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ABSTRACT. Let Aθ denote the rotation C∗-algebra generated by unitaries U, V
satisfying VU = e2πiθUV, where θ is a fixed real number. Let ρ denote the
hexic transform of Aθ defined by U 7→ V 7→ e−πiθU−1V (which has order
six), let κ denote the cubic transform κ = ρ2, and let Hθ := Aθ oρ Z6 and
Cθ := Aθ oκ Z3 denote the associated C∗-crossed products by corresponding
cyclic groups. It is shown that for each θ there are canonical inclusions Z10 ↪→
K0(Hθ) and Z8 ↪→ K0(Cθ) given explicitly by projections and “mysterious”
modules (called hexic and cubic modules). We also find the unbounded traces
on the canonical smooth dense ∗-subalgebras and so obtain Connes’ cyclic
cohomology groups of order zero HC0(Hθ) ∼= C9, HC0(Cθ) ∼= C7, when θ is
irrational.
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1. INTRODUCTION

Let θ > 0, λ = e2πiθ , and consider the rotation C∗-algebra Aθ generated by
unitaries U, V satisfying VU = λUV. The (noncommutative) hexic transform of
Aθ is the canonical order six automorphism ρ defined by

ρ(U) = V, ρ(V) = λ−
1
2 U−1V.

Its cube is the usual flip automorphism studied in [1], [2], [3]. Its square κ := ρ2

is what we shall call the cubic transform:

κ(U) = λ−
1
2 U−1V, κ(V) = U−1.

The corresponding crossed product Hθ := Aθ oρ Z6 (the hexic C∗-algebra) is the
universal C∗-algebra generated by unitaries U, V, W enjoying the commutation
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relations

(1.1) VU = λUV, WUW−1 = V, WVW−1 = λ−
1
2 U−1V, W6 = I.

One may view the crossed product Cθ = Aθ oκ Z3 (the cubic C∗-algebra) as the
C∗-subalgebra of Hθ generated by U, V, and Z := W2. It can be viewed as the
universal C∗-algebra generated by unitaries U, V, Z enjoying the commutation
relations

(1.2) VU = λUV, ZUZ−1 = λ−
1
2 U−1V, ZVZ−1 = U−1, Z3 = I.

We write H∞
θ and C∞

θ for their respective canonical smooth dense ∗-sub-
algebras. (For example, the elements of H∞

θ consist of sums of terms of the form
aW j where a ∈ A∞

θ .)
The purpose of this paper is the construction of ten canonical classes in

K0(Hθ), eight canonical classes in K0(Cθ), and show that they are independent
over the integers so that there are injections Z10 → K0(Hθ) and Z8 → K0(Cθ)
for each θ > 0. One of the classes in each case involves an exotic module, which
we call the hexic and cubic modules M6 and M3 respectively, and the computa-
tions of their unbounded traces are lengthy and require detailed treatment with
theta functions. Of course, we also obtain the unbounded traces on H∞

θ and C∞
θ ,

thereby obtaining their Connes cyclic cohomology groups of order zero (see The-
orem 1.3). The unbounded traces on the crossed products, denoted by Tij in the
hexic case and Sij in the cubic case, arise from what we call “twisted” trace func-
tionals on A∞

θ (as for example in [10], Section 2). These are determined in Sec-
tion 3.

Throughout the paper we let ω := e( 1
6 ) = 1

2 (1 + i
√

3) (a primitive 6th root
of 1). We also adopt the convention e(t) = e2πit.

HEXIC CASE. Consider the projections

pj =
1
6

5

∑
i=0

ωijWi, qj =
1
3

2

∑
i=0

ω2ijXi, r =
1
2
(I + UW3)

where X := λ
1
6 UW2 is of order 3, and UW3 has order 2. We prove that we have

the character values in Table 1.
Consequently, one has

THEOREM 1.1. The ten K0 classes in Table 1 yield an inclusion Z10 → K0(Hθ)
for each θ > 0.
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Table 1. Character table for the hexic case
K0-class τ C6 T10 T20 T21 T30 T31
[1] 1 0 0 0 0 0 0
[p0] 1

6 0 1
6

1
6

1
6

1
6

1
6

[p1] 1
6 0 − 1

6 ω2 − 1
6 ω − 1

6 ω − 1
6 − 1

6
[p2] 1

6 0 − 1
6 ω 1

6 ω2 1
6 ω2 1

6
1
6

[p3] 1
6 0 − 1

6
1
6

1
6 − 1

6 − 1
6

[p4] 1
6 0 1

6 ω2 − 1
6 ω − 1

6 ω 1
6

1
6

[q0] 1
3 0 0 0 1

3 0 0
[q1] 1

3 0 0 0 − 1
3 ω 0 0

[r] 1
2 0 0 0 0 0 1

2
[M6] θ

6 −1 1
6 ω 1

6
√

3
ω1/2 1

6

√
3ω1/2 1

12
1
3

CUBIC CASE. In this case, with Z denoting the canonical unitary of Cθ , we set
X = λ

1
6 UZ, Y = λ

2
3 U2Z (unitaries of order three). Consider the polynomials (for

j = 0, 1)

Qj(x) = 1
3 (I + ω2jx + ω4jx2).

THEOREM 1.2. The eight K0 classes in Table 2 yield an inclusion Z8 → K0(Cθ)
for each θ > 0.

Table 2. Character table for the cubic case
K0-class τ C3 S10 S11 S12
[1] 1 0 0 0 0
[Q0(Z)] 1

3 0 1
3 0 0

[Q1(Z)] 1
3 0 − 1

3 ω 0 0
[Q0(Y)] 1

3 0 0 1
3 0

[Q1(Y)] 1
3 0 0 − 1

3 ω 0
[Q0(X)] 1

3 0 0 0 1
3

[Q1(X)] 1
3 0 0 0 − 1

3 ω

[M3] θ
3 −1 1

3
√

3
ω1/2 1

3
√

3
ω1/2 1

3
√

3
ω1/2

Using Theorems 1.1 and 1.2, Polishchuk in [7] recently showed that one has
isomorphisms K0(Cθ) ∼= Z8 and K0(Hθ) ∼= Z10 for all θ > 0. In [5], the authors
in turn use Polishchuk’s result to show that the injection Z10 → K0(Hθ) is an
isomorphism, so that the ten canonical classes obtained herein do in fact form
a basis for K0 for each θ. We believe that similar computations show that the
injection Z8 → K0(Cθ) is an isomorphism.

THEOREM 1.3. (See Corollaries 3.2 and 3.4) For any irrational θ, one has the
cyclic cohomology group of order zero

HC0(Aθ oρ Z6) ∼= HC0(Aρ
θ)
∼= C9, HC0(Aθ oκ Z3) ∼= HC0(Aκ

θ) ∼= C7.
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Specific bases for these groups are given in Section 3.

2. BACKGROUND

We shall denote by C+ the set of complex numbers with positive real part.
We will make frequent use of the identity

(2.1)
∫
R

e(Ax) e−πax2
dx =

1√
a

e−π A2
a

where a, A ∈ C and Re(a) > 0. The square root appearing here is the principal
one (namely, if z = reit and −π < t 6 π, then

√
z :=

√
rei t

2 ). For our purposes
below it will be worthwhile noting that C+ is closed under addition, conjugation,
and inversion; further, for a, b ∈ C+, one has

√
ab =

√
a
√

b and
√

a =
√

a.
As in Rieffel’s construction in [9], one begins with a locally compact Abelian

group M, forms the group G = M× M̂ on which the canonical Heisenberg cocy-
cle h defined by h((m, m′), (n, n′)) = 〈m, n′〉, where 〈·, ·〉 is the canonical pairing
on G. The Heisenberg (projective) representation π : G → L(L2(M)) is given by
[π(m,s) f ](n) = 〈n, s〉 f (n + m). It has the properties

πxπy = h(x, y)πx+y = h(x, y)h(y, x)πyπx, π∗
x = h(x, x)π−x

for x, y ∈ G. Given a lattice subgroup D of G, the C∗-algebra C∗(D, h) = C∗(D) is
generated by the unitaries πx, for x ∈ D, and C∗(D⊥, h) = C∗(D⊥) is the opposite
algebra of the C∗-algebra generated by the unitaries π∗

y , for y ∈ D⊥. (Recall that

the complement of D is D⊥ = {y ∈ G : h(x, y)h(y, x) = 1, ∀x ∈ D}.) By Rieffel’s
Theorem 2.15 [9], the Schwartz space S(M) is an equivalence bimodule with the
C∗-algebra C∗(D) acting on the left and C∗(D⊥) acting on the right. We point out
that the right action is f π∗

y := π∗
y( f ). Denoting the opposite multiplication by #

(so a#b = ba), one has the module property ( f π∗
y)π∗

z = f (π∗
y#π∗

z ) for f ∈ S(M)
and y, z ∈ D⊥. The C∗-valued inner products are

〈 f , g〉D = |G/D| ∑
x∈D

〈 f , g〉D (x)πx, 〈 f , g〉
D⊥

= ∑
y∈D⊥

〈 f , g〉
D⊥

(y)π∗
y ,

where |G/D| is the Haar-Plancherel measure of a fundamental domain for D in
G and, writing x = (x′, x′′) ∈ D and y = (y′, y′′) ∈ D⊥, one has

〈 f , g〉D (x) = 〈 f , πxg〉
L2 =

∫
M

f (t)g(t + x′) 〈t, x′′〉 dt

〈 f , g〉
D⊥

(y) = 〈πyg, f 〉
L2 =

∫
M

f (t)g(t + y′)〈t, y′′〉 dt.
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There are canonical normalized traces τ′, τ on C∗(D) and C∗(D⊥), respectively,
satisfying

τ′(〈 f , g〉D ) = |G/D| τ(〈g, f 〉
D⊥

).

We shall mainly be interested in Rieffel’s setup with M = R, and for this purpose
we shall also be interested in the following “square root” s of the Heisenberg
cocycle h on R2 × R2 given by s((m, m′), (n, n′)) = e( 1

2 mn′), so that s2 = h. In
view of our interest in the hexic transform on the rotation C∗-algebra, we consider
the order six map H : G → G given by H(u, v) = (u + v,−u).

If α is an automorphism of a C∗-algebra A, then a linear functional φ (not
necessarily norm continuous) defined on a dense α-invariant ∗-subalgebra A′ of
A is said to be α-trace if and only if

φ(xy) = φ(α(y)x),

∀x, y ∈ A′. Suppose α has finite order k. If φ is an α-invariant αj-trace, then it
induces a trace T on the smooth crossed product A′ oα Zk (dense in A oα Zk)
given by

T(a0 + a1W + · · ·+ ak−1Wk−1) = φ(ak−j).

Recall the adjoint of a linear map φ is φ∗(x) := φ(x∗) (and φ is α-invariant if and
only if its adjoint is α-invariant).

PROPOSITION 2.1. Let X be a C-D-equivalence bimodule and let ρ1, ρ2 be auto-
morphisms of C, D, respectively, such that there is a linear map w : X → X satisfying
ρ1(〈x, y〉C ) = 〈w(x), w(y)〉C and ρ2(〈x, y〉D ) = 〈w(x), w(y)〉D . Then there is a
one-to-one correspondence between ρ1-traces ϕ′ on C and ρ2-traces ϕ on D given by

(2.2) ϕ(〈x, w−1(y)〉D ) = ϕ′(〈y, x〉C ).

Proof. It suffices to begin with a ρ1-trace ϕ′ on C and show the existence
of a ρ2-trace ϕ on D satisfying (2.2) — the proof of the converse being similar.
(Since the inner products over C and D span C and D, respectively, ϕ will nec-
essarily be unique.) As in the proof of Rieffel’s Proposition 2.1 of [8], there is a
positive integer n such that, with E = Mn ⊗ C and viewing Xn as an equivalence
E-D-bimodule in the usual way, there is an element z ∈ Xn such that 〈z, z〉D =
1 (the identity of D). Extend w to Xn in the natural way by w(x1, . . . , xn) =
(w(x1), . . . , w(xn)). It is easy to check that the hypothesis relating ρj to w yields
the properties w(cx) = ρ1(c)w(x) and w(xd) = w(x)ρ2(d) for x ∈ X, c ∈ C, d ∈
D. Further, one has (1⊗ ρ1)(〈ξ, η〉E) = 〈w(ξ), w(η)〉E for ξ, η ∈ Xn.

Consider the linear map µ : D → E given by µ(d) = 〈zd, w−1(z)〉E . It is easy
to check that the induced map ψ : E → C defined by ψ(m⊗ c) = Trace(m)ϕ′(c),
where m ∈ Mn, c ∈ C, is a 1⊗ ρ1-trace on E. Now define the linear map ϕ : D →
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C by ϕ(d) = ψ(µ(d)). We now check that (2.2) holds. For ξ, η ∈ Xn one has

ϕ(〈ξ, w−1(η)〉D ) = ψ(µ(〈ξ, w−1(η)〉D )) = ψ(〈z〈ξ, w−1(η)〉D , w−1(z)〉E)

= ψ(〈〈z, ξ〉E w−1(η), w−1(z)〉E) = ψ(〈z, ξ〉E〈w
−1(η), w−1(z)〉E)

= ψ(〈z, ξ〉E(1⊗ ρ1)−1(〈η, z〉E))

which by the 1⊗ ρ1-trace property of ψ is

= ψ(〈η, z〉E · 〈z, ξ〉E) = ψ(〈〈η, z〉E z, ξ〉E)

= ψ(〈η〈z, z〉D , ξ〉E) = ψ(〈η, ξ〉E).

Specializing this equality to ξ = (x, 0, . . . , 0), η = (y, 0, . . . , 0) it gives rise to
(2.2). It remains to check that ϕ is a ρ2-trace. To do this, it is enough to check it
using inner products 〈·, ·〉D since they span D. Rewriting (2.2) as ϕ(〈x, y〉D ) =
ϕ′(〈w(y), x〉C ), one gets

ϕ(〈x1, y1〉D · 〈x2, y2〉D )

= ϕ(〈x1, y1〈x2, y2〉D 〉D ) = ϕ(〈x1, 〈y1, x2〉C y2〉D ) = ϕ′(〈w[〈y1, x2〉C y2], x1〉C )

= ϕ′(〈ρ1(〈y1, x2〉C )w(y2), x1〉C ) = ϕ′(ρ1(〈y1, x2〉C )〈w(y2), x1〉C )

which by the ρ1-trace property of ϕ′ is

= ϕ′(〈w(y2), x1〉C · 〈y1, x2〉C ) = ϕ′(〈〈w(y2), x1〉C y1, x2〉C )

= ϕ′(〈w(y2)〈x1, y1〉D , x2〉C );

using (2.2) this becomes

= ϕ(〈x2, w−1[w(y2)〈x1, y1〉D ]〉D ) = ϕ(〈x2, y2ρ−1
2 (〈x1, y1〉D )〉D )

= ϕ(〈x2, y2〉D · ρ−1
2 (〈x1, y1〉D )).

This shows that for each a, b ∈ D one has ϕ(ab) = ϕ(bρ−1
2 (a)). Replacing a by

ρ2(a) one obtains the ρ2-trace property of ϕ.

3. UNBOUNDED TRACES AND THE ZEROTH CYCLIC COHOMOLOGY GROUPS

In this section we calculate the unbounded traces and obtain the zeroth
cyclic cohomology groups of the crossed products Hθ and Cθ (which are the same
as their first Hochschild homology groups). But first let us point out that there
is a conceptual basis behind our result for obtaining the traces on the (smooth)
crossed products in both the hexic and cubic cases. This stems from looking at
the case θ = 0 so that one could in fact apply the result of Brylinski and Nistor [4]
to obtain these traces in terms of conjugacy classes of the underlying group (Z6
and Z3 in our case) and their fixed points under their action on the 2-torus — as
their result applies to crossed products of smooth commutative C∗-algebras by a
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finite group action. What we do here for the case θ 6= 0 is a kind of noncommu-
tative analogue of that (though it cannot be directly derived from [4]).

THE ρ-TRACE. For simplicity write Λ(n) = λn. First, observe that

ρ(UpVq) = ρ(U)pρ(V)q = Λ(−q2/2− pq)U−qVp+q.

Now, let φ be a ρ-trace on A := A∞
θ . Then φ(UmVnUpVq) = φ(ρ(UpVq)UmVn)

and applying the formula for ρ(UpVq) this becomes Λ(np) · φ(Um+pVn+q) =
Λ(−q2/2 − pq + m(p + q)) · φ(Um−qVn+p+q) and so we have φ(Um+pVn+q) =
Λ(−np− q2/2− pq + m(p + q)) · φ(Um−qVn+p+q). Replacing m by m− p and n
by n− q gives

φ(UmVn) = Λ(−(n− q)p− q2/2− pq + (m− p)(p + q)) · φ(Um−p−qVn+p).

Now, for any m, n ∈ Z, take p = −n and q = m− p = m + n. Then

φ(UmVn) = Λ(m2/2 + n2/2)

where we have set φ(1) = 1. Thus we have one basic ρ-trace functional, which
we normalize, ψ10(1) = 1, given by

ψ10(UmVn) = λ
1
2 (m2+n2).

Observe that

ψ10(ρ(UmVn)) = Λ(−n2/2−mn)ψ10(U−nVm+n)

= Λ(−n2/2−mn + n2/2 + (m + n)2/2)

= Λ(m2/2 + n2/2) = ψ10(UmVn)

so that ψ10 is a ρ-invariant ρ-trace, as expected.

THE ρ2-TRACES. Now consider the cubic automorphism ρ2. First, observe that

ρ2(UpVq) = ρ2(U)pρ2(V)q = Λ(−p2/2− pq)U−p−qVp.

Letting φ be a ρ2-trace on A, we have φ(UmVnUpVq) = φ(ρ2(UpVq)UmVn)
and applying the formula for ρ2(UpVq) this becomes Λ(np)φ(Um+pVn+q) =
Λ(−p2/2− pq) · φ(U−p−qVpUmVn) or φ(Um+pVn+q) = Λ(−np − p2/2− pq +
mp) · φ(Um−p−qVp+n). Upon substituting m− p for m and n− q for n this gives

φ(UmVn) = Λ(−p(n− q)− p2/2− pq + p(m− p))φ(Um−2p−qVp+n−q).

Now, for any m, n ∈ Z, let q = p + n, so that φ(UmVn) = Λ(−3p2/2 +
p(m− n)) · φ(Um−n−3p). Let k = 0, 1, 2, where m− n ≡ k mod 3, and write m−
n = k + 3p for some p ∈ Z. Then φ(UmVn) = Λ([(m− n)2 − k2]/6) · φ(Uk) and
so we have three basic, independent ρ2-trace functionals, normalized as follows

φ2k(U j) =

{
1 if k = j,
0 otherwise,
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for j = 0, 1, 2. So, the value of φ2k(UmVn) depends on the value of m − n − k
mod 3. For convenience of notation, we introduce the divisor delta function de-
fined by

δm
n =

{
1 if n | m,
0 if n - m,

for m, n ∈ Z. Thus under this notation, φ2`(Uk) = δk−`
3 , and observing that

for k ≡ m− n mod 3, Λ([(m− n)2 − k2]/6)δk−`
3 = Λ([(m− n)2 − `2]/6)δm−n−`

3 ,

we obtain the formula φ2`(UmVn) = λ
1
6 ((m−n)2−`2)δm−n−`

3 where ` = 0, 1, 2.
Now, observe that φ20(ρ(UmVn)) = Λ(−n2/2− mn)φ20(U−nVm+n) = Λ((m −
n)2/6)δm+2n

3 and observing that δm+2n
3 = δm−n

3 , it follows that φ20(ρ(UmVn)) =
φ20(UmVn). Thus, φ20 is a ρ-invariant ρ2-trace. We let ψ20=φ20, so that ψ20(UmVn)
= λ

1
6 (m−n)2

δm−n
3 . It is readily seen that neither φ21 nor φ22 are ρ-invariant. How-

ever, observe that

(φ21 + λ
1
2 φ22)(ρ(UmVn)) = λ−

1
2 n2−mn+ 1

6 (m+2n)2− 1
6 (δm+2n+1

3 + δm+2n+2
3 )

= λ
1
6 (m−n)2− 1

6 (δm−n−1
3 + δm−n−2

3 )

= λ
1
6 (m−n)2− 1

6 δm−n−1
3 + λ

1
2 λ

1
6 (m−n)2− 2

3 δm−n−2
3

= (φ21 + λ
1
2 φ22)(UmVn)

and so φ21 + λ
1
2 φ22 is a ρ-invariant ρ2-trace. Now, let ψ21 = λ

1
6 (φ21 + λ

1
2 φ22) +

ψ20. Then

ψ21(UmVn) = λ
1
6 (m−n)2

δm−n−1
3 + λ

1
6 (m−n)2

δm−n−2
3 + λ

1
6 (m−n)2

δm−n
3 = λ

1
6 (m−n)2

.

Since ψ20 and φ21 + λ
1
2 φ22 are ρ-invariant, ψ21 is also ρ-invariant. Thus, we have

two independent, ρ-invariant ρ2-trace functionals, ψ20 and ψ21. Further, any ρ-
invariant ρ2-trace is a linear combination of ψ20 and ψ21, as can easily be seen.

THE ρ3-TRACES. Since ρ3 is the flip automorphism, the ρ3-traces are

φij(UmVn) = λ−
1
2 mnδm−i

2 δ
n−j
2

where i, j = 0, 1. Observe that φij(ρ(UmVn)) = λ−
1
2 mnδn+i

2 δ
m+n−j
2 from which

it follows that φij = φij ◦ ρ if and only if δm−i
2 δ

n−j
2 = δn+i

2 δ
m+n−j
2 . Now, φ00 is

non-zero if and only if m and n are both even. If this is the case, then φ00 ◦ ρ is
non-zero as m + n is even. If at least one of m or n is odd, then both are clearly
zero. Thus, φ00 is ρ-invariant. We let ψ30 = φ00, so that

ψ30(UmVn) = λ−
1
2 mnδm

2 δn
2 .

We observe also that φ01 is non-zero if and only if m is even and n is odd; that φ10
is non-zero if and only if m is odd and n is even; and that φ11 is non-zero if and
only if m and n are both odd. It is then readily verified that φij is not ρ-invariant if
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at least one of i, j is non-zero. Next, observe that φ10 ◦ ρ = λ−
1
2 mnδn+1

2 δm+n
2 which

is non-zero if and only if m and n are both odd. Thus, φ10 ◦ ρ = φ11. Similarly,
φ11 ◦ ρ is non-zero if and only if m is even and n is odd, so φ11 ◦ ρ = φ01, and φ01 ◦ ρ
is non-zero if and only if m is odd and n is even, so φ01 ◦ ρ = φ10. It follows that
(φ01 + φ10 + φ11) ◦ ρ = φ10 + φ11 + φ01 and so φ10 + φ01 + φ11 is ρ-invariant. Let
φ := φ01 + φ10 + φ11, so that

φ(UmVn) = λ−
1
2 mn(δm

2 δn−1
2 + δm−1

2 δn
2 + δm−1

2 δn−1
2 )

from which it follows that φ(UmVn) = 0 if and only if m and n are both even, and
φ(UmVn) = λ−

1
2 mn otherwise. Hence, we can re-write the equation for φ as

φ(UmVn) = λ−
1
2 mn(1− δm

2 δn
2 ).

Next, we observe that if ξ := aφ01 + bφ10 + cφ11 is any ρ-invariant linear
combination of the φij, i, j not both zero, then it is a scalar multiple of φ. Indeed,
ρ-invariance gives

ξ(UmVn) = ξ(ρ(UmVn)) = λ−
1
2 mn(aδn

2 δm+n−1
2 + bδn+1

2 δm+n
2 + cδn+1

2 δm+n−1
2 ).

From this equality and the substitutions m = 1, n = 0 we get a = b, and from
the substitutions m = 0, n = 1 we get a = c. Thus a = b = c and so ξ =
a(φ01 + φ10 + φ11) = aφ. Hence, φ is the unique basic ρ-invariant ρ3-trace other
than ψ30 = φ00. Now, let ψ31 = ψ30 + φ, so that

ψ31(UmVn) = λ−
1
2 mn.

Since ψ30 and φ are ρ-invariant, ψ31 is also ρ-invariant. Thus, we have two inde-
pendent, ρ-invariant ρ3-trace functionals, ψ30 and ψ31.

THE ρ4-TRACES AND ρ5-TRACE. The ρ4-traces and ρ5-trace do not provide any
new K-theoretical data not already given by the ρ-trace and ρ2-traces. This is
because given a ρ-invariant ρn-trace φ, 1 6 n 6 5, the map φ∗(x) = φ(x∗) defines
a ρm-trace, where m = 6− n. This follows from

φ∗(xy) = φ(y∗x∗) = φ(ρn(x∗)y∗) = φ(x∗ρm(y∗)) = φ((ρm(y)x)∗) = φ∗(ρm(y)x).

Hence, there is a one-to-one correspondence between the ρn-traces and the ρm-
traces. By applying this to the ρ2-traces, one obtains the ρ4-traces

ψ40(UmVn) = λ−mn− 1
6 (n−m)2

δn−m
3 , ψ41(UmVn) = λ−mn− 1

6 (n−m)2
.

Applying the results to the ρ-trace gives the ρ5-trace ψ50(UmVn) = λ−
1
2 (m+n)2

. It
is readily checked that ψ40 = ψ∗20, ψ41 = ψ∗21, and ψ50 = ψ∗10. It is also clear that
ψ30 = ψ∗30 and ψ31 = ψ∗31.
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THE CYCLIC COHOMOLOGY OF ORDER ZERO FOR THE HEXIC CASE. We summa-
rize the results obtained in the following theorem.

THEOREM 3.1. Along with the canonical bounded trace τ, one has the following 9-
dimensional basis of the vector space of all unbounded traces on the fixed point subalgebra
Aρ. More specifically, {ψ10} is a basis of ρ-invariant ρ-traces on A, {ψ20, ψ21} a basis
of ρ-invariant ρ2-traces, {ψ30, ψ31} a basis of ρ-invariant ρ3-traces, {ψ40, ψ41} a basis
of ρ-invariant ρ4-traces, and {ψ50} a basis of ρ-invariant ρ5-traces, and are given by

ψ10(UmVn) = λ
1
2 (m2+n2), ψ31(UmVn) = λ−

1
2 mn,

ψ20(UmVn) = λ
1
6 (m−n)2

δm−n
3 , ψ40(UmVn) = λ−mn− 1

6 (n−m)2
δn−m

3 ,

ψ21(UmVn) = λ
1
6 (m−n)2

, ψ41(UmVn) = λ−mn− 1
6 (n−m)2

,

ψ30(UmVn) = λ−
1
2 mnδm

2 δn
2 , ψ50(UmVn) = λ−

1
2 (m+n)2

.

Now, the unbounded traces Tij on H∞
θ = A oρ Z6 are given by

Tij(a0 + a1W + a2W2 + a3W3 + a4W4 + a5W5) = ψij(a6−i),

for i = 1, 2, 3, 4, 5 and j ranges from 0 to ni, where n1 = n5 = 1 and n2 = n3 =
n4 = 2. Therefore, using Theorem 3.1, one obtains all the traces on H∞

θ giving its
cyclic cohomology group of order zero.

COROLLARY 3.2. Let A = A∞
θ where θ is irrational. Then one has the cyclic

cohomology group of order zero

HC0(A oρ Z6) ∼= HC0(Aρ) ∼= C9.

The group on the left is generated by τ and Tij, while the middle group is generated by τ
and ψij (restricted to Aρ), where τ is the canonical bounded trace in each case.

UNBOUNDED κ-INVARIANT κ-TRACES ON A.

THE κ-TRACES. Now, consider the cubic automorphism κ = ρ2 of A. Clearly, the
κ-traces (which are κ-invariant) are just the ρ2-traces φ2` computed earlier, so we
have the three κ-traces

φ2`(UmVn) = λ
1
6 ((m−n)2−`2)δm−n−`

3

where ` = 0, 1, 2. We let ϕ1` = φ2` for ` = 0, 1, 2. Thus, we have three indepen-
dent κ-trace functionals, ϕ10, ϕ11 and ϕ12.

THE κ2-TRACES. The κ2-traces may be obtained from the κ-traces in the same
manner from which the ρ4-traces and ρ5-trace were obtained from the ρ-trace
and ρ2-traces. There is a one-to-one correspondence between the κ2-traces and
the κ-traces (and hence the κ2-traces do not yield any new K-theoretical data not
already provided by the κ-traces). From the equation ϕ2i(x) = ϕ1i(x∗) we obtain
the κ2-traces

ϕ2`(UmVn) = λ−mn− 1
6 ((m−n)2−`2)δm−n−`

3 .
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THE CYCLIC COHOMOLOGY OF ORDER ZERO FOR THE CUBIC CASE. The results
obtained give a theorem analogous to Theorem 3.1 for the κ-traces.

THEOREM 3.3. One has the following 6-dimensional basis of the vector space of all
unbounded traces on the fixed point subalgebra Aκ . More specifically, {ϕ10, ϕ11, ϕ12} is
a basis of κ-traces, and {ϕ20, ϕ21, ϕ22} a basis of κ2-traces, and are given by

ϕ10(UmVn) = λ
1
6 ((m−n)2)δm−n

3 , ϕ20(UmVn) = λ−mn− 1
6 (n−m)2

δn−m
3 ,

ϕ11(UmVn) = λ
1
6 ((m−n)2−1)δm−n−1

3 , ϕ21(UmVn) = λ−mn− 1
6 ((n−m)2−1)δn−m−1

3 ,

ϕ12(UmVn) = λ
1
6 ((m−n)2−4)δm−n−2

3 , ϕ22(UmVn) = λ−mn− 1
6 ((n−m)2−4)δn−m−2

3 .

The unbounded traces Sij on the cubic algebra C∞
θ = A oκ Z3 are given by

Sij(a0 + a1Z + a2Z2) = ϕij(a3−i)

for i = 1, 2, j = 0, 1, 2. Therefore, using Theorem 3.3, one obtains all the traces on
C∞

θ giving its cyclic cohomology group of order zero.

COROLLARY 3.4. Let A = A∞
θ where θ is irrational. One has the cyclic cohomol-

ogy group of order zero

HC0(A oκ Z3) ∼= HC0(Aκ) ∼= C7.

The group on the left is generated by τ and Sij, while the middle group is generated by τ
and ϕij (restricted to Aκ), where τ is the canonical bounded trace in each case.

4. SECOND ORDER CONNES-CHERN CHARACTER

In this section we let k = 3, 6 so as to handle both the cubic and hexic cases
together, and obtain the values of C3 and C6 in Tables 1 and 2. For simplicity, we
let L3 = Cθ and L6 = Hθ . One has the unital ∗-embedding

Ψ : Lk → Mk(Aθ)

given by

Ψ
( k−1

∑
j=0

ajW j
)

= [σk−i(ai−j)]k−1
i,j=0 =


a0 ak−1 · · · a1

σk−1(a1) σk−1(a0) · · · σk−1(a2)
σk−2(a2) σk−2(a1) · · · σk−2(a3)

...
...

. . .
...

σ(ak−1) σ(ak−2) · · · σ(a0)


where i − j is reduced mod k and where aj ∈ Aθ and where σ here stands for ρ
or κ. This already shows that the range of the canonical (normalized) trace on
K0(Lk) is contained in 1

k (Z + Zθ). The hexic/cubic module Mk can be shown to
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have trace θ
k (in exactly the same way as in Proposition 3.3 of [10]). Further, since

one has a projection in Lk of trace 1
k , one obtains the equality

τ∗(K0(Lk)) = 1
k (Z + Zθ)

where τ is the canonical trace of Lk (k = 3, 6). The embedding Ψ induces the map

Ψ∗ : K0(Lk) → K0(Aθ).

Thus, if e is a projection in a matrix algebra over Lk, then one takes the class of
Ψ(e) in K0(Aθ). So, for example, the identity 1 of Lk maps to the k × k identity
matrix in Mk(Aθ), so that Ψ∗[1] = k[1]′ in K0(Aθ). (For the sake of clarity, we shall
write [e]′ for classes in K0(Aθ) and unprimed brackets [e] for classes in K0(Lk).)

Recall Connes’ canonical cyclic 2-cocycle χ (see III.2.β of [6]) on the smooth
rotation algebra

χ(x0, x1, x2) =
1

2πi
τ(x0[δ1(x1)δ2(x2)− δ2(x1)δ1(x2)])

where δi are the canonical derivations of Aθ under the canonical action of T2 (2-
torus). More specifically, δ1 = δU , δ2 = δV . (The cocycle χ is known to give
one of two basis elements for the cyclic cohomology group HC2(A∞

θ ) ∼= C2; see
III.2.β of [6].) This cocycle implements the canonical map c1 : K0(Aθ) → Z.
Using the cup product, c1 is given as follows: if E is a projection in Mn(Aθ) then
c1(E) = (χ#Trn)(E, E, E) where Trn is the usual (non-normalized) trace on Mn(C)
and χ#Trn is the unique cyclic 2-cocycle on Mn(Aθ) given by

(4.1) (χ#Trn)(x0 ⊗ a0, x1 ⊗ a1, x2 ⊗ a2) = χ(x0, x1, x2) · Trn(a0a1a2)

where aj ∈ Mn(C) and xj ∈ Aθ . If e is a projection in Aθ , then

c1[e] = χ(e, e, e) =
1

2πi
τ(e[δ1(e), δ2(e)])

where τ is the canonical trace of Aθ . The map c1 has the property that if [e]′ =
m[1]′ + n[eθ ]′ (in K0(Aθ) = Z2) for some integers m, n, then c1[e] = −n (see [6],
p. 601). The invariant that is of interest for us is the composition

Ck := c1 ◦Ψ∗ : K0(Lk) → Z.

For θ in (0, 1), the map Ck has the property that if [e] ∈ K0(Lk) is such that Ψ∗[e] =
m[1]′ + n[eθ ]′ in K0(Aθ), so that its trace in Lk is 1

k (m + nθ), then Ck[e] = −n.
This follows immediately from the above since Ck[e] = c1(Ψ∗[e]) = c1(m[1]′ +
n[eθ ]′) = −n.

It is not hard to check that the values of Ck on the first nine projections in
Table 1 (for the hexic case) are zero, as well as for the first seven projections in
Table 2 for the cubic case. For the cubic/hexic module Mk (whose trace is θ

k ) one
therefore has Ck[Mk] = −1. This clearly follows for θ irrational by the above
property. For the rational case it can be shown to follow from the construction of
the module Mk (since, considered as an Aθ-module, it is a Heisenberg module
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whose c1-character value is −1, as can be seen from Connes’ computation [6],
Theorem 7 and following).

For the hexic case since Ψ(pj) is a scalar matrix projection one immedi-
ately has C6(pj) = 0. To see that C6(qj) = 0 note that the entries of the ma-
trix Ψ(qj(X)) are scalars times one of the unitaries U±1, V, U−1V. It is easy to
check that χ(Ua0 Vb0 , Ua1 Vb1 , Ua2 Vb2) 6= 0 only if a0 + a1 + a2 = 0 and b0 + b1 +
b2 = 0, and as the latter are not satisfied for any three pairs (aj, bj) in the set
{(±1, 0), (0, 1), (−1, 1)}, one has C6(qj) = 0. Similarly, one also has C6(r0) = 0.
In exactly the same way one checks that C3 is zero for the first seven projections
Qj in the cubic case. This yields all the C3 and C6 values in Tables 1 and 2.

All the traces and Connes Chern character invariants can be put together to
form the Connes Chern character for each case. We write

T6 = (τ, C6; T10; T20, T21; T30, T31), T3 = (τ, C3; S10, S11, S12)

where τ is the canonical (bounded) trace, Ck the canonical second order Connes
Chern character, and Tij, Sij are the unbounded traces. The map Tk defines a
group homomorphism K0(Lk) → R×Z×D where D is some lattice subgroup of
Rn, where n = 5 when k = 6, and n = 3 when k = 3.

5. THE HEXIC AND CUBIC MODULES

Let β= 1√
θ
. Let M=R and G = M× M̂. Consider the lattice D in G given by

D :
[

ε1
ε2

]
=

[
β 0
0 β

]
,

It is clearly invariant under the map H(u, v) = (u + v,−u) discussed earlier. A
fundamental domain for D is [0, β)× [0, β) so that the covolume of D is |G/D| =
β2. The C∗-algebra C∗(D) is generated by the canonical unitaries U1 = πε1 , U2 =
πε2 whose commutation relation is

U1U2U∗
1 U∗

2 = h(ε1, ε2)h(ε2, ε1) = e(β2) =: λ1

so that U1U2 = λ1U2U1. We consider the associated hexic transform given by

ρ1(U2) = U1, ρ1(U1) = λ
− 1

2
1 U−1

2 U1. We can define ρ1 in a more invariant way
by verifying that it satisfies ρ1(πx) = µ(x)πHx where µ(x) := s(Hx, Hx)s(x, x).
(This is easily verified for x = ε1, ε2.)

The complementary lattice D⊥ is easily checked to be generated by the basis
elements

D⊥ :
[

δ1
δ2

]
=

[
α 0
0 α

]
where α = 1

β =
√

θ.
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In general one has πx+y = h(x, y)πxπy and πδj πδk = λjkλkj πδk πδj where
λjk = h(δj, δk). In our case, λ11 = λ22 = λ21 = 1, λ12 = e(α2) = e(θ) = λ.

Let Vj = π∗
δj

= λjjπ−δj = π−δj and πnδj = λ
− 1

2 n(n−1)
jj πn

δj
= πn

δj
. One thus

has V1V2 = π∗
δ1

π∗
δ2

= λ12λ21 π∗
δ2

π∗
δ1

= λ V2V1. The C∗-algebra C∗(D⊥) is the
opposite algebra of the one generated by the unitaries V1, V2. Letting # denote
the opposite multiplication (a#b = ba), we can identify the rotation algebra Aθ

with C∗(D⊥) by the identification U ↔ V1, V ↔ V2. (Thus, for example, UV =
V1#V2.) (Recall that C∗(D⊥) is given the opposite multiplication in order that the
module property ( f a)b = f (a#b) be satisfied, where a, b ∈ C∗(D⊥), f ∈ S(R).)
We recall that the right action of C∗(D⊥) on S(R) is given by f π∗

x = π∗
x( f ), where

the Heisenberg representation of G on S(R) is given by πx( f )(t) := e(tx′′) f (t +
x′) for x = (x′; x′′) ∈ G. In view of Rieffel’s Theorem 2.15 in [9], when completed,
the Schwartz space S(R) becomes an equivalence A 1

θ
-Aθ bimodule. Thus the

right action of Aθ on S(R) is given by

( f U)(t) = ( f V1)(t) = f (t− α), ( f V)(t) = ( f V2)(t) = e(−αt) f (t).

From the relations h(u + v, w) = h(u, w)h(v, w), h(u, v + w) = h(u, v)h(u, w),
one gets the following

h(δj, nδk) = h(δj, δk)n,

h(n1δ1 + n2δ2, n1δ1 + n2δ2) = λn1n2 ,

πnδj = πn
δj

.

Thus πn1δ1+n2δ2 = λ−n1n2 πn1
δ1

πn2
δ2

and π∗
n1δ1+n2δ2

= λn1n2 Vn2
2 Vn1

1 = Vn1
1 Vn2

2 .
The D⊥ inner product therefore becomes

〈 f , g〉
D⊥

= ∑
m,n
〈 f , g〉

D⊥
(mδ1 + nδ2) Vm

1 Vn
2

where

〈 f , g〉
D⊥

(mδ1 + nδ2) = 〈 f , g〉
D⊥

(αm; αn) =
∫
R

f (x)g(x + αm)e(αnx) dx.

The inner product over D is given by

〈 f , g〉D = |G/D| ∑
m,n
〈 f , g〉D (mε1 + nε2) Un

2 Um
1

(since πmε1+nε2 = Un
2 Um

1 ), where

〈 f , g〉D (mε1 + nε2) = 〈 f , g〉D (mβ; nβ) =
∫
R

f (x)g(x + mβ)e(−xnβ) dx.

The hexic automorphism ρ is given by ρ(U) = V and ρ(V) = λ−
1
2 U−1V. The

crossed product Hθ = Aθ oρ Z6 is the universal C∗-algebra generated by unitaries
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U, V, W satisfying

VU = λUV, WUW∗ = V, WVW∗ = λ−
1
2 U−1V, W6 = I.

The two middle relations can be re-written as

(5.1) VW = WU, UWV = λ−
1
2 VW.

As was shown in [12], by defining the action of W on S(R) to be given by the
hexic transform

( f W)(t) = i
1
6

∞∫
−∞

f (x)e(tx− 1
2 x2)dx

(where we have taken µ = 1
2 in [12]), one can extend the Heisenberg A∞

θ -module
S(R) into a right H∞

θ -module. Indeed, letting W act as some transform ( f W)(t) =∫
f (x)K(x, t)dx, the first relation gives (keeping in mind the opposite multiplica-

tion of C∗(D⊥))

[ f (VW)](t) = [ f (V2#W)](t) = [( f V2)W](t) =
∞∫

−∞

e(−αx) f (x)K(x, t)dx

and

[ f (WU)](t) = [ f (W#V1)](t) = [( f W)V1](t) =
∞∫

−∞

f (x)K(x, t− α)dx

thus one requires

K(x, t− α) = e(−αx)K(x, t), K(x + α, t) = e(− θ
2 )e(αt)K(x, t− α)

where the latter equality arises similarly from the second relation in (5.1). It is
easy to check that the kernel function K(x, t) = i

1
6 e(tx − 1

2 x2) satisfies these two
relations (as α =

√
θ). As was done in [11] for the Fourier module, one has a

natural A∞
θ -valued inner product on S(R) to a H∞

θ -valued inner product by

〈 f , g〉
H∞

θ
=

5

∑
j=0

〈 f , gW−j〉
A∞

θ
W j

turning it into an appropriate equivalence bimodule (in the sense of Rieffel),
finitely generated projective, H∞

θ -module which we shall denote by M6. It there-
fore gives a class in K0(H∞

θ ). Almost exactly as in [11], and using an argu-
ment of Rieffel one can show that for the unbounded traces Tij on H∞

θ , one has
Tij[M6] = 1

6 ψ̃ij(1) where ψ̃ij is the twisted trace dual to ψij (as given by Propo-
sition 2.1).

Similarly, for the cubic case we have the C∞
θ -moduleM3 and its unbounded

traces are Sij[M3] = 1
3 ϕ̃ij(1) where ϕ̃ij is the twisted trace dual to ϕij.

To end this section, let us establish the following equality

ρ−1(πy) = µ(y)πHy
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for y ∈ D⊥. Writing y = mδ1 + nδ2 so that Hy = (m + n)δ1 − mδ2, and not-
ing from above that ρ(πδ1) = πδ2 and ρ(πδ2) = λ

1
2 π∗

δ1
πδ2 , one has µ(y) =

e(− 1
2 m2α2 −mnα2) and

µ(y)ρ(πHy) = e(− 1
2 m2α2 −mnα2)ρ(π(m+n)δ1−mδ2

)

= e(− 1
2 m2α2 −mnα2)e(m2α2 + mnα2)ρ(πm+n

δ1
π−m

δ2
)

= e( 1
2 )m2α2πm+n

δ2
[λ

1
2 π∗

δ1
πδ2 ]

−m = πy

the last equality being easy to verify.

LEMMA 5.1. One has the equalities

Sπw = µ(w)πHwS, ρ−1(〈 f , g〉
D⊥

) = 〈S f , Sg〉
D⊥

, ρ1(〈 f , g〉D ) = 〈S f , Sg〉D .

Proof. Let us establish the first equality. Writing w = (u, v) ∈ R2, one has

µ(w)(πHwS f )(t) = µ(w)π(u+v,−u)(S f )(t) = µ(w)e(−ut)(S f )(t + u + v)

= i−
1
6 e(− 1

2 )u2 − uv)e(−ut)
∫

f (x)e((t + u + v)x− 1
2 x2)dx

and on the other hand

(Sπw f )(t) = i−
1
6

∫
(πw f )(x)e(tx− 1

2 x2)dx = i−
1
6

∫
e(vx) f (x + u)e(tx− 1

2 x2)dx

= i−
1
6

∫
e(vx− vu) f (x)e(t(x− u)− 1

2 (x− u)2)dx

from which it is easy to see that the two expressions are equal. Now we show
the third equality in the statement of the proposition. To do this we first need to
show

〈S f , Sg〉D (Hw) = µ(w)〈 f , g〉D (w).

We have (using the fact that S is a unitary operator on L2(R))

〈S f , Sg〉D (Hw) = 〈S f , πHwSg〉
L2 = 〈S f , µ(w)Sπwg〉

L2 = µ(w)〈S f , Sπwg〉
L2

= µ(w)〈 f , πwg〉
L2 = µ(w)〈 f , g〉D (w).

Hence

ρ1(〈 f , g〉D ) = |G/D| ∑
x∈D

〈 f , g〉D (x) ρ1(πx) = |G/D| ∑
x∈D

µ(x)〈 f , g〉D (x) πHx

= |G/D| ∑
x∈D

〈S f , Sg〉D (Hx) πHx = 〈S f , Sg〉D .

Similarly, 〈S f , Sg〉
D⊥

(Hw) = µ(w)〈 f , g〉
D⊥

(w) and

ρ−1(〈 f , g〉
D⊥

) = ∑
y∈D⊥

〈 f , g〉
D⊥

(y) ρ−1(π∗
y) = ∑

y∈D⊥
〈 f , g〉

D⊥
(y) µ(y) π∗

Hy

= ∑
y∈D⊥

〈S f , Sg〉
D⊥

(Hy) π∗
Hy = 〈S f , Sg〉

D⊥



CONNES-CHERN CHARACTERS 51

which gives the second equality in the statement of the proposition.

6. CALCULATION OF T10([M6])

Rewriting the relations in Lemma 5.1 as ρ(〈 f , g〉
D⊥

) = 〈 f W−1, gW−1〉
D⊥

,

ρ−1
1 (〈 f , g〉D ) = 〈 f W−1, gW−1〉D (with w( f ) = f W−1), Lemma 5.1 says that for the

basic ρ-trace ψ10 on A∞
θ , there is a ρ−1

1 -trace ϕ on A∞
1/θ such that ψ10(〈 f , gW〉

D⊥
)

= ϕ(〈g, f 〉D ). The value of the unbounded trace T10 on the hexic module M6 is
1
6 ϕ(1), which we now seek to calculate. Since ϕ is a ρ−1

1 -trace, its adjoint ϕ∗(x) is
a ρ1-trace, and thus there is a complex constant c such that ϕ∗ = cψ′10, where ψ′10
is the basic ρ1-trace on A∞

1/θ . We then have

ψ10(〈 f , gW〉
D⊥

) = c ψ′10(〈 f , g〉D )

and ϕ(1) = c. Thus, we want to calculate

T10([M6]) =
1
6

ϕ(1) =
ψ10(〈 f , gW〉

D⊥
)

6ψ′10(〈 f , g〉D )

for suitable f , g. For these, we pick f (x) = e−πax2
, g(x) = e−πbx2

where a, b ∈ C+

(the right-half plane).
A simple calculation (using (2.1)) shows that 〈 f , g〉D = β2 ∑

m,n
bm,n Un

2 Um
1

where bm,n = 〈 f , g〉D (mε1 + nε2) = 1√
a+b

e−πbβ2m2
e−πβ2 (ibm−n)2

a+b . Further, we check

that (gW)(t) = i
1
6√

b+i
e−π t2

b+i hence

am,n = 〈 f , gW〉
D⊥

(mδ1 + nδ2) =
i

1
6√

γ(b + i)
e−π α2m2

b+i e
−π

α2

γ

(
n+ im

b+i

)2

where γ = a(b+i)+1
b+i . (Here we used the fact that the principal square root is a

multiplicative function on the right-half plane — γ and b + i being there.)
The basic ρ1-trace ψ′10 on the rotation algebra C∗(D) is given by ψ′10(Un

2 Um
1 )

= λ
1
2 (m2+n2)
1 , where λ1 = e(β2). Thus

ψ′10(〈 f , g〉D ) = β2 ∑
m,n

bm,n eπiβ2(m2+n2) =
β2√
a + b

∑
m,n

e−πνm2
e−πµn2

e2πdmn

where ν = β2
(

ab
a+b

− i
)

, µ = β2
(

1
a+b

− i
)

, d = iβ2b
a+b

.

On the other hand, since the basic ρ-trace on Aθ is given by ψ10(UmVn) =
λ

1
2 (m2+n2), (and noting the opposite multiplication of C∗(D⊥)) one has ψ10(Vm

1 Vn
2 )
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= λmnλ
1
2 (m2+n2). Thus, from 〈 f , gW〉

D⊥
= ∑

m,n
am,n Vm

1 Vn
2 one gets

ψ10(〈 f , gW〉
D⊥

) = ∑
m,n

am,n λmnλ
1
2 (m2+n2) =

i
1
6√

γ(b + i) ∑
m,n

e−πτm2
e−πζn2

e2πδmn

where τ = α2
(

1
b+i −

1
γ(b+i)2 − i

)
, ζ = α2

(
b−ia(b+i)
a(b+i)+1

)
, δ = iα2a(b+i)

a(b+i)+1 . Let Σ denote

the sum appearing in ψ10(〈 f , gW〉
D⊥

) and Σ′ the sum in ψ′10(〈 f , g〉D ). We shall re-

late these sums as follows. First, a bit of algebra shows that τ = −iα2
(

a(b+2i)+1
a(b+i)+1

)
,

ζτ − δ2 = −iα4(a+b)
a(b+i)+1 hence

τ

ζτ − δ2 = β2
( a(b + 2i) + 1

a + b

)
=: µ0,

ζ

ζτ − δ2 =ν,
δ

ζτ − δ2 =
−β2a(b + i)

a + b
=: d0.

Therefore, upon applying the 2-dimensional inversion formula, Lemma 10.1, to
Σ, one obtains Σ = 1√

ζτ−δ2
Σ0 where

Σ0 := ∑
m,n

e−πνm2
e−πµ0n2

e2πd0mn.

To this sum apply the substitution m → m− n so that it becomes

Σ0 = ∑
m,n

e−πνm2
e−πµ′n2

e2πd′mn

where µ′ = ν + µ0 + 2d0 and d′ = ν + d0. It is easy to check that µ′ = µ and
d′ = −d. This shows that Σ0 = Σ′. In addition, one can choose suitable a, b so
that Σ′ 6= 0 — for example, when 0 < θ < 1, by taking b = 1 and a = β2 − 1 > 0
one sees that d = i so Σ′ reduces to a product of two theta functions of the form
ϑ3(0, iν) which is not zero. Hence

T10([M6]) =
1
6

ϕ(1) =
i

1
6 Σ0

6
√

γ(b + i)(ζτ − δ2)
·
√

a + b
β2 Σ0

=
1
6

i
2
3 = 1

12 (1 + i
√

3) =
1
6

ω

which gives the corresponding entry in Table 1 (in the Introduction).

7. CALCULATION OF T2k([M6])

From Lemma 5.1 it follows that for the basic ρ2-trace ψ2,1−j on A∞
θ , there is a

ρ−2
1 -trace ϕ on A∞

1/θ such that ψ2,1−j(〈 f , gW2〉D⊥) = ϕ(〈g, f 〉D). The value of the
unbounded trace T2,1−j on the hexic module M6 is 1

6 ϕ(1), which we now seek to
calculate. Since ϕ is a ρ−2

1 -trace, its adjoint ϕ∗(x) is a ρ2
1-trace, and thus there are

complex constants cj, dj such that ϕ∗ = cjψ
′
20 + djψ

′
21, where ψ′20 and ψ′21 are the

basic ρ2
1-traces on A∞

1/θ . We then have

ψ2,1−j(〈 f , gW2〉D⊥) = cjψ
′
20(〈 f , g〉D) + djψ

′
21(〈 f , g〉D)
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and ϕ(1) = cjψ
′
20(1) + djψ

′
21(1) = cj + dj.

Let f , g ∈ S(R) such that f (x) = e−πax2
and g(x) = e−πbx2

, where a, b ∈ C+

(the right half-plane). We observe that

gW2(t) = i−
1
6 e(t2/2)

∞∫
−∞

g(x)e(tx) dx =
i−

1
6

√
b

e−π( 1
b−i)t2

.

As before we have 〈 f , gW2〉D⊥ = ∑
m,n

cm,nVm
1 Vn

2 where cm,n = 〈 f , gW2〉D⊥(mδ1 +

nδ2) = i−
1
6√

bτ
e−π( 1

b−i)α2m2
e−

π
τ α2(n+m(1+ i

b ))2
with τ = ab−ib+1

b . Using the formula

ψ2,1−j(Vm
2 Vn

1 ) = λ
1
6 (m−n)2

δ
j(m−n)
3 we observe that

ψ2,1−j(〈 f , gW2〉D⊥) = ∑
m,n

cm,m+nλm(m+n)λ
1
6 n2

δ
jn
3 = ∑

m,n
cm,m+3jnλm(m+3jn)λ

1
6 32jn2

.

Substitution shows that cm,m+3jn = i−
1
6√

ab−ib+1
e−

π
τ α2 A0m2

e−
π
τ α2B0n2

e−
2π
τ α2C0mn where

A0 = (a + 2i)( 1
b − i) + 1, B0 = 32j, and C0 = 3j(2 + i

b ). Combining all terms gives

ψ2,1−j(〈 f , gW2〉D⊥) =
i−

1
6

√
ab− ib + 1 ∑

m,n
e−πγm2

e−πδn2
e2πζmn

where γ = α2(b+a−3iab)
ab−ib+1 , δ = 32j−1α2(2b−iab−i)

ab−ib+1 , ζ = 3jα2(iab−b)
ab−ib+1 . Applying Lemma 10.1

allows us to transform the previous sum into the equivalent sum

ψ2,1−j(〈 f , gW2〉D⊥) = ∆ ∑
m,n

e
−π γ

γδ−ζ2 m2

e
−π δ

γδ−ζ2 n2

e
2π ζ

γδ−ζ2 mn

where ∆ = i−
1
6√

ab−ib+1
√

γδ−ζ2
. Computation shows that γδ = −32j−1α4

(ab−ib+1)2 (7iab2 +

3a2b2 + ab + ia2b + ia − 2b2 + ib) and ζ2 = −32jα4

(ab−ib+1)2 (a2b2 + 2iab2 − b2) from

which it follows that γδ− ζ2 = −32j−1iα4(a+b)
(ab−ib+1) . This gives

∆ =
i−

1
6√

(ab− ib + 1)(γδ− ζ2)
=

3
1
2−jβ2i

1
3

√
a + b

and the equalities

γ

γδ− ζ2 =
31−2jiβ2(b + a− 3iab)

a + b
,

δ

γδ− ζ2 =
β2(ab + 2ib + 1)

a + b
,

ζ

γδ− ζ2 =
−31−jβ2(ab + ib)

a + b
.
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Letting γ′ = iβ2(b+a−3iab)
a+b , δ′ = β2(ab+2ib+1)

a+b , ζ ′ = −β2(ab+ib)
a+b so that γ

γδ−ζ2 =

31−2jγ′, δ
γδ−ζ2 = δ′, ζ

γδ−ζ2 = 31−jζ ′, we may write explicitly (for j = 0, 1)

ψ20(〈 f , gW2〉D⊥) =
β2i

1
3

√
3
√

a + b ∑
m,n

e−
π
3 γ′m2

e−πδ′n2
e2πζ ′mn,

ψ21(〈 f , gW2〉D⊥) =
√

3β2i
1
3

√
a + b ∑

m,n
e−3πγ′m2

e−πδ′n2
e6πζ ′mn.

We will return to these shortly.
Again we have 〈 f , g〉D = β2 ∑

m,n
bm,nUn

2 Um
1 where bm,n = 〈 f , g〉D(mε1 +

nε2) = 1√
a+b

e−πbβ2m2
e−πβ2 (ibm−n)2

a+b .

Using the formula ψ′2,1−s(Un
2 Um

1 ) = λ
1
6 (n−m)2

1 δ
s(n−m)
3 we observe that for

s = 0, 1,

ψ′2,1−s(〈 f , g〉D) = β2 ∑
m,n

bm,m+3snλ
1
6 32sn2

1 =
β2√
a + b

∑
m,n

e−πγ1m2
e−πδ1n2

e2πζ1mn

where γ1 = β2(ab+2ib+1)
a+b , δ1 = 32s−1β2(3+ia+ib)

a+b , ζ1 = −3s β2(ib+1)
a+b . So, we have

ψ′2,1−s(〈 f , g〉D) =
β2

√
a + b ∑

m,n
e−πγ1m2

e−πδ1n2
e2πζ1mn.

Letting δ2 = β2(1+ 1
3 i(a+b))

a+b , ζ2 = −β2(ib+1)
a+b we may write (for s = 0, 1)

ψ′20(〈 f , g〉D) =
β2

√
a + b ∑

m,n
e−πγ1m2

e−9πδ2n2
e6πζ2mn,

ψ′21(〈 f , g〉D) =
β2

√
a + b ∑

m,n
e−πγ1m2

e−πδ2n2
e2πζ2mn.

CALCULATION OF T20([M6]). We first concern ourselves with the equation

ψ20(〈 f , gW2〉D⊥) = c1ψ′20(〈 f , g〉D) + d1ψ′21(〈 f , g〉D).

Our goal is to find constants c1, d1 such that this equation becomes an identity for
any a, b ∈ C+. First, we observe that γ1 = δ′, and so after simplifying we may
write the equation as

i
1
3
√

3
∑
m,n

e−
π
3 γ′m2

e−πγ1n2
e2πζ ′mn

= c1 ∑
m,n

e−πγ1m2
e−9πδ2n2

e6πζ2mn + d1 ∑
m,n

e−πγ1m2
e−πδ2n2

e2πζ2mn.
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Consider the left-hand side of this equation. After implementing the substi-

tutions m 7→ n, n 7→ m it becomes i
1
3√
3 ∑

m,n
e−πγ1m2

e−
π
3 γ′n2

e2πζ ′mn. Next, after the

substitution m 7→ m − n it becomes i
1
3√
3 ∑

m,n
e−πγ1(m−n)2

e−
π
3 γ′n2

e2πζ ′(m−n)n which

simplifies to

i
1
3
√

3
∑
m,n

e−πγ1m2
e−πBn2

e2πCmn

where B = γ1 + γ′

3 + 2ζ ′ = β2

3(a+b) (ia + ib + 3) = δ2 and C = ζ ′ + γ1 = β2

(a+b) (ib +

1) = −ζ2. Now, the left-hand side becomes i
1
3√
3 ∑ e−πγ1m2

e−πδ2n2
e−2πζ2mn. Upon

making the substitution n 7→ −n this becomes i
1
3√
3 ∑ e−πγ1m2

e−πδ2n2
e2πζ2mn, and

so by taking d1 = i
1
3√
3

and c1 = 0, the equation becomes an identity for all a, b ∈
C+. It follows that

T20([M6]) =
1
6

ϕ(1) =
1
6

d1 =
i

1
3

6
√

3
=

ω
1
2

6
√

3
.

CALCULATION OF T21([M6]). Now, we consider the equation

ψ21(〈 f , gW2〉D⊥) = c0ψ′20(〈 f , g〉D) + d0ψ′21(〈 f , g〉D).

Our goal is to find constants c0, d0 such that this equation becomes an identity for
any a, b ∈ C+. After simplifying we may write the equation as

√
3i

1
3 ∑

m,n
e−3πγ′m2

e−πγ1n2
e6πζ ′mn

= c0 ∑
m,n

e−πγ1m2
e−9πδ2n2

e6πζ2mn + d0 ∑
m,n

e−πγ1m2
e−πδ2n2

e2πζ2mn.

Consider the left-hand side of this equation. After implementing the substitu-
tions m 7→ n, n 7→ m, it becomes

√
3i

1
3 ∑

m,n
e−πγ1m2

e−3πγ′n2
e6πζ ′mn. Next, after the

substitution m 7→ m − 3n it becomes
√

3i
1
3 ∑

m,n
e−πγ1(m−3n)2

e−3πγ′n2
e6πζ ′(m−3n)n

which simplifies to √
3i

1
3 ∑

m,n
e−πγ1m2

e−πYn2
e2πZmn

where Y = 9δ′ + 3γ′ + 18ζ ′ = 3β2

(a+b) (ib + ia + 3) = 9δ2 and Z = 3ζ ′ + 3δ′ =
β2

(a+b) (3ib + 3) = −3ζ2.

Now, the left-hand side becomes
√

3i
1
3 ∑

m,n
e−πγ1m2

e−9πδ2n2
e−6πζ2mn. Upon

making the substitution n 7→ −n this becomes
√

3i
1
3 ∑

m,n
e−πγ1m2

e−9πδ2n2
e6πζ2mn,
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and so by taking d0 = 0 and c0 =
√

3i
1
3 , the equation becomes an identity for all

a, b ∈ C+. It follows that

T21([M6]) =
1
6

ϕ(1) =
1
6

c0 =
√

3
6

i
1
3 =

√
3

6
ω

1
2 .

8. CALCULATION OF T3k([M6])

Again, from Lemma 5.1 it follows that for the basic ρ3-trace ψ3,1−j on A∞
θ ,

there is a ρ−3
1 -trace ϕ on A∞

1/θ such that ψ3,1−j(〈 f , gW3〉D⊥) = ϕ(〈g, f 〉D).
The value of the unbounded trace T3,1−j on the hexic module M6 is 1

6 ϕ(1),
which we now seek to calculate. Since ϕ is a ρ−3

1 -trace, its adjoint ϕ∗(x) is a ρ3
1-

trace, and thus there are complex constants cj, dj such that ϕ∗ = cjψ
′
30 + djψ

′
31,

where ψ′30 and ψ′31 are the basic ρ3
1-traces on A∞

1/θ . We then have

(8.1) ψ3,1−j(〈 f , gW3〉D⊥) = cjψ
′
30(〈 f , g〉D) + djψ

′
31(〈 f , g〉D)

and ϕ(1) = cjψ
′
30(1) + djψ

′
31(1) = cj + dj.

As before, let f , g ∈ S(R) such that f (x) = e−πax2
and g(x) = e−πbx2

, where
a, b ∈ C+. Since W3 is the flip operator, we observe that gW3(t) = g(−t) = g(t),
since g is an even function. We have

〈 f , gW3〉D⊥ = ∑
m,n

cm,nVm
1 Vn

2

where cm,n = 〈 f , gW3〉D⊥(mδ1 + nδ2)= 1√
a+b

e−
πα2ab

a+b m2
e−

πα2
a+b n2

e−
2πα2ib

a+b mn. From the

formula ψ30(Vn
2 Vm

1 )= λ−
1
2 mnδm

2 δn
2 we compute ψ30(〈 f , gW3〉D⊥)= ∑

m,n
c2m,2nλ2mn

where c2m,2n = 1√
a+b

e−π 4α2
a+b abm2

e−π 4α2
a+b n2

e−π 8α2ib
a+b mn. So,

ψ30(〈 f , gW3〉D⊥) =
1√

a + b ∑
m,n

e−πγm2
e−πδn2

e2πζmn

where γ = 4α2ab
a+b , δ = 4α2

a+b , ζ = 2iα2(a−b)
a+b . As before, applying Lemma 10.1

allows us to transform the previous sum into the equivalent sum

ψ30(〈 f , gW3〉D⊥) = ∆ ∑
m,n

e
π

γ
γδ−ζ2 m2

e
−π

δ
γδ−ζ2 n2

e
2π

ζ
γδ−ζ2 mn

where ∆ = 1√
a+b

√
γδ−ζ2

. Computation shows that γδ = 16α4ab
(a+b)2 , ζ2 = −4α4

(a+b)2 (a2−

2ab + b2) from which it follows that γδ− ζ2 = 4α4

(a+b)2 (a2 + 2ab + b2) = 4α4

(a+b)2 (a +
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b)2 = 4α4. This gives

∆ =
1√

(a + b)(γδ− ζ2)
=

β2

2
√

a + b

and the equalities

γ

γδ− ζ2 =
β2ab
a + b

,
δ

γδ− ζ2 =
β2

a + b
,

ζ

γδ− ζ2 =
iβ2(a− b)
2(a + b)

.

An analogous calculation may be done for ψ31, where ψ31(Vn
2 Vm

1 ) = λ−
1
2 mn.

In this case we have

ψ31(〈 f , gW3〉D⊥) = ∑
m,n

cm,nψ31(Vm
1 Vn

2 ) =
1√

a + b ∑
m,n

e−πγ0m2
e−πδ0n2

e2πζ0mn

where γ0 = α2ab
a+b , δ0 = α2

a+b , ζ0 = iα2(a−b)
2(a+b) . Applying Lemma 10.1 now gives

ψ31(〈 f , gW3〉D⊥) = ∆0 ∑
m,n

e
−π

γ0
γ0δ0−ζ2

0
m2

e
−π

δ0
γ0δ0−ζ2

0
n2

e
2π

ζ0
γ0δ0−ζ2

0
mn

where ∆0 = 1√
a+b

√
γ0δ0−ζ2

0
. Computation shows that

γ0δ0 =
α4ab

(a + b)2 , ζ2
0 =

−α4

4(a + b)2 (a2 − 2ab + b2)

from which it follows that γ0δ0 − ζ2
0 = α4

4(a+b)2 (a2 + 2ab + b2) = α4

4(a+b)2 (a + b)2 =
α4

4 . This gives

∆0 =
1√

(a + b)(γ0δ0 − ζ2
0)

=
2β2

√
a + b

and the equalities

γ0

γ0δ0 − ζ2
0

=
4β2ab
a + b

,
δ0

γ0δ0 − ζ2
0

=
4β2

a + b
,

ζ0

γ0δ0 − ζ2
0

=
2iβ2(a− b)

a + b
.

We now consider the right hand side of equation (8.1). With 〈 f , g〉D and bm,n
defined as in Section 6, we have

ψ′30(〈 f , g〉D) = β2 ∑
m,n

bm,nψ′30(Un
2 Um

1 ) = β2 ∑
m,n

b2m,2nλ−2mn
1

where b2m,2n = 1√
a+b

e−
4πabβ2

a+b
m2

e−
4πβ2

a+b
n2

e
8iπβ2b

a+b
mn. So

ψ′30(〈 f , g〉D) =
β2√
a + b

∑
m,n

e−πγ1m2
e−πδ1n2

e2πζ1mn
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where γ1 = 4β2ab
a+b , δ1 = 4β2

a+b , ζ1 = 2iβ2(a−b)
a+b . Similarly,

ψ′31(〈 f , g〉D) = β2 ∑
m,n

bm,nψ′31(Un
2 Um

1 ) =
β2√
a + b

∑
m,n

e−πγ2m2
e−πδ2n2

e2πζ2mn

where γ2 = β2ab
a+b , δ2 = β2

a+b , ζ2 = iβ2(a−b)
2(a+b) . So,

ψ′30(〈 f , g〉D) =
β2

√
a + b ∑

m,n
e−πγ1m2

e−πδ1n2
e2πζ1mn

ψ′31(〈 f , g〉D) =
β2

√
a + b ∑

m,n
e−πγ2m2

e−πδ2n2
e2πζ2mn.

CALCULATIONS OF T30([M6]) AND T31([M6]). It now follows readily that

γ

γδ− ζ2 = γ2,
δ

γδ− ζ2 = δ2,
ζ

γδ− ζ2 = ζ2

and
γ0

γ0δ0 − ζ2
0

= γ1 = 4γ2,
δ0

γ0δ0 − ζ2
0

= δ1 = 4δ2,
ζ0

γ0δ0 − ζ2
0

= ζ1 = 4ζ2.

This implies that c1 = 0, d1 = 1
2 , c0 = 2, and d0 = 0. We hence obtain the

identities

ψ30(〈 f , gW3〉D⊥) =
1
2

ψ′31(〈 f , g〉D), ψ31(〈 f , gW3〉D⊥) = 2ψ′30(〈 f , g〉D),

from which it follows that

T30([M6]) =
1
6

ϕ(1) =
1
6

d1 =
1

12
, T31([M6]) =

1
6

ϕ(1) =
1
6

c0 =
1
3

.

9. CALCULATION OF S1k([M3])

From Lemma 5.1 it follows that for the basic κ-trace ϕ1j on A∞
θ , there is

a κ−1
1 -trace ψ on A∞

1/θ such that ϕ1j(〈 f , gZ〉D⊥) = ψ(〈g, f 〉D). The value of the
unbounded trace S1j on the cubic module M3 is 1

3 ψ(1), which we now seek to
calculate. Since ψ is a κ−1

1 -trace, its adjoint ψ∗ is a κ1-trace, and thus there are
complex constants cj, dj, ej such that ψ∗ = cj ϕ

′
10 + dj ϕ

′
11 + ej ϕ

′
12, where the ϕ′1j are

the basic κ1-traces on A∞
1/θ . We then have

ϕ1j(〈 f , gZ〉D⊥) = cj ϕ
′
10(〈 f , g〉D) + dj ϕ

′
11(〈 f , g〉D) + ej ϕ

′
12(〈 f , g〉D)

and ψ(1) = cj ϕ
′
10(1) + dj ϕ

′
11(1) + ej ϕ

′
12(1) = cj.

The ϕ1j traces are defined by

ϕ1j(UmVn) = λ
1
6 ((m−n)2−j2)δ

m−n−j
3 .
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We take ϕ10 and ϕ11 to assume their usual definitions, but define ϕ12 by

ϕ12(UmVn) = λ
1
6 ((m−n)2−1)δm−n+1

3 ,

which corresponds to the choice j = −1 and is non-zero at exactly those values
where the usual ϕ12 is non-zero.

As before, let f (x) = e−πax2
and g(x) = e−πbx2

, where a, b ∈ C+. Using a
previous calculation, we have

gZ(t) = gW2(t) =
i−

1
6

√
b

e−π( 1
b−i)t2

.

We then have 〈 f , gZ〉D⊥ = ∑
m,n

cm,nVm
1 Vn

2 where again using a previous calcu-

lation cm,n = 〈 f , gZ〉D⊥(mδ1 + nδ2) = i−
1
6√

bτ
e−π( 1

b−i)α2m2
e−

π
τ α2(n+m(1+ i

b ))2
with

τ = ab−ib+1
b . We observe that ψ20(UmVn) = ϕ10(UmVn), from which we imme-

diately obtain the equalities

ψ20(〈 f , gW2〉D⊥) = ϕ10(〈 f , gZ〉D⊥) and ψ′20(〈 f , g〉D) = ϕ′10(〈 f , g〉D).

Earlier calculations then yield (after appropriate inversions and substitutions)

ϕ10(〈 f , gZ〉D⊥) =
−ω

1
2 β2

√
3
√

a + b ∑
m,n

e−πγ1m2
e−

π
9 δ1n2

e
2π
3 ζ1mn

and

ϕ′10(〈 f , g〉D) =
β2

√
a + b ∑

m,n
e−πγ1m2

e−πδ1n2
e2πζ1mn

where γ1 = β2(ab+2ib+1)
a+b , δ1 = 3β2(ia+ib+3)

a+b , ζ1 = −3β2(ib+1)
a+b . Next, we have

ϕ11(〈 f , gZ〉D⊥) = ∑
m,n

cm,nλmn ϕ11(Vm
1 #Vn

2 ) = ∑
m,n

cm,m+3n−1λm(m+3n−1)λ
1
6 (9n2−6n)

where

cm,m+3n−1 =
i−

1
6

√
bτ

e−π( 1
b−i)α2m2

e−
π
τ α2(3n+m(2+ i

b )−1)2

=
i−

1
6 e−

π
τ α2

√
bτ

e−πA0m2
e−πB0n2

e
2π
3 E0me−

2π
3 B0ne−πE0mn

where A0 = α2(−iab+a+3b+2i)
bτ , B0 = 9α2

τ , E0 = −3α2(2b+i)
bτ . Combining all terms

gives

ϕ11(〈 f , gZ〉D⊥) =
i−

1
6 e−

π
τ α2

√
bτ

∑
m,n

e−γm2
e−πδn2

e−
2π
3 ζme

2π
3 δne2πζmn
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where γ = α2(a+b−3iab)
bτ , δ = 3α2(−iab+2b−i)

bτ , ζ = 3α2(iab−b)
bτ . Considering now ϕ′11,

we have as before 〈 f , g〉D = β2 ∑
m,n

bm,nUn
2 Um

1 with bm,n = 〈 f , g〉D(mε1 + nε2) =

1√
a+b

e−πbβ2m2
e
−πβ2 (ibm−n)2

a+b . It follows that ϕ′11(〈 f , g〉D)= β2 ∑
m,n

bm,n ϕ′11(Un
2 Um

1 )=

β2 ∑
m,n

bm,m+3n+1λ
1
6 (9n2+6n)
1 where bm,m+3n+1 = 1√

a + b
e−πβ2bm2

e−πβ2 (ibm−m−3n−1)2

a+b .

We hence obtain

ϕ′11(〈 f , g〉D) =
β2e

−π
β2

a+b√
a + b

∑
m,n

e−πγ1m2
e−πδ1n2

e
2π
3 ζ1me−

2π
3 δ1ne2πζ1mn,

with γ1, δ1, and ζ1 as previously. This gives

ϕ′11(〈 f , g〉D) =
β2e−π

β2

a+b
√

a + b ∑
m,n

e−πγ1m2
e−πδ1n2

e
2π
3 ζ1me−

2π
3 δ1ne2πζ1mn.

Now, applying Lemma 10.1 to ϕ11(〈 f , gZ〉D⊥) gives the equivalent form

∆ ∑
m,n

e
−π

γ
γδ−ζ2 m2

e
−π

δ
γδ−ζ2 n2

e−
2π
3 ime

2π
ζ

γδ−ζ2 mn

where ∆ = i−
1
6 e−

π
τ α2

e
π
9 δ

√
bτ(γδ−ζ2)

. A routine calculation shows that

γδ− ζ2 =
3α4

b2τ2 (a + b− 3iab)(−iab + 2ib− i)− 9α4

b2τ2 (iab− b)2 =
−3iα4(a + b)
ab− ib + 1

.

This gives

∆ =
ω

1
2 β2e

π
9 δ−π

τ α2

√
3
√

a + b
=

ω
1
2 β2λ−

1
2

√
3
√

a + b
and the equalities

γ

γδ− ζ2 =
β2(3ab + ia + ib)

3(a + b)
,

δ

γδ− ζ2 =
β2(ab + 2ib + 1)

a + b
= γ1,

ζ

γδ− ζ2 =
β2i(iab− b)

a + b
.

Interchanging m and n and making the substitution m 7→ m − n produces the
series

∑
m,n

e−πγ1(m−n)2
e
−π

γ
γδ−ζ2 n2

e−
2π
3 ine

2π
ζ

γδ−ζ2 (m−n)n
=∑

m,n
e−πγ1m2

e−πRn2
e−

2π
3 ine2πSmn
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where R = γ1 + γ
γδ−ζ2 + 2 ζ

γδ−ζ2 = β2

3(a+b) (ia + ib + 3) = 1
9 δ1 and S = γ1 +

ζ
γδ−ζ2 = β2

a+b (ab + 2ib + 1− ab− ib) = β2

a+b (ib + 1) = − 1
3 ζ1. Finally, the substitu-

tion m 7→ −m gives

ϕ11(〈 f , gZ〉D⊥) =
ω

1
2 β2λ−

1
2

√
3
√

a + b ∑
m,n

e−πγ1m2
e−

π
9 δ1n2

e−
2π
3 ine

2π
3 ζ1mn.

We now partition this series into three parts, depending on the value of k where
k ≡ n mod 3. Explicitly,

∑
m,n

e−πγ1m2
e−

π
9 δ1n2

e−
2π
3 ine

2π
3 ζ1mn = L0 + L1 + L−1

where n ≡ k mod 3 on Lk. The substitutions n 7→ 3n + k give

L0 = ∑
m,n

e−πγ1m2
e−πδ1n2

e−2πine2πζ1mn = ∑
m,n

e−πγ1m2
e−πδ1n2

e2πζ1mn,

L1 = ∑
m,n

e−πγ1m2
e−

π
9 δ1(3n+1)2

e−
2π
3 i(3n+1)e

2π
3 ζ1m(3n+1)

= −ωe−
π
9 δ1 ∑

m,n
e−πγ1m2

e−πδ1n2
e

2π
3 ζ1me−

2π
3 δ1ne2πζ1mn,

L−1 = ∑
m,n

e−πγ1m2
e−

π
9 δ1(3n−1)2

e−
2π
3 i(3n−1)e

2π
3 ζ1m(3n−1)

= ω2e−
π
9 δ1 ∑

m,n
e−πγ1m2

e−πδ1n2
e−

2π
3 ζ1me

2π
3 δ1ne2πζ1mn.

Making the substitution m, n 7→ −m,−n in L−1 shows that L−1 = −ωL1. Hence,

ϕ11(〈 f , gZ〉D⊥) = ω
1
2 β2λ

− 1
2√

3
√

a+b
(L0 + (1−ω)L1). Considering finally ϕ12,

ϕ12(〈 f , gZ〉D⊥) = ∑
m,n

cm,nλmn ϕ12(Vm
1 #Vn

2 ) = ∑
m,n

cm,m+3n+1λm(m+3n+1)λ
1
6 (9n2+6n)

where

cm,m+3n+1 =
i−

1
6

√
bτ

e−π( 1
b−i)α2m2

e−
π
τ α2(3n+m(2+ i

b )+1)2

=
i−

1
6 e−

π
τ α2

√
bτ

e−πA0m2
e−πB0n2

e−
2π
3 E0me

2π
3 B0ne−πE0mn

where A0 = α2(−iab+a+3b+2i)
bτ , B0 = 9α2

τ , E0 = −3α2(2b+i)
bτ . Combining all terms

gives

ϕ12(〈 f , gZ〉D⊥) =
i−

1
6 e−

π
τ α2

√
bτ

∑
m,n

e−πγm2
e−πδn2

e2 2π
3 ζme−

2π
3 δne2πζmn
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with γ, δ, and ζ as before. The substitution m, n 7→ −m,−n then gives the equal-
ity ϕ12(〈 f , gZ〉D⊥) = ϕ11(〈 f , gZ〉D⊥). Considering now ϕ′12, we have as before
〈 f , g〉D = β2 ∑

m,n
bm,nUn

2 Um
1 with bm,n = 〈 f , g〉D(mε1 + nε2) = 1√

a+b
e−πbβ2m2

e−πβ2 (ibm−n)2

a+b . It follows that ϕ′12(〈 f , g〉D) = β2 ∑
m,n

bm,n ϕ′12(Un
2 Um

1 ) = β2 ∑
m,n

bm,m+3n−1

λ
1
6 (9n2−6n)
1 where bm,m+3n−1 = 1√

a+b
e−πβ2bm2

e−πβ2 (ibm−m−3n+1)2

a+b . We hence obtain

ϕ′12(〈 f , g〉D) =
β2e

−π
β2

a+b√
a + b

∑
m,n

e−πγ1m2
e−πδ1n2

e−
2π
3 ζ1me

2π
3 δ1ne2πζ1mn,

with γ1, δ1, and ζ1 as previously. This gives

ϕ′12(〈 f , g〉D) =
β2e−π

β2

a+b
√

a + b ∑
m,n

e−πγ1m2
e−πδ1n2

e−
2π
3 ζ1me

2π
3 δ1ne2πζ1mn.

Again, the substitution m, n 7→ −m,−n gives ϕ′12(〈 f , g〉D) = ϕ′11(〈 f , g〉D). Our
problem is then reduced to determining constants ck, rk, where k = 0, 1 and rk =
dk + ek, such that the equations

ϕ10(〈 f , gZ〉D⊥) = c0 ϕ′10(〈 f , g〉D) + r0 ϕ′11(〈 f , g〉D)

and

ϕ11(〈 f , gZ〉D⊥) = ϕ12(〈 f , gZ〉D⊥) = c1 ϕ′10(〈 f , g〉D) + r1 ϕ′11(〈 f , g〉D)

become identities. For convenience, let

Σ0 = ∑
m,n

e−πγ1m2
e−πδ1n2

e2πζ1mn, Σ1 = ∑
m,n

e−πγ1m2
e−πδ1n2

e
2π
3 ζ1me−

2π
3 δ1ne2πζ1mn.

In this notation we may write

ϕ10(〈 f , gZ〉D⊥) =
ω

1
2 β2

√
3
√

a + b
(Σ0 + 2e−

π
9 δ1 Σ1),

ϕ11(〈 f , gZ〉D⊥) =
ω

1
2 β2λ−

1
2

√
3
√

a + b
(Σ0 + e−

π
9 δ1(ω2 −ω)Σ1),

and

ϕ′10(〈 f , g〉D) =
β2

√
a + b

Σ0, ϕ′11(〈 f , g〉D) =
β2e−

πβ2

a+b
√

a + b
Σ1.
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CALCULATION OF S10([M3]). We consider the first of our two equations, which
may be written using this new notation, after some simplification, as

ω
1
2

√
3
(Σ0 + 2e−

π
9 δ1 Σ1) = c0Σ0 + r0e−

πβ2

a+b Σ1

which implies that c0 = ω
1
2√
3

and r0 = 2ω
1
2 λ

− 1
6

1√
3

. Hence S10([M3]) = 1
3 ψ(1) =

1
3 c0 = ω

1
2

3
√

3
.

CALCULATION OF S11([M3]) = S12([M3]). We now consider the second of our
two equations, which may be written as

ω
1
2 β2λ−

1
2

√
3
√

a + b
(Σ0 + e−

π
9 δ1(ω2 −ω)Σ1) = c1Σ0 + r1e−

πβ2

a+b Σ1

which implies that c1 = ω
1
2 λ

− 1
6√

3
and r1 = ω

1
2 (ω2−ω)λ

− 1
6 λ

− 1
6

1√
3

. Since S11 and S12

are normalized by λ
1
6 , it follows that S11([M3]) = 1

3 λ
1
6 ψ(1) = 1

3 λ
1
6 c1 = ω

1
2

3
√

3
and, from the equalities between ϕ10 and ϕ11 discussed earlier, that S12([M3]) =

S11([M3]) = ω
1
2

3
√

3
.

10. APPENDIX

For z, t ∈ C, where Im(t) > 0, we define the theta function ϑ3 by

ϑ3(z, t) = ∑
n

eπitn2
ei2nz

where the summation is over the integers. The Jacobi transformation formula for
ϑ3 is

ϑ3(z, t) = (−it)−
1
2 e

z2
πit ϑ3(

z
t

,−1
t
).

We prove the following formula for two-dimensional theta functions (where we
have a sum double-indexed over the integers in independent variables m and n).

LEMMA 10.1. Let γ, δ, µ, ν, ζ ∈ C with positive real parts, and let ∆ = γδ− ζ2.
Then

∑
m,n

e−πγm2
e−πδn2

e−πµme−πνne2πζmn

= Φ ∑
m,n

e−π γ
∆ m2

e−π δ
∆ n2

eπi γν+ζµ
∆ me−πi δµ+ζν

∆ ne2π ζ
∆ mn
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provided the series converge, where Φ = 1√
∆

e
π
4∆ (µ(δµ+ζν)+ν(γν+ζµ)).

Proof. We begin by separating the sum as

∑
n

e−πδn2
e−πνn ∑

m
e−πγm2

e(2πζn−πµ)m

and replacing the second sum by a theta function to get

∑
n

e−πδn2
e−πνnϑ3(

2πζn− πµ

2i
, iγ).

We now apply the Jacobi inversion formula to obtain

∑
n

e−πδn2
e−πνnγ−

1
2 e

(2πζn−πµ)2
4πγ ϑ3(

πµ− 2πζn
2γ

,
i
γ

)

which simplifies to

γ−
1
2 e

4µ2
4γ ∑

n
e−π(δ− ζ2

γ )n2
e−π(ν+ ζµ

γ )n ∑
m

e−
π
γ m2

e
iπ(2ζn−µ)

γ m.

We now wish to perform inversion on n. Separating the sums as

γ−
1
2 e

−πµ2
4γ ∑

m
e−

π
γ m2

e−
iπµ

γ m ∑
n

e−π(δ− ζ2
γ )n2

e−π(ν+ ζµ
γ −

2iζm
γ )n

allows us to write γ−
1
2 e

πµ2
4γ ∑

m
e−

π
γ m2

e−
iπµ

γ m
ϑ3(

iπνγ+iπζµ+2πζm
2γ , i∆

γ ). Applying the

Jacobi inversion to this yields

∆−
1
2 e

πµ2
4γ ∑

m
e−

π
γ m2

e−
iπµ

γ me−
π(iγν+iζµ+2ζm)2

4γ∆ ϑ3(
π(γν + ζµ− 2iζm)

2∆
,

iγ
∆

).

Expanding the theta function into a sum gives

∆−
1
2 e

πµ2
4γ ∑

m
e−

π
γ m2

e−
iπµ

γ me−
πi(γν+ζµ−2iζm)2

4γ∆ ∑
n

e−
πγ
∆ n2

e
πi(γν+ζµ−2iζm)

∆ n.

Collecting terms and returning to the double summation gives

1√
∆

e
πµ2
4γ e

π(γν+ζµ)2
4γ∆ ∑

m,n
e−π δ

∆ m2
e−π

i(δµ+ζν)
∆ me−π γ

∆ n2
eπ

i(γν+ζµ)
∆ ne2π ζ

∆ mn,

and upon expanding the constant terms and making the substitutions m 7→ n,
n 7→ m, we obtain, with Φ as defined earlier,

Φ ∑
m,n

e−π γ
∆ m2

e−π δ
∆ n2

eπi (γν+ζµ)
∆ me−πi (δµ+ζν)

∆ ne2π ζ
∆ mn.
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