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SPATTIAL REPRESENTATION OF MINIMAL C*-TENSOR
PRODUCTS OVER ABELIAN C*-ALGEBRAS
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Communicated by Serban Stritilid

ABSTRACT. We establish natural links between minimal C*-tensor products
of C*-algebras over abelian C*-algebras, whose definition is based on a natural
decomposition in fields of C*-algebras, and spatial W*-tensor products of W*-
algebras over abelian W*-algebras, defined up to natural *-isomorphism by
using appropriate normal *-representations.

In particular, we obtain that if C is a unital, abelian C*-algebra, A1, A, are
unital C*-algebras over C and 7, 71, are non-degenerate *-representations of
Aj respectively A, which coincide on C, are separated by a type I von Neu-
mann algebra with centre equal to the weak operator closure of the image of C
and are faithful in a certain stronger sense, then the minimal C*-tensor prod-
uct of Aj and Ajp over C can be identified with the C*-algebra generated by
the images 71, (A;) and 71, (A,) in the spatial W*-tensor product of their weak
operator closures with respect to the weak operator closure of the image of C.

KEYWORDS: C*-algebra, von Neumann algebra, tensor product, spatial representa-
tion.

MSC (2000): 46L05, 46L06.

INTRODUCTION

For every C*-algebra A, let Z(A) = {z € A : az = zaforalla € A} be its
centreand M(A) = {x € A* : AxUxA C A} its multiplier algebra (see e.g. 3.12 of
[15], or 2.2 of [23]).

We recall that a *-representation 7w : A — B(H) is called non-degenerate
if for any 0 # ¢ € H there is some a € A with 7(a)¢ # 0, or equivalently, if
the closed linear span H, of 1(A)H is equal to H. To a given *-representation
m: A — B(H) we always can associate the non-degenerate -representation
A > av+— m(a)|H, € B(He). If Ais unital and w : A — B(H) is a non-
degenerate *-representation, then 7t carries the unit 14 of A to the identity map
14 on H.
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Every non-degenerate x-representation 77 : A — B(H) extends to a unique
unital -representation M(7m) : M(A) — B(H), which is a *-isomorphism of
M(A) onto the C*-subalgebra {T € B(H) : n(A)TUTnr(A) C n(A)} C B(H)
whenever 7 is injective (see e.g. 3.12 of [15] or 2.2.11, 2.2.16, 2.2.17 in [23]). More
precisely, M(7) is the restriction to M(A) of the normal extension A** — B(H)
of 71, so m(A) and M(7t)(M(A)) generate the same von Neumann algebra.

Let now C be a unital, abelian C*-algebra and let (2 denote its Gelfand
spectrum. If A is a C*-algebra and 1 : C — Z(M(A)) is an injective, unital *-
homomorphism, then we say that (A, ), or simply A if ¢ is clear from the con-
text, is a C*-algebra over C. In this case, for any non-degenerate *-representation
n: A — B(H), the composition 7t o 1 = M(7) ot can be considered.

If (A, 1) is a C*-algebra over C, then

(0.1) L(t) ={uc):ceCec(t)=0}A, te

are closed two-sided ideals in A. We shall call them Glimm ideals. Let 7t,; denote
the canonical map A — A/I,(t). Then we have (N L(t) = {0}, thatis |ja]| =
teQ

sup ||7t,¢(a)|| for all a € A (see Remarks on page 232 in [7]). We notice that the
teQ
flemctions
Q3t— ||my(a)||, acA

are always upper semi-continuous (see Lemma 9 in [7] or Lemma 3.1 in [24] or
Lemma 2.3 in [12]), but they are in general not continuous. If they are continuous,
then (A, 1) will be called a continuous C*-algebra over C.

C*-tensor products of C*-algebras over C were already considered by
G.A. Elliott [5] and G.G. Kasparov ([11], 1.6), but a systematic study of such ten-
sor products was undertaken only later by E. Blanchard [1], [2], B. Magajna [13]
and T. Giordano and J. Mingo [6].

Let (A;, ;) and (A,, 1) be C*-algebras over C and let us consider the -
homomorphisms

T[ll,t ® nlz,t . Al ® A2 — (Al/lll (t)) ® (AZ/Ilz(t))/ t 6 Q/

where ® stands for the algebraic tensor product over C. On every quotient
(A1/1,(t)) ® (A2/1,(t)) there exists the least C*-norm || - ||min (see [22] or 6.4
in [14]) and

A1 ® Ay 3 ar— ||(7yt @ 7up0t) () || min
is a C*-seminorm. Following E. Blanchard, the minimal C*-tensor product of Ay and
Ay over C is defined as the Hausdorff completion A; ®c min A2 of A} ® Ay with
respect to the C*-seminorm

(02) Al & AZ >ar HaHC,min = sup || (ntl,t & nlz,t)(a) ||minr
ten

that is the C*-algebra obtained by the completion of the quotient x-algebra
(A1 ® Az)/jc with jC = {{1 EAIRA: (ﬂ,llt Y mz/t)(a) =0,t e Q}
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relative to the C*-norm induced by || - || min-

On the other hand, spatial tensor products of W*-algebras over abelian W*-
algebras were considered by §. Strétild and L. Zsidé. They showed in Lemma 5.2
of [20] that if Z is an abelian W*-algebra, M;, M, are W*-algebrasand t; : Z —
Z(My), 1y : Z — Z(M;) are injective unital, normal *-homomorphisms, then
there exist injective unital, normal *-representations 71; : M; — B(H), 71, :
M, — B(H) on the same Hilbert space H, such that 7r; o1; = 71, 01, and
;1 (M;) C N,m,(M,) C N’ for some type I von Neumann algebra N C B(H)
with centre equal to (77 04;)(Z). On the other hand, according to Lemma 5.4 of
[20], if p; : My — B(K), p, : M, — B(K) are any injective unital normal
s«-representations such that p; oy = p, o1, and p1(M;) C R,p5(M,) C R’ for
some type I von Neumann algebra R C B(K) with centre equal to (p; o ¢;)(Z),
then there is a *-isomorphism

O : (M) V 1y (My) — p1(My) V po(My)

satisfying
Oty (x1) 1y (x2)) = p1(x1)pa(x2) forall x; € My, xp € Mp.

In other words, the von Neumann algebra 7, (M;) V 7,(M,) is unique up to
canonical *-isomorphism. Since in the case Z = C it is *-isomorphic to the usual
spatial tensor product (over C) M;®@M; (see Lemma 2 of [3]), it is natural to call
it in the general case the spatial W*-tensor product of My and My over Z.

The goal of this paper is to link the minimal C*-tensor product with the
spatial W*-tensor product.

The first main result (Theorem 3.4) claims that if C is a unital abelian C*-
algebra, (Ay,1;) and (A,, 1) are C*-algebras over Cand 71j : A; — B(H), j =
1,2, are non-degenerate *-representations such that

(03) M(T[l) o ll = M(T[z) ] lz and 7T1(A1) C N, 7T2(A2) C N/

for some type I von Neumann algebra N C B(H) with centre (M(7;) o ;)(C)",
then there exists a *-representation of A1 ®c min A» on H, which carries the canon-
ical image (11 ® a2)/ J-€(A1® Az)/ Jcof any a1 @ ay € A1 ® Ay to 1y (aq) my(ay).
This *-representation is uniquely determined and we denote it by 77; ®¢ min 77,.
Clearly, 71y ®c min T, maps the minimal C*-tensor product A; ®c min A2 into
the spatial W*-tensor product 71, (A1)"” V 115(A,)" of 1(A;)" and 115(A,)"” over
(7j041)(C)".

In Section 4 Glimm ideals are described in terms of a faithful spatial repre-
sentation. As an application, J¢ is characterized in terms of faithful non-degene-
rate x-representations 77; : A; — B('H) satisfying (0.3) (Corollary 4.6).

Finally, in Section 5 we first exhibit an example of faithful 7r; and 7, for
which 71 ®¢ min 77, is not faithful (Proposition 5.2). Subsequently we prove crite-
ria for faithful non-degenerate *-representations 77; : A; — B(H) satisfying (0.3)
in order that 71; ®c min 77, be faithful (Theorem 5.5). It will follow thatif A, A, are
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unital and 77y, 7, are faithful in a stronger sense, then 77y ® ¢ min 71, will be faithful,
providing thus an identification of the minimal C*-tensor product A1 ®¢ min A2
with the C*-subalgebra of the spatial W*-tensor product 71;(A;)" V 11,(A,)"” gen-
erated by the images 77, (A;) and 71,(A,) (Corollary 5.7).

For the basic facts concerning C*-algebras and von Neumann algebras we
send to the standard textbooks [4], [10], [14], [15], [16] and [19].

1. PRELIMINARIES RELATED WITH SPATIAL W*-TENSOR PRODUCTS
OVER ABELIAN W*-ALGEBRAS

In Lemma 2.2 of [20], the commutation theorem of M. Tomita was extended
to the frame of spatial W*-tensor products over abelian W*-subalgebras. The
proof of this general commutative theorem is based on a careful analysis of the
Zy-submodule and Z-submodule of Ne, where N is a type I W*-algebra with
centre Z and e is an abelian projection in N, performed in Section 1 of [20]. In
this section we recall certain facts concerning such submodules, completing them
when our needs require this.

Let N be a type I von Neumann algebra with centre Z. If e is an abelian
projection in N with central support zy (e), then the map

(1.1) Zzn(e) 3 zzn(e) — zzn(e)e = ze € eNe

is a *-isomorphism. For every x € N, we denote the inverse image of exe in
Z zn(e) under this isomorphism by &,(x). Then ¢, : N — Zzy/(e) is a nor-
mal positive Z-module mapping with @,(1y) = zy/(e), uniquely defined by the
equality

(1.2) exe = ®p(x)e, x €N
(see e.g. [8], [9]). Moreover, since (1.1) is isometric, we have
(1.3) [lexe|| = [|@.(x)[|, x € N.

Furthermore, if zy (e) = 1y, then &, is a normal conditional expectation of
N onto Z with support e.

The next three simple lemmas concerning abelian projections are variants
of well known results. They are exposed here for further reference, for the conve-
nience of the reader:

LEMMA 1.1. Let N be a type 1 von Neumann algebra. If f,p € N are projections,
f < pand f is abelian, then there exists an abelian projection e € N such that
f<e<p, zn(e)=2zn(p)

Proof. Let us first consider the case f = 0. Since N is of type I, so is pNp too.
Let e be an abelian projection in pNp with central support one, that is z,n,(e) =
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p. Since

exeye = e(pxep)(pyep) = e(pyep)(pxep) = eyexe, x,y € N,
e is an abelian projection also in N. Clearly, e < p implies zy(e) < zy(p). On
the other hand, since e < pzn(e)p € Z(pNp) and z,n,(e) = p, we have p <
pzn(e)p = pzn(e) < zn(e). Consequently also the converse inequality zy(p) <
zn(e) holds.
The case of a general f can be reduced to the above treated case. Indeed, by
the above part of the proof there is an abelian projection ¢y € N such that

eo<p—pzn(f), zn(eo) =2zn(p—pzn(f)) = 2zn(p) — 2n(f)
and then e = f + ¢y € N will be an abelian projection satisfying f < e < p and
ZN(e) = ZN(p). 1

LEMMA 1.2. Let N be a type 1 von Neumann algebra. Then
|x|| = sup{||xv|| : v € N partial isometry,v*v < e}, x €N
holds for any abelian projection e € N with zy/(e) = 1x. On the other hand,
|x]|? = sup{||®e(x*x)|| : e € N abelian projection, zy(e) = 1y}, x € N.
Proof. First we prove that
(1.4) |lx|| = sup{||xf|| : f € N abelian projection }, x € N.

For let x € N and € > 0 be arbitrary. By the spectral theorem there exists a
projection p € N commuting with x*x such that

(15)  xxp=(x"x| —e)p and x*x(Iy —p) < (|x"x[| —&)(In = p)

(see e.g. Corollary 2.21 of [19]). Note that p # 0, because p = 0 would imply
x*x < ||x*x|| — ¢, a contradiction. Since N is of type I, p majorizes a non-zero
abelian projection f € N and (1.5) yields fx*xf = fx*xpf > (||[x*x|| —¢)f. Con-
sequently [xf|2 = || fxxf|l > (|x"x] —)lf| = x|]2 —e.

Now let e be any abelian projection in N with zy(e) = 1y. Let furtherx € N
be arbitrary. Taking into account (1.4), ||x|| = sup{||xv|| : v € N partial isometry,
v*v < e} will follow once we show that for every abelian projection f € N there
exists a partial isometry v € N such that v*v < eand ||xf|| < [|xv]|.

But zy(f) < 1y = zn(e) implies the existence of a partial isometry v € N
such that vv* = f,v*v < e (see e.g. Proposition 4.10 of [19]). Then

Ixf11? = [lxfx*|| = [lxoo"x*|| = [[xv]]*.

Finally, let x € N be arbitrary. Again by (1.4), ||x||> = sup{||®e(x*x)]| :
e € N abelian projection, zy (e) = 1y} will follow once we show that for every
abelian projection f € N there exists an abelian projectione € N with zy(e) = 1y
such that || xf]|? < [|@e(x*x)]|.
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But Lemma 1.1, applied with p = 1y, implies the existence of an abelian
projection e € N such that f < e and zy(e) = 1y. Then (1.2) yields
12 < [lxel|? = [lex*xe|| = [|@e(x*2)ell < [[@e(x*x)[|. 0
LEMMA 1.3. Let N C B(H) be a type 1 von Neumann algebra, e an abelian
projection in N, and f an abelian projection in N'. Then ef is an abelian projection in
NV N with zyyni (ef) = zn(e) zne (f) and
Dep(xy) = Pe(x)Pf(y), x€N,ye N
Moreover, if zn(e) = zni (f), then
b, = ®ef|N and @f = ©ef|N/'
Proof. Let us denote for convenience Z = Z(N) = Z(N') = Z(N V N').
Clearly, ef = fe is a projection in N V N’. Since, for every x1,x, € N and
yLy2 €N,
(efxayref)(efxayaef) =(exrexze) (fy1fyaf)
=(exaexie)(fyafyif) = (efxayaef)(efxiyref),
ef is an abelian projection in N vV N'.
If p € Z is a projection such that ef < p, then it follows successively:
ey fE=vy'efp = py'efé € pH forally’ € N,& € H, i.e.eN'fH C pH;
ez (f)YH C pH, ie zy(f)e=ezn(f) < p;
zn (flyeg = yezn ()G = ypezn(f)E = pyznr(fleG € pH, y €N, GEH,
ie. zy/(f)NeH C pH;
VANG (f) ZN<€)H C PH, ie. zyy (f) ZN<€) < p.
Therefore zy/ (f) zn(e) < znynr(ef ). But the converse inequality is trivial, so we
actually have
(1.6) zyyn(ef) = zn(f) zn(e).
Letx € N,y € N’ be arbitrary. According to (1.2), we deduce
efxyef = (exe)(fyf) = Pe(x)e@s(y)f = e(x)Ps(y)ef.
Since, by (1.6), we have @ (x)®¢(y) € Zzn(e) zn/(f) = Zznunr (ef), it follows
that @, (xy) = Pe(x)Pf(y).
Assume now that zy(e) = zn/(f) = zyyn/(ef). Then, for every x € N,

efxef = (exe)f = Pe(x)ef and Pe(x) € Zzyyn(ef ) imply that @r(x) = De(x).
Therefore @, = ®,¢|y. Similarly we deduce also @ = Dpr|nr. 1

The following result concerning the structure of the Z-submodules of Ne,
where N is a type I von Neumann algebra with centre Z and e is an abelian pro-
jection in N, will be used in the sequel:
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LEMMA 1.4. Let N C B(H) be a type I von Neumann algebra with centre Z,
and e € N an abelian projection. If X C Ne is a Z-submodule, then there is a unique
projection p € N such that

X =pNe, zx(p) < zule),

namely p is the orthogonal projection onto inXH (the closed linear span of {x¢ : x €
X, & € H}). Moreover, if X = Me, where Z C M C N is a von Neumann subalgebra,
then

peM' NN, e<p, zn(e)=2zn(p).

Proof. All the above statements, except those concerning central supports,
were proved in 1.6 and 1.7 of [20]. For zy(e) > zn(p), let g € Z be a projection
majorizing e. Then xe = xeq = gxe for every x € M, so g(xe¢) = xe( for every
¢ € M. Since p is the projection onto linMe™H, it follows that g > p. 1

We shall need also the following variant of Lemma 1.2 in [20], for which we
have just to reproduce the proof of Lemma 1.2 in [20]:

LEMMA 1.5. Let N be a type I von Neumann algebra with centre Z and e € N an
abelian projection. For every x-subalgebra B C N and x € Be’, || x| = 1, we have

xe{yeBezy Iyl <17,
where Zf denotes the set of all elements z € Z with 0 < z < 1y.
Proof. Let x € Be’ be such that ||x|| = 1. Consider a net
Be > bye = x), — x.
Then @, (x%x,)1/% = & (x*x)/2. Let f,g : [0,00) — [0,1] be functions such that
f(t)y=1 fort<1;, g(t)=1 fort>1; g(t)=tf(t) forallt e [0,0c0).

Since f is operator continuous, Z, > f(®e(xix))1/2) = f(®,(x*x)1/?) =1y and
[|f (e(x5x2)1/2)|| < 1 for all A. Therefore f(®.(x5x))"?)x) — x with

1f (@e(x522) "/ 2)2al|=1@e (3 £ (e (x520) /2 2x0) = £ (e (33 x) 1 /2) P e (x22) |
=[f(@e(xixn)2) Pe(xix) V2P =g (@e(xix) )P <1,

and f(P.(x5x))1/2)x) € BeZ because x) = bye, || f(®e(x5x2)1/2)[| < 1. W
2. PRELIMINARIES RELATED WITH MINIMAL C*-TENSOR PRODUCTS

OVER ABELIAN C*-ALGEBRAS

Let C be a unital, abelian C*-algebra and let (2 denote its Gelfand spectrum.
If (A,1) is a C*-algebra over C, then also (M(A),t) is a C*-algebra over C. To
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distinguish between the ideals defined by (0.1) for (A,:) and for (M(A), 1), we
shall keep the notation

L(t) ={iu(c) :ceCrc(t)=0}A, te

for the ideals of A and shall set

L) ={i(c): c€C,ct) = 0IM(A), te Q.

Similarly, we keep the notation 7,; for the canonical map A — A/I,(t) and shall
denote the canonical map M(A) — M(A)/L(t) by 7, ;.

The next proposition establishes a link between I,(t) and I,(t), as well as
between 7,y and 77, ¢ (cf. Lemma 3.4 of [24]):

PROPOSITION 2.1. Let C be a unital, abelian C*-algebra, (2 its Gelfand spectrum,
and (A, 1) a C*-algebra over C. Then:
@) e (1(c)a) = c(t)me(a),t € Q,c e Cae A

ii) || 7t = f = inf ,LEN,a € A;
@) |7p(a) | = _dnf _ le(e)all = inf - uc)all € 2

(iii) for any t € 2 we have

L(t) = ANL(E), |lme@)ll = |7 (a)],a € A.
Proof. (i) Since t(c)a — c(t)a = (i(c) — c(t)1pay)a = 1(c —c(t)1c)a € L(t),
we have m,t(t(c)a —c(H)a) =0.
(i) Since ||7r,¢|| < 1, by the above proved (i) we have
= inf t = inf < inf
Imaa)] = _inf lle(me(@) = _inf  [m(@)a)]| < _int  Juce)al

< inf .
= ceC,0<e<1c,c(t) H ( ) ”

n
For the converse inequalities, let ¢ > 0 be arbitrary. Since { Y i(cj)a;
i=1

ci € C,cj(t) =0,a; € An € N} is dense in [,(t) and || ¢(a)|| = |la/L(t)] =

inf{|la —y| :y € L(t)}, there exist c1,cy,...,c4 € Cand ay,4ay,...,a, € A such
that cj(t) =0forallj=1,2,...,nand

|7t (a /Ha—Zt jH—s

and then there is an open set t € Vy C Q such thats € Vj = [cj(s)| <
E. foralll < j < n. By Urysohn’s lemma, there is ¢g € C such that 0 <
0
n

nlla;|

0o < 1c,co(t) = 1, and co(s) = 0 for every s € 2\ Vp. Since |(cocj)(s)| =

fors € Q\ Vo and [(coc;)(s)| < m for s € Vp, we have for every 1 < j <
]
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eoe ) < Iucp o < 7yl = . Therefore
n
|7t (a)|| + &> Ha—ch] a]H H 0)a —Z{t(cocj)ajH
]:
> |t(co) ||—ZH cocy)ajl| = [|e(co)al —e,
so |7t +2e 2> |u(c inf
Iriata) +22 > oyl > __inf (el

(iii) Let 2 € A be arbitrary. Applying (11) to 71, (a) and to 77,4 (a), we get
Ol inf Me)all = 17 ()]l

In particular,a € ANTI,(t) = a € ,(t), hence the inclusion AN I,(t) C I,(t)
holds. Since the converse inclusion is trivial, we have ,({) = AN (). 1

Proposition 2.1(iii) implies immediately:

COROLLARY 2.2. Let C be a unital, abelian C*-algebra, (2 its Gelfand spectrum,
and (A, 1) a C*-algebra over C. Then, for every t € (2, the map

Out: A/L(t) = 7'1,'!,,5({1) — ﬁ,/t(a) S M(A)/E(i’)

is a well defined injective x-homomorphism and the diagram

A inclusion M ( A)

Ut l l 7Ot

A/L(E) —— M(A)/T(t)

is commutative.

Now let C be a unital, abelian C*-algebra with Gelfand spectrum (2 and let
(A1, 17), (Ay, 1p) be C*-algebras over C. For every t € (2, Corollary 2.2 entails the
existence of the injective *-homomorphisms p,, ¢, p., + and then the tensor product
*-homomorphism

Pi,t Omin Puy t - A1/111 (t) ®min A2/Lz(t) - M(Al)/Tq (t) min M(AZ)/Zz(t)
is injective, hence isometric , and the diagram
Ay ® A, __inclusion M(A1) ® M(Ay)
ﬂtl,f®n12,tl lﬁ’l't®ﬁ’2't

(A1/ L, (1) @min (A2/ L, (1)) (M(A1)/1,(t)) @min (M(A2)/1,(t))

is commutative. Consequently:

011,tOminfuy t
—
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COROLLARY 2.3. Let C be a unital, abelian C*-algebra with Gelfand spectrum (2
and let (Aq,11), (Ay, 15) be C*-algebras over C. Then, for every t € (2,

(72,8 @ 721,) (@) [[min = ([ (it @ T,6) (@) [lmin, @ € A7 @ A

As a consequence of the above corollary, we have

sup || (70t © 7215,1) (@) [min = sup || (7T, @ 7ip1) (@) [min, @ € A1 @ Ay,
teQ teQ

hence the restriction of the C*-seminorm

M(A1) @ M(Az) 5 x +— sup ||[(7Ty t @ iy, 1) (%) min
te)

to A1 ® Aj is equal to the C*-seminorm

A1 ® Ay > av—— sup |[(71, @ 7y t) () | min-
teO

Therefore the C*-seminorm (0.2) can be defined also by the formula

HLZHC,min = fug H(ﬁlht ® ﬁtz,t)(”)”min , A€ A ® A
€

Every bounded linear functional ¢ on a C*-algebra A can be considered
in the natural way a linear functional on A**, hence also on M(A) C A**: the
obtained linear functional on M(A), which will be still denoted by ¢, is actually
the strictly continuous extension of the original functional on M(A) (for the strict
topology see e.g. 2.3 of [23]).

The next result is slightly more general than Proposition 4.3.14 of [10], and
can be deduced from Corollary 4.7 of [21]:

PROPOSITION 2.4. Let C be a unital, abelian C*-algebra, (2 its Gelfand spectrum,
(A, 1) a C*-algebra over C, and ¢ a state on A. Then, for every t € 2, the conditions
() ¢(i(c)a) = c(t)p(a),c € C,a € A;
(i) ¢l,) =0
(iii) ¢(1(c)) = c(t),c € C;
are equivalent. Moreover, if ¢ is a pure state on A then the above conditions are satisfied
for an appropriate t € Q2.
Proof. (i)=-(ii) is obvious and (ii)=>(iii) follows easily: any approximate unit
{up}a for Ais strictly convergent to 1,;(4) (see e.g. Lemma 2.3.3 of [23]) and the
strict continuity of ¢ on M(A) yields

(e —c(H)1c)ur) — @(lc —c(t)lc)) = ¢(ulc)) —c(t), ceC.

Now let us assume that (iii) is satisfied and leta € A™, ||a|| < 1, be arbitrary.
For ¢(a) = 0 we have by the Schwarz inequality ¢(i(c)a) =0 = c(t)¢(a),c € C,
while for ¢(14) —a) = 0 we deduce, again by the Schwarz inequality,

p(i(c)a) = @(u(c)) — @(u(c)(Lp(a) —a)) = c(t) = c(t)p(a), ceC.
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On the other hand, if ¢(a) > 0 and ¢(1p74) —a) > 0thenC > ¢ LR ﬁ(p(z()a),

Csc mq)(t(-)(le) — a)) are states satisfying ¢ o1 = ¢(a)p; +

®(1p(a) — a)y2. Since @ o1 is by (iii) a character, hence a pure state, it follows that
1 = Pp = @ o 1. Therefore

p(i(c)a) = p(a)pr(c) = ¢(a)p(i(c)) = c(t)p(a), ceC.

Finally, let us assume that ¢ is a pure state on A. Let 7t : A — B(H,) de-
note the GNS representation associated to ¢ and let ¢, be its canonical cyclic vec-
tor. Then 71, hence also M(7ty) is irreducible and it follows that M(7,)(:(C)) =
C1y,,,. Therefore (M(7y) o1)(c) = c(t)1y,, ¢ € C for some t € (2 and we obtain

¢(i(c)) = (M(719)(1(c))8glp) = c(t)(SplSy) = c(t), c€C. 1

S(A) will denote the set of all states of the C*-algebra A, while P(A) will
stand for the set of all pure states of A. If C and (A, ) are as in Proposition 2.4,
then we denote by S,(A) the set of all states ¢ of A for which ¢ o is a character
on C. By Lemma 2.4, P(A) C S,(A).

As a corollary, we get the following formula for the minimal C*-tensor prod-
uct norm (see Sublemma 2.1 of [5]):

COROLLARY 2.5. Let C be a unital, abelian C*-algebra with Gelfand spectrum (2
and let (Aq,11), (Ay, 1p) be C*-algebras over C. Then, for any a € A1 ® Ay,

b2 b*a*ab .
(qzl(l)l giz()(b*b) ) . (P] S P(A]),] =1,2, Q1011 = @y 01y,

be A1 © Ay, (1@ 2)(070) > 0}-

||’1H%:,mm = sup {

Proof. The well known formula for the spatial tensor product norm (see e.g.
Corollary 3/4.20 of [21] or Lemma 4.7 in [12]) yields that ||(77,,  ® 7,,,¢)(a) is,
for every t € (2, the supremum of

(Y1 © ) (71,1 @ 70,1) (b7a"ab)) (Y10 70y,1) @ (2 © 7T 1) ) (b7a"ab)
(41 @ 92) (711, @ 70,1) (b°D)) (1 070,4) © (2 0 701) ) (0*D)

over all lp] € P(A]‘/L].(t)),b € A1 ® Ay with (1[]1 ® lpz)((ﬂ.’ll,t ® ﬂlz,t)(b*b)) >
0. Thus H“”ZC,min is the supremum of (2.1) over all ; € P(4;/1L,(t)),b € A1 ®
Ay with (Y1 ® ¢2) (71,0 ® 71,,4) (b*b)) > 0 and all t € . But, taking into account
Proposition 2.4, it is easy to see that this supremum is equal to that one in the
statement. 1

%
min

2.1)

We can consider on the quotients (A /1, (t)) ® (A2/1,(t)) also the greatest
C*-norm || - ||max (see e.g. 6.3 of [14]) and define the C*-seminorm

Aj®Ay > a— ”a“C,max = sup ||(7T11,t & nzz,t)(a)Hmax-
teQ)
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Following E. Blanchard, the maximal C*-tensor product of Ay and A, over C is de-
fined as the Hausdorff completion A1 ®c max A2 of A1 ® Ay with respect to the
above C*-seminorm, that is the C*-algebra obtained by the completion of the quo-
tient x-algebra (A; ® Ay)/ J relative to the C*-norm induced by || - || ¢ max-

The subscripts max and min for the seminorms || - ||c max and || - ||c min are
explained by the following extremality properties proved by G.A. Elliott (see Sub-
lemma 2.1 of [5]) and E. Blanchard (see Propositions 2.4 and 2.8 of [1]):

PROPOSITION 2.6. Let C be a unital, abelian C*-algebra and let (A4, 1,), (Ay, 15)
be C*-algebras over C. If p(-) is a C*-seminorm on A1 ® Ay, then:

\7C C {ﬂ EAI®Ay: P(ﬂ) :0} = P(ﬂ) < ||61 C,maxs 4 € A1 ® Ay,
Je={ac€Ai®Ay:p(a) =0} = p(a) > [|allcmin 7 € A1 ® Aa.

We recall that the algebraic tensor product A1 ®c A; is the quotient x-algebra
(A1 ® Ap) /I, where I is the self-adjoint two-sided ideal of A} ® A, equal to
the linear span

lin({(ll(c)bh) Rdar —a1 X (12(c)a2) tap € Aq,ap € Ay, c € C})
Since 7 is clearly contained in
Je={a€ A1 @A ||allcmin =0} ={a € A1 ® Az : ||a]|cmax = 0}

the seminorms || - ||cmin and || - ||c max factorize to C*-seminorms on A; ®¢ Ay,
still denoted by || - ||c,min and || - ||c max- These C*-seminorms are not always C*-
norms, because in general Z- # J (see Section 3 of [1]).

Nevertheless, according to Propositions 2.2 and 3.1 of [1] we have:

PROPOSITION 2.7. Let C be a unital, abelian C*-algebra and let (Aq, 1), (Ay,15)
be C*-algebras over C. Then any C*-seminorm on A1 @ Ay, which vanishes on Z¢, will

vanish on whole J . Moreover, if (Ay,1y) or (Ay, 1) is continuous, then even I = J-
holds.

We remark that T. Giordano and J.A. Mingo studied the case when A;, A
and C are von Neumann algebras and the mappings ¢ — 1(c) and ¢ — p(c)
are normal (see Section 3 of [6]). They showed that in this case, for given spatial
representations A; C B(H) and Ay C B(K), one gets a faithful representation of
A1 ®c Aj on the Hilbert space H ®¢ K constructed by J.-L. Sauvageot [17], such
that || x||c min is the operator norm on H ®c¢ K for all x € A; ®¢ Aj. In particular,
| - llc,min is @ norm on A; ®¢ Ay, that is Z- = J-. None the less, since in this
case (Aq, ;) and (A,, 1) are continuous (see Lemma 10 of [7]), the above equality
follows also from Proposition 2.7.

A proper C*-algebra over C is a C*-algebra (A, 1) over C such that, for some
faithful, unital *-representation 7w : M(A) — B(H), (7t 01)(C) is weak operator
closed, i.e. (ro1)(C) C B(H) is a von Neumann algebra. B. Magajna extended
the above quoted result of Giordano and Mingo to the case when (A4, ;) and
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(A,, 1,) are proper C*-algebras over C (see Section 3 of [13]). We notice that proper
C*-algebras over C are still continuous.

3. TENSOR PRODUCTS OF %-REPRESENTATIONS OVER ABELIAN C*-ALGEBRAS

In this section we prove that if C is a unital, abelian C*-algebra, (A;, ;) and
(Ajy, 1) are C*-algebras over C and 71j : A; — B(H), j = 1,2, are non-degenerate
x-representations such that

7-[10[1:7'[2012 and 7T1(A1) CN,sz(AZ) CN/

for some type I von Neumann algebra N C B(H) with centre (7 0;)(C)", then
the sx-homomorphism 7 : A1 ® Ay — B(H) defined by

7‘[(111 ®€lz) = 7‘[1(a1)7‘[2(612), a1 € Aq,ap € Ay,

can be factored through A; ®cmin A2 and so gives rise to a *-representation
A1 ®¢Cmin A2 — B(H), the C*-tensor product over C of 71 and 7.

LEMMA 3.1. Let N C B(H) be a type I von Neumann algebra of centre Z, Z C
M; C N,Z C M C N’ von Neumann subalgebras, By C My, By C M s-dense x-
subalgebras, and e, f abelian projections in N, N', respectively. Let further p € Mj NN
and g € M), "\ N' be the projections such that

Mye’ = pNe, e<p, zn(e) =zn(p),

Mf =gN'f, f<q, zw(f)=2zv()
(such p, q exist and are unique by Lemma 1.4). Then:
(i) ef is an abelian projection of central support pq in pqg(N V N')pg;
(i) (My v Ma)ef = pg(N V N')ef;
(iii) for every x € N V N', we have

lxpall = sup{llxyll : y € lin(B1Ba)ef 2y, [lyll < 1}.

Proof. (i) By Lemma 1.3, ef is an abelian projection in N V N'. Since ef < pg,
it is an abelian projection also in pg(N V N)pq.

On the other hand, since the centre of the reduced algebra pg(N V N')pq is
equal to pgZ(N V N') = pqZ, the central support z,,(nyn)pq(ef) is of the form
pqzo for some projection zy € Z. Now, taking into account Lemma 1.3, we deduce
successively:

x
~

< Zpg(nNpg(ef) = Pazo < 2o,

pq < zn(p) zne(q) = zn(e) zn (f) = znune (ef) < 2o,
Pq = P420 = Zpg(NvN')pq(€f)-

(ii) Since

x1xef = xpexaf = pxjeqxaf = pgxixgef, x1 € My, xp € My,
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we have (M; V My)ef C pg(NV N')ef.

To prove the reverse inclusion, let y € N, y' € N’ be arbitrary. Then pye €
Mie’ and qy'f € Myf, so by Lemma 1.5 there exist nets {aye}, C Mje and
{buf}, C My f such that

ae —pye and [azel| < pyel forevery A,
buf = qy'f and |[|bf]| <

It follows that a,byef AL}Z pqyy'ef, hence pqyy'ef € (My V My)ef .

lay'fI|~ for every .

(iii) Let x € NV N’ be arbitrary.
According to (i), ef is an abelian projection of central support pq in the type
I von Neumann algebra pq(N V N')pg. Thus Lemma 1.2 and (ii) yield

lxpgl* = l[pgx*xpq|
= sup{||pgx*xv| : v € pg(N V N’)pq partial isometry, v*v < ef }

< ||xpq| sup{||xv| : v € pg(N V N')pq partial isometry, v*v < ef },

so
llxpg|l = sup{||xv|| : v € pg(N V N')pq partial isometry, v*v < ef }

= sup{||xv|| : v € pq(N V N')pq partial isometry}

= sup{||xy| : y € pg(N vV N')ef, [ly] <1}

= sup{|lxyl| : y € (M V My)ef, [lyll < 1}.

Since lin(B B, ) is a *-subalgebra of NV N’ and lin(By By )ef =lin(M;My)ef

= (M; VM,)ef Lemma 1.5 entails that {y € (M;V My)ef : |y| < 1} =
{y € lin(B1By)efZ; : |ly|| <1} . Consequently

Ixpgll = sup{llxyl : y € (M V Ma)ef, [yl < 1}
= sup{|lxy[| : y € lin(BiBp)efZ;, [lyll <1}. o

LEMMA 3.2. Let C be a unital, abelian C*-algebra with Gelfand spectrum (2 and
let (Aq,11), (Ag, 1p) be C*-algebras over C. Let further mj : Aj — B(H), j = 1,2, be
non-degenerate x-representations, such that

M(my) oy = M(mp) oty and  7ty(A;) C N,7mp(Ay) C N’

for a type 1 von Neumann algebra N C B(H) with centre Z = (M(7;) o Lj)(C)N, Q
the Gelfand spectrum of Z, and 1t : A1 @ Ay — B('H) the x-homomorphism defined by
mt(ay @ ap) = 1y(a1)m2(a2), a1 € Ay, ap € Aa.

Ifp € 1 (A1)’ NN, q € ma(Az)" N N’ are projections such that

pNe = mt1(A)e’, qN'f = m(Ad)f
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for some abelian projections e € N and f € N’ satisfying

e<pzne) =zn(p), f<qzn(f)=2zn(q),
then, denoting zo = zyyn (ef) = zn(e) zn: (f), we have forall a € A1 ® Ap:

l[7z(a)pq
(3.1) = sup{x(z)(x © Pf 0 m)(b*a*ab)V? b e A1 ® Ay,z € Zhx e 0
[7(b)efz|| <1}
(32 = sup{x(@)((x° Bezg o 71) @ (x 0 Dpsy 0 72)) (b7 a"ab) /2 :
be A ®Ayz€Z,x €Q,|n(blefz] <1}
(3.3) < sup [[(7221,¢ © 720,1) (@) [| min-

Proof. We notice that the equality zyyn/(ef) = zn(e) zn/(f) in the defini-
tion of zg holds by Lemma 1.3.

Set
Mj:ﬂ'j(A]) (A), j:12
Applying Lemma 3.1(iii) with B; = 7j(4;),j = 1,2, we obtain for every x €
NV N"

[xpgll = sup{llxyl| : y € lin(rr; (A1) m2(A2))efZT, |lyll <1}
= sup{|[xy|| : y € m(A1 ® Ax)efZ], |lyll <1}
= sup{||xmt(b)efz| : b € A1 ® A,z € Z1 m(b)efz|| < 1}

Leta € A; ® A be arbitrary. Using the above equality with x = 7(a), as
well as (1.3), we deduce (3.1):

Ire(@)pgl = sup{ | e(ab)efz| : b € Ay @ Az, z € Z{ || m(b)efz] < 1}
= sup{|lefz*t(b*a*ab)ef|| : b € A1 ® A,z € Z, || m(b)efz| < 1}
= sup{||<1>€f(zz7r(b*a*ab))|| b€ Ay @Ay z € Z, ||m(b)efz| <1}
= sup{||22(® cfo ) (b¥a*ab)|| : b e Ay ® Ay,z € Z, || m(b)efz| < 1}
= sup{x(2)?(x © Pef o ) (b*a*ab) : b € Ay @ Ap,z € Z) ,x € Q
[7e(b)efz]| <1}
By Lemma 1.3, we have for every x € Q and a € Aq,ap € Ap:
(X 0 @ep o) (a1 @ az) = X(Pefzy(m1(a1)712(a2))) = X(Pezy (71(a1)) Py (712(a2)))
= (X © Pezy 0 111)(a1) (X © Pz 0 12) (2)
= ((x 0 Pezy 0 711) @ (x 0 Pz © 72) ) (41 @ 412).
Therefore

(3.4) X0Pepom = (x0Pezyom)®(xoPpyom), x€Q
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and (3.2) follows.

According to Corollary 2.3, for the proof of (3.3) we can assume without loss
of generality that both A1 and A are unital. (3.3) will follow once we show that,
forevery b € Ay ® Ay, z € Z; and x € Q with | t(b)efz| < 1,

(3.5) X(2)2((X 0 Pezg 0 711) ® (X © Pz © 712) ) (b*a*ab)

2
< sup || (71,1 © 704,4) () || nin-
ten

If x(z0) = 0, then y 0 ®ezy 0711 = x 0 Pp 0y = 0 and (3.5) holds trivially.
Therefore we shall assume in the sequel that x(zo) # 0. Since x(zo0)x(z0) =
x(25) = x(z0), then x(z0) = 1.

Let us denote, for convenience,

P1=xX0Pezy0m1, @2 =x0PLsy 0.
@1 and @ are positive linear functionals and || ¢;|| = ¢;(1 A].) = x(z0) = 1, so
they are states. Furthermore, since
(@jot)(c) = x(zo(mjo)(c)) = x(z0)x((7rj01j)(c)) = (x o mjot)(c), c€C,

P1013 = XOTjoL = @01, is a multiplicative state on C, that is a character
t € Q.

We claim that ¢; vanishes on I, (¢, ). Indeed, for every ¢ € C,c(ty) =0, and
a € Ay, @1(1(c)ay) = x((717 041)(c) Pezy (711 (a1))) = c(ty)py1(a;) = 0. Conse-
quently there exists a state ; on Aq/1, (ty) such that ¢; = 91 o 71,y ¢, . Similarly,
¢, vanishes on I,,(ty) and so @2 = ¢ 0 71,1, for some state o on Az/ I, (ty).
Then @1 ® ¢, factors by the tensor product state {; ®min P2 on
(A1/1,(ty)) @min (A2/ 1, (ty)):

(3.6) ¢1 @ @2 = (Y1 Omin P2) © (T b, @ Tyt )-

Now, the norm of the positive linear functional 6 = x(2)* (1 @min ¥2) (771, 1,
@71, ) (0)* - (7 b, @ Tp 1, ) (D)) ON (A1 /1y (Ey)) @min (A2/ 1, (ty)) is < 1. Indeed,
since ||6]| is equal to the value of 6 in the unit of (A1/L,(ty))®min (A2/1L,(ty)),
by (3.6) and (3.4) we obtain:

161l = Xx(2)* (1 @rmin 2) (71, 1y, © T 1, ) (67D))
= x(2)*(91® 92) (D) = x(2)*(x © Py © 77) (b"b)
= X (P (221 (b)) = x(Pes(zef (b) 7e(b)efz)) < ||7(b)efz|* < 1.
Thus, by (3.6),
X(2)2((X 0 Pezy 0 1) ® (X © Py © 712) ) (b a*ab)
=X(2)*(91® 92)(b*a"ab) = x(2)*(($1 Smin Y2) © (s 1, © Tty )) (b"a*ab)
=0((T @ Te,t) (7 0)) < | (701, @ Ty ) (@) i = | (7 by, @ 70038, (0) i
and (3.5) follows. 1
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LEMMA 3.3. Let N # {0} be a type I von Neumann algebra with centre Z, and
Z C M C N awvon Neumann subalgebra. Then there exists a set P of mutually orthog-

onal, non-zero projections in M' N N such that Y p = 1y and, for every p € P,
peP

pNe = Me’
for some abelian projection e € N satisfying e < p,zn(e) = zn(p).

Proof. Let P be a maximal set of mutually orthogonal, non-zero projections
in M’ N N such that, for every p € P,

37 S
pNe, = Me,

for some abelian projection e, € N satisfying e, < p,zn(ep) = zn(p). Such fam-

ily P exists by Lemma 1.4 and by Zorn’s Lemma. We will show that ), p = 1y.
peP
Suppose the contrary, thatis 15y — ). p # 0. By Lemma 1.1 there exists an
peP

abelian projection e € N such thate < 1y — Y p,zn(e) = zn <1N - Y p). In
peP peP

particular, e # 0. Further, by Lemma 1.4 Me' = poNNe for some projection py €
M' NN withe < py.

Lety € N be arbitrary. Since poye € poNe = Me’, there is a net {x,}, in M
such that x e —— poye. Since P C M’ N N, it follows that

xpe = xA<1N_pZ P)e = (1N— Z P)XM? — (1N_ ) P)Poye

peP

Consequently poye = (1N - X p) pove, i.e. Z ppoye = 0.
pe

pe
We conclude that Y, ppoNe = {0} and so, since zy(e) is the orthogonal
peP
projection onto the closed linear span of NeH, Y. ppozn(e) = 0. Thus
peP
M'NN 3 pozn(e) = <1N_ZP>POZN <Iyv— )Y p
peP peP

Furthermore, zx(e) > pozn(e)po = poepo = e # 0 implies that pozy(e) #
0and zn(pozn(e)) = zn(e).

Thus Po zn/(e) is a non-zero projection in M’ N N such that pgzy(e)Ne =
poNe = Me’ with e an abelian projection in N satisfying e < pg zn(e) and zy (e) =

zn(pozn(e)). But, since pozy(e) < 1y — Y p, this contradicts the maximality
peP
of P. 1

THEOREM 3.4. Let C be a unital, abelian C*-algebra with Gelfand spectrum (2
and let (Ay, 1), (Ay, 1) be C*-algebras over C. Let further 7t; : A;j — B(H), j = 1,2,
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be non-degenerate x-representations, such that
M(my) o1y = M(my) o, and m(A;) CN,m,(Ay) C N

for a type 1 von Neumann algebra N C B(H) with centre Z = (M(7t;) o Lj)(C)N, and
AL ® Ay — B(H) the x-homomorphism defined by

7'[(&1 ®a2) = 7T1(a1)7'(2(a2), a1 € Aq,ap € Aj.
Then

G7)  m(a)]l < sup [[(70,t @ 7y,4) () [ min = llallcmin, @ € A1 ® A
teQ)

and thus there is a unique s-representation 7t : A1 ¢ min A2 — B(H) such that
n(a) =1(a/Tc), a€ A ® Ay,

where a/ J denotes the natural image of a € Ay @ Ay in the quotient x-algebra (A1 ®
A2)/ Tc C Ay @¢,min Az

Proof. If H = {0}, then (3.7) holds trivially. It remains to prove it in the case
H # {0}.
By Lemma 3.3 there exists a set P C 71(A1)’ N N of mutually orthogonal,

non-zero projections such that ), p = 14 and, for every p € P,
peP

S
pNe, = m1(A1)"ep

for some abelian projection e, € N satisfying e, < p,zn(ep) = zn(p)-
Similarly, there exists a set @ C 712(Az)" N N’ of mutually orthogonal, non-

zero projections such that ), g = 1y and, for every g € Q,
qgeQ

! AN
qN'fy = ma(A2)" £
for some abelian projection f, € N’ satisfying f, < q, zn/(fy) = znr(9)-
Leta € A1 ® A, be arbitrary. By Lemma 3.2 we have ||77(a)pq|| < ||a||c min
foreveryp € P,g € Q. Since Y p= Y g =1yand PUQ C m(A1)' N
pEP q€Q
m(Ay) C (A1 ® Ap), we have nt(a*a) = Y. m(a*a)pq, where the operators
P4
nt(a*a)pq are positive and mutually orthogonal. Consequently:

@I = r(aa)] = sup le(a* gl = sup | (@)pall < o]
We will denote 77 in Theorem 3.4 by 711 ® ¢ min 772 and call it the tensor prod-
uct of 7ty and 71o over C. We notice that the *-representation 771 ®c min 772 maps
A1 ®¢Cmin A2 onto the C*-subalgebra lin(7r1 (A1) m2(A2)) C B(H) and it is non-
degenerate. Indeed, if {u, }, is an increasing approximate unit for A; and {v, },
is an increasing approximate unit for A,, then we have

m(up) == 1y and  mo(vy) —> 1y
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(see e.g. Lemma 3/4.1 of [21]), so
(71 @c,min 712) ((r @ 0) / Te) = 11 (2) 72 (vy) == T3y
Therefore M(lin(7t1(A1)72(Az))) can be identified with
{T € B(H) : m1(A1)m2(A2)T U Try (A1) mp(Az) C lin(rry (Ay)m2(Az)) }

It is easy to see that, with the above identification,

m1(A1) U ma(Az) € M(lin(7r (A1) m2(A2))) and

strictly
(3.8) mi(ar)mo(vy) — mi(ar), a1 € Ay,

71.(12) T2 (a2) s 715(a2), a3 € Ag.

We notice that it can happen that, for given non-zero C*-algebras (A, 1),
(Ay,1,) over C, only the *-representations 71; : Ay — {0} and 71, : A, — {0}
satisfy the assumptions in Theorem 3.4. Let, for example, (Aq, 1), (Ay, 1p) be
the C*-algebras over C([0,1]) defined in [1] before Proposition 3.3, for which
A1 ®c(o))min A2 = {0}. Then, if r; : A; — B(H), j = 1,2, are any non-
degenerate *-representations satisfying the conditions in Theorem 3.4, then the
s-representation 717 ®c min 772 can be non-degenerate only if H = {0}. Never-
theless, this pathology is possible only in the case of non-unital A; and A, (cf.
Corollary 5.8).

Criteria for the faithfulness of 711 ® ¢ min 772 Will be proved in Section 5.

4. DESCRIPTION OF THE GLIMM IDEALS IN SPATIALLY REPRESENTED C*-ALGEBRAS

If A is a unital C*-algebra and 14 € C C Z(A) is a C*-subalgebra with
Gelfand spectrum (2, then we shall denote by Ic-4(t) the ideal I,(t), where ¢ is
the inclusion map of C in Z(A). In other words,

4.1) Ieca(t) ={c€Cic(t) =014, te.

Proposition 2.1 (ii) implies the following dependence of Ic-4(t) on A: If M is a
unital C*-algebraand 1) € C C A C M are C*-subalgebras such that C C Z(M),
then

(4.2) Icca(t) = ANIccm(t), teQ.
The dependence of Ic-4(t) on C is described in the following lemma:

LEMMA 4.1. Let M be a unital C*-algebra, 1y € Z C Z(M) a C*-subalgebra
with Gelfand spectrum 2, and 1p; € C C Z a C*-subalgebra with Gelfand spectrum (2.
Then

Iecm(t) = (Izem(X) s x € Q,x(c) =c(t) forallc e C}, teQ.
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Proof. Lett € (2 be arbitrary and let us denote
O ={xeQ:x(c)=c(t)forallce C} = {x € Q: xl;._,1) =0}

The inclusion Iccp(f) € (N Iz pm(x) follows at once from definition (4.1):
XEQ

if c € C,c(t) = 0and xy € Q, then x(c) = c(t) = 0,50 cM C I, p(x). Thus it
remains to show the converse inclusion.

According to (4.2) Iccz(t) = ZNIccpm(t), s0 Zy = Z/Iccz(t) 2 z/Iccz(t)
— z/Iccm(t) € M/Iccpm(t) = My is an injective *-homomorphism, through
which we can identify Z; with a C*-subalgebra of M;. On the other hand, the
map which associates to y € )y the character x; : Z; 3 z/Iccz(t) — x(2),is a
homeomorphism of (~2t onto the Gelfand spectrum of Z;. Thus

M Izem (x:) = {0}

Xeﬁr

Now let x N I,y (x) be arbitrary. For every x € (), the quotient map
Xeﬁf
M — M; maps I,y (x) into Iz,cpa, (x;): if z € Z,x(z) = 0and y € M, then we
have (zy)/Iccm(t) = (2/Iccz(8)(y/ Iecm(t)) with x,(z/Iccz(t) = x(z) = 0,
hence (zy)/lccm(t) € Iz,cm,(x;)- Consequently,

x/Iccm(t) € () Iziem (xi) = {0},
Xy

thatis x € ICCM(t>' 1

The next simple result should be known, but we have no reference for it:

LEMMA 4.2. Let N be a type 1 von Neumann algebra with centre Z, ey € N
an abelian projection of central support 1y, and b € N. Then there exists an abelian
projection e € N of central support 1n such that

(4.3) D, (b*xb) = Dy, (b*D)Pe(x), x € N.

Proof. Let bey = w|bey| be the polar decomposition of bey and let p denote
the central support of b*b. Then |beg| = (egb*bey)'/? = zeg with 0 < z € Zp and
w*w = sy (epb*bey) < ey, so that w*w = zy (w*w)ey = pey.

Since pey is an abelian, hence finite projection in N, there is a unitary w € N
such that w = wpey (see e.g. E.4.9 of [19] or 6.9.7 of [10]). Then e = weqw* is
an abelian projection of central support 15 in N. For every x € N, since exe =
W(egw* xwey )W* = Ppy (W*xW)Weq* = P, (W*xw)e, we have

(4.4) ¢€0 (@*X@) = CDe(x)/



SPATIAL REPRESENTATION OF MINIMAL C*-TENSOR PRODUCTS 193

hence
D, (b*xb) = Dg, ((be)*xbey) = e, (epzw* xwzeg) = z%Pe, (w* xw)
oy 44
= 22®y, (eop@* xWpeg) =) 22 p®,(x) = 22D, ().
In particular, for x = 1y, @, (b*b) = z2®,(1y) = z* and so (4.3) holds. &
The following result is essentially Lemma 5.13 of [24].

LEMMA 4.3. Let N be a type 1 von Neumann algebra with centre Z, Q the Gelfand
spectrum of Z, ey an abelian projection of central support 1y in N, and x € (2. Then
I;on(x) = {x € N: x(Pe,(b*xb)) = 0 for every b € N}
={x € N: x(®.(x)) = 0 for every
abelian projection e € N with zy(e) = 1n}.

Proof. Clearly, {x € N : x(®,(b*xb)) = Oforeveryb € N} is a norm-
closed two-sided ideal J of N, which contains I,-n(x). Let us assume that
this inclusion is strict. Then there exists a positive element in J\I,~y(x) and
an appropriate spectral projection f of it will still belong to J\I;~(x). Since
zn(f)eo < f, there exists u € N such that u*u = zy(f)eg and uu* < f. Thus

zn(f)eo = u* fu € J and it follows that x(zy(f)) = P, (zn(f)eo) = 0. But then,
by definition (4.1), f = zy(f)f € Izcn(x), in contradiction with the assumption

feI\Izen(x)-
To complete the proof, we have to prove that
J ={x € N: x(®.(x)) = 0 for every
abelian projection e € N with zy(e) = 1n}.
If x € J and e € N is an abelian projection, then there exists v € N with
v*v < ¢y, v0* = e and, taking into account that v*v = zy(v*v)ep and P, (x) €
Zzy(e) = Zzy(v*v), we obtain successively

v*xv = v* (exe)v 2 0" (Pe(x)e)v = Pp(x)v*v = Pp(x) zn (V7 0)eg = De(x)eq,
X(Pe(x)) = x(Pe, (v xv)) = 0.
This proves the inclusion C.
For the converse inclusion, let x € N be such that x(®P.(x)) = 0 for every
abelian projection e € N of central support 1y. For every b € N, according to

Lemma 4.2, there exists an abelian projection e € N with central support 1) such
that @, (b*xb) = D, (b*b)Pe(x). Then

X(Dey (7°xb)) = x(Pey (b°0)) x (Pe(x)) = 0.

Lemmas 4.1 and 4.2 enable us to prove the following extension of Theo-
rem 4.2 in [18] (see also Theorem 4.17 of [24]) in the case of type I von Neumann
algebras:
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THEOREM 4.4. Let N be a type 1 von Neumann algebra with centre Z, () the
Gelfand spectrum of Z, 15 € C C Z a C*-subalgebra with Gelfand spectrum (2, and
C C A C N an intermediate C*-algebra. Then

Icca(t) ={a € A: x(P.(a)) = 0 for every
abelian projection e € N with zy(e) = 1y
and x € Qwith x(c) = c(t) =0,c € C}, te Q.
Proof. Lett € ) be arbitrary.
By Lemmas 4.1 and 4.3 we have
Teen(®) = Mlzen(0)  x € B, x(c) = e(t) forall ¢ € C}
={x € N: x(P(x)) = 0 for every
abelian projection e € N with zy(e) = 1y
and y € Q with x(c) = ¢(t) = 0,c € C}
and, using (4.2), we conclude that
Icca(t) =ANIcen(t)
={ae A: x(P.(a)) =0 for every
abelian projection e € N with zy(e) = 1y
and x € Qwith x(c) =c(t) =0,c € C}.
COROLLARY 4.5. Let N be a type 1 von Neumann algebra with centre Z, () the
Gelfand spectrum of Z, 1 € C C Z a C*-subalgebra with Gelfand spectrum (2, C C

A C N an intermediate C*-algebra and t € (. Then every pure state ¢ on A with
¢(c) =c(t),c € C, belongs to the weak™ closure of

{x o P, : e € N abelian projection with zy(e) = 1y
x € Quith x(c) = c(t) = 0 forall c € C}.

Proof. For every abelian projection e € N with zy(e) = 1y and every x € Q
with x(¢) = c(t) =0,c € C, let My : A — B(He,y) be the GNS representation
associated to the restriction of x o @, to A and let ¢, denote its canonical cyclic
vector. By Theorem 4.4 and Proposition 2.4 we have ﬂ ker(me,y) = Icca(t) C

ker(¢), so we can apply Proposition 3.4.2 of [4] or Theorem 5.1.15 of [14], deduc-
ing that ¢ belongs to the weak™ closure of the states

U{A 32— (mex(a)E12) : & € Mo, lIE] =1}
ex

Since every § € He, with ||| = 1 is norm-limit in H, ) of unit vectors of
the form 77, (b)) and then x(P.(b*b)) = (7 (b*0)Cex|Cex) = 1, it follows
that ¢ is in the weak™ closure of the linear functionals

A D ar— (e (a) e, (b)Gex|7Tex (D)Gex) = X(Pe(b¥ab))
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with x (P, (b*b)) = 1.

But, according to Lemma 4.2, for every abelian projection e € N of central
support 1y and every b € N, there exists an abelian projection e(b) € N of central
support 1y such that @, (b*xb) = P (b*b) P, (x), x € N. Therefore every linear
functional A 3 a — x(P.(b*ab)) with x(P.(b*b)) = 1is of the form A > a —
X(Pep)(@)) = (X © Pe(py)(a)- W

Corollary 4.5 implies the following description of J- in terms of an appro-
priate spatial representation:

COROLLARY 4.6. Let (Ay,11),(Ay, 1) be C*-algebras over a unital, abelian C*-
algebra C, and 7t; : Aj — B(H), j = 1,2, two faithful non-degenerate x-representa-
tions such that

M(mry) oy = M(my) o1, and  71(A;) C N, my(Ay) C N
for a type 1 von Neumann algebra N C B(H) with centre Z = (M(7;) o lj)(C)N. Let
Q) denote the Gelfand spectrum of Z. Then a € Ay ® A, belongs to J if and only if

(X1 0@e0m) @ (x20Ppom))(a) =0

for all

abelian projections e € N, f € N' with zy(e) = zyy (f) = 13,

X1, X2 € Quith x; 0 M(11) 011 = xp 0 M(712) © 12.

Proof. According to Corollary 2.3, we can assume without loss of generality
that A; and Aj are unital. Let (2 denote the Gelfand spectrum of C.

Assume first that a € J- and lete € N, f € N’ be abelian projections with
zy(e) = zp(f) = 1y, while x,x, € Q with x; 0 M(7m1) o1 = xp 0 M(72) o
2. Then xjo M(mj) ot is C > ¢ —— c(t) for some t € Q. Since (x; 0 @ o

1) (11(c)a) = x1((rmp 0 11)(c)Pe(mri(a))) = c(t)(xq 0 Peo my)(a) foralla € Aq
and ¢ € C, Proposition 2.4 yields x; o &, o nl‘le(t) = 0. Similarly, x, o ¢ o

7r2|1,2(t) = 0. Thus x; o ®, 0 1y = 61 o 71, ; for some state 6; on A,/ (t) and
Xo© @f 01y = 0, 0 71, ¢ fOr SOMe state 6 on Ay /1, (t). Consequently
[((x10Pe0m1) ® (X2 0 Py omma))(a)] < [[(7u b @ 7,4) (@) [ min < [l@
Now let us assume that a € A1 ® Aj is such that
(X1 0 Peomm1) ® (xp 0 Ppom))(a) =0
for all abelian projections e € N, f € N" with zy(e) = z\u(f) = 1y and all x;,

C,min — 0.

Xo € Q with X1 07T 011 = X5 0 Ty o Ip. Taking into account that 771, 717 are injective
and using Corollary 4.5, we obtain that (¢1 ® ¢2)(a) = 0forall ¢; € P(A1), 92 €
P(A;) with @1 017 = ¢ 0 15. In other words,

(Y1 @ ) (71 @ T,6)(2)) =0, 5 € P(A;/1(1),j = 1,2, te€Q.
It follows that (77, ® 71,,+)(a) = 0 for every t € (), thatisa € J-. 1
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5. FAITHFUL TENSOR PRODUCTS OF #-REPRESENTATIONS OVER ABELIAN C*-ALGEBRAS

Let C be a unital, abelian C*-algebra, (A4, ;) and (A,,1,) C*-algebras over
C,and 7tj : Aj — B(H), j = 1,2 non-degenerate *-representations such that

M(m)) oy = M(my) o1, and  m(A;) C N, my(Ay) C N’

for some type I von Neumann algebra N C B(H) with centre (7r; 0 1;)(C)". In
this section we prove criteria for the faithfulness if 711 ®¢ min 772.

We notice that 777 ®c min 772 can be faithful without 71y, 712 being faithful.
Indeed, in [1], before Proposition 3.3, an example of non-zero Ay, A; is given
such that J- = A1 ® A, thatis A1 ®c min A2 = {0}. Then, choosing for 7r; and
71y the zero *-representation, 71y ®c min 772 is faithful, while 71y and 7, are not.
Nevertheless:

PROPOSITION 5.1. Let C be a unital, abelian C*-algebra with Gelfand spectrum
Q, (Ay,11),(Ay, 1p) C*-algebras over C, and 7t; : A; — B(H), j = 1,2, non-
degenerate x-representations such that

M(Tfl) O ll = M(T[z) o) 12 and 7T1(A1) C N, 7T2(A2) - N/

for a type T von Neumann algebra N C B('H) with centre Z = (M(7;j) o l]')(C)U. If
11 ®C min 72 i faithful and 1,,(t) # A forall t € Q, then 7ty is faithful. In particular,
if M(711) ®¢ min M(712) is faithful and Ay # {0}, then 1ty is faithful.

Proof. Let us assume that 773 ®c min 772 is faithful, I,,(t) # A, for every t €
0,and a; € A1, 7'[1(111) =0.
Let a; € Aj be arbitrary. The injectivity of 711 ® ¢ min 772 and

(711 @ min 72) (11 ®@ a2) / T) = m1(ar)m2(a2) = 0

imply that 4y ® ay € J, thatis m,, +(a1) @ 7,¢(a2) = 0, t € Q. Since, for any
t € O, m,i(ap) # 0 for some ay € Ay, it follows that 7, ¢(a1) = 0, t € Q.
Consequently, ||a1|| = sup |7, ¢(a1)|| = 0, thatis a; = 0.
teQ
Now, if Ay # {0}, then 1y4,) ¢ L,(t), s0 I,(t) # M(Ay) forall t € Q.

Therefore, by the above part of the proof,
M(711) ®¢ min M(712) faithful = M(7;) faithful. n

According to Proposition 5.1, by looking for the faithfulness of 711 ® ¢ min 772
it is natural to assume the faithfulness of 711 and 71,. However, the faithfulness
of 711 and 71, alone does not imply the faithfulness of 711 ®¢c min 712, as the next
proposition will show.

We shall denote by [*°(N) the C*-algebra of all bounded complex sequences,
by ¢(N) the C*-subalgebra of I*°(N) consisting of all convergent sequences, and
by I2(N) the Hilbert space of all square-summable complex sequences.

PROPOSITION 5.2. Let us consider the unital, abelian C*-algebras C = ¢(N),
A1 = Ay = I®°(N) and the inclusion maps 1; : C — Aj,j = 1,2. Let further 7;
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denote the faithful, unital x-homomorphism A; — B(I?(N)) which associates to every

a € 1°(N) the multiplication operator with a on I1>(N). Then 711 ®¢ min T2 is not
faithful.

Proof. We notice that the Gelfand spectrum of ¢(N) can be identified with
the one-point compactification N = N U {co} of N.

Let X445 € [°(N) denote the characteristic function of all odd natural num-
bers, and X.yens the characteristic function of all even natural numbers. Then

(7-[1 ®C,min NZ)((Xodds ® Xevens)/jc) =7 (Xodds)HZ (Xevens) =0.

We shall show that HXodds @ Xevens Cmin — 1, hence (Xodds ® Xevens)/jc 7é 0,
which completes the proof of the non-injectivity of 711 ® ¢ min 7T2.

Let ev, denote the evaluation map [*(N) 5 a — a(n). Then every ev, is
a state on [*(N). Let ¢, be a weak*limit point of {ev, },, .44, and ¢, a weak*limit
point of {ev; }even. Clearly, @1 (x,q4s) = 1 and ¢, carries ¢ € C in c(c0), so by
Proposition 2.4 we have ¢ | Iy (00) = 0. Therefore @1 = 1 o 7, o fOr some state

1 on Ay /1, (00). Similarly, @y(Xeyens) = 1 and ¢ = 1 0 71, oo for some state ¢,
on Ay /I, (c0). Since

1= ((Pl ® 4)2) (Xodds ® Xevens) = (lpl & lp2)<(nllr°° ® 7T12,°°) (Xodds ® Xevens))
< ” (ni1,w ® nlz,oo)(Xodds ® Xevens) Hmin < ”Xodds ® Xevens‘ <1,

we conclude that || X 445 @ Xevens =1. 1

C,min

C,min

In the sequel we shall prove criteria in order that the tensor product of two
faithful *-representations over a unital, abelian C*-algebra be still faithful.

Let H be a Hilbert space, A,B C B(H) C*-subalgebras with B containing
13, and ¢ € S(A). If C*(A U B) denotes the C*-algebra generated by A U B, then

{60 € S(C*(AUB)) : 0|4 = ¢}
is a weak*closed, convex subset of S(C*(A U B)), so the subset
K(A,B;9) ={0]g:0 € S(C'(AUB)),0|4 = ¢} C S(B)

is convex and weak*closed.

Let X be a non-empty convex set in some vector space. We recall that x € X
is an extreme point of X if and only if x = %(xl + x2),x1, %2 € X, is possible only
for x; = x3 (cf. Theorem 5.2 of [24]). We denote the set of all extreme points of X
(the extreme boundary of X) by 0.X.

LEMMA 5.3. Let H be a Hilbert space, A,B C B(H) C*-subalgebras with B
containing 1y;, and ¢ € P(A). Then

9.K(A,B;¢) C {0|g:0 € P(C*(AUB)),0|4 = ¢}.
If additionally B C A’, then
{6|p:0 € P(C*(AUB)),0|4 = ¢} C P(B),
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hence also the converse inclusion holds.
Proof. Let ¢ € 0.K(A, B; ¢) be arbitrary. Then
Ky ={0 € S(C"(AUB)) :0(a = @,0p = ¢}
is a non-empty weak*compact, convex set, so by the Krein-Milman Theorem it
has an extreme point 6). We claim that 6y € P(C*(A U B)).

For let us assume that 6) = %(6; + 62) with 61,0, € S(C*(AUB)). Since
@ € P(A) = 9.S(A) and ¢ = 6p|a = (61|a + 62]4), we have 01]4 = 02]4 = ¢.
Therefore 61| and 6, |5 belong to K(A, B; ¢). But ¢ = 6p|g = (1] + 62|5), so,
using that ¢ € 9.K(A, B; ¢), we obtain 0;|p = 6>|p = 1. Consequently 61,6, € Ky
and the extremality of 6y in Ky yields 0; = 6, = 0.

Now let us assume that B C A" and ¢ = 6| for some 6 € P(C*(AUB)) with
0|4 = ¢. Let 1y : C*(AUB) — B(Hjy) be the GNS representation associated to
6, and Cy its canonical cyclic vector. Since 6 is a pure state, 7y is irreducible.

Let pg denote the unit of the weak operator closed *-subalgebra 7ty (A)WO of
B(Hyp). Then pg € mg(A) N y(B)" = mp(C*(AUB)) = Cly,. Moreover, since
8la = ¢ # 0, po is non-zero. Consequently pg = 13;,, and so ng(A)wo is a von

Neumann algebra. In particular, Gy belongs to Hy , = 79(A)Ge C Hy.

The orthogonal projection P’ onto Hyg,, clearly belongs to the commutant
mg(A) of mwo. The central support of P’ is the orthogonal projection on
in(mo(AYP'Hg) > Tin(me(B)ma(A)Es) = Iin(mg(C (AUB))G) = My, 50
Zyy(ay (P') = 134, Therefore the induction *-homomorphism

———<Wo
Po,p * 7T9(A) 5T r— T|H9,(p S B(HQ,(P)

is injective. But the *-representation 7y, : A 3 a — 7T9({1)|H9(P € B(Hy,)
is unitarily equivalent to the GNS representation 77, : A — B(H,) of ¢ and
¢ € P(A), so T4, is irreducible and consequently the range of py , is equal to

nQ,(P(A)WO = B(Hy,,). Therefore N = (A" = pe_/;(B(HQ,(P)) is a type I

factor.
Now, 7p(B) € N’ and the relative commutant of 775(B) in N’ is 755(B)’ N
N’ = my(B) N mg(A) = me(C* (AU B))" = Cly,. Since the bicommutant theo-
WO
rem holds in type I factors, we get 71g(B) = N’. We claim that P’ is a minimal
projection of N'.
Forlet T' € N’,0 < T’ < 1y, be arbitrary. Since

(7t6(a)T'ColC0) < (1a(a)ColCo) = @(a), a€ AT
and ¢ € P(A), there exists 0 < A < 1 such that (71g(a)T'y|&y) = A¢(a) for all
a € A (see e.g. 4.7 of [21]). Consequently
((T" = ALy, ) o (a1)8ol 7o (a2) ) = (7o(a331)T GolCo) — Ag(azar) =0
for all a1, a; € A and it follows that P'(T" — Aly, )P’ = 0,i.e. P’'T'P' = AP'.
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By the minimality of P’ in N/, for every b € B there exists A, € C such that
P'mg(b)P" = ApP'. Since Ay = (ApP'Go[Co) = (P'ma(b)P'CplCo) = 0(b) = p(b), we
have P'7y(b)P' = ¢(b)P'.

Let 7t be a x-isomorphism of the type I factor N’ onto some B(K). Then
7t(P") is an one-dimensional projection and, choosing a vector 7 € 7t(P')KC, ||5]|| =
1, we have @(b) = ((rro my)(b)y|n), b € B. Since (7t o 719)(B) is weak operator
dense in B(K), we conclude that i is a pure state. &

Now we study the extreme points of the intersection of K(A1, B; ¢1) and
K(Ag, B; @2):
LEMMA 5.4. Let H be a Hilbert space, A1, Ay, B C B(H) C*-subalgebras with B
abelian and 19y € B C Ay’ N Ay, and ¢1 € P(A1), 92 € P(A2). If
1[1 S ae(K(Al, B; gol) M K(Az, B; goz))
then, for j = 1,2, there exists T; € P(C*(A; U B)) such that
Tjla, = ¢, Gl =9 and T(ab) = 1(a)7;(b), a€C*(A;UB),bEB.
In particular,
e(K(A1, B; 91) N K(Az, B; 92)) = 9:K(A1, B; 91) N 9.K(A2, B; ¢2).
Proof. Let us denote, for convenience, K1 = K(A1, B; 1), Ko = K(A, B; ¢2)
and set
K‘/’ = {(91,92) S S(C*(Al U B)) X S(C*(Az UB)) : 9]'|Aj = g0],9]|3 =y
forj=1,2},
K= {(61,62) S S(C*<A1 U B)) X S(C*(AQ UB)) : 91|B = 62|B}-
Since Ky # @ is convex and compact with respect to the product of the weak*
topologies, by the Krein-Milman Theorem it has an extreme point (77, 7).

First we show that (11, 2) € 9.K. For let (6,/,6,),(0:”,8,”) € K be such
that

(5.1) (t1,2) = %((91', 62') + (6:",6,")).

Then, for j = 1,2, we have ¢; = 1j|4, = %(9]-'|Aj + 9]-"|A],) and, since ¢; € P(4;),
it follows that Gj’\Aj = 9]‘”|A]- = ¢j, hence 0|, 6,"|p € K;. But 6,'|p = 6’| and
91//|B = 92//‘3, SO actually 91,|B = 92,|B € KiNK; and 91”|B = 92//|B € K; NKs.
5.1
Now ¢ = T1|B (:) %(91/|B +91”|B) and y € ae(Kl ﬂKz), yields 9]'/|B = 9]‘,,|B =
¥,j = 1,2, and therefore (61',6,),(61”,6,") € Ky. So, by the extremality of
(11, 12) in Ky, we conclude that
(61',6") = (61",6,") = (11, ).
Next we prove

(5.2) Tj(ab) = 1i(a)7;(b) = @j(a)y(b),a € C*(AjUB),be B, j=1,2.
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Clearly, it is enough to prove (5.2) in the case that el < b < (1 — €)1y for some
e>0.Setforj=1,2:

6/ = 1 _t
()7 p(1y —b)

Since 11|p = ¢ = 1|, both pairs (61/,6,") and (6,”,6,") belong to K. Thus
(t, ) = l[](b)(ell, 92/) + 1[1(17—( —b) (91//, 92”) and (7, T) € 9.K

imply that (61/,60,") = (11, ), i.e. (5.2).

Finally we prove that 7; € P(C*(A; U B)),j = 1,2. Then, by Lemma 5.3, we
have also ¢ € 9,K(A1, B; ¢1) N0.K(Az, B; 7).

For ; € P(C*(A; U B)), let us assume that

(-b),()]-” = Ti(+(1 — b)) € S(C*(A; UB)).

1
T = E((ﬁ)’ +6") forsome®’,0” € S(C*(A; UB)).

By (5.2) 7y is multiplicative on B, so 71|p is a pure state on B. Therefore the above
relation implies 0’| = 0" |p = T1|p = ¢ = 2| and it follows that

1
(Tl, Tz) = E((GII Tz) + (9”, Tz)), where (9’, Tz), (9”, Tz) € K.

Using (11, 7o) € 9.K, we get (0',12) = (0”,12) = (11, 72), hence ¢/ = 0" = 7q.
The proof of T» € P(C*(Az U B)) is completely similar. 1

The main result of this section is the next theorem, which yields faithfulness
criteria for 711 ® ¢ min 7T2:

THEOREM 5.5. Let C be a unital, abelian C*-algebra with Gelfand spectrum (2
and let (Ay, 1), (Ay, 1) be C*-algebras over C. Let further 7t : Aj — B(H), j = 1,2,
be faithful, non-degenerate x-representations, such that

M(my) oy = M(my) oty and  71y(A;) C N,7mp(Ay) C N’

"

for a type 1 von Neumann algebra N C B(H) with centre Z = (M(mj) 0 1;)(C) ", Q

the Gelfand spectrum of Z, and 7t : Ay @ Ay — B(H) the x-homomorphism defined by
nt(ay @ ap) = my(a1)ma(az), a1 € Ay,a; € Aj.

Then the following statements are equivalent:
(i) 71y ®c,min 7Ty 1s faithful;
(ii) the kernel of 7 is equal to J¢;
(i) if Tjx € ;(Aj),j =12, 1<k<nand '} Ty Tor =0, then

1<k<n

Y. (x10@e)(Tip) (X2 © ) (Top) =0

1<k<n

for all abelian projectionse € N, f € N' withzy(e) = 2y, (f) = Ly andall x1, x, € Q
with xq 0 M(m) 011 = xp 0 M(72) 0 12/
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(iv) for any ¢1 € P(A;1) and ¢, € P(Ay) with @1 011 = ¢y o 1 we have
K(T[l(Al),Z; @10 7‘[1_1) ﬂK(T[z(Az),Z; @p0 71'2_1) ;ﬁ D.

Proof. By the definition of 71y ® ¢ min 775, (ii) is equivalent to the injectivity of
the restriction of 71y ®¢ min 7T, to (A1 ® Az)/Jc, so (i) implies (ii). Conversely, if
(ii) is satisfied, then the C*-seminorm A; ® A, 3 a — ||7r(a)|| vanishes exactly
on Jc, so Proposition 2.6 entails that ||77(a)|| > ||a||c,min foralla € A; ® A,. Tak-
ing into account (3.7), it follows that 77; @ ¢ min 7T, is isometric on (A1 ® Az)/ Jc,
hence on the whole A1 ®¢ min A>.

By the above we have (i)« (ii). Next we prove that (i)=-(iii)=-(ii).

Let us assume that (i) is satisfied and Tj; € nj(Aj),j =121<k<n

are such that l<§<n TixTox = 0. Then T = mj(aj) for some a;; € A; and,

settinga = ) a1 ®ayx € Ay ® Ay, we have (711 @c,min m2)(a/ Jc) = m(a) =
1<k<n

Y. TixTrx = 0, and by (i) it follows that a € Jc. Using Corollary 4.6, we

1<k<n
conclude that, for any abelian projections e € N, f € N’ with zy/(e) = z\,(f) =

13, and any x;, x, € (2 satisfying x; o M(7r1) 011 = xp 0 M(712) 0 13,
Y (10 Pe)(Ti) (xa 0 @) (Tox) = Y (x10Peomy)(ar)(xz0 P oma)(ar)

1<k<n 1<k<n
=((x10Pe0m1) @ (X2 0 Ppom))(a) = 0.

Now we assume that (iii) is satisfied and a € A; ® Aj; is such that 7t(a) = 0.

Thena = Y ay®@agpwithajp € Ajso ) mi(agx)ma(age) = m(a) = 0. By
1<k<n 1<k<n
(iii) it follows that

((x1 0 Pe0m1)@()xp 0 Proma))(a)
= Y (x10Pe)(mi(ar))(xa 0 @f)(m2(azk)) =0

1<k<n

for all abelian projections e € N, f € N" with zy(e) = z\u(f) = 13 and all x,
X2 € Q satisfying x; o M(711) 0 11 = x, © M(712) 0 1. By Corollary 4.6 it follows
thata € Jc.

Finally we prove that (i)=(iv)=(ii).

Let us assume that (i) holds and let ¢; € P(A;) and ¢, € P(A;) be such
that ¢1 013 = @2 0 1p. Then there is t € 2 such that ¢1(11(c)) = @2(12(c)) = c(t)
for all ¢ € C and by Proposition 2.4 it follows that g01|1/1 ® =0, g02|112(t) = 0.
Therefore |(@1 ® @2)(@)] < || (it © T1) (@) lmin < alleminy@ € Ay © Az and
so there exists a state ¢ on A1 ®c min A2 such that (91 ® ¢2)(a) = ¢(a/Jc),a €
A1® Ay. Then T = ¢ o (71 ®cmin 7Tp) ! is astate on lin7ry (A1) 72 (Az), which can
be extended by strict continuity to a state on M( lin7 (A1) 72(Az)), still denoted
by 7. We notice that, by (3.8), C*(71(A1) Ump(Az)) C M(linmy(Aq)ma(Az)).
Since 7(r(a)) = (7, Scmn m)(a/ Te)) = §a/Te) = (g1 ® go)(a) for al
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a € Ay ® Ay, choosing some increasing approximate units {u, },, {0y}, for A
respectively A, and using (3.8), we obtain

T(mi(a1)) = 11}1}1T(7T1(ﬂ1)7fz(0y)) = 11]151 @1(a1)p2(vn) = @1(a1), a1 € Ay,

T(m2(a2)) = H}r{n (71 (up)m2(a2)) = ﬁPI,n @1(ur)92(a2) = @a(a2), a2 € Ay,

(for ¢(vy) — [l@a]| = 1 and @(uy) — ||¢1|| = 1; see, for example Theo-
rem 4.5(i) of [21]). Consequently, if 0 is an extension of T|c-(x,(a,)um,(4,)) t0 @

state on C*(711(A1) UZ U mp(Az)), then 9|7Tj(Aj) = gjo 71].’1,]‘ =1,2,and so

0lz € K(m1(A1), Z; g1 071y 1) N K (12 (A2), Z; a0 7137).

Now let us assume that (iv) holds and let 2 € Ay ® A, with 7t(a) = 0 and
@1 € P(A1), 92 € P(Ap) with @1 013 = ¢ 0 1 be arbitrary.

By (iv) the weak*compact, convex set K(711 (A1), Z; g1 0 7ty 1) N K(12(A2), Z;
g2 07T, 1) is not empty, so by the Krein-Milman Theorem it has some extreme
point . Now, by Lemma 5.4, there exist 6; € P(C*(mj(A;) UZ)), j = 1,2, such
that

(5.3) Oln(a) = iom, bilz=1,
Qj(TZ) = QJ(T)QJ(Z), T e C*(TL’](A]) U Z),Z e Z.

On the other hand, if a = ). a1, ®ay, withaj, € Ay, ap € Ay, then
1<k<n

Y. m(ayx)m(azy) = m(a) = 0and my(a1x) € N,ma(azx) € N'. By a clas-
1<k<n

sical result of Murray, von Neumann and Kadison (see e.g. Theorem 1.20.5 of

[16] or Theorem 5.5.4 of [10], or Proposition 7.20 of [21]) it follows that there

are zjx € Z,1 < j,k < n, such that 1<Z< nl(alr]-)zjk = Oforeveryl < k <

S

n,and Y zjpma(agx) = ma(ay;) forevery 1 < j < n. Using (5.3) and the
1<k<sn
above equalities, we deduce that

Y pi(a)p(zin) = ) 91(”1(ﬂ1,j))91(2j,k):91( )3 nl(al,j)zjlk)

1<j<n 1gj<n 1<j<n

=0 foreveryl <k<mn,

Y 9z e2(ane) = ), 92(Zj,k)92(ﬂ2(ﬂ2,k))=92( ) Zj,kﬂz(ﬂz,k)>

1<k<n 1<k<n 1<k<n

= 92(”2(112,]‘)) = 4)z(a2,j) forevery 1 <j < n.
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Consequently

(pr@@2)(a) = Y, gilar)ga(azj) = Y @i(ay, ( ; ¢(Zj,k)§0z(ﬂz,k))
1<k<n

1<j<n 1<j<n
Y (L olm)pGn))gala) = 0.
1<k<n S 1<j<n
But if a belongs to the kernel of 7, then all b*ab, b € A; ® Aj, belong to the kernel
of 71, so by the above we have
(91 @ @2) (b ab) =

for all 91 € P(A1),p2 € P(Az) with 1011 = gpopandallb € A} ® A;. By
Corollary 2.5 it follows that a/ J- = 0, thatisa € J-. 1

A first application concerns the proper C*-algebras over C:

COROLLARY 5.6. Let C be a unital, abelian C*-algebra and let (A, 11), (Ay, 1p)
be C*-algebras over C. If my : Ay — B(H) and 1y : Ay — B(H) are faithful,
non-degenerate x-representations and

M(my) oy = M(my) o, and m(Ay) CN,m,(Ay) C N
for a type 1 von Neumann algebra N C B(H) with centre (M(7t;) o 1;)(C), then
71y ®C min 7Ty 1S faithful.

Proof. Since M(7t;) o 1 is injective and (M(7t;) 0 1;)(C) = (M(7j) o ;)(C)",
any characters )1, x, on (M(7}) o ;)(C)" with x; o M(71) 011 = xp 0 M(712) 0 12
are equal. Thus condition (iii) in Theorem 5.5 is trivially satisfied. 1

The next application of Theorem 5.5 concerns unital *-representations,
whose normal extension on a substantial part of the second dual is faithful:

COROLLARY 5.7. Let C be a unital, abelian C*-algebra and let (A, 11), (Ay, 15)
be unital C*-algebras over C. If WE Ay — B(H), j = 1,2, are unital *-representations,
such that the normal extension 7ij : A7 — B(H) of rt; is faithful on C*(A; U 1;(C)**),
and

Mol =myot, and 71 (A;) C N,m,(Ay) C N
for a type Tvon Neumann algebra N C B(H) with centre (1tj 0 1;)(C)", then 11y ® ¢ min
7T, 1S faithful.

Proof. Let 2 denote the Gelfand spectrum of C and set Z = (7t;04;)(C)".
We shall verify that condition (iv) in Theorem 5.5 is satisfied.

For let ¢1 € P(A1) and ¢, € P(A;) be such that ¢1 011 = ¢ 01p. Then
C 5 ¢+ (g@joj)(c) is a character of C, whose normal extension to C** is equal to
the composition ¢; o t;‘* of the normal state ¢; on A;* with the second transposed
map t** Since 71; 0 l : C** — B('H) is a faithful, normal *-representation with
range Z which does not depend on j = 1,2, we can consider the character y =
(¢jo L;k*) o (7o L;-‘*)_l of Z.
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Now let j = 1,2 be arbitrary. Let 6]- denote the composition of the normal
state ¢; of A7 with (ﬁj‘c*(Ajul]—(c)**))_l- Then 6 is a state on

7(C*(Aj UL (C)™)) = C*(m(A)) U (7j 0 ££7)(C™)),

whose restrictions to 77;(A;) and to Z = (7 0 l;‘*)(C**) are ;o 7'(].’1 and y, re-
spectively.

Consequently K(7r1(A1),Z; 1 0 771_1) NK(ma(A2), Z;paomy ) 2 x. 0

The situation in Corollary 5.7 can occur for any pair of unital C*-algebras
(A1, 17), (Ay, 1p) over C. Indeed, then t;-‘* : CH — Z(A]’f*),j = 1,2, are injective
unital, normal *-homomorphisms, so by Lemma 5.2 of [20] there exist injective
unital, normal *-representations 7i; : A]’f* — B(H),j=1,2,such that 75 0 }* =
7y 0 15 and 75 (A7*) C N, 7,(A5*) C N’ for some type I von Neumann algebra
N C B(H) with centre equal to (77 o *)(C™*) and, denoting 71; = 7j| 4, j = 1,2,
the normal extension 71; of 7; to A}k* is faithful and

7T1 ol = 7T2 Oy, 7T1(A1) C N, 7T2(A2) - N/, Z(N) = (ﬂ] O[]‘)(C)N.

The above remarks and Corollary 5.7 imply immediately:

COROLLARY 5.8. Let C be a unital, abelian C*-algebra and let (A, 11), (Ay, 1y)
be C*-algebras over C. Then there exist faithful, unital x-representations p; : M(A;) —
B(H), j = 1,2, such that

proil =pyoty and p;(M(A;)) C N,p(M(Ay)) C N’

for some type 1 von Neumann algebra N C B(H) with centre (p; o ;)(C)" and
01 ®C,min 7 1s faithful.

According to Corollary 2.3, if p, p, are as in Corollary 5.8, then p; ®¢ min
p, is faithful on A; @cmin Ay C M(A;) ®cmin M(A,). However, in general
we do not have p; = M(71;), and 50 (py Scmin £2) |4 ocmnty = 71 EComin T
for appropriate non-degenerate *-representations 7; : A; — B(H), because
(01 ®C,min P2)] 4 1@CminAy is not always non-degenerate. Taking, for example, for
A1, Ay the non-zero C*-algebras over C([0,1]) with A1 ®c((o1))min 42 = {0},
given in [1] before Proposition 3.3, we will have p; # 0 and p, # 0, hence
(1 ®c((0,1]),min P2) 7 0, while (01 @c(j0,1)),min £2)| 4,201 mindy = O-
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