B, eA〉

π̃(a · eAx(1− eA)) = eA,1a · π(x)(1− eA,1) = a · π̃(eAx(1− eA)).

Similarly
π̃(eAx(1− eA) · a) = π̃(eAx(1− eA)) · a.

Also, for x, y ∈ C∗〈B, eA〉, we have:

A〈π̃(eAx(1− eA)), π̃(eAy(1− eA))〉 = (ψ−1
1 ◦ π̃

)
(eAx(1− eA)y∗eA)

= A〈eAx(1− eA), eAy(1− eA)〉,

〈π̃(eAx(1− eA)), π̃(eAy(1− eA))〉A = φ−1((1− eA)x∗eAy(1− eA))

= 〈eAx(1− eA), eAy(1− eA)〉A,

since ψ−1
1 = π̃ ◦ ψ and π̃ ◦ β̂ = β̂1 ◦ π̃. Furthermore, for any x ∈ C∗〈B, eA〉

π̃((eAx(1− eA))]) = π̃(eA β̂(x)∗(1− eA))

= (eA,1π̃(x)(1− eA,1))] = π̃(eAx(1− eA))].

Therefore XB ∼ XB1 in M.

3.2. CONSTRUCTION OF A MAP FROM M/ ∼ TO L/ ∼. Let X ∈ M. Following
Brown, Green and Rieffel [2], we can define the linking algebra L for an A-A-
equivalence bimodule X. Let

L0 =
{[

a x
ỹ b

]
: a, b ∈ A, x, y ∈ X

}
,

where ỹ means y viewed as an element in the dual bimodule X̃ of X. In the same
way as in Brown, Green and Rieffel [2] we can see that L0 is a ∗-algebra. Also we
regard L0 as a ∗-subalgebra acting on the right Hilbert A-module X ⊕ A. Hence
we can define an operator norm in L0 acting on X ⊕ A. We define L as the above
operator norm closure of L0. But, since X is complete, in this case L = L−0 = L0.
Let BX be a subset of L defined by

BX =
{[

a x
x̃] a

]
: a ∈ A, x ∈ X

}
.

By direct computations, we can see that BX is a ∗-subalgebra of L and since X
is complete, BX is closed in L, that is, BX is a C∗-subalgebra of L. We regard A
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as a C∗-subalgebra
{[

a 0
0 a

]
: a ∈ A

}
of BX . Let EX be a linear map of BX onto

A defined by EX

([
a x
x̃] a

])
=
[

a 0
0 a

]
for any

[
a x
x̃] a

]
∈ BX . Then by easy

computations EX is a conditional expectation of BX onto A.

LEMMA 3.4. With the above notations, IndexEX = 2.

Proof. There are elements z1, . . . , zn, y1, . . . , yn ∈ X such that
n
∑

i=1
〈zi, yi〉A =

1 by Rieffel ([11], the proof of Proposition 2.1) since X is an A-A-equivalence
bimodule. For i = 1, 2, . . . , n let wi be an element in X with wi = z]

i . Then{([
1 0
0 1

]
,
[

1 0
0 1

])}
∪
{([

0 wi

w̃]
i 0

]
,

[
0 yi

ỹ]
i 0

])
: i = 1, 2, . . . , n

}

is a quasi-basis for EX by direct computations. In fact, for
[

a x
x̃] a

]
∈ BX

EX

([
a x
x̃] a

] [
1 0
0 1

]) [
1 0
0 1

]
=
[

a 0
0 a

]
,

EX

([
a x
x̃] a

] [
0 wi

w̃]
i 0

]) [
0 yi

ỹ]
i 0

]
=

[
0 A〈x, w]

i 〉yi

〈x], wi〉Aỹ]
i 0

]
.

Also,
n

∑
i=1

A〈x, w]
i 〉yi =

n

∑
i=1

x〈w]
i , yi〉A = x,

n

∑
i=1
〈x], wi〉Aỹ]

i =
n

∑
i=1

A〈x, w]
i 〉ỹ

]
i =

n

∑
i=1

V(A〈x, w]
i 〉yi) = x̃],

where V is an A-A-equivalence bimodule isomorphism defined in Lemma 2.9.
Hence

EX

([
a x
x̃] a

] [
1 0
0 1

]) [
1 0
0 1

]
+

n

∑
i=1

E

([
a x
x̃] a

] [
0 wi

w̃]
i 0

]) [
0 yi

ỹ]
i 0

]
=
[

a x
x̃] a

]
.

Similarly[
1 0
0 1

]
EX

([
1 0
0 1

] [
a x
x̃] a

])
+

n

∑
i=1

[
0 wi

w̃]
i 0

]
E

([
0 yi

ỹ]
i 0

] [
a x
x̃] a

])
=
[

a x
x̃] a

]
.

Thus

IndexEX =
[

1 0
0 1

]
+

n

∑
i=1

[
0 wi

w̃]
i 0

] [
0 yi

ỹ]
i 0

]
=
[

2 0
0 2

]
.
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REMARK 3.5. Let e be an element in L(= L0) defined by
[

1 0
0 0

]
. Then it

is obvious that for any b ∈ BX , ebe = EX(b)e. Furthermore the map
[

a 0
0 a

]
7→

e
[

a 0
0 a

]
=
[

a 0
0 0

]
for a ∈ A is injective. And hence L is the C∗-basic construction

of A ⊂ B by Watatani [12].

Let G be a map from M/ ∼ to L/ ∼ defined by G([X]) = [BX , EX ] for any
[X] ∈ M/ ∼.

LEMMA 3.6. G is well-defined.

Proof. Let X, X1 ∈ Mwith X ∼ X1. Let (BX , EX) and (BX1 , EX1) be elements
in L induced by X and X1, respectively. Since X ∼ X1, there is an involutive A-
A-equivalence bimodule isomorphism ρ of X onto X1. Let π be a map of BX to

BX1 defined by for any
[

a x
x̃] a

]
∈ BX , π

([
a x
x̃] a

])
=

[
a ρ(x)

ρ̃(x)] a

]
. Then it is

clear that π is linear. For
[

a x
x̃] a

]
∈ BX ,

π

([
a x
x̃] a

])∗
=

[
a ρ(x)

ρ̃(x)
]

a

]∗
=

[
a∗ ρ(x])

ρ̃(x) a∗

]
= π

([
a x
x̃] a

]∗)
.

Also for
[

a x
x̃] a

]
and

[
b y
ỹ] b

]
∈ BX ,

π

([
a x
x̃] a

] [
b y
ỹ] b

])
=

[
ab + A〈x, y]〉 ρ(ay + xb)

˜ρ(xb + ay)
]

〈x], y〉A + ab

]
,

and

π

([
a x
x̃] a

])
π

([
b y
ỹ] b

])
=

[
ab + A〈ρ(x), ρ(y])〉 ρ(ay + xb)

˜ρ(xb + ay)
]

〈ρ(x]), ρ(y)〉A + ab

]

=

[
ab + A〈x, y]〉 ρ(ay + xb)

˜ρ(xb + ay)
]

〈x], y〉A + ab

]

= π

([
a x
x̃] a

] [
b y
ỹ] b

])
.

Hence π is a homomorphism of BX to BX1 . Furthermore, by the definition of π,

π is a bijection and π

([
a 0
0 a

])
=
[

a 0
0 a

]
for any a ∈ A. And for

[
a x
x̃] a

]
∈ BX

(E1 ◦ π)
([

a x
x̃] a

])
= E1

([
a ρ(x)

ρ̃(x)
]

a

])
=
[

a 0
0 a

]
= E

([
a x
x̃] a

])
.
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3.3. BIJECTION BETWEEN L/ ∼ AND M/ ∼. In this subsection, we shall show
that F ◦ G = idM/∼ and G ◦ F = idL/∼.

LEMMA 3.7. Let (B, E) be an element in L and C∗〈B, eA〉 the basic construction
for (B, E). Then for each x ∈ C∗〈B, eA〉, there uniquely exists b ∈ B such that eAx =
eAb.

Proof. Let x = ∑
i

bieAci, where bi, ci∈B. Then eAx = ∑
i

eAbieAci = ∑
i

eAE(bi)ci

= eA ∑
i

E(bi)ci. And hence b = ∑
i

E(bi)ci. If eAb = eAb′, where b, b′ ∈ B, then

b =
1
2

Ẽ(eAb) =
1
2

Ẽ(eAb′) = b′,

where Ẽ is the dual conditional expectation of C∗〈B, eA〉 onto B. Thus we obtain
the conclusion.

Let (B, E) be an element in L. Let B− be a linear subspace of B defined by

B− = {b ∈ B : E(b) = 0} = {b ∈ B : β(b) = −b },

where β is an automorphism of B defined in Proposition 2.4. By a routine com-
putation we can see that B− is an element in M with the involution x] = x∗ and
the left and the right A-valued inner products defined by

A〈x, y〉 = E(xy∗), 〈x, y〉A = E(x∗y) for x, y ∈ B−.

LEMMA 3.8. With the above notations, B− ∼ XB i.e., [B−] = [XB] in M/ ∼.

Proof. By Lemma 3.7, we can define a map ϕ from C∗〈B, eA〉 to B by eAx =
eA ϕ(x). For eAx(1− eA) ∈ XB, we have

eAx(1− eA) = eA ϕ(x)− eAE(ϕ(x)) = eA(ϕ(x)− E(ϕ(x))).

And hence ϕ(eAx(1− eA)) = ϕ(x)− E(ϕ(x)) ∈ B−. It is easy to see that ϕ|XB is an
A-A-bimodule isomorphism of XB onto B−. Furthermore for eAx(1− eA), eAy(1−
eA) ∈ XB,

A〈eAx(1− eA), eAy(1− eA)〉 = ψ−1(E((ϕ(x)− E(ϕ(x)))(ϕ(y)− E(ϕ(y)))∗)eA)

= E((ϕ(x)− E(ϕ(x)))(ϕ(y)− E(ϕ(y)))∗)

= A〈ϕ(x)− E(ϕ(x)), ϕ(y)− E(ϕ(y))〉.
Similarly, 〈eAx(1 − eA), eAy(1 − eA)〉A = 〈ϕ(x) − E(ϕ(x)), ϕ(y) − E(ϕ(y))〉A.
And

ϕ((eAx(1− eA))]) = ϕ(β̂(eAx(1− eA))∗) = ϕ(β̂((1− eA)ϕ(x)∗eA))

= ϕ(eA ϕ(x)∗(1− eA)) = ϕ(x)∗ − E(ϕ(x)∗)

= (ϕ(x)− E(ϕ(x)))∗ = ϕ(eAx(1− eA))∗.

Hence XB ∼ B− in M.

LEMMA 3.9. G ◦ F = idL/∼.
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Proof. For (B, E) ∈ L, it is easy to see that G([B−]) = [B, E]. Since [XB] =
[B−] by the previous lemma, G ◦ F ([B, E]) = G([XB]) = [B, E]. Thus the lemma
is proved.

LEMMA 3.10. F ◦ G = idM/∼.

Proof. For X ∈ M,

(BX)− = {x ∈ BX : EX(x) = 0} =
{ [

0 x
x̃] 0

]
: x ∈ X

}
.

So it is easy to see that [(BX)−] = [X]. And hence by Lemma 3.8

F ◦ G([X]) = F ([BX , EX ]) = [(BX)−] = [X].

THEOREM 3.11. There is a 1-1 correspondence between L/ ∼ and M/ ∼.

Proof. This is immediate by Lemmas 3.9 and 3.10.

4. APPLICATIONS

4.1. CONSTRUCTION OF INVOLUTIVE EQUIVALENCE BIMODULES BY 2Z-INNER

C∗-DYNAMICAL SYSTEMS. Let A be a unital C∗-algebra and (A, Z, α) a 2Z-inner
C∗-dynamical system which means that (A, Z, α) is a C∗-dynamical system and
that there is a unitary element z ∈ A with α(z) = z and α2 = Ad(z). In this case,
we can form the restricted crossed product A oα/2Z Z in the sense of P. Green
[4]. Let Xα be the vector space A with the obvious left action of A on Xα and the
obvious left A-valued inner product, but we define the right action of A on Xα by
x · a = xα(a) for any x ∈ Xα and a ∈ A, and the right A-valued inner product by
〈x, y〉A = α−1(x∗y) for any x, y ∈ Xα.

LEMMA 4.1. We can define an involution x 7→ x] on Xα by

x] = α(x∗)z,

where z is a unitary element of A with α(z) = z and α2 = Ad(z).

Proof. Since α(z) = z and α2 = Ad(z), by routine computations, we can see
that the map x 7→ x] defined by x] = α(x∗)z is an involution on Xα.

PROPOSITION 4.2. With the above notations, we suppose that A is simple. Let
BXα be a C∗-algebra defined by Xα and L the linking algebra for Xα defined in Section 2.
Then the following conditions are equivalent:

(i) BXα is simple;
(ii) A′ ∩ BXα = C · 1;

(iii) B′Xα
∩ L = C · 1;

(iv) α is an outer automorphism of A.
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Proof. (i)⇒ (ii): By Proposition 2.4, Bβ
Xα

= A. Since A is simple, by Pedersen
([10], Proposition 8.10.12) β is outer. Hence by Pedersen ([10], Proposition 8.10.13)
A′ ∩ BXα = C · 1.

(ii) ⇔ (iii): By Watatani ([12], Proposition 2.7.3) A′ ∩ BXα is anti-isomorphic
to B′Xα

∩ C∗〈BXα , eA〉. This implies the conclusion.
(ii) ⇒ (iv): We suppose that there is a unitary element w ∈ A such that

α = Ad(w) Then for any a ∈ A

w · a = wα(a) = aw = a · w.

So it is easy to see that [
0 w

w̃] 0

]
∈ A′ ∩ BXα .

This is a contradiction. Thus α is outer.
(iv) ⇒ (i): We can identify L with the C∗-basic constraction of A ⊂ BXα

by Remark 3.5. Let β be an automorphism of BXα defined in the same way
as in Proposition 2.4 and let β̂ be its dual automorphism. Then Lβ̂ = BXα by
Lemma 2.8. We suppose that β̂ is inner. Then there is a unitary element w =[

a x
ỹ b

]
∈ L such that β̂ = Ad(w). Hence for any c ∈ A

β̂

([
c 0
0 0

])
=
[

a x
ỹ b

] [
c 0
0 0

] [
a x
ỹ b

]∗
.

Hence we obtain that [
0 0
0 c

]
=

[
aca∗ ac · y

ãc∗ · y 〈c∗ · y, y〉A

]

for any c ∈ A. Put c = 1. Then a = 0 and 〈y, y〉A = 1. Since w is a unitary element,
by a routine computation we can see that b = 0 and A〈y, y〉 = 1. This implies that
y is a unitary element in A. Since c = 〈c∗ · y, y〉A = α(y∗cy) = α(y)∗α(c)α(y) for
any c ∈ A, α is inner. This is a contradiction. Hence β̂ is outer. Since L and A
are stably isomorphic by Brown, Green and Rieffel [2], L is simple. By Pedersen
([10], Theorem 8.10.12) BXα = Lβ̂ is simple.

LEMMA 4.3. Let (A, Z, α) be a 2Z-inner dynamical system with α(z) = z and
α2 = Ad(z), where z is a unitary element in A. Let B be the restricted crossed product
A oα/2Z Z associated with (A, Z, α) and E the canonical conditional expectation of B
onto A. Then XB ∼= Xα as involutive A-A-equivalence bimodules, where XB is an
involutive A-A-equivalence bimodule induced by (B, E).

Proof. We may assume that A acts on a Hilbert space H. By Olesen and
Pedersen ([9], Proposition 3.2) we also assume that B acts on the induced Hilbert
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space IndZ
2Z(H). Let

C =
{[

a x
α(xz) α(a)

]
∈ M2(A) : a, x ∈ A

}
.

Since A acts on H, we can put C as a C∗-algebra acting on H ⊕ H. We claim
that B ∼= C. Indeed, let ρ be a map from K(Z, A, z) to C defined by for any
f ∈ K(Z, A, z)

ρ( f ) =
[

f (0) f (1)
α( f (1)z) α( f (0))

]
,

where K(Z, A, z) is a ∗-algebra of all functions f : Z −→ A satisfying that f (n−
2m) = f (n)zm for any m, n ∈ Z (see [9]). Then by routine computations ρ is
a homomorphism of K(Z, A, z) to C. Let U be a map from IndZ

2Z(H) to H ⊕ H
defined by Uξ = ξ(0)⊕ ξ(1) for any ξ ∈ K(Z, A, z). Then by an easy computaion
U is a unitary operator of IndZ

2Z(H) onto H⊕H. Moreover, for any f ∈ K(Z, A, z),
ρ( f ) = U f U∗. Hence ρ is an isometry of K(Z, A, z) to C and we can extend ρ to
an isomorphism of B onto C since K(Z, A, z) is dense in B. Thus B ∼= C. Let F

be a linear map of C onto A defined by F
([

a x
α(xz) α(a)

])
=
[

a 0
0 α(a)

]
for any[

a x
α(xz) α(a)

]
∈ C, where we identify A with a C∗-algebra

{[
a 0
0 α(a)

]
: a ∈ A

}
.

Then by an easy computation (B, E) ∼ (C, F) in L. Let (BXα , EXα) be an element
in L induced by the involutive A-A-equivalence bimodule Xα. Let Φ be a map
from C to BXα defined by

Φ

([
a x

α(xz) α(a)

])
=
[

a x
x̃] a

]
for any

[
a x

α(xz) α(a)

]
∈ C. Then by routine computations Φ is an isomorphism

of C onto BXα with F = EXα ◦ Φ. Thus (B, E) ∼ (BXα , EXα). By Theorem 3.11,
XB ∼ Xα in M.

Let B be a unital C∗-algebra and A a C∗-subalgebra of B with a common unit.
Let E be a conditional expectation of B onto A with IndexE = 2. For any n ∈ N
let Mn be the n × n-matrix algebra over C and Mn(A) the n × n-matrix algebra
over A. Let {(xi, x∗i )}n

i=1 be a quasi-basis for E. We define q = [qij] ∈ Mn(A) by
qij = E(x∗i xj). Then by Watatani [12], q is a projection and C∗〈B, eA〉 ' qMn(A)q.
Let π be an isomorphism of C∗〈B, eA〉 onto qMn(A)q defined by

π(aeAb) = [E(x∗i a)E(bxj)] ∈ Mn(A)

for any a, b ∈ B. Especially for any b ∈ B, π(b) = [E(x∗i bxj)] since
n
∑

i=1
xieAx∗i = 1.

PROPOSITION 4.4. With the above notations, the following conditions are equiv-
alent:
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(i) eA and 1− eA are equivalent in C∗〈B, eA〉;
(ii) there exists a unitary element u ∈ B such that {(1, 1), (u, u∗)} is a quasi-basis

for E;
(iii) there exists a 2Z-inner C∗-dynamical system (A, Z, α) such that Xα ∼ XB.

Proof. (i) ⇒ (ii): We suppose that there is a partial isometry v ∈ C∗〈B, eA〉
such that v∗v = eA, vv∗ = 1− eA. Then veAv∗ = 1− eA. By Lemma 3.7, there
exists an element u in B such that veA = ueA and hence ueAu∗ = 1− eA. Let Ẽ be
the dual conditional expectation for E. Then

uu∗ = 2Ẽ(ueAu∗) = 2Ẽ(1− eA) = 1.

Therefore u is a co-isometry element in B. Since eAu∗ueA = eAv∗veA = eA, we
have E(u∗u) = 1 and E(1 − u∗u) = 0. And hence u∗u = 1 i.e., u is a unitary
element in B. For any x ∈ B

xeA = (eA + ueAu∗)xeA = E(x)eA + uE(u∗x)eA = (E(x) + uE(u∗x))eA.

Thus x = E(x) + uE(u∗x) by Lemma 3.7. Similarly, x = E(x) + E(xu)u∗. This
implies that {(1, 1), (u, u∗)} is a quasi-basis for E.

(ii) ⇒ (i): We suppose that {(1, 1), (u, u∗)} is a quasi-basis for E and that u
is a unitary element in B. Then

u = E(u) + uE(u∗u) = E(u) + u.

This implies that E(u) = 0. Hence

q =
[

E(1 · 1) E(u)
E(u∗) E(u∗u)

]
=
[

1 0
0 1

]
.

Therefore C∗〈B, eA〉 ' M2(A). Furthermore

π(eA) =
[

1 0
0 0

]
, π(1− eA) =

[
0 0
0 1

]
.

And hence eA ∼ (1− eA) in C∗〈B, eA〉.
(ii) ⇒ (iii): We suppose that {(1, 1), (u, u∗)} is a quasi-basis for E and that

u is a unitary element in B. Then in the same way as above E(u) = 0. For any
a ∈ A

uau∗ = E(uau∗) + E(uau∗u)u∗ = E(uau∗) + E(u)au∗ = E(uau∗).

Therefore uAu∗ = A. Let α be an automorphism of A defined by α(a) = uau∗

for any a ∈ A. Since u2 = E(u2) + uE(u∗u2) = E(u2), u2 is an element in A.
Therefore (A, Z, α) is a 2Z-inner C∗-dynamical system. It is easy to see that

Xα ∼ Au = B− = {b ∈ B : E(b) = 0}.

By Lemma 3.8, Xα ∼ XB.
(iii) ⇒ (ii) : We suppose that there exists a 2Z-inner C∗-dynamical system

(A, Z, α) such that Xα ∼ XB. By the previous lemma, we may suppose that B =
A oα/2Z Z. Then there exists a unitary element u ∈ B such that Ad(u) = α,
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u2 ∈ A and E(u) = 0. By a routine computation we can see that {(1, 1), (u, u∗)}
is a quasi-basis for E.

COROLLARY 4.5. Let θ be an irrational number in (0, 1) and Aθ the correspond-
ing irrational rotation C∗-algebra. Let B be a unital C∗-algebra including Aθ as a C∗-
subalgebra of B with a common unit. We suppose that there is a conditional expectation
E of B onto Aθ with IndexE = 2. Then there is a 2Z-inner C∗-dynamical system
(Aθ , Z, α) such that (B, E) ∼ (Aθ oα/2Z Z, F), where F is the canonical conditional
expectation of Aθ oα/2Z Z onto Aθ .

Proof. Let e be the Jones projection induced by E. We can identify the basic
construction C∗〈B, e〉 with qMn(Aθ)q in the same way as in the previous argu-
ment. Hence C∗〈B, e〉 has the unique normalized trace τ and τ(e) = τ(1− e) = 1

2 .
So it is easy to see that e ∼ 1− e in C∗〈B, e〉 since Aθ has cancellation. Therefore
we obtain the conclusion by the previous proposition.

4.2. EXAMPLES. In this subsection, let Aθ be as in Corollary 4.5 and let u, v be
two unitary generators satisfying the commutation relation:

uv = e2πiθvu.

EXAMPLE 4.6. Let A2θ be the C∗-subalgebra of Aθ generated by u2 and v.
Then we can denote Aθ = {x + yu : x, y ∈ A2θ}. Let E be a map of Aθ onto A2θ

defined by E(x + yu) = x. It is easy to see that E is a conditional expectation
of Aθ onto A2θ with IndexE = 2 and a quasi-basis {(1, 1), (u, u∗)}. Hence by
Corollary 4.5, Aθ can be represented as the restricted crossed product A2θ oα/2Z
Z, where α is an automorphism on A2θ defined by α = Ad(u).

Suppose that Aθ can be represented as a crossed product A2θ oβ Z2 for some
Z2-action β on A2θ . Then there exists a self-adjoint unitary element w in Aθ sat-
isfying that β = Ad(w) and Aθ = {x + yw : x, y ∈ A2θ}. Let τ be the unique
tracial state on Aθ . By the uniqueness of τ, we can see that τ(x + yw) = τ(x). Let
e be a projection in Aθ defined by e = 1

2 (1 + w). Then τ(e) = 1
2 . This contradicts

that τ(Aθ) = (Z ∩ θZ) ∩ (0, 1). Therefore Aθ can not be represented as a crossed
product A2θ oβ Z2 for any Z2-action β on A2θ .

EXAMPLE 4.7. Let σ be the involutive automorphism of Aθ determined by
σ(u) = u∗ and σ(v) = v∗. Let Cθ denote the fixed point algebra Aσ

θ = {x ∈ Aθ :
σ(x) = x} and Bθ the crossed product Aθ oσ Z2. Then Bθ is the basic construction
of Cθ ⊂ Aθ . By Kumjian [8], K0-group of Bθ , K0(Bθ) is isomorphic to Z6. By
routine computations, we can see [e] 6= [1 − e] in K0(Bθ), where e is the Jones
projection for the inclusion Cθ ⊂ Aθ . Hence e 6∼ 1 − e in Bθ . Therefore the
inclusion Cθ ⊂ Aθ can not be represented as the restricted crossed product Cθ ⊂
Cθ oα/2Z Z for any automorphism α on Cθ by Proposition 4.4.
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