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ABSTRACT. Let Ag denote the rotation C*-algebra generated by unitaries U, V
satisfying VU = e?™PUV, where 6 is a fixed real number. Let p denote the
hexic transform of Ag defined by U +— V +— e ™9U~1V (which has order
six), let ¥ denote the cubic transform x = p2, and let Hy := Ag %, Zg and
Cp := Ag X Z3 denote the associated C*-crossed products by corresponding
cyclic groups. It is shown that for each 6 there are canonical inclusions Z'0 <
Ko(Hg) and Z® — Kg(Cy) given explicitly by projections and “mysterious”
modules (called hexic and cubic modules). We also find the unbounded traces
on the canonical smooth dense *-subalgebras and so obtain Connes’ cyclic

cohomology groups of order zero HC?(Hy) = C°, HC%(Cy) = C7, when 6 is
irrational.
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1. INTRODUCTION

Let 6 > 0, A = 2™, and consider the rotation C*-algebra Ay generated by
unitaries U, V satisfying VU = AUV. The (noncommutative) hexic transform of
Ay is the canonical order six automorphism p defined by

p(U) =V, p(V)=A"2Uu"lV.

Its cube is the usual flip automorphism studied in [1], [2], [3]. Its square « := p2
is what we shall call the cubic transform:

k(U) =AUV, x(V)=Uu""

The corresponding crossed product Hy := Ay %, Zg (the hexic C*-algebra) is the
universal C*-algebra generated by unitaries U, V, W enjoying the commutation
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relations
(1.1) VU =AUV, WUWl=V, WVyWw-l=ar"zu"lv, Wé=1I.

One may view the crossed product Cy = Ay X, Z3 (the cubic C*-algebra) as the
C*-subalgebra of Hy generated by U, V, and Z := W2. It can be viewed as the
universal C*-algebra generated by unitaries U, V, Z enjoying the commutation
relations

(1.2) VU =AUV, zuzl=Ar"2ulv, zvzl=ul, Z=1I

We write Hp? and Cp° for their respective canonical smooth dense *-sub-
algebras. (For example, the elements of Hg® consist of sums of terms of the form
aW/ where a € Ag)

The purpose of this paper is the construction of ten canonical classes in
Ko(Hy), eight canonical classes in Ky(Cy), and show that they are independent
over the integers so that there are injections Z!© — Ky(Hy) and Z8 — Kq(Cy)
for each 8 > 0. One of the classes in each case involves an exotic module, which
we call the hexic and cubic modules Mg and M3 respectively, and the computa-
tions of their unbounded traces are lengthy and require detailed treatment with
theta functions. Of course, we also obtain the unbounded traces on Hg* and Cg°,
thereby obtaining their Connes cyclic cohomology groups of order zero (see The-
orem 1.3). The unbounded traces on the crossed products, denoted by Tj; in the
hexic case and Sl-j in the cubic case, arise from what we call “twisted” trace func-
tionals on Ag’ (as for example in [10], Section 2). These are determined in Sec-
tion 3.

Throughout the paper we let w := e(%) = 3(1+1v/3) (a primitive 6th root
of 1). We also adopt the convention e(t) = e?™,

HEXIC CASE. Consider the projections
13, .. . 1 2 pitoi 1 5
pi= LYWW, g= LY WX, r= (1 U
61':0 3i:0 2

where X := AsUW? is of order 3, and UW3 has order 2. We prove that we have
the character values in Table 1.
Consequently, one has

THEOREM 1.1. The ten Ky classes in Table 1 yield an inclusion Z'© — Kq(Hg)
foreach 6 > 0.
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Table 1. Character table for the hexic case
Ko-ClaSS T C6 TlO T20 T21 T30 T31
1] 110 0 0 0 0 0
o]  [c[ 0] ¢ 8 8 N
P 4 A el e T e
[p2] g 0| —qw | §o? s | 5] s
73] T o [ -1 T T T[T
TR I S L T B O i B
P4 6 6 6 6 6 6
[q0] il o 0 0 : 0] o0
q 3 3
1 ilo 0 0 —Lw 0] o0
q 3 3
[r] ;1 0] 0 0 0 0| 1
M [ E]=T] Jo | o [BVA [ h |}

CUBIC CASE. In this case, with Z denoting the canonical unitary of Cy, we set
X = As uz,y = AUz (unitaries of order three). Consider the polynomials (for
j=0,1)
Qj(x) = 11+ w?x + whx?).
THEOREM 1.2. The eight Ky classes in Table 2 yield an inclusion Z8 — Ko(Cy)
foreach 6 > 0.

Table 2. Character table for the cubic case
K()-ClaSS T C3 510 511 512
1] 110 0 0 0
[Q(Z)] [ 5] O 3 0 0
Q1(2)] 3] 0| —itw 0 0
QM) [3] 0 0 3 0
QM [3] 0 0 —3w 0
[Q(X)][3] 0 0 0 3
[Qi(X)] 3] 0 0 0 — 3w
[MB] g 1 3lﬁwl/z ﬁwl/Z 3lﬁwl/Z

Using Theorems 1.1 and 1.2, Polishchuk in [7] recently showed that one has
isomorphisms Ko (Cy) = Z8 and Ko(Hp) = Z'° for all § > 0. In [5], the authors
in turn use Polishchuk’s result to show that the injection Z!© — Kg(Hp) is an
isomorphism, so that the ten canonical classes obtained herein do in fact form
a basis for Ky for each 6. We believe that similar computations show that the
injection Z8 — Ky(Cp) is an isomorphism.

THEOREM 1.3. (See Corollaries 3.2 and 3.4) For any irrational 0, one has the
cyclic cohomology group of order zero

HCY(Ag xp Z) = HCY(Af) =2 C°, HC"(Ag xx Z3) = HC?(Af) = C7.
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Specific bases for these groups are given in Section 3.

2. BACKGROUND

We shall denote by C* the set of complex numbers with positive real part.
We will make frequent use of the identity
(2.1) / e(Ax)e —ma qy = Lefﬂi2
. J 7z

where a, A € C and Re(a) > 0. The square root appearing here is the principal
one (namely, if z = relt and —71 < t < 7, then VzZ = \/?ei%). For our purposes
below it will be worthwhile noting that C* is closed under addition, conjugation,
and inversion; further, for a,b € C*, one has vab = \/E\/E and v/a = Va.

As in Rieffel’s construction in [9], one begins with a locally compact Abelian
group M, forms the group G = M x M on which the canonical Heisenberg cocy-
cle b defined by bh((m,m"), (n,n")) = (m,n’), where (-, ) is the canonical pairing
on G. The Heisenberg (projective) representation 77 : G — L£(L?(M)) is given by
[7C(m,5) f1(11) = (n,5) f(n + m). It has the properties

7Tx7'(y = b(x/y)”ery = f)(xr]/)[)(]// X)ﬂy?'[x, 7T;§ = h(x, X)?T,x

for x,y € G. Given a lattice subgroup D of G, the C*-algebra C*(D, ) = C*(D) is
generated by the unitaries 71y, for x € D,and C*(D*, ) = C*(D*) is the opposite
algebra of the C*-algebra generated by the unitaries 77, for y € D*. (Recall that
the complement of D is D+ = {y € G : h(x,y)h(y,x) = 1, Vx € D}.) By Rieffel’s
Theorem 2.15 [9], the Schwartz space S(M) is an equivalence bimodule with the
C*-algebra C*(D) acting on the left and C* (D) acting on the right. We point out
that the right action is f7r; := 71;/(f). Denoting the opposite multiplication by #
(so a#tb = ba), one has the module property (f7;)7; = f(my#n}) for f € S(M)
and y,z € D+. The C*-valued inner products are

(f,8)p=1G/DI Y ({f, &)p(N)me, (f.8),. = ) (f &), Wy,

xeD yeDL

where |G/D]| is the Haar-Plancherel measure of a fundamental domain for D in
G and, writing x = (x/,x") € Dand y = (v/,y") € D+, one has

(f, &) (x) = {f, mxg) /f 2(E+ %) (£, %) dt

M

(Fr8)p ) = (8, 1), = [ FB(t+y)ty")
M
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There are canonical normalized traces T/, 7 on C*(D) and C*(D"), respectively,
satisfying

T({f. 8)p) = 1G/D|T((g, f),.)-

We shall mainly be interested in Rieffel’s setup with M = R, and for this purpose
we shall also be interested in the following “square root” s of the Heisenberg
cocycle h on R? x R? given by s((m,m'), (n,n')) = e(imn’), so that s> = p. In
view of our interest in the hexic transform on the rotation C*-algebra, we consider
the order six map H : G — G given by H(u,v) = (u + v, —u).

If « is an automorphism of a C*-algebra A, then a linear functional ¢ (not
necessarily norm continuous) defined on a dense a-invariant %-subalgebra A’ of

A is said to be a-trace if and only if

P(xy) = p(a(y)x),

Vx,y € A’. Suppose a has finite order k. If ¢ is an a-invariant a/-trace, then it
induces a trace T on the smooth crossed product A’ x, Z; (dense in A X, Zy)
given by

T(ag+ W+ +a_ W) = ¢(ar_).

Recall the adjoint of a linear map ¢ is ¢*(x) := ¢(x*) (and ¢ is a-invariant if and
only if its adjoint is a-invariant).

PROPOSITION 2.1. Let X be a C-D-equivalence bimodule and let p1, p2 be auto-
morphisms of C, D, respectively, such that there is a linear map w : X — X satisfying

pr((x, y)e) = (w(x), w(y))e and pa((x, 1)) = (w(x), w(y)},. Then there is a
one-to-one correspondence between p-traces ¢’ on C and p-traces ¢ on D given by

(22) o, w7 (W)p) = ¢'((¥, x)c)-

Proof. It suffices to begin with a p;-trace ¢’ on C and show the existence
of a pp-trace ¢ on D satisfying (2.2) — the proof of the converse being similar.
(Since the inner products over C and D span C and D, respectively, ¢ will nec-
essarily be unique.) As in the proof of Rieffel’s Proposition 2.1 of [8], there is a
positive integer n such that, with E = M, ® C and viewing X" as an equivalence
E-D-bimodule in the usual way, there is an element z € X" such that (z, z),, =
1 (the identity of D). Extend w to X" in the natural way by w(xy,...,x;) =
(w(x1),...,w(xy)). It is easy to check that the hypothesis relating p; to w yields
the properties w(cx) = p1(c)w(x) and w(xd) = w(x)pz(d) forx € X, c € C,d €
D. Further, one has (1® p1)((¢, 17);) = (w(¢), w(n)), for &, n € X".

Consider the linear map y : D — E givenby pu(d) = (zd, w=!(z)),. Itis easy
to check that the induced map ¢ : E — C defined by ¢(m ® ¢) = Trace(m)¢'(c),
where m € My, c € C,is a1l ® pj-trace on E. Now define the linear map ¢ : D —
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Chby ¢(d) = p(u(d)). We now check that (2.2) holds. For ¢, € X" one has

e((&, w™ (1)) = WS, w (1)p)) = p({2(Z, w™ (1)), wH(2));)
P(((z &)™ (), w (D)) = ¥({z, &) (W™ (), w™(2)))
= 9((z, 2 (1@ p1) " ({1, 2);))
which by the 1 ® pq-trace property of i is

=v((1, 2)p - (2 O)e) = ({1, 2)e2, §)p)
= ¥((n(z 2)p, S)r) = ({1, S)p)-

Specializing this equality to { = (x,0,...,0), 7 = (y,0,...,0) it gives rise to
(2.2). It remains to check that ¢ is a py-trace. To do this, it is enough to check it
using inner products (-, -),, since they span D. Rewriting (2.2) as ¢((x, v),) =

¢’ ((w(y), x)¢), one gets
P((x1, y1)p * (%2, Y2) )
= ¢((x1, y1(x2, y2)p)p) = @({x1, (Y1, X2)c¥2)p) = @' ((W[(y1, x2) 2], x1)c)
= ¢ ({(01((y1, x2) )w(y2), x1)¢) = ¢ (p1({y1, x2) ) (w(¥2), x1)c)

which by the pq-trace property of ¢’ is

= (P,(<w(y2)/ xl>c ’ <y1, x2>c) = (P,(<<w(y2)/ xl>c Y1, x2>c)
= ¢’ ((w(y2)(x1, ¥1)p, *2)c);

using (2.2) this becomes

= ¢((x2, w  w(y2)(x1, y1)p])p) = @((x2, 205 ' ((x1, 1)) )
= ¢((x2, y2)p - 03 ' ((x1, ¥1)p))-

This shows that for each a,b € D one has ¢(ab) = ¢(bp, '(a)). Replacing a by
p2(a) one obtains the p,-trace property of ¢. 1

3. UNBOUNDED TRACES AND THE ZEROTH CYCLIC COHOMOLOGY GROUPS

In this section we calculate the unbounded traces and obtain the zeroth
cyclic cohomology groups of the crossed products Hy and Cy (which are the same
as their first Hochschild homology groups). But first let us point out that there
is a conceptual basis behind our result for obtaining the traces on the (smooth)
crossed products in both the hexic and cubic cases. This stems from looking at
the case # = 0 so that one could in fact apply the result of Brylinski and Nistor [4]
to obtain these traces in terms of conjugacy classes of the underlying group (Zg
and Z3 in our case) and their fixed points under their action on the 2-torus — as
their result applies to crossed products of smooth commutative C*-algebras by a
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finite group action. What we do here for the case 6 # 0 is a kind of noncommu-
tative analogue of that (though it cannot be directly derived from [4]).

THE p-TRACE. For simplicity write A(n) = A". First, observe that
p(UPVT) = p(U)Pp(V)T = A(—q*/2 = pg)U~TVPHI.
Now, let ¢ be a p-trace on A := Ag. Then ¢p(U"V'UPVT) = ¢p(p(UPVI)U"V")
and applying the formula for p(U?V17) this becomes A(np) - p(UMTPVHT) =
A(=q?/2 —pg+m(p+q)) - (U™ TV"FP+1) and so we have ¢p(U"TPV"H) =
A(=np —q*/2—pqg+m(p+q)) - (U 9V"TPH0). Replacing m by m — p and n
by n — g gives
PU"V") = A(=(n—q)p = 4*/2 = pq+ (m — p)(p +q)) - p(U"P=IV"HP).
Now, for any m,n € Z, take p = —nand g = m — p = m + n. Then
o(U™V™) = A(m*/2 +n?/2)
where we have set ¢(1) = 1. Thus we have one basic p-trace functional, which
we normalize, P19(1) = 1, given by
Pro(U™V") = AR )
Observe that
Pro(p(U" V™)) = A(=n?/2 — mn)ipro(U V")
= A(—n?/2 —mn+n?/2+ (m+n)?/2)
= A(m?/2+n?/2) = p1p(U"V")

so that ¢ is a p-invariant p-trace, as expected.

THE p2-TRACES. Now consider the cubic automorphism p?. First, observe that
PH(UPVT) = p*(U)Pp* (V)T = A(—p*/2 = pq)U "IV
Letting ¢ be a p*>-trace on A, we have ¢(U"V"UPVY) = ¢(p*(UPVI)U™V™)
and applying the formula for p?(UPV17) this becomes A(np)p(U"TPVH1) =
A(=p?/2 = pq) - p(UPIVPU"V") or p(U™FPV"H) = A(—np — p?/2 — pq +
mp) - (U™ P~9VP*") Upon substituting m — p for m and n — g for n this gives
p(U"V") = A(=p(n = q) = p?/2 = pq + p(m — p))p(U" 2P~y PH11),
Now, for any m,n € Z, let ¢ = p +n, so that p(U™V") = A(-3p?/2 +
p(m—mn)) - (U™ "=3F). Letk = 0,1,2, where m — n = k mod 3, and write m —
n = k -+ 3p for some p € Z. Then (U™ V") = A([(m — n)? — k?]/6) - (U*¥) and
so we have three basic, independent p?-trace functionals, normalized as follows
1 ifk=j,

0 otherwise,

por (W) = {
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for j = 0,1,2. So, the value of ¢ (U™V") depends on the value of m —n —k
mod 3. For convenience of notation, we introduce the divisor delta function de-

fined by
" {1 ifn|m,
oy = .
0 ifntm,
for m,n € 7. Thus under this notation, ¢o,(U*) = 5’3?*[, and observing that
for k = m —n mod 3, A([(m —n)? — k] /6)d5~" = A([(m —n)? — 2] /6)65 ",
we obtain the formula ¢,,(U™V") = /\%((’"’”)Z’EZ)(S?*”*K where ¢ = 0,1,2.
Now, observe that ¢ (o(U"V")) = A(=n%/2 — mn)poo(U"V"™") = A((m —
n)2/6)65 " and observing that 652" = 67", it follows that ¢ (p(U" V")) =
$20(U™V™). Thus, ¢y is a p-invariant p?-trace. We let (o=, so that i (U™ V")
= /\%(’"’”)2(531*”. It is readily seen that neither ¢p1 nor ¢,y are p-invariant. How-

ever, observe that

(¢ +/\%¢22)(p(umvn)) _ /\—%nz—mn+%(m+2n)2—%((%n-&-Zn—I—l +(sgn+2n+2)
- )\%(m—n)z—%((sgi—"—l o2y
)\%(m—n)z—%(sg—"—l + A%A%(m—n)z—%agﬂ—"—z
= (go1 + A2 (U"V™)

and so ¢o1 + )\%4)22 is a p-invariant pz-trace. Now, let ¢ = A% (o1 + A%gbzz) +
0. Then

1,L121(LI’"V") _ A%(mfn)zéénfnfl +/\%(m7n)25g17n72 _i_/\%(mfn)zéngn _ A%(mfn)Z.

. 1 . . . . .

Since 9 and ¢ + A2¢p are p-invariant, ¢, is also p-invariant. Thus, we have
two independent, p-invariant p?-trace functionals, {0 and ;. Further, any p-
invariant pz—trace is a linear combination of §o9 and 1,1, as can easily be seen.

THE p3-TRACES. Since p? is the flip automorphism, the p3-traces are
(Pij(um Vn) _ Af%mn(sénfls;—f
where i,j = 0,1. Observe that ¢;;(p(U"V")) = A’%m”5£‘+i(5;1+n_j from which

it follows that ¢;; = ¢;; o p if and only if ooy = ontisy 177 Now, ¢oo is
non-zero if and only if m and n are both even. If this is the case, then ¢gg o p is
non-zero as m + n is even. If at least one of m or n is odd, then both are clearly

zero. Thus, ¢qg is p-invariant. We let 139 = ¢gp, so that
Pa(UMV™) = A~ 2mngman.

We observe also that ¢ is non-zero if and only if m is even and 7 is odd; that ¢19
is non-zero if and only if m is odd and 7 is even; and that ¢ is non-zero if and
only if m and n are both odd. It is then readily verified that ¢;; is not p-invariant if
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at least one of 7, j is non-zero. Next, observe that ¢1p0p = A~ %m”(%z“ég”*” which
is non-zero if and only if m and n are both odd. Thus, ¢19 0 p = ¢11. Similarly,
¢11 0 p is non-zero if and only if m is even and n is odd, so ¢11 0 p = ¢p1, and ¢p1 0 p
is non-zero if and only if m is odd and 7 is even, so ¢g; 0 p = ¢1¢. It follows that

(¢o1 + P10 + P11) © 0 = P10 + P11 + Po1 and so P10 + Po1 + P11 is p-invariant. Let
¢ := ¢o1 + P10 + P11, so that

PUMV™) = AT 2 (gan Y 4 g lon 4 gty
from which it follows that ¢(U™ V") = 0 if and only if m and n are both even, and
pumvr) = A~2m1 otherwise. Hence, we can re-write the equation for ¢ as
PUMV™) = ATI(L — 518Y).

Next, we observe that if § := a¢y1 + bp10 + c¢11 is any p-invariant linear
combination of the ¢;;, 7, j not both zero, then it is a scalar multiple of ¢. Indeed,
p-invariance gives

EU™V™) = E(p(UM V™)) = AT E (agg ey 4 bap syt g oy oy L),

From this equality and the substitutions m = 1,n = 0 we get a = b, and from
the substitutions m = 0,n = 1 wegeta = c. Thusa = b = candso ¢ =
a(Por + 10 + ¢11) = a¢. Hence, ¢ is the unique basic p-invariant p3-trace other
than 30 = ¢oo. Now, let 31 = P39 + ¢, so that

1
lp31(umvi’l) — /\—imn.
Since 39 and ¢ are p-invariant, 131 is also p-invariant. Thus, we have two inde-

pendent, p-invariant p>-trace functionals, 139 and 3.

THE p*-TRACES AND p°-TRACE. The p*-traces and p°-trace do not provide any
new K-theoretical data not already given by the p-trace and p*-traces. This is
because given a p-invariant p"-trace ¢, 1 < n < 5, the map ¢*(x) = ¢(x*) defines
a p"-trace, where m = 6 — n. This follows from

¢ (xy) = ¢(y*x*) = ¢(0" (x*)y*) = ¢(x*p™ (y*)) = ¢((0™(y)x)*) = ¢ (" (¥)x)-

Hence, there is a one-to-one correspondence between the p"-traces and the p”-
traces. By applying this to the p?-traces, one obtains the p*-traces

2

lP40(UmV”) _ /\*mﬂ*%(nfm)zégfm, l[J41(UmVn) _ Afmnfé(nfm) .

Applying the results to the p-trace gives the p°-trace 50 (U™ V") = A3 (mn)? g
is readily checked that {40 = 93y, P41 = 51, and 59 = Pj,. It is also clear that

P30 = P39 and P31 = P3;.
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THE CYCLIC COHOMOLOGY OF ORDER ZERO FOR THE HEXIC CASE. We summa-
rize the results obtained in the following theorem.

THEOREM 3.1. Along with the canonical bounded trace T, one has the following 9-
dimensional basis of the vector space of all unbounded traces on the fixed point subalgebra
AP. More specifically, {10} is a basis of p-invariant p-traces on A, {0, Y1} a basis
of p-invariant p*-traces, {30, P31} a basis of p-invariant p3-traces, {40, P41} a basis
of p-invariant p*-traces, and {\so} a basis of p-invariant p°-traces, and are given by

lPlO(Um n) )\% m2+n ), ¢31(umvn) — Af%mn,

lIJZO(Um n) _ )\% yn n ¢40(umvn) _ A—mn—%(n—m)zég—m,
lle(UmVn) A%(m n 2’ ¢41(umvn) _ A—mn—%(n—m)zl

o (U"V") = A~ 2y, o (U"V") = A~ 20,

Now, the unbounded traces T;; on Hg® = A x, Zg are given by
T,‘]'({l() +a W+ lZsz + 113W3 + 114W4 + H5W5) = lpl‘]‘(a6,i),
fori = 1,2,3,4,5 and j ranges from 0 to n;, where ny = ns = land np = n3 =

nyg = 2. Therefore, using Theorem 3.1, one obtains all the traces on Hp’ giving its
cyclic cohomology group of order zero.

COROLLARY 3.2. Let A = Ay’ where 0 is irrational. Then one has the cyclic
cohomology group of order zero

HCY(A x,Zg) = HCO(AP) = C°.

The group on the left is generated by T and T;j, while the middle group is generated by T
and ;; (restricted to AP), where T is the canonical bounded trace in each case.

UNBOUNDED k-INVARIANT x-TRACES ON A.

THE k-TRACES. Now, consider the cubic automorphism x = p? of A. Clearly, the
k-traces (which are x-invariant) are just the p?-traces ¢, computed earlier, so we
have the three x-traces

Poo (UMY = Ao ((mmm)?—L2) gm—n—t

where ¢ = 0,1,2. We let ¢4y = ¢/ for £ = 0,1,2. Thus, we have three indepen-
dent x-trace functionals, @19, 911 and ¢15.

THE x2-TRACES. The x?-traces may be obtained from the x-traces in the same
manner from which the p*-traces and p°-trace were obtained from the p-trace
and p?-traces. There is a one-to-one correspondence between the x>-traces and
the x-traces (and hence the x?-traces do not yield any new K-theoretical data not
already provided by the «x-traces). From the equation ¢;(x) = ¢1;(x*) we obtain
the x*-traces

(ng(u’”V”) — /\—mn—%((m—n)z—zz)égn—n—z_
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THE CYCLIC COHOMOLOGY OF ORDER ZERO FOR THE CUBIC CASE. The results
obtained give a theorem analogous to Theorem 3.1 for the «x-traces.

THEOREM 3.3. One has the following 6-dimensional basis of the vector space of all
unbounded traces on the fixed point subalgebra A*. More specifically, { 910, 911, P12} is
a basis of x-traces, and { @20, 921, 922 } a basis of «2-traces, and are given by

((mfn)z)é?fn, q)zo(umvn) _ Afmnf%(nfm)zéngm,
((mfn)zfl)ééﬂfnfl/ 4)21(Umvn) _ Afmnfé((nfm)zfl)égfmfl/

[N

Pro(U"V") = A
pn(U"V") = A
pr2(UMV") = A

The unbounded traces S;; on the cubic algebra Cg° = A X Z3 are given by

SN

[N

((mfn)274)5§n7n72, CPZZ(umVn) _ Afmnfé((nfm)zle)éngmfz‘

Sij(ag + mZ + aZ%) = gij(az_;)

fori =1,2, j = 0,1,2. Therefore, using Theorem 3.3, one obtains all the traces on
Cy’ giving its cyclic cohomology group of order zero.

COROLLARY 3.4. Let A = Ay’ where 0 is irrational. One has the cyclic cohomol-
ogy group of order zero

HC(A %, Z3) = HCO(AF) = 7.

The group on the left is generated by T and S;j, while the middle group is generated by T
and Pij (restricted to A¥), where T is the canonical bounded trace in each case.

4. SECOND ORDER CONNES-CHERN CHARACTER

In this section we let k = 3, 6 so as to handle both the cubic and hexic cases
together, and obtain the values of C3 and C¢ in Tables 1 and 2. For simplicity, we
let L3 = Cy and Lg = Hy. One has the unital *-embedding

Y Lk — Mk(Ag)

given by
ap A1 ay
k1 o Y(ar) o (ap) ()
¥ (L W) = [0 (a )i = o2 (ay) o2 (a) o*2(a3)
]‘:0 . . .
o(a—1) olag—) - o(ao)

where i — j is reduced mod k and where a; € Ag and where ¢ here stands for p
or k. This already shows that the range of the canonical (normalized) trace on
Ko(Ly) is contained in %(Z + Z6). The hexic/cubic module My can be shown to
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have trace % (in exactly the same way as in Proposition 3.3 of [10]). Further, since
one has a projection in L of trace %, one obtains the equality

©.(Ko(Ly)) = L(Z +26)
where T is the canonical trace of Ly (k = 3,6). The embedding ¥ induces the map
¥ : Ko(Lk) — Ko(Ag).

Thus, if e is a projection in a matrix algebra over L, then one takes the class of
¥(e) in Ko(Ap). So, for example, the identity 1 of Ly maps to the k x k identity
matrix in My (Ay), so that ¥,[1] = k[1]’ in Ko(Ayg). (For the sake of clarity, we shall
write [e]’ for classes in Ky(Ap) and unprimed brackets [e] for classes in Ko(Ly).)

Recall Connes’ canonical cyclic 2-cocycle x (see II1.2.5 of [6]) on the smooth
rotation algebra

x(x%, 1, %) = ﬁr(xo[al(x%(xz) — 5(x")81(x%)])

where §; are the canonical derivations of Ag under the canonical action of T? (2-
torus). More specifically, 91 = dy, 6o = dy. (The cocycle x is known to give
one of two basis elements for the cyclic cohomology group HC?(AY) = C?; see
II1.2.8 of [6].) This cocycle implements the canonical map c¢; : Ko(Ap) — Z.
Using the cup product, ¢; is given as follows: if E is a projection in M, (Ag) then
c1(E) = (x#Try,) (E, E, E) where Try, is the usual (non-normalized) trace on M,,(C)
and x#Try, is the unique cyclic 2-cocycle on M, (Ay) given by

(4.1) (x#Tr,) (x° @ a%, 2! @ ', ® ® a?) = x(x°, xt, x%) - Tr, (a%a'a?)

where a/ € M, (C) and &/ € Ay. If e is a projection in Ag, then

cile] = x(e.e,€) = 5r(eldi e}, 52(e))

where 7 is the canonical trace of Ay. The map c; has the property that if [e] =
m[1]’ + nleg]’ (in Ko(Ag) = Z?) for some integers m, n, then c1[e] = —n (see [6],
p. 601). The invariant that is of interest for us is the composition

Ck =c1o0¥: Ko(Lk) — 7.

For 6 in (0, 1), the map Cy has the property thatif [e] € Ky(Ly) is such that ¥, [e] =
m[1]' + nleg]’ in Ko(Ag), so that its trace in Ly is }(m + n), then Cile] = —n.
This follows immediately from the above since Cile] = c1(¥ile]) = cp(m[1] +
nleg]’) = —n.

It is not hard to check that the values of Cy on the first nine projections in
Table 1 (for the hexic case) are zero, as well as for the first seven projections in
Table 2 for the cubic case. For the cubic/hexic module M (whose trace is %) one
therefore has Cy[M;] = —1. This clearly follows for 6 irrational by the above
property. For the rational case it can be shown to follow from the construction of
the module My (since, considered as an Ap-module, it is a Heisenberg module



CONNES-CHERN CHARACTERS 47

whose cj-character value is —1, as can be seen from Connes’ computation [6],
Theorem 7 and following).

For the hexic case since ¥(p;) is a scalar matrix projection one immedi-
ately has C¢(pj) = 0. To see that C¢(q;) = 0 note that the entries of the ma-
trix ¥(g;(X)) are scalars times one of the unitaries U+l,v,u-'v. It is easy to
check that x (U Vb, Un Vi, U%2vb2) =£ 0 only if ag + a; +a, = 0 and by + by +
by = 0, and as the latter are not satisfied for any three pairs (a;,b;) in the set
{(£1,0),(0,1),(=1,1)}, one has Cs(q;) = 0. Similarly, one also has Cs(rg) = 0.
In exactly the same way one checks that Cj is zero for the first seven projections
Qj in the cubic case. This yields all the C3 and Cq values in Tables 1 and 2.

All the traces and Connes Chern character invariants can be put together to
form the Connes Chern character for each case. We write

T = (7, Co; Ti0; Too, To1; T30, T31), Tz = (7, C3; S10,S11,S12)

where T is the canonical (bounded) trace, C; the canonical second order Connes
Chern character, and Tj;, S;; are the unbounded traces. The map T defines a
group homomorphism Ky(Ly) — R x Z x D where D is some lattice subgroup of
R", where n = 5when k = 6, and n = 3 when k = 3.

5. THE HEXIC AND CUBIC MODULES

Let = %. Let M=Rand G = M x M. Consider the lattice D in G given by

&1 ﬁ 0

) o 0 ,3 !
It is clearly invariant under the map H(u,v) = (u + v, —u) discussed earlier. A
fundamental domain for D is [0, B) x [0, B) so that the covolume of D is |G/D| =

pB?. The C*-algebra C*(D) is generated by the canonical unitaries U; = 7, Up =
7te, whose commutation relation is

U UL U5 U3 = b(er, e2)b(en, 1) = e(B?) =: Aq
so that U Uy = A1UpU;. We consider the associated hexic transform given by
_1
p1(lz) = Uy, p1(Uy) = Ay ? U2_1U1. We can define p; in a more invariant way
by verifying that it satisfies p1 (71x) = p(x) 7wy, where u(x) := s(Hx, Hx)s(x, x).
(This is easily verified for x = €1, €3.)
The complementary lattice D is easily checked to be generated by the basis

elements
1) a 0
1. 1| _
ot )= 4
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In general one has 7y, = h(x,y)myry and 75,75, = ijkj TT5, 75, where
Ajk = (0j,0). Inour case, \yj = App = Ay1 = 1, App = e(a?) = e(8) = A
Let Vj = 75 = Ajjmy, = 7 and 75 = )\_7"(" b ﬂéj = nt’;j. One thus

has ViVa = 7 7ty = ApAn s = AVaVa The C*-algebra C*(D%) is the
opposite algebra of the one generated by the unitaries V;, V5. Letting # denote
the opposite multiplication (a#b = ba), we can identify the rotation algebra A
with C*(D*) by the identification U « V;, V « V5. (Thus, for example, UV =
Vi#V5.) (Recall that C*(D) is given the opposite multiplication in order that the
module property (fa)b = f(a#b) be satisfied, where a,b € C*(D*), f € S(R).)
We recall that the right action of C* (D) on S(R) is given by frr} = 73 (f), where
the Heisenberg representation of G on S(R) is given by 7, (f) () := e(tx”) f(t +
x') for x = (x/;x”") € G. Inview of Rieffel’s Theorem 2.15 in [9], when completed,
the Schwartz space S(R) becomes an equivalence A%—Ag bimodule. Thus the

right action of Ag on S(R) is given by
(fU)(t) = (fn)(#) = fE—a),  (FV)(t) = (fV2) () = e(—at) f(¢).
From the relations h(u + v, w) = h(u, w)h(v,w), bhlu,v+w) = b(u,v)h(u, w),
one gets the following
h(j,ndx) = h(9;, )",
h(n161 + nady, mdy + nady) = A",

_n
7Tm5/. = 7T‘5_.

niny niny yym2ym My
Thus 71,6, 41,6, = A~ 7r5 715 and nn1<>1+n252 A V2 vt = Vitv,R

The D+ inner product therefore becomes

(fr &), = LAS 8) . (mdy +ndo) VI"V3'

m,n

where

(f, &)1 (mé1+ndy) =(f, &), (am; an) / g(x +am)e(anx) dx.
R

The inner product over D is given by

(f, 8)p = 1G/D|Y_(f, &), (me1 + nex) Uy UY"
mmn
(since 7Tye, +ne, = UyUT"), where

{f, &)p(me1 +nea) = (f, g)p (mp; np) = /f(x)g(x +mp)e(—xnp) dx

R

The hexic automorphism p is given by p(U) = V and p(V) = A=2U-1V. The
crossed product Hy = Ag X, Zg is the universal C*-algebra generated by unitaries
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U, V, W satisfying

VU =AUV, WUW* =V, WVW*=A"2U"'V, Wé=1I
The two middle relations can be re-written as
(5.1) VW = WU, UWV =A"2VW.

As was shown in [12], by defining the action of W on S(R) to be given by the
hexic transform

= ib / Flx ¥2)dx

(where we have taken s = J in [12]), one can extend the Heisenberg A%*-module
S(R) into aright Hy’-module. Indeed, letting W act as some transform (fW)(t) =

J f(x)K(x, t)dx, the first relation gives (keeping in mind the opposite multiplica-
tion of C*(DJ-))

FVW)I(E) = [f(VaAW)](8) = [(fV2)WI(E) = / e(—ax) f(x)K(x, t)dx

and
[e)

W) = [f(W#)](t) = [(fW)Wi](E) = /f(X)K(x,t —a)dx
thus one requires
K(x,t —a) = e(—ax)K(x,t), K(x+a,t)=e(—5)e(at)K(x,t —a)

where the latter equality arises similarly from the second relation in (5.1). It is

easy to check that the kernel function K(x,t) = i%e(tx — 1x2) satisfies these two

relations (as &« = \/@). As was done in [11] for the Fourier module, one has a
natural Ag’-valued inner product on S(R) to a Hg’-valued inner product by

5
(fr &g = ZO (fr gW )y W
j=
turning it into an appropriate equivalence bimodule (in the sense of Rieffel),
finitely generated projective, Hg>-module which we shall denote by M. It there-
fore gives a class in Ko(H§®). Almost exactly as in [11], and using an argu-
ment of Rieffel one can show that for the unbounded traces T;; on Hg°, one has
Tij[Me] = &1;j(1) where 1 is the twisted trace dual to ;j (as given by Propo-
sition 2.1).
Similarly, for the cubic case we have the Cg°-module M3 and its unbounded
traces are S;;[M3] = %gﬁij(l) where ¢;; is the twisted trace dual to ¢;;.
To end this section, let us establish the following equality

o Nmy) = p(y)may
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for y € Dt. Writing y = md; + né, so that Hy = (m + n)d; — md,, and not-

ing from above that p(75,) = 75, and p(7s,) = )\%7'[;1 m5,, one has pu(y) =
e(—im?a? — mna?) and
n(W)p(mry) = e(—gm?a® — mna)o (7 i), - ms,)

= e(—im*a? — mna®)e(m*a +mno¢2)p(ng”+"7'f5_2m)

2 2 __m+n

— oLyt A g s ]

=y
the last equality being easy to verlfy.
LEMMA 5.1. One has the equalities
Sttw = p(w) S, o~ ((f, 8) ) = (S£,S8) .. p1((f, &)p) = (S, 58) -
Proof. Let us establish the first equality. Writing w = (1, v) € R?, one has
() (7ThwSF)(t) = 1(w) Ti0,-u) (Sf)( ) = p(w)e(—ut)(S)(t+u+0)
:i*%e( Du? — uv)e(—ut) /f e((t+u+0v)x — $x%)dx
and on the other hand

(Srtwf)(t) = is /(nwf)( xX)e(tx — Jx?)dx =1 -4 /e(vx)f(x—i— u)e(tx — Jx?)dx
=i /e(vx —ou)f(x)e(t(x —u) — 3 (x — u)?)dx

from which it is easy to see that the two expressions are equal. Now we show
the third equality in the statement of the proposition. To do this we first need to
show

(Sf, Sg>D(Hw) = p(w)(f, g>D(w)‘
We have (using the fact that S is a unitary operator on L?(R))
(Sf, S8)p(Hw) = (Sf, mruSg) ,, = (Sf, p(w)Smwg) ,, = p(w)(Sf, Srwg) ,
= p(w)(f, mwg),, = n(w){f, &pw).

Hence
p1((f, &)p) = |G/D| le) f,8)p(x) p1(7x) = |G/D| le)u(x)<f, 8)p (X) Thy
= |G/D| 2D<5f’ Sg>D(Hx) Ty = (Sf, Sg>D'

Similarly, (Sf, Sg) | (Hw) = u(w)(f, &), (w) and
e (8, )= X8, e (m) = Y (f,8),, W) k) iy

yeDt yeDt

= Y (Sf, Sg),. (Hy) 7y, = (Sf,Sg),,
yeDt
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which gives the second equality in the statement of the proposition. 1

6. CALCULATION OF Tyo([M)])

Rewriting the relations in Lemma 5.1 as p((f, §),,) = (fw-1, gW_1>DL,
U 9)p) = (WL, gy (with w(f) = fW~1), Lemma 5.1 says that for the
basm p-trace 19 on AZ’, there is a p; Ltrace ¢ on Af)q such that 1o ((f, §W) )
= ¢((g, f)p)- The value of the unbounded trace Ty on the hexic module Mg is
Lo(1), which we now seek to calculate. Since ¢ is a p; !-trace, its adjoint ¢*(x) is
a pj-trace, and thus there is a complex constant ¢ such that ¢* = cy},, where ¢},
is the basic pq-trace on AT),. We then have

Pio((f, W), ) = i ((f, &)p)

and ¢(1) = ¢. Thus, we want to calculate

1/710(<f/ gW>DL)
6¥10((f, &)p)

for suitable f, . For these, we pick f(x) = e ™", ¢(x) = e ™" wherea,b € C*

(the right-half plane).
A simple calculation (using (2.1)) shows that (f, g), = B> ¥ b, UFU"
mmn

Tio([Me]) = 29(1) =

2

_ 2 (ibm—n)

where by, = (f, §), (me +nep) = %e’”hﬁzmze ™. Further, we check

a+
1 2

that (¢W)(t) = \;;Tiefnb%i hence
1 2 . 2
i6 R (n-|—17m.)

Apn = (f, W) | (mdy + ndp) = ————e "t e =7\ bH
mn = (f, §W)  (mdy + néy) O
where v = E(b; Ji>i+1. (Here we used the fact that the principal square root is a

multiplicative function on the right-half plane — 7 and b + i being there.)
The basic p;-trace 1}, on the rotation algebra C*(D) is given by ¢, (UyU}")

10,2, .2
= 22" where Ay = e(f?). Thus

2( '52 —mvm? [ —myun? 2mdmn
Plo(lf, 8)p) = B2 L b 01D = —Z_ § e e
— 32 _ 2 _ i
where v = ( ) u=28 <a+b 1),df s
On the other hand, since the basic p-trace on Ay is given by ¢1o(U"V") =
Az(m+1%) (and noting the opposite multiplication of C* (D)) one has 910 (V" V3")
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= AmnA3(mn%) Thys, from (f, W), . = ¥ amn V]"Vy one gets
mn

,1
P10({f, §W) DL Zamn Ay g (mn?) o—Tm? = rin? 2mdmn

VY b+ m,n

where T = az( Lo W — i),g = ucz(bfm(.b“)),& — a(b+) 1ot 5 denote

b+i a(b+i)+1 a(b+i)+1
the sum appearing in 19((f, gW) ,, ) and X’ the sum in ¢34 ({f, &),). We shall re-
late these sums as follows. First, a bit of algebra shows that T = —in? (%)
s 4r—
it — 8% = %ﬁ)ﬁ? hence
T oab+2i)+1\ r 5  —pralb+i) 5
It — 62 =F ( a+b ) DA - A oy R S do-

Therefore, upon applying the 2-dimensional inversion formula, Lemma 10.1, to

X, one obtains X = \/glifngo where
.
X = Z e—m/m2 e—nyonz e27tdomn‘
mn

To this sum apply the substitution m — m — n so that it becomes
2 11,2 ’
3 = e TVm” o—7ip'n le(d mn

where y' = v+ py +2dp and d' = v +dy. It is easy to check that ' = p and
d’ = —d. This shows that Xy = X’. In addition, one can choose suitable a,b so
that £’ # 0 — for example, when 0 < 6 < 1, by takingb = landa = > -1 > 0
one sees that d = i so X’ reduces to a product of two theta functions of the form
93(0,iv) which is not zero. Hence

6%, Va+h 1,
6/ (b +i)(t—62) p*Xy 6
which gives the corresponding entry in Table 1 (in the Introduction).

Tio([Me]) = go(1) = = h1+ivE) =

7. CALCULATION OF Ty ([Me])

From Lemma 5.1 it follows that for the basic p?-trace ¢, 1 jon A, thereis a
07 2_trace ¢ on AT such that ¢2,1—j(<f/gW2>DL) = ¢((g, f)p)- The value of the
unbounded trace T ; on the hexic module Mg is %(p(l), which we now seek to

calculate. Since ¢ is a p; Z_trace, its adjoint ¢*(x) is a p2-trace, and thus there are
Complex constants c;, d; such that ¢* = ¢y, + d;p5,, where ¢, and 15, are the
basic p2-traces on AT)g- We then have

P21-i((f,8W?) pr) = Ty ((f, 8)p) + 5, ((f,8)p)
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Let f,g € S(R) such that f(x) = e~ and g(x) = e~ ™ wherea,b € C*
(the right half-plane). We observe that

x? .1
gWA(t) = iée(tz/Z)_Zo g(x)e(tx) dx = %eﬂr(%fntz'

As before we have (f,gW?) 1 = ¥ oy Vi"V3 where cpn = (f,gW?)p1 (mdy +

’

—n(%—i)zxzmze—%o@(n—&-m(l—&-%))z

Tl(52) = i e

o1 (V3'V') = A%(’"—”)Z&j(m*n) we observe that

lPZ 1— ](<f gW DL Z Cm, m+n/\m(m+n)/\6 5]” Z Cm,m+3jn/\m(M+3jn)/\%32fn2.
mn

=

with T = w Using the formula

<§\

- if% efgtszgmzefgazBonzefz%TuczComn
m,m+3/n . Vab—ib+1 ' '
Ap = (a+2i) (% —i) 41, By =3%,and Cy = 3/(2 + }). Combining all terms gives

Substitution shows that ¢ where

0'\\>—‘

Z —rym? 777571 27t§mn

P21 ({f,gW?)p1) =

\/717 —ib +
?(b+a—3iab 3212 (2b—iab— 3 (iab—b .
where y = % (Ebjih+11a )5 = gbﬁihﬁ [ =3 lfbﬂ) Applying Lemma 10.1

allows us to transform the previous sum into the equlvalent sum

)

m2 _5 2
P21 ](<fgW DL) AZe 76— 1:2 e 2" e

ZH%mn
16-¢

-

3 . T Y
where A = mé W Computation shows that y6 = mﬂTﬁ)z(%abz +
3a%b? 4 ab + ia®b + ia — 2b> +ib) and {* = %(Ezb2 + 2iab? — b?) from
2 _ =34 it (a+b) I
which it follows that yé — (= = W' This gives
1
i~% 3277 p2is

J@ 11107 Vatb

and the equalities

v 317%ig%(b+a — 3iab)
v6 — 2 a+b !
5 P(ab+2ib+1)
v6 — 2 a+b ’
Z —31- fﬁz(ab—Hb)

Y6—q2 a+b
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. _ ip?(b4a—3iab) _ B*(@b+2ib41) _ —BR(ab+ib) B
Lettlhg v = e = b 0= =45 So that ﬁ =
31720y, ,ng§2 = 5’,# = 31777’, we may write explicitly (for j = 0,1)

2 ‘BZi% T Al 12 5 2 27t
#?zo((f,gW >Di) — 7Ze—§7me—rt nerfgmn,

V3Va+b i

38213 . , ,
I
m,n

We will return to these shortly.
Again we have (f,g)p = B* L by USU" where by, = (f,g)p(me; +
mn

1 72 9 77Tﬁz(igmin)2
ngz) = ﬁe_”bﬁ m e a+b
L(n—m)? s(n—
Using the formula y;, (USU}") = /\16(71 ") (5;(” ") we observe that for
s=0,1,

! 2 §3%n? ﬁz — oy m? — N2 2l mn
¢2,1—s(<f/g>D) =B me,m-&-&“n)H = —F Ze "e 17 e=o1

m,n vVa-+ b m,n

whereqy = E@ZY 5 _ PUPGLEN ¢ PG 50 e ave
— - 2 _ 2 _ 2
¢£,l—s(<f’g>D) = \/m Ze TYM” =7 " 2y
m,n
2 1:(= . .
Letting 6, = M%W,Cz = %we may write (fors = 0,1)
(1 f o\ ) — :Bz —mry m? —97dyn? _6mlomn
¥y ({f,8)D) = mze e e ,
mmn
2
¢51(<f,g>D) = \/mzefﬂ’ﬂmzefnéznzeﬂ'[ézm%
m,n

CALCULATION OF Ty ([Mp]). We first concern ourselves with the equation

P20 ((f, W) p1) = c1ho((f,8)p) + d1h, ((f, 8))-

Our goal is to find constants ¢1, d such that this equation becomes an identity for
any a,b € C*. First, we observe that y; = ¢’, and so after simplifying we may
write the equation as

.1
13 a2 2 /
Ze 37 M o= e27‘£§ mn

3 m,n

_ _ 2 _ 2 - _ 2 2
=0 Ze Tym o 97tdon e6n§2mn + dl Ze Tym o o1t e27r§2mn'
mn mn
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Consider the left-hand side of thls equation. After implementing the substi-

tutions m +— n, n — m it becomes -2 \/g y e~ o= 50'n? 27l mn . Next, after the
mn

w\»—*

i3y e=mn(m—n)?e=F1'n?2nl (m=m)n yhich

mn

substitution m — m — n it becomes

Si

simplifies to

.1
13 Z —ry m? —an2e27rCmn
m
B

where B=71+ % ) )(1a+1b+3)—(52andC U'+m=

1
1) = —{». Now, the left-hand side becomes =~ Ze_mlm —moyn? g =2nGymn Upon

3(ath (aih) (ib +

making the substitution # — —n this becomes -+ 73 Y e g oyt Q2nlamn and
_ 1
so by taking dy = % and ¢; = 0, the equation becomes an identity for all a,b €

C*. It follows that

.1 1
1- i3 w2

Too (M —d=—=—.
20([Me]) = 6(P( ) = 6™ = 63  6v3
CALCULATION OF Ty1([Me]). Now, we consider the equation

21 ((f,8W?)p1) = o3 ((f,8) D) + o, ({f,8)p)-

Our goal is to find constants ¢y, dy such that this equation becomes an identity for
any a,b € C*. After simplifying we may write the equation as

\[’)i% 2 e737r7’mzef7r71n2e671§’mn
mmn

_ _ 2 _ 2 — _ 2 2
=% Z e T g 97tdon e67IC2mn + dO Z e T o o1 e27r§2mn‘
m,n m,n

Consider the left-hand side of this equation. After implementing the substitu-

. . .1 _ 2 /.2 1
tions m — n,n — m, it becomes /313 Y e TNM 3TV 1" b mn Next, after the
mmn

1
substitution m — m — 3n it becomes /3i3 Y e ™
mn

(m—Sn)ze—37I7/n2 b7l (m=3n)n

which simplifies to

1 _ 2 _ 2
\/513 Ze Tmt o tYn e27ern
mn

where Y = 98’ + 39/ + 18’ = (;ﬁ) (ib + i@ +3) = 96 and Z = 37 + 30 =
2
(E’i—b)(?)ib +3) = —30,.

. L1
Now, the left-hand side becomes v/3i3 ¥ e~ TN’ o= 97opn? o —6mGymn, Upon
mmn

. o . .1 _ 2 2
making the substitution n — —n this becomes V/3i3 Y e Tmimt g =9moyn” gbmlamn
mn
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and so by taking dy = 0 and ¢y = V3i3, the equation becomes an identity for all
a,b € Ct. It follows that

-
=
N\»—l

_ V3.
6

Co =

_ VB,
~ 6 Y

O\\H

T ([Me]) = g9(1) =

8. CALCULATION OF Ty ([M))

Again, from Lemma 5.1 it follows that for the basic p3-trace 131 jon A,
there is a p; >-trace ¢ on AT such that ¢3,1,j(<f,gw3>m) =g f)p)-
The value of the unbounded trace T3 1 ; on the hexic module Mg is %go(l),

which we now seek to calculate. Since ¢ is a p; 3_trace, its adjoint ¢*(x) is a p3-
trace, and thus there are complex constants c;, d; such that ¢* = cjp3, + d; iy,
where % and 94, are the basic p3-traces on AT, We then have

(8.1) 31— ((f,8W*)p1) = ¢l ((f,8)p) + djwh, ({f.8)p)

and ¢(1) = ¢jp5,(1) +d;p3 (1) =¢; +d;.

Asbefore, let f, ¢ € S(R) such that f(x) = e 7% and g(x) = e 7% where
a,b € C*. Since W? is the flip operator, we observe that gW3(t) = g(—t) = g(t),
since g is an even function. We have

<frgW3>DL = Zcm,nvlmvzn

na2ab . 2 LZ 2 27m ib
where ¢y = (f, W) 1 (méy 4+ ndy) = —=2=e ™ arb " e~ a5 e "av " From the

1
formula 30 (V3 V") = A~ 2""5551 we compute 30((f, W) p1) = ¥ camanA>™"
mn

402 2 8a2ib

Cpde? o —
where ¢o0n = 7714-176 TR o ST e TG M G,
_ 2 2
W30 ((f, W) p1) = reym? g —ron? 2rgmn

402ab 5 = 402

where v = 7, =25 (= M As before, applying Lemma 10.1

allows us to transform the previous sum 1nto the equivalent sum

_ ) 2 2 g
1/)30(<f gW Di AZ 'Y‘) §2m 75,@” e n,ﬂ;,gzm”

16a%ab 2 —4a* =2
where A = N \/W Computation shows that v = (@b’ {c= @by 5 (

2ab + b?) from which it follows that 76 — {2 = i L > (@? +2ab+b?) = 4"‘ (a+
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b)? = 4a*. This gives

A= ! __F
@+ b) (-3 2Va+b

and the equalities

v _ Pab 0 p ¢ ip?(a—b)

v6—72 a+b 46-72  a+b 46—  20@+b)’

An analogous calculation may be done for 151, where 931 (V3'V]") = A~ 2™".
In this case we have

P31 ((f, W) p1) Zcmn%l(vl Vi)

—rygm? n50n2e2n§0mn

where ¢ = %,50 = E‘i‘%b,éo = 2(5, +b)) Applying Lemma 10.1 now gives
Y o o % o %o
1P31(<frgW3>Di) = Ag Z e n%%*éém e H“Yo%*é(z)n ezn%%*éé m
m,n
where Ag = ﬁ\/ﬂ' Computation shows that

atab 5 —at

= =" (@#@-2 2
100 =G 9T garpr @ )

. . 4 - _ 4 —
from which it follows that ydy — {3 = ‘L(EIXT)Z (a% 4 2ab +b?) = 4(5‘117)2 (@a+b)? =
“2—4. This gives
1 282

J@+n)(ws-33) VIt

and the equalities
Yo _ 4pfab b _ 4 Qo _ 2ipr@a-—b)
Y000 — 08 a+b’ -3  a+b’ -3  a+b

We now consider the right hand side of equation (8.1). With (f, g)p and by, »
defined as in Section 6, we have

1Péo(<ffg>D) = 132 Z bm,nl/’éo(uguiﬂ) = ,32 Z me,Zn)‘fzmn

7471(15,52 471,52 2 817rﬁ b
a+b e atb e a+b .So

1
where by, 2, = —e
§ \Va+b

¥30((f.8)p) /e Z — o m? g moin® G2r Ly mn
mn
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4p%ab 51 = 462 7y = 2i? (a b)
a+

where v = 1501

. Similarly,
2

¥y ((f,8)p) = B men%l U uy') = Jeii &

2 512 277
e T2 e—rtézn e2ngzmn

_ Pab 5
02 = a+b'§2 u+b) '

lpéo(<frg>D)

where v, =

Ze—n"/lm —1éyn? 27T§1mn

VLIWL mn

2 efnyzm n52n2e2n§2mn'

TTF o
3 ((f,&)p) \/ﬁ
CALCULATIONS OF T30([Mg]) AND T31([Ms]). It now follows readily that

- 4 =0

= 7 77(5/ )
(R e R A

_r
0 — 2
and

70 ) o
————=m=47, —s=0h=40h —TF
Yodo — (3 Yodo — 3 Yodo — (3

This implies that ¢; = 0, d = %, To = 2, and dy = 0. We hence obtain the
identities

P30({f, gW?)p1) = %ll"31(<fr8>D)r P31 ((f,gW)pr) = 295, ((f. 8)p).

from which it follows that

Too([Me]) = g9(1) = £ = 15, T([Me]) = (1) = gy = 5.

= {1 =40.

9. CALCULATION OF Sy ([Ms3])

From Lemma 5.1 it follows that for the basic x-trace ¢;; on Ay, there is
a x; '-trace i on AT such that ¢1;((f,8Z)p1) = ¢((g, f)p)- The value of the
unbounded trace S1; on the cubic module M3 is %tp(l), which we now seek to

calculate. Since ¢ is a Kf -trace, its adjoint ¥* is a xj-trace, and thus there are
complex constants c;, d;, ¢j such that ¢* = c;¢}, +d; ¢}, + ej@},, where the q)’lj are
the basic xq-traces on A;"; g- We then have

¢1i((f.8Z)p1) = Ciplo({f. &) D) + di91, ({f. 8)D) + €9, ({f.&)D)

and (1) = ¢ (1) +d;9}, (1) + 294, (1) = ;.
The ¢y traces are defined by

1 . .
o1 (UMV") = Ag((m—n)z—ﬂ)(;;n—”—]_
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We take @10 and ¢1; to assume their usual definitions, but define ¢1; by

P (UMV") = /\%((m—")z—”csg”‘"“,
which corresponds to the choice j = —1 and is non-zero at exactly those values

where the usual ¢y, is non-zero.

As before, let f(x) = e~ and g(x) = e~ where a,b € C*. Using a
previous calculation, we have

1

- 1 s
Z(t) = gWA(t) = e (5!
8Z(t) = gW=(t) 7
We then have (f,8Z)p1 = ¥ cmnV{"V}' where again using a previous calcu-
mmn

i i 5 77r(17i)042m2 -z
lation ¢y = (f,8Z)pL(mdy + nédy) = e e T

T = %. We observe that ¢ (U™ V") = ¢1o(U™V"), from which we imme-
diately obtain the equalities
P20((f,8W?)p1) = pro((f,8Z)p1) and  $((f,8)p) = P1((f.8)D)-

Earlier calculations then yield (after appropriate inversions and substitutions)

az(n+m(1+%))2 with

1
—wiﬁZ %% m? 01n glmn
<P10(<f/gZ>DL):\[\/a72e g G o
m,n
and
2
o ({f o\p) - —éyn? 27T§1mn
P1((f.8)D) = \/726 T o=y
a+ m,n
where 7, = ﬁz<abaf£b+1)r51 W IZIIIJbJrs &1 = %lgﬂ) Next, we have

192
(P11(<f gZ DL Z Cm, n}\ §011(V1 #Vz Z Cm,m+3nfl/\m(m+3n_l))L6(9n 6n)
mn

where
_1 . .
T
Coimiani = 16 efﬂ(Eﬂ)nxszef?a2(3n+m(2+%)71)2
Vbt
1 me
1 6e T 2
— efrerm e*T[BoTl e 3 Eome 3 Bon —mEgmn
Vbt
2(—iab+a i 2 —3a2(2b+i .
where Ag = %W,BO = 9%,]:"0 = % Combining all terms
gives
_l _m,
6e Y

_2r 21
(P11(<f/gZ>Di) = Ze “rm 3 Gm 3 on2nlmn
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2 — A=
where 7 = (a+b—3iab) 5= 302 (— 1ab+2h g _ 37 lab 3a® (iab—b) . Considering now ¢1l’

we have as before (f,¢)p = B2 Z bmnunum with bmn = (f,9)p(mey +ney) =

(ibm—n)>
a+b It follows that ¢, ((f,g)p) = p> Z b n @y (UGU )=

_ 2
1 7e77rb[32m2 —np
\ a+b

9n*+6n 27 9 g2 (ibmom—3n-1)2
B Z b m+3n+1)\6( ) where by, 3041 = al+ Ee—ﬂﬁ bm np otk
We hence obtain
ng
2 _ _ _ _
e aer P 5 21 2n
P11 ({f,&)p) = P e TN =TI o T3 Cym o= 5 Oy 2y

Va+b n;
with 1,41, and {; as previously. This gives
2

‘Bze_ﬂm

¢, ({f,8)p) =

Zefn'ylm B e 3 §1m 51ne27r§1mn.
m,n

Now, applying Lemma 10.1 to ¢11((f,gZ) p.) gives the equivalent form
7 ) ¢
A 2 e—ﬂ'W mze—ﬂwnzef Z%imebrﬂ mn

I
17697’['0‘ 990
br(v6-2?)

where A = . A routine calculation shows that

4 4 _ 4 (m
76— = X (G4 b — 3iab) (—idb + 2ib— i) — X (iah— b)? = o0 @+D)

b272 b21? ab—ib+1 -
This gives
1 ms mo 1,1
A_wzﬁ2e9 T _w2,32)\ 2
- VBVatb  V3Va+h
and the equalities
v p*Bab+ia+ib)
v6 -2 3@+b)
5§  pHab+2ib4+1)
-2 a+b -
¢ PPi(iab—1b)
-2 a+b

Interchanging m and n and making the substitution m +— m — n produces the
series

v 2 2 4 2
2 —TT— ne _&emln.. 27 m—n)n 2 2 27T,
E e (m—n) " T2 o= TFing 7§—§2( ) :E :e—rwlm o~ RN’ — 3 in 2 Smn

m,n
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2
ww = 3(5+b) (ig+ib+3) = §6 and S = 7 +

'yégéz — alib (ab+2ib+1—ab—ib) = ﬁ p(ib+1) = %gl. Finally, the substitu-
tion m — —m gives

where R = 91 + 742 +2

wzﬁZA
NN

We now partition this series into three parts, depending on the value of k where
k = n mod 3. Explicitly,

2. 271
¢11(<f/gZ>Di) = Ze—n")/lm e 95171 71ne7§1mn'

oy~ Esn? iy zlgmn
Ze MM em 9 o™ 3Me3 1M — [+ 1 +L_4

m,n
where n = k mod 3 on L. The substitutions n — 31 4 k give
_ 2 _osn? o _ 2 _osin?
Lo= Ze Tyme o o n e 27r1ne27rélmn — Ee Tym o o n e27'(g'1mn,

m,n m,n

2 T 2 2w, 2
Zefrf'ylm e 901(3n+1) e 3 1(3n+l)e 3 G1m(3n+1)

m,n

Ly

T 21 2
— _we 9% Ze—nvlmze—mﬁnzejﬁme*751”827'[@1"1”,

mn

27, 2
L,=Ye —mpm? g gal(3n—1)2e—7”1(3n—1)e7”§1m(3n—1)

m,n
2 —%6 - 2—52—2l§m2l<5n2
=we 9 ) e MM AT 3 Me 3 11 27Gymn,
m,n

Making the substitution m,n — —m, —n in L_; shows that L_; = —wL;. Hence,
1 1
28202 Sy .

o11({f,8Z)p1) = w\[fW(Lo + (1 — w)Ly). Considering finally ¢1,,

19,2
p2((f,8Z)p1) = Y A" ra(V"#V3') = 2Cm,m+3n+1/\m(m+3"+l)7\6(9n +6n)

mmn mn
where
_1 .
i6 —i)a?m? —Za2(3n+m(2++)+1)2
Cmm+3n+1 = (b a? e T ( @)+
\/bT
_1 _mpe )
1 6e T 2 2 _2¢
— e—r[Aom e—nBon e 3 Eome 3 Bgn —nEomn
Vbt
2(—igb+a 2 —302(2b+i .
where Ay = %W,BO = % F = w Combining all terms
gives
1l _meo ) )
1 6e 7T 2 2 527 2
_ —mym* —mén® 255-(m _—=3-0n_2mwlmn
p12((f,8Z)p1) = DI e e R
Vbt m,n
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with v, d, and ( as before. The substitution m,n — —m, —n then gives the equal-
ity 12((f,8Z)pr) = ¢11({f,8Z)p.). Considering now ¢),, we have as before

(f,9)p = ,Bzmzmbm,nllgur with by, = (f,¢)p(me; + ney) = \/ﬁe’ﬁﬁzmz

_ ISZ (iEmfn)z

e P It follows that ¢, ((f, @) ) = B2Y. buu @y (USU) = B2Y. by s 301
mmn

mn
ibm—m—3n+1)2

1 e,n‘BZEmZQ—HﬁZ( s
a+

ﬁZ

2.7

/ ‘B e a+b
((f,8)p) = ——=)_e
P12 fg \/m ”;l

with 1, 61, and ; as previously. This gives

%(97127671) .
AL where by, 43n-1 = . We hence obtain

Sl

= 2 5.2 217 2% >
— 7Ty m e—msln e 3 élme 3 151n927'(§1mn’

2

2 —TT=—%
e a+b > 2 21 21T
:B ) :e—nylm e—miln e 3 §1mef3 51ne2n§1mn_

¢ ((f,8)p) = ﬁ =

Again, the substitution m,n +— —m, —n gives ¢, ((f,&)p) = ¢};({f,&)p). Our
problem is then reduced to determining constants ¢, 7y, where k = 0,1 and 7} =
dy. + &, such that the equations

¢10((f,8Z)p1) = o9y ({f,8)p) + To9}, ({f,8)D)

and

p11({f,8Z)p1) = ¢12({f,8Z)p1) = 191, ({f, &) D) + 711, ({f,8)D)

become identities. For convenience, let
—nyym? —néyn? 2nymn — oy m? — 1 n? zlém 25 27l mn
Zozze T @ T o £TTG1 N Z]IZQ T @ =TI @ 737611 o™ 737 A1 o761
mmn mn
In this notation we may write
1
5 @2
w2p
¢10((f,8Z)pL) = (= F——
V3vVa+b
151
w2B A2

V3Va+b

T
(Zo+2e7 95y,

o ((f,8Z)p1) = (So+e 99 (w? —w)xy),

and
7'(/32

g fre wit

Fallf o) = o (l90) = e
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CALCULATION OF S10([M3]). We consider the first of our two equations, which
may be written using this new notation, after some simplification, as

1 p2

s e
(Zo+ 2e” 9% X1) =CoXp + Foe atbx,

1 1
which implies that ¢p = é and 7y = 202 © Hence S1p([M3]) = 19(1) =
1]9 0 V3 0 V3 10 3 3
15, = w2
360 = 3\/3.

CALCULATION OF S11([M3]) = S12([M3]). We now consider the second of our
two equations, which may be written as

1 1 2
w2 BZA72 s np>
\@ﬁ m( 0o+e 94 (wz—w)):l) = C120+7’1€ ﬂ+h21
3 -3 % 2 /\’%A%
which implies that ¢; = % and 7 = < W 7(% L. Since S11 and Sp»

1

‘ S

1 1 1
are normalized by A6, it follows that Si1([M3]) = JA6y(1) = FAbey =
t S12([Ms]

~— W
IS

and, from the equahtles between ¢19 and @17 discussed earlier, tha

S11([M3]) = %

10. APPENDIX

For z,t € C, where Im(t) > 0, we define the theta function 93 by
193 z, t 2 emtn i2nz

where the summation is over the integers. The Jacobi transformation formula for
193 is
-1 20z 1
03(z,t) = (—it)  2ewi 193(?, —?).
We prove the following formula for two-dimensional theta functions (where we

have a sum double-indexed over the integers in independent variables m and n).

LEMMA 10.1. Let 7,6, u,v,{ € C with positive real parts, and let A = 6 — 72,
Then

_ 2 _ 2 _ _
Ze Tyms g on e TTHIM o m/ne27t§mn

mn

R R a1 4
_Q)ZefﬂAm UL eme

7711%71(?2712"111
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j j = L eaa(p(Ou+iv)rv(yv+ip))
provided the series converge, where @ = e .

Proof. We begin by separating the sum as
2 efrténzefm/n 2 efrwmze(27r§n77ry)m
n m

and replacing the second sum by a theta function to get

2 _
Zefnénzefm/nl%( ngnz. ny,i,)/).
7 1

We now apply the Jacobi inversion formula to obtain

(2ngn—mp)< 2

Zefmsn 7m/n,), 1 Imy (

which simplifies to

iy —21ln 7)
2y oy

2 2 .
O C(s— & i _ 2 im(2n—p)
N le® Ze (6 e Yn? e 7'[(1/+ n Ze pme

n m

We now wish to perform inversion on 7. Separating the sums as
7T
¥ 2 e 47 Z e 7™

2 T2 i

— in 2
allows us to write v~ le Ze " e Wmﬁg(w ia

17r,u

_ _ ¢ _ Qu _ 2ifm
mze (6 n(v—&-w > )

). Applying the

Jacobi inversion to this yields

71;1 _inp - (171/+1Cp+2§m v+ 2ilm 1
A 2e E Ze am 7 Ma 34 B5( (Y g’z 4 )'Z)
Expanding the theta function into a sum gives
2 i -2
A- Zel}’ty Ze77m 7%me mi(y E’];A 1§m 2 ,ﬂ zem(7v+§]4 Zlgm)

n

Collecting terms and returning to the double summation gives

2 .
1 e 7V+§I4 2 o 1(5;4A+§v)mein%n2 neZH%

et e M4 Ze* A

VA

and upon expanding the constant terms and making the substitutions m — n,
n — m, we obtain, with @ as defined earlier,

©Ze—nAm

i(yv+gp)
eTL’ A mnl

4
A

g 2em (“/V‘Xgll) g7 (WX@V) "ezn
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