CLASSIFYING THE TYPES OF PRINCIPAL GROUPOID C*-ALGEBRAS

LISA ORLOFF CLARK

Communicated by William B. Arveson

ABSTRACT. Suppose G is a second countable, locally compact, Hausdorff groupoid with a fixed left Haar system. Let G^0/G denote the orbit space of G and $C^*(G)$ denote the groupoid C^*-algebra. Suppose that G is a principal groupoid. We show that $C^*(G)$ is CCR if and only if G^0/G is a T_1 topological space, and that $C^*(G)$ is GCR if and only if G^0/G is a T_0 topological space. We also show that $C^*(G)$ is a Fell Algebra if and only if G is a Cartan groupoid.

KEYWORDS: Locally compact groupoid, C^*-algebra.

1. INTRODUCTION

C^*-algebras can be classified as being continuous-trace, bounded trace, Fell Algebras, CCR (liminal), and GCR (postliminal). These are listed in order of containment. Recall that for separable C^*-algebras, an algebra is GCR if and only if it is Type I. Further, C^*-algebras that are not GCR are very poorly behaved. In the case of a transformation group C^*-algebra $C^*(H, X)$ (where H is a group that acts continuously on the space X) each of these classifications correspond to a property of the transformation group itself. For example, Phil Green was able to prove in [7] that a freely acting transformation group C^*-algebra has continuous-trace if and only if the action of the transformation group is proper. In [12] the authors have generalized Green’s result to principal groupoids. In this paper we generalize three more such results.

In [6], Elliot Gootman showed the following:

Theorem 1.1. Suppose H and X are both second countable. Then $C^*(H, X)$ is GCR if and only if every stability group is GCR and the orbit space is T_0.

Dana Williams considered the case for CCR transformation group C^*-algebras in [20], and proved the theorem below.
Theorem 1.2. Suppose that H and X are both second countable. Suppose also that at every point of discontinuity y of the map $x \mapsto S_x$, the stability group S_y is amenable, then $C^*(H, X)$ is CCR if and only if the stability groups are CCR and the orbit space is T_1.

Remark 1.3. Gootman has shown that the hypothesis on $x \mapsto S_x$ in Theorem 1.2 is unnecessary; however, the details have not appeared.

We also note that Thierry Fack proved versions of Theorem 1.1 and Theorem 1.2 for foliation C^*-algebras in [3].

Finally, in [8], Astrid an Huef proved:

Theorem 1.4. $C^*(H, X)$ is a Fell algebra if and only if (H, X) is a Cartan G-space.

We generalize each of the above three theorems to principal groupoids. The key comes in showing that there is a continuous injection between the orbit space of the groupoid and the spectrum of the associated groupoid C^*-algebra. In fact, when the orbit space is T_0, we show that these spaces are homeomorphic.

We have also been able to further generalize the CCR and GCR results to non-principal groupoids; however, these results will appear later.

2. Preliminaries

A groupoid G is a small category in which every morphism is invertible. A principal groupoid is a groupoid in which there is at most one morphism between each pair of objects. We define maps r and s from G to G by $r(x) = xx^{-1}$ and $s(x) = x^{-1}x$. These are the maps Renault calls r and d in [17]. The common image of r and s is called the unit space which we denote G^0.

We will only consider second countable, locally compact, Hausdorff groupoids G. Our main results also requires G to be principal; however, we will state this condition when it is needed. We will also assume that G has a fixed left Haar system, $\{\lambda^u\}_{u \in G^0}$.

Now consider the vector space $C_c(G)$, the space of continuous functions with compact support from G to the complex numbers, \mathbb{C}. We can view this space as an $*$-algebra by defining convolution and involution with the formulae:

$$f * g(x) = \int f(y)g(y^{-1}x) \, d\lambda^r(x)(y) = \int f(xy)g(y^{-1}) \, d\lambda^s(x)(y)$$

and

$$f^*(x) = \overline{f(x^{-1})}.$$

A representation of $C_c(G)$ is a $*$-homomorphism π from $C_c(G)$ into $B(\mathcal{H})$ for some Hilbert space \mathcal{H} that is continuous with respect to the inductive limit topology on $C_c(G)$ and the weak operator topology on $B(\mathcal{H})$, and that is non-degenerate in the sense that the linear span of $\{\pi(f)\eta : f \in C_c(G), \eta \in \mathcal{H}\}$ is dense in \mathcal{H}. We define the groupoid C^*-algebra with the following theorem.
Theorem 2.1. For \(f \in C_c(G) \), the quantity
\[
\|f\| := \sup\{\|\pi(f)\| : \pi \text{ is a representation of } C_c(G)\}
\] (2.1)
is finite and defines a C*-norm on \(C_c(G) \). The completion of \(C_c(G) \) with respect to this norm is a C*-algebra, denoted \(C^*(G) \).

The only real issue in proving Theorem 2.1 comes in showing that \(\|f\| < \infty \) for all \(f \in C_c(G) \). This is a consequence of Renault’s Disintegration Theorem ([18], Theorem 4.2 and [11], Theorem 3.23). The motivating example of a groupoid \(C^* \)-algebra is a transformation group \(C^*(H, X) \), defined in [20] and [8].

We define the map \(\pi : G \to G^0 \times G^0 \) by \(\pi(x) = (r(x), s(x)) \). Using \(\pi \), we define an equivalence relation on \(G^0 \) and endow the set of equivalence classes with the quotient topology. We call this topological space the orbit space of \(G \), denoted \(G^0/G \).

3. A MAP FROM \(G^0/G \) TO \(C^*(G)^\wedge \)

Following [12] and [17], pages 81–82, recall that for each \(u \in G^0 \) there is a representation \(L^u \) induced from the point mass measure \(\varepsilon_u \). When \(G \) is a principal groupoid, \(L^u \) acts on \(L^2(G, \lambda_u) \) so that for \(f \in C_c(G) \) and \(\xi \in L^2(G, \lambda_u) \),
\[
L^u(f)\xi(\gamma) = \int f(\gamma \alpha)\xi(\alpha^{-1})d\lambda^u(\alpha).
\]
The following lemma is Lemma 2.4 of [12].

Lemma 3.1. Suppose \(G \) is a principal groupoid. Then the representation \(L^u \) is irreducible for each \(u \in G^0 \). Further more, if \([u] = [v] \) then \(L^u \) is unitarily equivalent to \(L^v \).

We can use this construction to define a map \(\psi : G^0/G \to C^*(G)^\wedge \) where \(\psi([u]) = L^u \). As usual, we view \(L^u \) as its unitary equivalence class in \(C^*(G)^\wedge \). Our notation is somewhat careless. We should denote the image of \(u \) under \(\psi \) by \([L^u]\) but the preceding lemma makes this carelessness less troubling.

Our goal is to show that for principal groupoids with \(T_0 \) orbit spaces, \(\psi \) is a homeomorphism. We will first show this for groupoids with \(T_1 \) orbit spaces and generalize this to \(T_0 \) orbit spaces later. Before we deal with \(\psi \), we must first determine what the representations of \(C^*(G) \) look like.

Fixing \(u \in G^0 \), recall from Lemma 2.13 in [17] that there is a representation \(M_u \) of \(C_0(G^0) \) on \(L^2(G, \lambda_u) \) defined by
\[
L^u(V(\phi)f) = M_u(\phi)L^u(f).
\] (3.1)

Proposition 3.2. Suppose that \(L \) is an irreducible representation of \(C^*(G) \), and that \(M \) is the representation of \(C_0(G^0) \) defined by \(M(\phi)L(f) = L(V(\phi)f) \). If \(\ker M = I_F := \{ \phi \in C_0(G^0) : \phi(x) = 0 \text{ for all } x \in F \} \), then there is a \(u \in G^0 \) such that \(F = [u] \).
Before we can prove this proposition, we need the following two lemmas.

Lemma 3.3. Let U be an open subset of G^0. Then the ideal of $C^*(G)$ generated by $C_c(G|U)$ is $C_c(G|U) := \text{Ex}([U])$.

Proof. It suffices to see that

$$E_0 := C_c(G) * C_c(G|U) * C_c(G)$$

is dense in $C_c(G|U)$ in the inductive limit topology. In view of the Stone-Weierstrass Theorem ([19], Theorem 7.33) since E_0 is self-adjoint it suffices to show E_0 separates points of $G|U$ and vanishes at no point of $G|U$.

Because $G|U$ is Hausdorff, this is the same as showing that for each $\gamma \in G|U$ and each neighborhood V of γ, there is an $F \in E_0$ with supp $F \subset V$ and $F(\gamma) \neq 0$. But if $\gamma \in G|U$, then $\gamma = \alpha \beta \delta$ with $\beta \in G|U$, $s(\alpha) = s(\gamma)$, and $r(\delta) = r(\gamma)$.

Now notice that

$$f * g * h(\gamma) = \int_G f * g(\gamma \eta) h(\eta^{-1}) d\lambda^s(\gamma)(\eta)$$

$$= \int_G \int_G f(\omega) g(\omega^{-1} \gamma \eta) h(\eta^{-1}) d\lambda^r(\gamma)(\omega) d\lambda^s(\gamma)(\eta).$$

$$= \int_G \int_G f(\omega) g(\omega^{-1} \gamma \eta^{-1}) h(\eta) d\lambda^r(\gamma)(\omega) d\lambda^s(\gamma)(\eta).$$

We can choose neighborhoods V_1, V_2 and V_3 of α, β and δ, respectively, such that $V_1 V_2 V_3 \subset V$. Notice from the integral above that if $\gamma \in \text{supp}(f * g * h)$ then there exists $\omega \in \text{supp} f$, $\eta \in \text{supp} h$ so that $\omega^{-1} \gamma \eta^{-1} \in \text{supp} g$. Since $\gamma = \omega(\omega^{-1} \gamma) \eta^{-1} \eta$, we see that $\text{supp}(f * g * h) \subset (\text{supp} f)(\text{supp} g)(\text{supp} h)$, so we have $\text{supp}(f * g * h) \subset V$ provided $f \subset V_1$, $g \subset V_2$ and $h \subset V_3$. Thus it suffices to take non-negative functions $f, h \in C_c(G)$ and $g \in C_c(G|U)$ with the appropriate supports and $f(\alpha) = g(\beta) = h(\delta) = 1$ and $F = f * g * h$.]

Lemma 3.4. Suppose that L is a non-degenerate representation of $C^*(G, \lambda)$, and that M is the representation of $C_0(G^0)$ defined by $M(\phi)L(f) = L(V(\phi)f)$. Then ker $M = I_F$ for a closed, G-invariant set $F \subset G^0$.

Proof. We know ker $M = I_F$ for closed subset F of G^0. Let $U := G^0 \setminus F$. It will suffice to see that U is G-invariant; that is, $U = [U]$.

If $f \in C_c(G|U)$, then $K = \text{supp} f$ is a compact subset of $G|U$. Thus $C = r(K)$ is a compact subset of U. Therefore we can choose $\phi \in C_c(U)$ such that $\phi(u) = 1$ for all $u \in C$. Then $V(\phi)f = f$. Since ϕ vanishes on F, $M(\phi)L(f) = L(V(\phi)f) = 0$. So $f \in \ker L$, and we have shown that

$$C_c(G|U) \subset \ker L.$$
Lemma 3.3 implies that $C_c(G|U) \subset \ker L$. If $[U] \neq U$, then there is a $\phi \in C_c(G^0)$ such that supp $\phi \subset |U|$ and ϕ is not identically zero on F. Since $V(\phi)f \in C_c(G|U)$ for all $f \in C_c(G)$, it follows that $V(\phi)f \in \ker L$. Therefore $M(\phi) = 0$, which contradicts $\ker M = J_F$.

Proof of Proposition 3.2. Since G^0/G is a second countable Baire space, we know from lemma on page 222 preceding Corollary 19 in [7] that every irreducible closed set must be a point closure. Lemma 3.4 tells us that $\ker M = J_F$ where F is a closed G-invariant subset of G^0. Thus the image of F in G^0/G is closed. Suppose F is not an orbit closure. Then F is not irreducible. That is F can be written as the union $C_1 \cup C_2$ where each C_i is a closed G-invariant set such that $F \not\subset C_i$. In particular, $C_i \cap F \neq \emptyset$ for $i = 1$ or $i = 2$.

Let U_i be the G-invariant open set $G^0 \setminus C_i$. Since $\text{Ex}(U_1) \cap \text{Ex}(U_2) = \text{Ex}(U_1) \setminus \text{Ex}(U_2)$, it follows from Lemma 2.10 in [13] that

$$C_c(G|U_i)C_c(G|U_2)$$

is dense in $C^*(G|U_1) \cap C^*(G|U_2)$. On the other hand

$$C_c(G|U_1)C_c(G|U_2) \subset C_c(G|U_1 \cap U_2) = C_c(G|G^0 \setminus (C_1 \cup C_2)) = C_c(G|G^0 \setminus F) = C_c(G|U).$$

Thus, (3.3) implies that

$$\text{Ex}(U_1) \cap \text{Ex}(U_2) \subset \ker L.$$

Since L is irreducible, $\ker L$ is prime. Thus

$$\text{Ex}(U_i) \subset \ker L \quad \text{for some } i = 1, 2.$$

We may as well assume that $i = 1$. Since $U_1 \cap F \neq \emptyset$ (otherwise, we would have F in C_1), we can choose $\phi \in C_c(G^0)$ such that supp $\phi \subset U_1$ and $\phi|_F \neq 0$. If $f \in C_c(G)$, we know

$$V(\phi)f(\gamma) = \phi(r(\gamma))f(\gamma),$$

thus $r(\gamma) \in U_1$ and because U_1 is invariant, $s(\gamma) \in U_1$ also. This means that $V(\phi)f$ is in $C_c(G|U_1)$. Thus $V(\phi)f \in \ker L$ for all $f \in C_c(G)$. It follows that $M(\phi) = 0$. But this contradicts $\phi|_F \neq 0$. Thus F must be an orbit closure as claimed.

Corollary 3.5. Every irreducible representation of $C^*(G)$ factors through $C^*(G|u)$ for some $u \in G^0$.

Proof. Suppose L is an irreducible representation and M is the associated representation satisfying (3.1). We know $\ker M = J_F$ and that $F = \overline{[u]}$ by Proposition 3.2. Let $U := G^0 \setminus F$. We must show that $\text{Ex}(U) \subset \ker L$ by Lemma 2.10 of [13]. It suffices to show $C_c(G|U) \subset \ker L$. We will do this as we did in the proof of Lemma 3.4. If $f \in C_c(G|U)$, then $K = \text{supp } f$ is a compact subset of $G|U$. Thus $C = r(K)$ is a compact subset of U. Therefore we can choose $\phi \in C_c(U)$ such that $\phi(u) = 1$ for all $u \in C$. Then $V(\phi)f = f$. Since ϕ vanishes on F, $M(\phi)L(f) = L(V(\phi)f) = 0$. So $f \in \ker L$, and we have shown that $C_c(G|U) \subset \ker L$. □
We now have all the pieces needed to show that for principal groupoids, the map \(\psi \) is a continuous open injection. Further, if the orbit space is \(T_1 \), then \(\psi \) is a homeomorphism.

Proposition 3.6. Suppose \(G \) is a principal groupoid. Then the map \(\psi \) defined above is a continuous, open, injection.

Proof. We know that \(\psi \) is a continuous injection by Proposition 2.5 of [12]. We will show \(\psi \) is an open map using the criteria from Proposition II.13.2 in [4]. Let \(L^{u_n} \to L^u \) be a convergent net in \(C^*(G)^\wedge \). Thus \(M_{u_n} \to M_u \) in \(C_0(G^0)^\wedge \). Each \(M_{u_n} \) corresponds to a closed subset, namely \([u_n]\). By Lemma 2.4 of [20], we may pass to a subnet and relabel if necessary and find \(v_n \in [u_n] \) so \(v_n \to u \). Therefore \(\psi \) is open.

Remark 3.7. We will eventually weaken the hypothesis of Proposition 3.8 and require only that \(G \) be a principal groupoid and \(G^0/G \) be \(T_0 \).

Proposition 3.8. Suppose \(G \) is a principal groupoid in which orbits are closed. Then the map \(\psi \) defined above is a homeomorphism.

Proof. All that is left to show is that \(\psi \) is surjective. Let \(L \) be any irreducible representation of \(C^*(G) \). Since orbits are closed, we know that \(L \) is lifted from a representation on \(C^*(G_{|[u]}) \) from Corollary 3.5. The representation \(L^u \) is also a representation on \(C^*(G_{|[u]}) \). Since \(C^*(G_{|[u]}) \) is a transitive groupoid, and \(G \) is principal, Lemma 2.4 of [10] tells us that \(C^*(G_{|[u]}) \cong K(H) \). However, the compact operators have only one irreducible representation. Therefore \(L^u \cong L \).

4. CCR GROUPOID \(C^* \)-ALGEBRAS

In order to prove the theorem below, a generalization of Williams’ Theorem 1.2, we only use the property of Proposition 3.6 that \(\psi \) is a continuous injection.

Theorem 4.1. Let \(G \) be a principal groupoid. Then \(G \) is CCR if and only if \(G^0/G \) is \(T_1 \).

Proof. Suppose \(C^*(G) \) is CCR. This implies that points of the spectrum, \(C^*(G)^\wedge \), are closed. We know the map

\[
\psi : G^0/G \to C^*(G)^\wedge,
\]

where \(\psi([u]) = L^u \), is a continuous injection by Proposition 3.6. Thus the inverse image of a point of the spectrum is one orbit which must also be closed.

Now suppose that the orbit space is \(T_1 \). Suppose \(L \) is a representation of \(C^*(G) \). We know from Corollary 3.5 that \(L \) factors through \(C^*(G_{|[u]}) = C^*(G_{|[u]}) \).
for some \(u \in \mathcal{G}^0 \). But \(\mathcal{C}^* (\mathcal{G}_{[\mathcal{U}]}) \) is a transitive groupoid thus
\[
\mathcal{C}^* (\mathcal{G}_{[\mathcal{U}]}) \cong \mathcal{C}^* (\mathcal{G}^0_{[\mathcal{U}^0]}) \otimes \mathcal{K}
\]
by Theorem 3.1 of [10]. This is CCR because we are assuming \(\mathcal{G} \) is a principal groupoid. This means that \(\mathcal{L} \) is lifted from a representation of a CCR \(\mathcal{C}^* \)-algebra making \(\mathcal{L} \) a representation onto the compact operators. That is, \(\mathcal{C}^* (\mathcal{G}) \) is CCR.

Corollary 4.2. If \(\mathcal{G} \) is a principal groupoid and \(\mathcal{C}^* (\mathcal{G}) \) is CCR then \(\psi \) is a homeomorphism.

Proof. This is immediate from Theorem 4.1 and Proposition 3.8.

5. GCR \(\mathcal{C}^* \)-Algebras

We can weaken the conditions in Proposition 3.8 and show that, for principal groupoids, \(\psi \) is a homeomorphism when \(\mathcal{G}^0 / \mathcal{G} \) is a \(T_0 \) space. In doing this, we actually describe the ideal structure of the associated groupoid \(\mathcal{C}^* \)-algebra. We will also prove a generalization of Gootman’s Theorem 1.1 for principal groupoids that says \(\mathcal{C}^* (\mathcal{G}) \) is GCR if and only if \(\mathcal{G}^0 / \mathcal{G} \) is \(T_0 \).

We know that for principal groupoids \(\psi \) is a continuous, injective, open map from Proposition 3.6. Therefore to show \(\psi \) is a homeomorphism, we must show that \(\psi \) is onto. What we will do is show that when we require the orbit space to be \(T_0 \) rather than \(T_1 \), we can show that every irreducible representation of \(\mathcal{C}^* (\mathcal{G}) \) is lifted from a representation of \(\mathcal{C}^* (\mathcal{G}_{[C]}) \) where \(C \) is a Hausdorff subset of \(\mathcal{G}^0 / \mathcal{G} \). This will suffice.

We will begin Proposition 5.1 below by assuming that \(\mathcal{G}^0 / \mathcal{G} \) is \(T_0 \). We will also show that the orbit equivalence relation \(\mathcal{R} \) on \(\mathcal{G}^0 \) is an \(F_\sigma \) subset of \(\mathcal{G}^0 \times \mathcal{G}^0 \). When this is the case, Arlan Ramsay proved in Theorem 2.1 of [16] that there is a list of 14 different properties that are each equivalent to saying that \(\mathcal{G}^0 / \mathcal{G} \) is \(T_0 \). Some of these equivalent properties include:

1. each orbit is locally closed,
2. \(\mathcal{G}^0 / \mathcal{G} \) is almost Hausdorff, and
3. \(\mathcal{G}^0 / \mathcal{G} \) is a standard Borel space.

We will use property (2) in our proof. The idea for this proof comes from Lemma 2.3 in [21].

Proposition 5.1. Suppose \(\mathcal{G} \) is a groupoid. If \(\mathcal{G}^0 / \mathcal{G} \) is \(T_0 \) then there is an ordinal \(\gamma \) and ideals \(\{ I_\alpha : \alpha \leq \gamma \} \) such that:

1. \(\alpha < \beta \) implies that \(I_\alpha \subset I_\beta \);
2. \(I_0 = 0 \) and \(I_\gamma = \mathcal{C}^* (\mathcal{G}) \);
3. if \(\delta \) is a limit ordinal, then \(I_\delta \) is the ideal generated by \(\{ I_\alpha \} _{\alpha < \delta} \);
4. if \(\alpha \) is not a limit ordinal, then \(I_\alpha / I_{\alpha-1} \cong \mathcal{C}^* (\mathcal{G}_{[U_\alpha \setminus U_{\alpha-1}]}) \) where \(U_\alpha \) is a saturated subset of \(\mathcal{G} \) and each space \(U_{\alpha+1} \setminus U_\alpha \) is Hausdorff;
(v) if \(L \) is an irreducible representation of \(C^*(G) \), then \(L \) is the canonical extension of an irreducible representation of \(C^*(G|_{U_\alpha \setminus U_{\alpha-1}}) \).

Also, if \(G \) is a principal groupoid, then the map \(\psi \) defined above is a homeomorphism from \(G^0/G \) into \(C^*(G)^\wedge \).

Remark 5.2. The \(C^* \)-algebra \(C^*(G|_{U_\alpha \setminus U_{\alpha-1}}) \) is actually the quotient of \(C^*(G|_{U_\alpha}) \) by \(C^*(G|_{U_{\alpha-1}}) \).

Proof. First we will show that the orbit equivalence relation \(R \) on \(G^0 \) is an \(F_\sigma \) subset of \(G^0 \times G^0 \). To show that \(R \) is an \(F_\sigma \) set, we must show it is a countable union of closed sets of \(G^0 \times G^0 \). Notice that \(G \) is \(\sigma \)-compact and that \(R = \pi(G) \) where \(\pi(\gamma) = (r(\gamma), s(\gamma)) \). Therefore \(R \) is an \(F_\sigma \) subset because \(\pi \) is continuous.

Now from Theorem 2.1 in [16], we know that \(G^0/G \) is almost Hausdorff. Therefore, the discussion on page 125 of [5] gives us an ordinal \(\gamma \) and open subsets \(\{ U_\alpha : \alpha \leq \gamma \} \) of \(G^0/G \) such that:

(a) \(\alpha < \beta \) implies that \(U_\alpha \subset U_\beta \);
(b) \(\alpha < \gamma \) implies that \(U_\alpha \setminus U_{\alpha-1} \) is a dense Hausdorff subspace in the relative topology;
(c) if \(\delta \) is a limit ordinal, then \(U_\delta = \bigcup_{\alpha < \delta} U_\alpha \);
(d) \(U_0 = \emptyset \) and \(U_\gamma = G^0/G \).

In the sequel, we will abuse notation and consider each \(U_\alpha \) as an open invariant subset of \(G^0 \). Thus from Proposition 6.1 each \(U_\alpha \) corresponds to an ideal \(C^*(G|_{U_\alpha}) \) of \(C^*(G) \), which we will call \(I_\alpha \). Now properties (i), (ii), and (iii) follow immediately. Property (iv) follows immediately from the short exact sequence

\[
0 \longrightarrow C^*(U|_{\alpha-1}) \longrightarrow C^*(G|_{U_\alpha}) \longrightarrow C^*(G|_{U_\alpha \setminus U_{\alpha-1}}) \longrightarrow 0
\]

of Lemma 2.10 in [13].

Now we must show (v). Suppose \(L \) is an irreducible representation of \(C^*(G) \). Since \(L \) is an non-degenerate irreducible representation, the restriction of \(L \) to an ideal gives us an irreducible representation of the ideal. Define the set

\[
S = \{ \lambda : L(I_\lambda) \neq 0 \}.
\]

Since \(S \) is a set of ordinals, it has a smallest element. Let \(\alpha \) be the smallest element of \(S \). We know that \(\alpha \) is not a limit ordinal because of property (iii). Therefore \(\alpha - 1 \) exists and we have

\[
L(I_\alpha) \neq 0 \quad \text{and} \quad L(I_{\alpha-1}) = 0.
\]

Therefore, \(L \) is the canonical extension of a representation of \(I_\alpha / I_{\alpha-1} \) as needed.

Suppose \(G \) is a principal groupoid. We know that \(\psi \) is continuous, open, and injective from Proposition 3.6. Thus, to show \(\psi \) is a homeomorphism, we need only show that \(\psi \) is onto. In this proof, we need to be careful and define the following representations. Let \(\text{Ind}(G, u) \) be the representation \(L^u \) on \(C^*(G) \) and
let \(\text{Ind}(G_{U_{\alpha}}, u) \) be the representation \(L^u \) as a representation of \(C^* (G|_{U_{\alpha}}) \) for some \(u \in U_{\alpha} \).

Now let \(L \) be any representation of \(C^* (G) \). Our goal is to show that \(L \) is equivalent to \(L^u = \text{Ind}(G, u) \) for some \(u \in G^0 \). We know from part (v) that \(L \) is the canonical extension of a representation \(L' \) of \(I_{\alpha}/I_{\alpha-1} = C^*(G|_{U_{\alpha}\setminus U_{\alpha-1}}) \). We also know that \(U_{\alpha} \setminus U_{\alpha-1} \) is Hausdorff which means that \(L' \) is equivalent to \(\text{Ind}(G|_{U_{\alpha}}, u) \) for some \(u \in U_{\alpha} \). It suffices to show that the canonical extension of \(\text{Ind}(G|_{U_{\alpha}}, u) \) to \(C^* (G) \) must be equal to \(\text{Ind}(G, u) \). Notice that the spaces each of these representations act upon are the same. The representation \(\text{Ind}(G|_{U_{\alpha}}, u) \) extends to a representation \(\text{Ind}(G|_{U_{\alpha}}, u) \) on all of \(C^* (G) \). Notice that for \(f \in C_c(G), g \in L^2(G, \lambda_u), x \in G_u \) we have

\[
\text{Ind}(G|_{U_{\alpha}}, u)(f)(\text{Ind}(G|_{U_{\alpha}}, u)(g))\xi = \text{Ind}(G|_{U_{\alpha}}, u)(f * g)\xi = \text{Ind}(G, u)(f * g)\xi.
\]

Thus, \(\text{Ind}(G, u) \) is the canonical extension of \(\text{Ind}(G|_{U_{\alpha}}, u) \) as needed.

We now have more than enough to prove the following theorem.

Theorem 5.3. Suppose \(G \) is a principal groupoid. Then \(C^* (G) \) is GCR if and only if \(G^0 / G \) is \(T_0 \).

Proof. Suppose \(C^* (G) \) is GCR. Then the spectrum of \(C^* (G) \) is \(T_0 \). From Lemma 3.8, we know there is a continuous injection from the orbit space into the spectrum. Therefore, the orbit space must also be \(T_0 \).

Now suppose we know \(G^0 / G \) is \(T_0 \). From Proposition 5.1, we know that every irreducible representation \(L \) of \(C^* (G) \) is the canonical extension of a representation of \(C^* (G|_{U_{\alpha}\setminus U_{\alpha-1}}) \) where \(U_{\alpha} \setminus U_{\alpha-1} \) is Hausdorff. Thus \(C^* (G|_{U_{\alpha}\setminus U_{\alpha-1}}) \) is CCR by Theorem 4.1. Therefore, the image of \(L \) contains the compact operators and \(C^* (G) \) is GCR.

6. IDEALS

We know that for an open saturated subset \(U \) of \(G^0, C^* (G|_U) \) is an ideal in \(C^* (G) \). When \(G \) is principal and \(C^* (G) \) is GCR, all the ideals of \(C^* (G) \) are of this form.

Proposition 6.1. Suppose \(G \) is a principal groupoid and \(C^* (G) \) is GCR. Then the map \(U \mapsto \text{Ex}(U) \cong C^* (G|_U) \) from the collection of open saturated subsets of \(G^0 \) to the ideals of \(C^* (G) \) is a bijection.

Proof. Recall that if \(C^* (G) \) is GCR, \(C^* (G)^\wedge \cong \text{Prim}(C^* (G)) \). We also know that there is a natural correspondence between open subsets of \(\text{Prim}(C^* (G)) \) and ideals of \(C^* (G) \). Thus in order to show that \(\text{Ex} \) is a bijection, it suffices to show

\[
C^* (G|_U) \cong \bigcap_{v \not\in U} \ker L^v.
\]
Notice that \(C^*(G|_U) = \bigcap \{ \ker L^v : L^v(C^*(G|_U)) = 0 \} \).

It follows from the definition of \(L^v \) that if \(v \in U \), \(L^v(C_c(G|_U)) \neq 0 \) and if \(v \notin U \), \(L^v(C^*(G|_U)) = 0 \). Therefore

\[
C^*(G|_U) = \bigcap_{v \notin U} \ker L^v
\]
as needed.

7. FELL ALGEBRAS

Finally, we generalize an Huef’s Theorem 1.4. Many of the results involving Cartan \(G \)-spaces that an Huef used to prove (1.4) came from [14]. Thus we first must generalize some of Palais’ work for Cartan \(G \)-spaces. This process leads us to some interesting results in their own right.

DEFINITION 7.1. A subset, \(N \) of \(G^0 \) is wandering if and only if the set

\[
G|_N = \pi^{-1}(N, N) = \{ \gamma \in G : s(g) \in N \text{ and } r(g) \in N \}
\]
is relatively compact.

LEMMA 7.2. A groupoid \(G \) is proper if and only if every compact subset of \(G^0 \) is wandering.

Proof. Suppose \(G \) is proper so that by definition \(\pi \) is a proper map. That is, the inverse image of a compact set is compact. Let \(K \) be a compact subset of \(G^0 \). By assumption \(\pi^{-1}(K, K) \) is compact; thus \(K \) is wandering.

Now suppose that every compact subset of \(G^0 \) is wandering. Let \(L \) be a compact subset of \(G^0 \times G^0 \). We must show \(\pi^{-1}(L) \) is compact. Note that \(L \subset W \times W \) where \(W \) is a compact subset of \(G^0 \).

Thus,

\[
\pi^{-1}(L) \subset \pi^{-1}(W, W)
\]
which is compact. Thus \(\pi^{-1}(L) \) is a closed subset of a compact set. Therefore \(\pi^{-1}(L) \) is compact.

DEFINITION 7.3. We call a groupoid \(G \) a Cartan groupoid if and only if for every \(x \in G^0 \), \(x \) has a wandering neighborhood.

It is not difficult to show that a transformation group is a Cartan \(G \)-space if and only if the associated transformation group groupoid is a Cartan groupoid.

LEMMA 7.4. If \(G \) is a Cartan groupoid, then for each \(u \in G^0 \), \([u] \) is closed in \(G^0 \).

Proof. Let \(u \in G^0 \). Let \(v \) be a limit point of \([u] \) in \(G^0 \). Because \(G \) is a Cartan groupoid, \(v \) has a wandering neighborhood, \(U \). We will assume that \(U \) is closed. Thus, we can find a sequence of elements \(\{v_n\} \) in \(U \) that converge to \(v \) where each \(v_n \in [u] \). There also exists a sequence of elements \(\{\gamma_n\} \subset G \) such that for each \(n \),
s(γ_n) = v_n and r(γ_n) = u. Now choose one of the \{γ_n\}, call it \γ_{n_0}. Notice that \(r(γ_{n_0}^{-1}) = v_{n_0} \) and \(s(γ_{n_0}^{-1}) = u \). Thus \(γ_{n_0}^{-1}γ_n \in G |_U \) which is compact because it is relatively compact and closed. Thus we can pass to a subsequence, relabel, and assume \{γ_n\} converges to \γ. Since \(r \) and \(s \) are continuous, \(r(γ) = u \) and \(s(γ) = v \). Thus \(v \in \{u\} \).

Clearly, if \(G \) is proper, by Lemma 7.2 we see that \(G \) is a Cartan groupoid. We will prove a partial converse of this but first we need the following lemma.

Lemma 7.5. A groupoid \(G \) is proper if and only if every sequence \{γ_n\} ∈ \(G \) such that \{π(γ_n)\} converges has a convergent subsequence.

Proof. Suppose that \(G \) is proper. Let \{γ_n\} be a sequence where \{π(γ_n)\} converges to \((u, v) \). Now, let \(K \) be a compact neighborhood of \((u, v) \). Thus \{π(γ_n)\} is eventually inside of \(K \). Since \(π^{-1}(K) \) is compact, there is a subsequence \{γ_{n_k}\} that converges to \γ as needed.

Now suppose for every \{γ_n\} ∈ \(G \) such that \(π(γ_n) \) converges to \((u, v) \), \{γ_n\} has a convergent subsequence \{γ_{n_k}\} where \{γ_{n_k}\} converges to \γ. Let \(K \) be a compact subset of \(G^0 × G^0 \). We must show \(π^{-1}(K) \) is compact. Let \{γ_n\} ⊂ \(π^{-1}(K) \). It suffices to show \{γ_n\} has a convergent subsequence. Since \{π(γ_n)\} ⊂ \(K \), \{π(γ_n)\} has a convergent subsequence in \(K \), call it \{π(γ_{n_k})\} where \{π(γ_{n_k})\} → \((u, v) \). So, by assumption, we can find a subsequence and relabel so that \{γ_{n_k}\} converges to \γ ∈ \(π^{-1}(K) \).

Lemma 7.6. A groupoid \(G \) is proper if and only if \(G \) is Cartan and \(G^0/G \) is Hausdorff.

Proof. Suppose \(G \) is Cartan and \(G^0/G \) is Hausdorff. Let \{γ_n\} be a sequence in \(G \) such that \{π(γ_n)\} converges to \((u, v) \). By Lemma 7.5, we must show that there exists a convergent subsequence of \{γ_n\} that converges to \γ.

Because the quotient map is continuous,

\[
[r(γ_n)] → [u] \quad \text{and} \quad [s(γ_n)] → [v]
\]

in \(G^0/G \). Since the orbit space is Hausdorff, and for each \(n \)

\[
[r(γ_n)] = [s(γ_n)],
\]

we must have \([u] = [v]\). Thus there exist \γ ∈ \(G \) so that \(r(γ) = u \) and \(s(γ) = v \). Which also means that

\[
r(γ_n) → r(γ) \quad \text{and} \quad s(γ_n) → s(γ).
\]

That is,

\[
π(γ_n) → π(γ) = (u, v).
\]

Since \(r \) is open, we can pass to a subsequence, relabel, and find \(η_n → γ \) with \(r(η_n) = r(γ_n) \). Then \(η_n^{-1}γ_n \) makes sense and \(π(η_n^{-1}γ_n) → (v, v) \). By taking a wandering neighborhood \(U \) of \(v \), we can pass to a subsequence, relabel, and assume that \(η_n^{-1}γ_n → β \) with \(β ∈ G |_{[v]} \). But then \(γ_n → γβ \) as needed.
Now suppose G is proper. Since G is locally compact, Lemma 7.2 tells us that G is Cartan. We must show that G^0/G is Hausdorff. It suffices to show that limits of convergent nets are unique.

Suppose $\{x_n\} \in G^0$ and

$$[x_n] \to [u] \quad \text{and} \quad [x_n] \to [v].$$

Notice that the quotient map

$$q : G^0 \to G^0/G$$

is open. This is true because $q(U) = s(r^{-1}(U))$ for any open set $U \in G^0$ and r and s are continuous and open. Thus using Proposition 2.13.2 of [4], we can pass to a subnet, relabel, and assume that x_n converges to x in G^0 and that there are $\{v_n\} \subset G^0$ such that $[v_n] = [x_n]$ with v_n converging to some v. Similarly, we can find $\{u_n\} \subset G^0$ such that $[u_n] = [x_n] = [v_n]$.

Let $\gamma_n \in G$ be such that $r(\gamma_n) = u_n$ and $s(\gamma_n) = v_n$. If K is a compact neighborhood of u and v, then $\{\gamma_n\}$ is eventually in the compact set $\pi^{-1}(K,K)$. Thus we can pass to a subnet, relabel, and assume that γ_n converges to γ in G. But then $(\gamma) = u$ and $s(\gamma) = v$. That is $[u] = [v]$. \hfill \blacksquare

Because of the correspondence between open saturated subsets and ideals, saturated sets give us a key to the structure of $C^*(G)$. For Cartan groupoids, we can take the saturation of wandering neighborhoods and see that in addition to getting a saturated set, some of the useful properties of wandering neighborhoods are preserved.

Lemma 7.7. Suppose G is a principal Cartan groupoid and U is an open wandering neighborhood. Let $V := [U]$ be the saturation of U. Then $V/G|_V$ and $U/G|_U$ are homeomorphic.

Proof. Suppose that

$$q_U : U \to U/G|_U \quad \text{and} \quad q_V : V \to V/G|_V$$

are the corresponding quotient maps for the orbit spaces for $G|_U$ and $G|_V$. Now consider the map

$$f : U/G|_U \to V/G|_V \quad \text{so that} \quad f(q_U(x)) = q_V(x)$$

for $x \in U$. We will show f is a homeomorphism. Clearly, f is well defined.

Suppose

$$q_V(x_1) = q_V(x_2) \quad \text{where} \quad x_1, x_2 \in U.$$

This means there exist $\gamma \in G|_V$ so that $r(\gamma) = x_1$ and $s(\gamma) = x_2$. Since we know x_1 and x_2 are in U, $\gamma \in G|_U$. Therefore

$$q_U(x_1) = q_U(x_2)$$

and f is injective.
Now let \(q_V(y) \in V/G|_V \). Since \(y \in V \) and \(V = [U] \), \(y \) is in the orbit of \(x \) for some \(x \in U \). This means that \(q_V(y) = q_V(x) = f(q_U(x)) \) and \(f \) is surjective.

Suppose that \(\{q_U(x_n)\} \) converges to \(q_U(x) \). We must show that \(\{q_V(x_n)\} \) converges to \(q_V(x) \). Suppose the contrary. Thus we can find a neighborhood, \(W \), of \(q_V(x) \) for which there is a subsequence which we relabel and assume \(\{q_V(x_n)\} \notin W \) for all \(n \). Because \(\{q_U(x_n)\} \) converges to \(q_U(x) \), and \(q_U \) is an open map, it follows from Proposition 2.13.2 in [4] that we can find a sequence \(\{y_n\} \) and a subsequence of \(\{x_n\} \) and relabel so that \(y_n \to x \) and \([y_n] = [x_n] \) in \(U \). Therefore \(q_V(y_n) = q_V(x_n) \) for all \(n \) and, since \(q_V \) is continuous, \(\{q_V(x_n)\} \) converges to \(q_V(x) \). This is a contradiction; thus \(f \) is continuous.

Suppose \(q_V(u_n) \to q_V(u) \) where we can suppose that each \(u_n \) as well as each \(u \) belong to \(U \). Since \(q_V \) is open, we can pass to a subsequence, relabel, and assume that there are \(v_n \) in \(V \) such that \(q_V(v_n) = q_V(u_n) \) and \(v_n \to u \). Since \(U \) is open, we eventually have each \(v_n \in U \). Since \(q_U \) is continuous, for large \(n \), \(q_U(v_n) \to q_U(u) \). It follows from Proposition II.13.2 in [4] that \(f \) is open.

Lemma 7.8. Suppose \(V \) is the saturation of an open wandering set, then \(G|_V \) is proper.

Proof. Because \(G \) is a Cartan groupoid, \(G|_V \) is also a Cartan groupoid. Thus, to show that \(G|_V \) is proper, it suffices to show that the orbit space, \(V/G|_V \), is Hausdorff. From Lemma 7.2, we know that \(G|_U \) is proper, thus by Lemma 7.6, \(U/G|_U \) is Hausdorff. But Lemma 7.7 tells us that \(U/G|_U \cong V/G|_V \). Therefore \(V/G|_V \) is also Hausdorff.

With this newly defined structure of a Cartan groupoid, we have the machinery to generalize Theorem 1.4.

Theorem 7.9. Suppose \(G \) is a principal groupoid. Then \(G \) is a Cartan Groupoid if and only if \(A = C^*(G) \) is a Fell algebra.

Proof. Suppose \(G \) is a Cartan groupoid. We must show that for every irreducible representation, \(\pi \) of \(A \), \(\pi \) is a Fell point of \(\hat{A} \). Let \(x \in C^0 \) and \(U \) be an open wandering neighborhood of \(x \). Let \(V \) be the saturation of \(U \) which is also open.

Since \(G \) is a Cartan groupoid, the orbits of \(G \) are closed by Lemma 7.4. Therefore \(C^0/G \cong \hat{A} \) by Proposition 3.8. Let \(\pi \) be the representation of \(A \) that corresponds to \([x] \).

Since \(V \) is a saturated open subset of \(G \), Lemma 2.10 of [13] tells us \(C^*(G|_V) \) is an ideal in \(A \). Thus \(\pi \) is an irreducible representation of \(C^*(G|_V) \). Also, from Lemma 7.8, we know that \(G|_V \) is a principal proper groupoid; thus Theorem 2.3 of [12] tells us that the ideal \(C^*(G|_V) \) has continuous-trace. We know continuous-trace \(C^*-\)algebras are Fell algebras, thus \(\pi \) is a Fell point of the open subset \(C^*(G|_V)^\wedge \) of \(\hat{A} \) which means \(\pi \) is a Fell point of \(\hat{A} \) also.
Now suppose A is a Fell algebra. Let $x \in G^0$. We must show x has a wandering neighborhood.

Since A is CCR, $G^0 / G \cong \hat{A}$ by Corollary 4.2.

Let π_x be the representation corresponding to $[x]$. Since π_x is a Fell point, from Corollary 3.4 in [1] we know it has an open Hausdorff neighborhood in \hat{A}. This neighborhood is of the form \hat{J} where J is an ideal of A. We also know from Lemma 6.1 that

$$J \cong C^*(G|_V)$$

for some open, saturated subset V of G^0. Notice that $x \in V$.

Since J has Hausdorff spectrum and is a Fell algebra, J has continuous-trace. Therefore by Theorem 2.3 of [12], $G|_V$ is proper. Thus, we know from Lemma 7.2 that every compact subset of V is wandering.

Let N be a compact neighborhood of x in V. Therefore N is a wandering neighborhood of x in G^0.

The proof of the following corollary is trivial in the transformation group case; however it requires much of the machinery established thus far to prove it in the groupoid case.

Corollary 7.10. Suppose G is a principal groupoid. If $x \in G^0$ has a wandering neighborhood and $y \in [x]$, then y has a wandering neighborhood.

Proof. Let U be an open wandering neighborhood of x. We know that $G|_{[U]}$ is proper. Therefore $C^*(G|_{[U]})$ has continuous-trace which means it is a Fell algebra. Thus by Theorem 7.9, $G|_U$ is a Cartan groupoid. So we know every element of $[U]$ has a wandering neighborhood in $[U]$, therefore, every element has a wandering neighborhood in G^0.

Corollary 7.11. Let G be a principal groupoid so that $C^*(G)$ is GCR. The largest Fell ideal of $C^*(G)$ is $C^*(G|_Y)$ where

$$Y = \{ x \in G^0 : \text{there exists a wandering neighborhood of } x \}.$$

Proof. Since G is principal and $C^*(G)$ is GCR, by Lemma 6.1 we know every closed ideal is of the form $C^*(G|_Y)$ for some open G-invariant subset $Y \subseteq G^0$. From Corollary 7.10 we see that the Y defined above is G-invariant. Also notice that Y is open. Now apply Theorem 7.9 and we see that $C^*(G|_Y)$ is a Fell algebra and that any ideal that is also a Fell algebra, must be contained in $C^*(G|_Y)$.

Acknowledgements. This research was done as part of the author’s Ph.D. Dissertation at Dartmouth College under the direction of Dana P. Williams. Thank you to Dana for his continued support.
REFERENCES

LISA ORLOFF CLARK, DEPARTMENT OF MATHEMATICAL SCIENCES, SUSQUEHANNA UNIVERSITY, SELINSGROVE, PA 17870, USA

E-mail address: clarklisa@susqu.edu

Received April 4, 2005.