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1. INTRODUCTION

The first examples of what are now termed Kirchberg algebras were intro-
duced in Cuntz’s 1977 paper [3]. (Following [13] we use the term Kirchberg algebra
for a separable nuclear simple purely infinite C∗-algebra.) The brilliance of those
examples led to huge advances in the field of C∗-algebras, as well as deep con-
nections with other areas of mathematics. In a series of papers Cuntz isolated and
studied the key property of pure infiniteness and its ramifications for K-theory (we
refer to [13] for a detailed bibliography). This study was carried further by many
mathematicians, notably Rørdam and Kirchberg. The culmination was the classi-
fication theorem of Kirchberg [6], also proved independently by Phillips [10]: the
Kirchberg algebras satisfying the universal coefficient theorem are classified by
K-theory.

Kirchberg algebras arise in many different contexts. As a result of the clas-
sification theorem, examples from different situations may be identified by com-
puting K-theory (see [9] for an example involving dynamical systems). Alterna-
tively, to prove a theorem about Kirchberg algebras in general, one can choose
a suitable realization that lends itself to the problem at hand. One of the most
useful of these has been the C∗-algebras defined by directed graphs. This idea
was implicitly present in Cuntz’s original paper, and for finite irreducible graphs
was explicit in the papers [5], [4]. The development for arbitrary directed graphs
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began with the article [8], and has grown to be a mini-industry in itself (see [11]
for a comprehensive survey).

There have been few applications of graph algebras to the study of Kirch-
berg algebras. We mention Szymański’s proof [18] that any Kirchberg algebra
with free K1-group can be realized as the C∗-algebra of an irreducible row-finite
graph, and the proof in [15] that Kirchberg algebras having finitely generated K-
theory and free K1-group are semiprojective (in the sense of Blackadar). Graph
algebras are particularly well-suited for such arguments in that they are defined
by generators and simple, highly flexible relations. Their defect is clear in the
above-mentioned theorems — graph C∗-algebras have free K1-groups, and hence
cannot be used to model general Kirchberg algebras. More recently, Kumjian and
Pask have introduced a notion of higher-rank graphs, or k-graphs, and their C∗-
algebras. These have many features in common with ordinary (or 1-) graphs,
and allow for more general K1-groups. However they are much less flexible than
1-graphs, and the theory has not yet been developed as extensively.

In this paper we present examples of hybrid objects mixing elements of k-
graphs of different ranks. While a general treatment seems beyond current tech-
nique (and perhaps not worth the considerable effort), the special situation devel-
oped here allows us to model arbitrary Kirchberg algebras with the same flexibil-
ity exhibited by ordinary graph algebras. In particular, we use this construction in
[16] and [17] to prove interesting properties of general (UCT) Kirchberg algebras:

(i) any prime-order automorphism of the K-theory of a UCT Kirchberg al-
gebra is induced from an automorphism of the algebra having the same order
(generalizing work of [2]);

(ii) a UCT Kirchberg algebra is weakly semiprojective if and only if its K-
groups are direct sums of cyclic groups.

We hope that the interest of these applications will justify the work required
to establish these models.

The rest of the paper is organized as follows. We conclude the Introduction
by recalling the basic notions of graph C∗-algebras in a form convenient for our
purposes. In part two we construct the hybrid object underlying our algebras,
and use it to define an r-discrete groupoid whose unit space is an appropriate set
of paths. We remark that because the underlying object is not “row-finite,” the
paths we use may be finite, infinite, or semi-infinite. In part three we give gener-
ators and relations for the C∗-algebra of this groupoid, prove the gauge-invariant
uniqueness theorem, and show that the C∗-algebra we have constructed is a UCT
Kirchberg algebra. Finally in part four we compute the K-theory of the algebra,
showing that it is equal to the direct sum of the K-theory of tensor products of
the ordinary graph algebras used in the construction of the underlying object. It
is here that the flexibility inherent in graph algebras may be used to construct our
models of Kirchberg algebras with arbitrary K-theory.
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We now briefly recall the main facts about (ordinary) graph algebras (see
[14]). A directed graph E consists of two sets, E0 (the vertices) and E1 (the edges),
together with two maps o, t : E1 → E0 (origin and terminus). A path of length n in E
is a string e1e2 · · · en of edges with t(ei) = o(ei+1), 1 6 i < n. We let En denote the
set of paths of length n, and E∗ the set of all finite paths; the origin and terminus
maps extend to E∗ in the obvious way. For a vertex a ∈ E0 we use the notation
En(a), respectively E∗(a), for the set of paths in E of length n, respectively of
arbitrary length, with origin a. We let O(E) denote the C∗-algebra of E. It is the
universal C∗-algebra defined by generators {Pa|a ∈ E0} and {Se|e ∈ E1} with the
Cuntz-Krieger relations:

(i) {Pa|a ∈ E0} are pairwise orthogonal projections.
(ii) S∗e Se = Pt(e), for e ∈ E1.

(iii) o(e) = o( f ) =⇒ SeS∗e + S f S∗f 6 Po(e), for e, f ∈ E1 with e 6= f .

(iv) 0 < # E1(a) < ∞ =⇒ Pa = ∑{SeS∗e |o(e) = a}, for a ∈ E0.
(These are a variant of the relations given in Theorem 2.21 of [14].)

The relationship between the C∗-algebras of a graph and a subgraph are
crucial to our methods. We refer to [14]. The results are as follows. Let E be a
graph and let F be a subgraph of E. We let S = S(F) be the set of vertices in F0

that do not emit more edges in E than in F. We let T O(F, S) denote the relative
Toeplitz Cuntz-Krieger algebra of F in E. It is the universal C∗-algebra defined
by generators {Pa|a ∈ F0} and {Se|e ∈ F1} with the relations (as above) for O(F),
modified by requiring the fourth relation only if a ∈ S. Then T O(F, S) is the C∗-
subalgebra ofO(E) generated by the projections and partial isometries associated
to the vertices and edges of F ([14], Theorem 2.35).

2. GROUPOID MODELS FOR KIRCHBERG ALGEBRAS

We will construct models for Kirchberg algebras by using a mixture of di-
rected 1-graphs and k-graphs, as studied by Kumjian and Pask in [7]. Since nei-
ther the results of [7] nor of [14] directly apply in this situation, we will carry
out the necessary constructions in detail. Our models will consist of a sequence
of product k-graphs connected to each other by (ordinary) 1-graphs. In fact, all
details of the argument are already present in the case of two product graphs of
rank 2, and it is this case that we will treat. The argument in the general case
is essentially identical to the one we will give. (We remark that in the general
case one may attach other product k-graphs to u0 in the same way that E1 × F1 is
attached in what follows.)

DEFINITION 2.1. Let D be the graph with

D0 = {u0, u1, a0, a1}, D1 = {α0, α1 β0, . . . , ε1}

(see Figure 1).
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For i = 0, 1 let Ei and Fi be irreducible graphs. Let Li, respectively Mi,
denote the set of vertices in E0

i , respectively F0
i , emitting infinitely many edges.

We assume that Li and Mi are nonempty. We choose distinguished elements vi ∈
Li and wi ∈ Mi. We attach the 2-graphs Ei × Fi to the graph D by identifying
ui ∈ D0 with (vi, wi) ∈ E0

i × F0
i . The entire object comprising D, E0 × F0, and

E1 × F1 will be denoted Ω.

DEFINITION 2.2. By a vertex we mean an element of⋃
i

(E0
i × F0

i ) ∪ D0,

where we identify ui and (vi, wi). By an edge we mean an element of( ⋃
i

(E1
i × F0

i ) ∪ (E0
i × F1

i )
)
∪ D1.

DEFINITION 2.3. A finite path element of type D is a finite directed path in D
of non-zero length. An infinite path element of type D is either an infinite directed
path in D, or a finite path element of type D which terminates at u0 or u1. A finite
path element of type (Ei, Fi) is an ordered pair (p, q) ∈ E∗i × F∗i such that p, q are not
both of length zero. An infinite path element of type (Ei, Fi) is an ordered pair (p, q),
where p, respectively q, is either an infinite path or a finite path terminating in Li,
respectively in Mi, in Ei, respectively Fi, and p, q are not both of length zero.

For a path element (p, q) of type (Ei, Fi) we define origin and terminus by

o(p, q) = (o(p), o(q)), t(p, q) = (t(p), t(q)).

If (p, q) and (p′, q′) are path elements of type (Ei, Fi) we say that (p, q) extends
(p′, q′) if p extends p′ and q extends q′ in the usual sense of paths in a directed
graph.
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A finite path is either a vertex, or a finite string µ1 · · · µk of finite path ele-
ments such that:

(i) t(µi) = o(µi+1), and
(ii) µi and µi+1 are of different types.

An infinite path is either a vertex in Li × Mi, an infinite string of finite path el-
ements satisfying the conditions (i) and (ii) above, or a finite sequence µ1 · · · µk+1
such that:

(iii) µ1 · · · µk is a finite path;
(iv) µk+1 is an infinite path element;
(v) (i) and (ii) above hold.

We let X denote the set of all infinite paths. We will use the notation µ � ν to
indicate that the path ν extends the path µ.

We wish to define a topology on X making it a locally compact metrizable
space. First we will define the length function on paths.

DEFINITION 2.4. We define ` : {finite paths} → Z2
+ by

`(µ) =


(0, 0) if µ is a vertex,
(`(p), `(p)) if µ = p is a finite path element of type D,
(`(p), `(q)) if µ = (p, q) is a finite path element of type (Ei, Fi).

(In the right hand side above we have used the symbol ` also for the usual length
function on paths in a 1-graph. There should be no confusion resulting from this
usage.) If µ = µ1 · · · µk is a finite path, we define

`(µ) =
k

∑
i=1

`(µk).

We also will use the extension of ` to infinite paths, with values in (Z+ ∪ {∞})2,
defined in the obvious way.

LEMMA 2.5. ` is additive with respect to concatenation of paths.

Proof. The proof is left to the reader.

DEFINITION 2.6. Let µ = µ1µ2 · · · µr be a finite path, decomposed as a string
of finite path elements satisfying Definition 2.3(i) and (ii). We write |µ| = r, the
number of finite path elements in µ.

We wish to define a groupoid having X as its unit space. Since Ω is not a
higher rank graph, the space of paths does not have the factorization property
(Definition 1.1 of [7]). However we do have the following simple observation.

LEMMA 2.7. Let µ and µ′ be finite paths, and let x, x′ be infinite paths, with
µx = µ′x′. Let m = `(µ) ∨ `(µ′). (Here ∨ represents the usual lattice join in Z2.) Then
there is a factorization µx = νy with `(ν) = m.
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Proof. The proof is accomplished by an easy induction on max{|µ|, |µ′|}.

DEFINITION 2.8. Let µ = µ1 · · · µk be a finite path decomposed as a string
of finite path elements satisfying Definition 2.3(i) and (ii). Let

Z(µ) = {σ1σ2 · · · ∈ X : σi = µi for i < k, µk � σk}.

We define certain subsets of Z(µ).

V(µ) =

{
Z(µ) if t(µ) 6∈ {u0, u1},
Z(µ) \ Z(µαi) \ Z(µεi) if t(µ) = ui.

If t(µ) = (y, z) ∈ E0
i × F0

i , let B ⊆ E1(y) and C ⊆ F1(z) be finite subsets such that
if y 6∈ Li then B = ∅, and if z 6∈ Mi then C = ∅. Then we define:

V(µ; B, C) = V(µ) \
⋃
e∈B

Z(µ(e, z)) \
⋃
f∈C

Z(µ(y, f ))

(where µ(e, z) and µ(y, f ) are the concatenations of the path µ with the edges (e, z)
and (y, f )).

Note that for t(µ) ∈ E0
i × F0

i , V(µ) = V(µ; ∅, ∅). Also note that if t(µ) = ui
for some i, then every element of V(µ; B, C) \ {µ} extends µ farther into Ei × Fi.

REMARK 2.9. We mention that the topology we intend to define on X re-
quires that we be able to ‘block’ finitely many edges originating at a vertex of Ω
that emits infinitely many edges. This explains our use of the notation V(µ; B, C).
At a vertex emitting only finitely many edges, we can handle the situation by
considering explicitly the finitely many possible extensions by an edge. Since we
do not want to block all edges originating at such a vertex, we do not allow B
and/or C to be nonempty at such a vertex.

REMARK 2.10. We note the following disjoint unions of sets.
(i) If t(µ) = ui for some i, then

Z(µ) = V(µ) ∪V(µαi) ∪ Z(µεi).

(ii) If t(µ) = (y, z) ∈ E0
i × F0

i , then for B and C finite,

V(µ) = V(µ; B, C)

∪
⋃
{Z(µ(e, f )) : e ∈ B, f ∈ C}

∪
⋃
e∈B

V(µ(e, z); ∅, C)

∪
⋃
{V(µ(e, z)αi) ∪ Z(µ(e, z)εi) : e ∈ B, t(e, z) = ui}

∪
⋃
f∈C

V(µ(y, f ); B, ∅)
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∪
⋃
{V(µ(y, f )αi) ∪ Z(µ(y, f )εi) : f ∈ C, t(y, f ) = ui},

V(µ) = V(µ; B, ∅) ∪
⋃
e∈B

Z(µ(e, z)),

V(µ) = V(µ; ∅, C) ∪
⋃
f∈C

Z(µ(y, f )).

DEFINITION 2.11. We let B denote the collection of all V(µ; B, C) and Z(µ).
We let A denote the collection of all finite disjoint unions of sets in B (hence also
∅ ∈ A.)

LEMMA 2.12. The collections A and B have the following properties:
(i) ∅ 6∈ B.

(ii) B is countable.
(iii) A is a ring of sets.
(iv) The intersection of any decreasing sequence of sets in B is nonempty.

Proof. A bit of thought will likely convince the reader that this is elemen-
tary. However we have found the details slightly messy, and we warn that the
following is a bit of a slog. (i) and (ii) are clear. For (iii), we must show that if
A, A′ ∈ B then A ∩ A′, A \ A′ ∈ A. We will first deal with intersections. Let A,
A′ ∈ B. First suppose that A = Z(µ) and A′ = Z(µ′). If µ � µ′ then A ∩ A′ = A′.
So suppose that µ, µ′ are not comparable. We then have

µ = µ1 · · · µk−1µkσ, µ′ = µ1 · · · µk−1µ′kσ′,(2.1)

decomposed as a string of finite path elements satisfying Definition 2.3(i) and (ii),
where µk and µ′k are not equal (and if they are comparable, then σ, respectively σ′,
is present, according as µk, respectively µ′k is shorter). We have Z(µ)∩ Z(µ′) = ∅,
unless σ and σ′ are absent, µk and µ′k are of type (E, F), and

µk = µ̃(e1 · · · em, z), µ′k = µ̃(y, f1 · · · fn),(2.2)

with m and n both nonzero. In this case Z(µ) ∩ Z(µ′) = Z(µ′′), where

(2.3) µ′′ = µ1 · · · µk−1µ̃(e1 · · · em, f1 · · · fn).

Next suppose that A = V(µ; B, C) and A′ = Z(µ′). First consider the situa-
tion where µ and µ′ are comparable. If µ′ � µ, then we have A ⊆ Z(µ) ⊆ A′. If
µ � µ′, write µ and µ′ as

µ = µ1 · · · µk, µ′ = µ1 · · · µk−1µ′kσ1 · · · σj, µ′k = µkµ̃.(2.4)

There are two cases.

Case (i). Suppose that µk = µ′k. Then we must have j > 0. If σ1 is of type
D then V(µ; B, C) ⊆ V(µ), while Z(µ′) ⊆ Z(µαi) ∪ Z(µεi) for some i. Hence
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A ∩ A′ = ∅ (Remark 2.10(i)). If σ1 is of type (E, F) then we have

A ∩ A′ =

{
Z(µ′) if σ1 obeys the restrictions imposed by B and C,
∅ otherwise.

Case (ii). Suppose that µk � µ′k. If µk and µ′k are of type D then we have

A ∩ A′ =

{
A′ if t(µ) ∈ {a0, a1},
∅ otherwise,

for the same reason as in Case (i). If µk and µ′k are of type (E, F) we assume that
µ̃ obeys the restrictions imposed by B and C (since otherwise we would have
A ∩ A′ = ∅). If j > 0 or if `(µ̃) > (1, 1) then A′ ⊆ A. Otherwise we have j = 0
and `(µ̃) = (m, n) with exactly one of m, n equal to zero. For definiteness suppose
n = 0. Then

A ∩ A′ =

{
V(µ′; ∅, C) if t(µ′) 6∈ {u0, u1},
V(µ′; ∅, C) ∪V(µ′αi) ∪ Z(µ′εi) if t(µ′) = ui for some i.

Now consider the situation where µ and µ′ are not comparable. Write µ and
µ′ as in (2.1). Since A ⊆ Z(µ), we have A ∩ A′ = ∅ unless we are in the situation
of (2.2). In this case let µ′′ be as in (2.3). We have

A ∩ A′ = V(µ; B, C) ∩ Z(µ′) = V(µ; B, C) ∩ Z(µ′′)

=


∅ if f1 ∈ C,
V(µ′′; B, ∅) if f1 6∈ C, t(µ′′) 6∈ {u0, u1},
V(µ′′; B, ∅) ∪V(µ′′αi) ∪ Z(µ′′εi) if f1 6∈ C, t(µ′′) = ui, some i.

Finally we let A = V(µ; B, C) and A′ = V(µ′; B′, C′). Again, we first con-
sider the situation where µ and µ′ are comparable. If µ = µ′ then we have

A ∩ A′ = V(µ; B ∪ B′, C ∪ C′).

Suppose now that µ � µ′. Write µ and µ′ as in (2.4). There are two cases.

Case (iii). Suppose that µk = µ′k. Then j > 0. If σ1 is of type D then A∩ A′ =
∅, since A′ ⊆ Z(µ′). If σ1 is of type (E, F), and if `(σ1, . . . , σj) > (1, 1), then

A ∩ A′ =

{
A′ if σ1 obeys the restrictions imposed by B and C,
∅ otherwise.

If j = 1 and `(σ1) = (m, n) where exactly one of m, n is nonzero, suppose without
loss of generality that n = 0. Then

A ∩ A′ =

{
V(µ′; B′, C ∪ C′) if σ1 obeys the restrictions imposed by B and C,
∅ otherwise.
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Case (iv). (This case is nearly identical to the earlier Case (ii).) Suppose that
µk � µ′k. If µk and µ′k are of type D then we have

A ∩ A′ =

{
A′ if t(µ) ∈ {a0, a1},
∅ otherwise.

If µk and µ′k are of type (E, F) we assume that µ̃ obeys the restrictions imposed by
B and C (since otherwise we would have A ∩ A′ = ∅). If j > 0 or if `(µ̃) > (1, 1)
then A′ ⊆ A. Otherwise we have j = 0 and `(µ̃) = (m, n) with exactly one of m,
n equal to zero. For definiteness suppose n = 0. Then

A ∩ A′ = V(µ′; B′, C ∪ C′).

Now consider the case where µ and µ′ are not comparable. Write µ and µ′

as in (2.1). As before, A ∩ A′ = ∅ unless we have (2.2) with σ and σ′ absent. In
this case we have

A ∩ A′ = V(µ′′, B, C′),

where µ′′ is as in (2.3). This finishes the proof that A is closed under intersections.
We now show that A \ A′ ∈ A. We first suppose that A = Z(µ) and A′ =

Z(µ′). If µ � µ′ let µ and µ′ be as in (2.4). We have a disjoint union:

A \ A′ = (Z(µ) \ Z(µµ̃)) ∪
⋃

06i<j

(Z(µµ̃σ1 · · · σi) \ Z(µµ̃σ1 · · · σi+1)).

Thus it suffices to consider Z(τ) \ Z(τσ). If σ = e1 · · · em is of type D, then Z(τ) \
Z(τσ) =

⋃
06i<m

(Z(τe1 · · · ei) \ Z(τe1 · · · ei+1)), and for e ∈ D1 we have

Z(τ) \ Z(τe) =

{
V(τ) ∪ Z(τe′) if t(τ) = ui, where {e′} = {αi, εi} \ {e},⋃
{Z(τ f ) : f ∈ {βi, γi, δi} \ {e}} if t(τ) = ai.

If σ = (e1 · · · em, f1 · · · fn) is of type (E, F), then

Z(τ) \ Z(τσ)

=
⋃
{V(τναi) ∪ Z(τνεi) : o(σ) � ν � σ, t(ν) = ui, i ∈ {0, 1}}

∪ {V(τ(e1 · · · ei, f1 · · · f j); {ei+1}, { f j+1}) :

0 6 i 6 m, 0 6 j 6 n, i + j < m + n},

(2.5)

where in the second term we let {em+1} and { fn+1} denote the empty set.
If µ and µ′ are not comparable, an earlier part of the proof implies that A ∩

A′ = ∅ unless µ and µ′ are as in (2.1) and (2.2), with σ and σ′ absent. Then

A \ A′ =
⋃

06j<n

Z(µ(y, f1 · · · f j)) \ Z(µ(y, f1 · · · f j+1)),

and the differences in the above union are treated by (2.5).
Next suppose that A = V(µ; B, C) and A′ = Z(µ′). We have a disjoint union:

A′ \ A = (Z(µ′) \ Z(µ)) ∪ (Z(µ′) ∩ (Z(µ) \V(µ; B, C))).
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We have already proved that the first piece is in A. We see by Remark 2.10 that
Z(µ) \V(µ; B, C) ∈ A. Thus A′ \ A ∈ A by what we have proved for intersections
of sets in B. A similar argument applies to A \ A′ in view of A \ A′ = (Z(µ) \
Z(µ′)) ∩ V(µ; B, C). In the case A = V(µ; B, C) and A′ = V(µ′; B′, C′), a similar
argument together with the above case applies:

A \ A′ = (Z(µ) \V(µ′; B′, C′)) ∩V(µ; B, C).

This completes the proof of item (iii) of the lemma.
Finally we prove (iv). Let A1 ⊇ A2 ⊇ · · · , with Ai = V(µi; Bi, Ci) or Z(µi).

From the proof of (iii) we have that µ1 � µ2 � · · · . Then x = lim
i

µi ∈
∞⋂
1

Ai.

LEMMA 2.13. Let E ⊆ A have the finite intersection property. Then
⋂
E 6= ∅.

Proof. Since A is countable, we may list the elements of E as A1, A2, . . ..

Thus our assumption on E takes the form
p⋂

i=1
Ai 6= ∅ for all p. We will construct

elements A′
1, A′

2, . . . ∈ B such that A′
i ⊆ Ai and A′

1 ⊇ A′
2 ⊇ · · · . Then the lemma

will follow by Lemma 2.12(iv).

Let A1 =
k1⋃

j=1
A1j be written as a disjoint union of elements of B. We claim

that there exists j1 such that for all p > 2, A1,j1 ∩
p⋂

i=2
Ap 6= ∅. For if not, then for all

j = 1, . . ., k1 there exists pj such that A1j ∩
pj⋂

i=2
Ai = ∅. Let p = max{p1, . . . , pk1

}.

Then A1j ∩
p⋂

i=2
Ai = ∅ for j = 1, . . ., k1. Hence A1 ∩

p⋂
i=2

Ai = ∅, a contradiction.

We set A′
1 = A1,j1 .

Now suppose inductively that we have found A′
1, A′

2, . . ., A′
n−1 ∈ B such

that A′
i ⊆ Ai, A′

i−1 ⊇ A′
i, and A′

n−1 ∩
p⋂

i=n
Ai 6= ∅, p > n. For i > n let A′′

i =

Ai ∩ A′
n−1. Then A′′

i ⊆ A′
n−1 and

p⋂
i=n

A′′
i 6= ∅ for all p > n. Let A′′

n =
kn⋃

j=1
A′′

nj be

written as a disjoint union of elements of B. We claim that there exists jn such that

for all p > n + 1, A′′
n,jn ∩

p⋂
i=n+1

A′′
i 6= ∅. For suppose not. Then for all j = 1, . . .,

kn there exists pj > n + 1 such that A′′
nj ∩

pj⋂
i=n+1

A′′
i = ∅. Let p = max

16j6kn
{pj}. Then

A′′
n,j ∩

p⋂
i=n+1

A′′
i = ∅ for j = 1, . . ., kn. Hence A′′

n ∩
p⋂

i=n+1
A′′

i = ∅, a contradiction.

Therefore jn exists as claimed, and we set A′
n = A′′

n,jn .
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LEMMA 2.14. The collection, B, of Definition 2.11, is a base for a locally compact
metrizable topology on X.

Proof. It follows from Lemma 2.12(ii) and (iii) that B is a base for a second
countable topology on X. Thus metrizability will follow from local compactness
and the Hausdorff property. To establish local compactness we must show that if
A ∈ B is covered by U ⊆ B, then A is finitely covered by U . Suppose not. Then
for every finite subcollection F ⊆ U ,

A \
⋃

F =
⋂

U∈F
(A \U) 6= ∅.

Let E = {A \ U|U ∈ U} ⊆ A. Since E has the finite intersection property,
Lemma 2.13 implies that

⋂
E 6= ∅. But

⋂
E = A \

⋃
U = ∅, a contradiction.

To verify the Hausdorff property, let x 6= x′ in X. If x and x′ are comparable,
say x � x′. Then there exists a finite path element µ such that µ � x and µ � x′.
Then Z(µ) and Z(o(x)) \ Z(µ) are disjoint neighborhoods of x and x′. If x and
x′ are not comparable, write x = νx1 and x′ = νx′1, where x1 and x′1 have no
common nonzero initial subpath. Let ν1 and ν′1 be nonzero initial finite subpaths
of x1 and x′1. Then Z(νν1) and Z(νν′1) \ Z(νν1) are disjoint neighborhoods of x
and x′.

DEFINITION 2.15. Let G be the set of triples (x, n, y) in X×Z2 ×X such that
there exists z ∈ X and decompositions x = µz, y = νz with `(µ)− `(ν) = n.

LEMMA 2.16. G is a groupoid with the operations

(x, n, y)(y, m, z) = (x, n + m, z), (x, n, y)−1 = (y,−n, x).

Proof. It suffices to show that if (x, n, y) and (y, m, z) are in G then so are
(x, n + m, z) and (y,−n, x). It is clear that (y,−n, x) ∈ G. Let x = µζ, y = νζ =
ν′ζ ′, and z = σζ ′, where ζ, ζ ′ ∈ X and µ, ν, ν′, σ are finite paths with `(µ) −
`(ν) = n and `(ν′) − `(σ) = m. Applying Lemma 2.7 to the equality νζ = ν′ζ ′

we have a decomposition νζ = λξ, where ξ ∈ X and λ is a finite path such that
`(λ) = `(ν) ∨ `(ν′). Then λ = νη = ν′η′ for some finite paths η and η′. We obtain

νζ = λξ = νηξ, so ζ = ηξ, ν′ζ ′ = λξ = ν′η′ξ, so ζ ′ = η′ξ.

Then x = µζ = µηξ, z = σζ ′ = ση′ξ, and

`(µη)− `(ση′) = `(µ) + `(η)− `(η′)− `(σ)

= `(µ) + `(ν′)− `(ν)− `(σ), since νη = ν′η′,

= n + m.

DEFINITION 2.17. Consider the collection of subsets of G of the forms

U(µ1, µ2) = (Z(µ1)× {`(µ1)− `(µ2)} × Z(µ2)) ∩ G,

U0(µ1, µ2; B, C) = (V(µ1; B, C)× {`(µ1)− `(µ2)} ×V(µ2; B, C)) ∩ G,
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where µ1, µ2 are finite paths with t(µ1) = t(µ2), and B, C are as in Definition 2.8.
We will also write U0(µ1, µ2) for U0(µ1, µ2; ∅, ∅). It is easy to check that this
collection is a base (of compact-open G-sets) for a locally compact, Hausdorff,
totally disconnected topology making G into an r-discrete groupoid. The map
c : (x, n, y) ∈ G 7→ n ∈ Z2 is clearly a continuous cocycle.

LEMMA 2.18. G is topologically free, minimal, and locally contractive.

Proof. The proof is virtually identical to the (easy) proofs for graph algebras
in [14].

COROLLARY 2.19. C∗
r (G) is simple and purely infinite.

Proof. This follows from [12] and [1] (see also [9]).

We next define the gauge action of T2 on C∗(G). We will use the notation
ζm, m ∈ Z2, for the characters of T2: ζm(z) = zm1

1 zm2
2 .

DEFINITION 2.20. The gauge action α : T2 → Aut(C∗(G)) is dual to the
cocycle c. Thus for f ∈ Cc(G), αz( f )(g) = ζc(g)(z) f (g).

3. GENERATORS AND RELATIONS

For a finite path µ we let sµ ∈ Cc(G) denote the partial isometry

sµ = χU(µ,t(µ)).

LEMMA 3.1. C∗(G) is generated by the set of all sµ. Moreover, if t(µ1) = o(µ2)
then sµ1µ2 = sµ1 sµ2 .

Proof. We first note that

U(µ1, µ2) = U(µ1, t(µ1)) ·U(µ2, t(µ2))−1,

so that χU(µ1,µ2) = sµ1 s∗µ2
. From Remark 2.10(i) we have

χU0(µ,t(µ)) =

{
sµ if t(µ) 6∈ {u0, u1},
sµ − sµαi − sµεi if t(µ) = ui.

It follows from Remark 2.10(ii) that χU0(µ,t(µ);B,C) is in the span of the sµ. Fi-
nally we note that U0(µ1, µ2; B, C) = U0(µ1, t(µ1); B, C) · U0(µ2, t(µ2); B, C)−1,
and hence that χU0(µ1,µ2;B,C) = χU0(µ1,t(µ1);B,C) · (χU0(µ2,t(µ2);B,C))∗ is in the span
of the sµ.

The last claim follows from the fact that

U(µ1µ2, t(µ2)) = U(µ1, t(µ1)) ·U(µ2, t(µ2)).

In the sequel we will let A denote C∗(G). We wish to give a presentation of
A by generators and relations. For this we recall the hybrid graph structure of Ω
given in Definition 2.2.
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DEFINITION 3.2. We write

Ω(i,j) = {µ a finite path : `(µ) = (i, j)}

(cf. Definition 2.3). Thus Ω(0,0) is the set of vertices in Ω, while the set of edges is
Ω(1,0) ∪Ω(0,1) ∪ D1. We write

Ω∗ =
⋃
i,j

Ω(i,j)

for the set of all finite paths. For x ∈ Ω(0,0) we will write Ω(i,j)(x) = {µ ∈ Ω(i,j) :
o(µ) = x}.

We remark that this notation is patterned on that of [7]. Note that the “ori-
gin” of a path in a graph corresponds to its “range” when it is thought of as a
morphism in a small category.

DEFINITION 3.3. We let S denote the set of symbols

{Px| x is a vertex} ∪ {Sy| y is an edge}.

We let R denote the following set of relations on S :

(i) Px is a projection for every vertex x, Sy is a partial isometry for every edge y.
(ii) For every a ∈ E0

i , the projections for {a} × F0
i and the partial isometries for

{a} × F1
i satisfy the Cuntz-Krieger relations corresponding to the graph Fi (see

the discussion at the end of the Section 1).
(ii’) For every b ∈ F0

i , the projections for E0
i × {b} and the partial isometries for

E1
i × {b} satisfy the Cuntz-Krieger relations corresponding to the graph Ei.
(iii) The projections for D0 and the partial isometries for D1 satisfy the Toeplitz-

Cuntz-Krieger relations corresponding to the graph D and the vertices {a0, a1}.
(iv) If µ and ν are edges of types D and Ei × Fi, respectively, then S∗µSν = 0.
(v) (2-graph structure of Ei × Fi.) For all e ∈ E1

i and f ∈ F1
i we have

S(o(e), f ) S(e,t( f )) = S(e,o( f )) S(t(e), f ), S(t(e), f ) S∗(e,t( f )) = S∗(e,o( f )) S(o(e), f ).

We let Θ = C∗〈S ,R〉 denote the universal C∗-algebra given by these genera-
tors and relations. For a finite path written as a product of edges: µ = y1y2 · · · yk,
we let Sµ denote the product Sy1 Sy2 · · · Syk (it follows from the relation (v) that
this is unambiguous). It is easily seen from Definition 2.8 and Definition 2.17 that
Sµ 7→ sµ determines a surjective ∗-homomorphism, π, of Θ onto A. We will show
below (Corollary 3.19) that π is an isomorphism. First we need to study Θ more
closely.

For the next lemma recall from Definition 2.6 the notation |µ| for the number
of finite path elements in µ.

LEMMA 3.4. Let µ, ν ∈ Ω∗. Suppose that S∗µSν 6= 0. Then:
(i) t(µ) = t(ν).

(ii) If |µ| > |ν| then ν � µ.
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(iii) If |µ| < |ν| then µ � ν.
(iv) If |µ| = |ν| = n, then µ and ν are decomposed into finite path elements satisfying

Definition 2.3(i) and (ii), as

µ = µ1µ2 · · · µn, ν = µ1µ2 · · · µn−1νn,

where µn and νn are of the same type. Moreover, if µn and νn are of type D then one
extends the other, while if they are of type Ei × Fi then in each coordinate one extends the
other.

Proof. (i) follows immediately from Definition 2.3 and Definition 3.3(iv). We
prove (ii)–(iv) by induction on n = max{|µ|, |ν|}. The lemma is easily verified
if n = 1. Suppose it is true if max{|µ|, |ν|} < n where n > 1. Assume that
max{|µ|, |ν|} = n; say |µ| = n > |ν|. Write µ = µ1 · · · µn and ν = ν1 · · · νs. We
claim that ν1 � µ1. We know that S∗µ1

Sν1 6= 0. If µ1 and ν1 are of type D, by
the inductive hypothesis we must have µ1 � ν1 or ν1 � µ1. But µ1 � ν1 implies
that S∗µ2

S∗µ1
Sν1 = 0, a contradiction. Suppose that µ1 and ν1 are of type Ei × Fi.

If ν1 � µ1 then by Definition 3.3, we must have that µ1 and ν1 are separately
comparable in each coordinate, and that ν1 properly extends µ1 in at least one
of the coordinates. E.g. suppose S∗µ1

Sν1 = S(p,t(q)S∗(t(p),q) with `(p) > 0. Then
S∗µ2

S∗µ1
Sν1 = S∗µ2

S(p,t(q))S∗(t(p),q) = 0, again contradicting the nonzero hypothesis.
Moreover, if |ν| > 1 we must have µ1 = ν1. For if not, S∗µ1

Sν1 = S∗
µ′1

where µ′1 is

of the same type as ν1, and `(µ′1) 6= (0, 0). But then S∗
µ′1

Sν2 = 0, since ν1 and ν2

are of different types. Therefore if |ν| = 1 we have ν = ν1 � µ1 � µ, while if
|ν| > 1 we have S∗µSν = S∗µ2···µn Sν2···νs , and the inductive hypothesis finishes the
argument.

We give two corollaries that will be needed in the proof of Proposition 3.17
below.

COROLLARY 3.5. Let µ, ν ∈ Ω∗ with S∗µSν 6= 0. Suppose in addition that
`(µ) > `(ν). Then ν � µ.

COROLLARY 3.6. Let µ, ν ∈ Ω∗ with S∗µSν 6= 0. Suppose that `(µ) = (j, k) with
j < k, and `(ν) 6 (k, k). Then either ν � µ, or there are p ∈ E∗i and q ∈ F∗i , with
`(p) > 0, such that S∗µSν = S(p,t(q))S∗(t(p),q). An analogous result holds with the roles of
the two coordinates in Ei × Fi reversed.

It follows from Lemma 3.4 that Θ is spanned by elements of the form SµS∗ν
for which t(µ) = t(ν). It also follows from the relations that there is an action, β,
of T2 on Θ, defined by βz(SµS∗ν) = ζ`(µ)−`(ν)(z) SµS∗ν. We note that π : Θ → A is
equivariant for β and α. We make some elementary computations in Θ×β T2. By
means of the surjection π we see that the analogous results hold in A ×α T2. The
elements (in C(T2, Θ) ⊆ Θ×β T2) of the form ζmSµS∗ν, where µ, ν ∈ Ω∗, make up
a total subset of Θ ×β T2. The fixed-point algebra Θβ sits inside Θ ×β T2 as the
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closed linear span of the constant functions SµS∗ν for which `(µ) = `(ν). We recall
the formulas for multiplication and adjoint in C(T2, Θ) ⊆ Θ×β T2:

f · g(z) =
∫

f (v)βv(g(v−1z)) dv, f ∗(z) = βz( f (z−1)∗).

DEFINITION 3.7. For i = 0, 1, let Ei,1 ⊆ Ei,2 ⊆ · · · and Fi,1 ⊆ Fi,2 ⊆ · · ·
be finite irreducible non-circuit subgraphs of Ei and Fi, with

⋃
k

Ei,k = Ei and⋃
k

Fi,k = Fi. Let Ωk denote the subobject of Ω comprising D, E0,k × F0,k, and

E1,k × F1,k. We let Ω
(i,j)
k = Ωk ∩Ω(i,j), and further let

Xk =
⋃

i,j6k

Ω
(i,j)
k and Θ

β
k = span {SµS∗ν : µ, ν ∈ Xk, `(µ) = `(ν)}.

PROPOSITION 3.8. Θβ is an AF-algebra, with {Θ
β
k : k = 1, 2, . . .} as an approxi-

mating system of finite dimensional C∗-subalgebras.

Proof. It is clear that {SµS∗ν : µ, ν ∈ Xk, `(µ) = `(ν)} is a finite set, and it

follows from Lemma 3.4 that Θ
β
k is a finite dimensional C∗-algebra. Since

⋃
k

Θ
β
k is

dense in Θβ, Θβ is an AF-algebra.

COROLLARY 3.9. Aα = C∗(c−1(0)) is an AF-algebra.

Proof. Since π : Θ → A is equivariant, and Θβ is AF, then so is Aα. For
any r-discrete groupoid G with continuous cocycle c taking values in a discrete
abelian group, and α the induced action of the dual group on C∗(G), it is a fact
that C∗(G)α = C∗(c−1(0)).

A short computation shows that Θβ is a hereditary subalgebra of Θ ×β T2.
The definition of β̂ is: β̂n( f )(z) = ζn(z) f (z), for f ∈ C(T2, Θ), from which we
find

β̂n(ζmSµS∗ν) = ζm+nSµS∗ν.

LEMMA 3.10. Let σ, σ′, µ, and ν be finite paths with t(µ) = t(ν), t(σ) = o(µ),
and t(σ′) = o(ν), and such that `(σµ) = `(σ′ν). Then ζ`(σ′)SµS∗ν = S∗σ · SσµS∗σ′ν ·
ζ`(σ′)Sσ′ , where · represents multiplication in Θ×β T2.

Proof. Let m = `(σ′). We compute:

S∗σ · SσµS∗σ′ν · ζmSσ′ (z) =
∫ ∫

S∗σβv(SσµS∗σ′νβw((ζmSσ′ )(w−1v−1z))) dw dv

=
∫ ∫

S∗σSσµS∗σ′νβvw(ζm(w−1v−1z)Sσ′ ) dw dv
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= SµS∗σ′ν

∫ ∫
ζm(w−1v−1z)ζm(vw)Sσ′ dw dv

= ζ`(σ′)(z)SµS∗ν.

Let I0 denote the ideal in Θ×β T2 generated by Θβ. Note that it follows from
Lemma 3.10 that ζ`(σ′)SµS∗ν ∈ I0, where µ, ν, and σ′ are as in the statement.

COROLLARY 3.11. β̂(1,1)(I0) ⊆ I0.

Proof. It suffices to show that β̂(1,1)(Θβ) ⊆ I0. So let µ and ν be finite paths
with t(µ) = t(ν) and `(µ) = `(ν). Let σ and σ′ be finite paths with `(σ) = `(σ′) =
(1, 1), t(σ) = o(µ), and t(σ′) = o(ν) (σ and σ′ exist since edges in D have length
(1, 1)). Then we have

β̂(1,1)(SµS∗ν) = ζ(1,1)SµS∗ν
= S∗σ · SσµS∗σ′ν · ζ(1,1)Sσ′ , by Lemma 3.10,

∈ I0.

We will let In = (β̂(1,1))n(I0) for n ∈ Z. We have a composition series:

· · · C I1 C I0 C I−1 C · · · C Θ×β T2.

LEMMA 3.12. Θ×β T2 =
⋃

n∈Z
In.

Proof. Let m ∈ Z2 and finite paths µ, ν with t(µ) = t(ν) be given. We will
show that there exists k ∈ Z such that ζmSµS∗ν ∈ I−k. Choose k ∈ Z with

m + (k, k) > (1, 1), and(3.1)

m + (k, k) + `(ν) > `(µ) + (1, 1).(3.2)

It follows from (3.1) that there exists a finite path σ′ with t(σ′) = o(ν) and `(σ′) =
m + (k, k) (this is because every vertex is the terminus of a path of length (1, 1)
with origin in Ei × Fi for some i). Then it follows from (3.2) that there exists a
finite path σ with t(σ) = o(µ) and `(σ) = `(σ′)− `(µ) + `(ν). We have

(β̂(1,1))
k(ζmSµS∗ν) = ζm+(k,k)SµS∗ν

= S∗σ · SσµS∗σ′ν · ζm+(1,1)Sσ′ , by Lemma 3.10,

∈ I0.

It follows that ζmSµS∗ν ∈ I−k.

We now wish to show that π : Θ → A is an isomorphism. To accomplish
this we need a detailed study of the finite dimensional approximating subalge-
bras of Θβ. (This analysis will be needed again in the proof of Lemma 4.2.) We
begin with several definitions. We remark that in general, the structure of the
finite dimensional subalgebras of the AF core of a Toeplitz graph algebra is made
complicated by the fact that the Cuntz-Krieger relations are not satisfied at all
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vertices, and hence that there will be nonzero defect projections at some vertices.
In Lemma 4.3 below we treat this situation, which is analogous to, but much eas-
ier than, the situation of Θβ. The case of Θβ is further complicated by the hybrid
graph structure of Ω.

DEFINITION 3.13. For x ∈ Ω
(0,0)
k \ {a0, a1}we define projections λk(x), ρk(x),

and ωk(x) ∈ Θ
β
k by

λk(x) = Px −∑{SµS∗µ : µ ∈ Ω
(1,0)
k (x)}

ρk(x) = Px −∑{SµS∗µ : µ ∈ Ω
(0,1)
k (x)}

ωk(x) =

{
λk(x)ρk(x) if x 6∈ {u0, u1},
λk(x)ρk(x)− Sαi S

∗
αi
− Sεi S

∗
εi

if x = ui.

Moreover, we let λk(ai) = ρk(ai) = ωk(ai) = 0.

REMARK 3.14. Note that λk(ui) is a projection by relation (iv) of Defini-
tion 3.3. We list some easy consequences of the definitions. Recall (from the end
of Section 1) that S(Ei,k) is the set of vertices of Ei,k that do not emit edges in Ei
other than those emitted in Ei,k:

λk(x) 6= 0 if and only if x = (y, z) with y 6∈ S(Ei,k);

ρk(x) 6= 0 if and only if x = (y, z) with z 6∈ S(Fi,k);

ωk(x) 6= 0 if and only if x = (y, z) with y 6∈ S(Ei,k) and z 6∈ S(Fi,k);

λk(x)Sµ = 0 whenever µ = µ1µ2 with `(µ1) = (1, 0), µ ∈ Ω∗
k ;

ρk(x)Sµ = 0 whenever µ = µ1µ2 with `(µ1) = (0, 1), µ ∈ Ω∗
k ;

ωk(x)Sµ = 0 whenever `(µ) 6= (0, 0), µ ∈ Ω∗
k ;

λk(o(µ))Sµ = Sµλk(t(µ)) if `(µ) = (0, 1), µ ∈ Ω∗
k ;

ρk(o(µ))Sµ = Sµρk(t(µ)) if `(µ) = (1, 0), µ ∈ Ω∗
k .

DEFINITION 3.15. µ ∈ Xk is maximal if whenever µ � µ′ with µ′ ∈ Xk; then
µ′ = µ.

We remark that µ ∈ Xk is maximal if and only if one of the following occurs:
(i) `(µ) = (k, k).

(ii) `(µ) = (k − 1, k) or (k, k − 1), and t(µ) ∈ {a0, a1}.

DEFINITION 3.16. We define certain non-zero projections in Θ
β
k . They are of

four kinds:
(i) SµS∗µ, where µ ∈ Xk is maximal.

(ii) Sµλk(t(µ))S∗µ, where `(µ) = (j, k) with j < k, and t(µ) = (y, z) with y 6∈
S(Ei,k).

(iii) Sµρk(t(µ))S∗µ, where `(µ) = (k, j) with j < k, and t(µ) = (y, z) with z 6∈
S(Fi,k).
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(iv) Sµωk(t(µ))S∗µ, where `(µ) 6 (k− 1, k− 1), and t(µ) = (y, z) with y 6∈ S(Ei,k)
and z 6∈ S(Fi,k).

We let θi(µ) denote the projection in Definition 3.16 above constructed from
the path µ, where the arabic numeral i corresponds to the roman numeral of the
relevant item n the definition. (The symbol θi(µ) ought to include an indication
of the integer k implicit in its definition. We have omitted this indication in order
to reduce a bit the bristliness of our notation.)

PROPOSITION 3.17. Let k be fixed.
(i) θi(µ) is a minimal projection in Θ

β
k .

(ii) θi(µ) and θi′ (ν) are equivalent in Θ
β
k if and only if i = i′, `(µ) = `(ν), and

t(µ) = t(ν).
(iii) ∑

i,µ
θi(µ) = 1

Θ
β
k
.

Proof. First note that if `(µ) = `(ν) and t(µ) = t(ν) then (SνS∗µ)θi(µ)(SνS∗µ)∗

= θi(ν), proving the reverse direction of (ii). We now claim that if σ, τ ∈ Xk
with `(σ) = `(τ) are such that θi(µ)SσS∗τθi′ (ν) 6= 0, then i = i′, t(µ) = t(ν),
`(µ) = `(ν), and moreover, σ � µ, τ � ν. This will conclude the proof of (ii).
(i) will also follow, since then θi(µ)SσS∗τθi(µ) 6= 0 implies that σ, τ � µ. Then
`(σ) = `(τ) implies that σ = τ, and hence that θi(µ)SσS∗τθi(µ) = θi(µ).

To prove the claim, assume that θi(µ)SσS∗τθi′ (ν) 6= 0. We first consider the
situation S∗µSσ 6= 0. Suppose first that µ is maximal. If `(µ) = (k, k) then σ � µ

by Corollary 3.5. If `(µ) 6= (k, k) then t(µ) ∈ {a0, a1}. By Lemma 3.4, t(σ) = t(µ).
Since µ is maximal, µ � σ is impossible. Then by Lemma 3.4 we have σ � µ.
Next suppose that `(µ) = (j, k) with j < k and t(µ) = (y, z) with y 6∈ S(Ei,k).
If σ � µ, Corollary 3.6 implies that S∗µSσ = S(p,t(q))S∗(t(p),q) with `(p) > 0. But
then λ(t(µ))S∗µSσ = λ(t(µ))S(p,t(q))S∗(t(p),q) = 0. Hence we must have σ � µ. An
analogous argument handles the case `(µ) = (k, j) with j < k and t(µ) = (y, z)
with z 6∈ S(Fi,k). Finally suppose `(µ) 6 (k − 1, k − 1) and t(µ) = (y, z) with
y 6∈ S(Ei,k) and z 6∈ S(Fi,k). If µ � σ then σ = µσ′ with `(σ′) 6= (0, 0). Then

ωk(y, z)S∗µSσ = ωk(y, z)Sσ′ = 0,

a contradiction. If σ � µ, then Lemma 3.4 implies that S∗µSσ = S(p,t(q))S∗(t(p),q)
with `(p) 6= 0 and `(q) 6= 0. But then

ωk(y, z)S∗µSσ = ωk(y, z)S(p,t(q))S
∗
(t(p),q) = 0,

a contradiction. Thus in all cases we have σ � µ.
Now write µ = σµ′. We have S∗µSσS∗τ = S∗µ′S

∗
τ = S∗τµ′ . Note that t(µ) =

t(τµ′) and `(µ) = `(τµ′). We then have

θi(µ)SσS∗τ = θi(µ)SµS∗µSσS∗τ = θi(µ)SµS∗τµ′ = SµS∗τµ′θi(τµ′),

θi(µ)SσS∗τθi′ (ν) = SµS∗τµ′θi(τµ′)θi′ (ν).
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Thus θi(τµ′)θi′ (ν) 6= 0, and hence θi(τµ′)SγS∗γθi′ (ν) 6= 0 for γ = τµ′ and for
γ = ν. It follows from the above that τµ′ � ν and ν � τµ′, and hence that
τµ′ = ν. Thus `(µ) = `(ν) and t(µ) = t(ν). It follows from Remark 3.14 that
i = i′, finishing the proof of (i) and (ii).

Before proving (iii) we make some preliminary observations. Let x ∈ Ω
(0,0)
k \

{a0, a1}. Using Definition 3.13 and Remark 3.14 we find that

Px = λk(x) + ∑{SµS∗µ : µ ∈ Ω
(1,0)
k (x)},(3.3)

Px = ρk(x) + ∑{SµS∗µ : µ ∈ Ω
(0,1)
k (x)},(3.4)

Px =
(
λk(x)+∑{SµS∗µ : µ∈Ω

(1,0)
k (x)}

)(
ρk(x)+∑{SµS∗µ : µ∈Ω

(0,1)
k (x)}

)
= λk(x)ρk(x) + ∑{λk(x)SµS∗µ : µ ∈ Ω

(0,1)
k (x)}

+ ∑{ρk(x)SνS∗ν : ν ∈ Ω
(1,0)
k (x)}

+ ∑{SµνS∗µν : µ ∈ Ω
(0,1)
k (x), ν ∈ Ω

(1,0)
k (x)}

= ωk(x) + ∑{Sµλk(t(µ))S∗µ : µ ∈ Ω
(0,1)
k (x)}(3.5)

+∑{Sνρk(t(ν))S∗ν : ν∈Ω
(1,0)
k (x)}+∑{SµS∗µ : µ∈Ω

(1,1)
k (x)}.

Note that (3.5) still holds if x ∈ {a0, a1}. Next, let µ1 ∈ Ω
(0,1)
k and µ2 ∈ Ω

(1,0)
k . If

t(µ1) = o(µ2) then

λk(o(µ1))Sµ1 ρk(o(µ2))Sµ2 = Sµ1 λk(t(µ1))Sµ2 ρk(t(µ2)) = 0,

and if t(µ2) = o(µ1) then

ρk(o(µ2))Sµ2 λk(o(µ1))Sµ1 = Sµ2 ρk(t(µ2))Sµ1 λk(t(µ1)) = 0,

by Remark 3.14. Finally, if t(µ1) = ui and µ3 ∈ {αi, εi} then

λk(o(µ1))Sµ1 Sµ3 = Sµ1 λk(ui)Sµ3 = Sµ1 Sµ3 ,

by Definition 3.13 and Definition 3.3(iv). Hence for µ3 ∈ Ω
(1,1)
k (ui),

λk(o(µ1))Sµ1 Sµ3 =

{
Sµ1µ3 if µ3 ∈ {αi, εi},
0 otherwise.

An analogous result holds with µ2 replacing µ1 and ρ replacing λ.
Now we prove (iii). Let x ∈ Ω

(0,0)
k , and consider the expression in (3.5). In

each term of the form SµS∗µ = SµPt(µ)S∗µ, substitute for Pt(µ) with formula (3.5)
if `(µ) 6 (k − 1, k − 1), with formula (3.3) if (0, k) 6 `(µ) 6 (k − 1, k), and with
formula (3.4) if (k, 0) 6 `(µ) 6 (k, k − 1). Similarly, if `(µ) 6 (k − 1, k − 1), use
(3.5) to substitute for Pt(µ) in terms of the forms Sµλk(t(µ))S∗µ = SµPt(µ)λk(t(µ))S∗µ
and Sµρk(t(µ))S∗µ = SµPt(µ)ρk(t(µ))S∗µ. Use the above observations to eliminate
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zero terms and to simplify, then repeat. This process must stop in a finite number
of steps, giving

Px = ∑{Sµωk(t(µ))S∗µ : o(µ) = x, `(µ) 6 (k − 1, k − 1)}

+
k−1

∑
j=0

∑{Sµλk(t(µ))S∗µ : o(µ) = x, `(µ) = (j, k)}

+
k−1

∑
j=0

∑{Sµρk(t(µ))S∗µ : o(µ) = x, `(µ) = (k, j)}

+ ∑{SµS∗µ : o(µ) = x, µ ∈ Xk maximal}

= ∑
i

∑{θi(µ) : o(µ) = x}.

Now (iii) follows by summing over x ∈ Ω
(0,0)
k .

THEOREM 3.18. (Gauge-invariant uniqueness theorem) Let

φ : (Θ, T2, β) → (C, T2, γ)

be an equivariant ∗-homomorphism between C∗-dynamical systems. If φ
∣∣
Θβ is injective

then φ is injective.

Proof. We have that φ̃ : Θ ×β T2 → C ×γ T2 is injective, since it is so on the

ideals In. Therefore ˜̃φ : Θ ×β T2 ×
β̂

Z2 → C ×γ T2 ×γ̂ Z2 is injective. The result
now follows from Takesaki-Takai duality.

COROLLARY 3.19. A = C∗(G) is isomorphic to Θ, and is simple, purely infinite,
nuclear and classifiable, i.e. a UCT Kirchberg algebra.

Proof. Let λ : C∗(G) → C∗
r (G) be the left regular representation. Then λ ◦π :

Θ → C∗
r (G). The action of T2 on C∗(G) clearly descends equivariantly to C∗

r (G),
so that λ ◦ π is equivariant. We note that λ ◦ π

∣∣
Θβ is injective. This follows from

the facts that Θβ is AF, and that the minimal projections θi(µ) (Proposition 3.17)
in the subalgebras Θ

β
k have nonzero image in Cc(G)α ⊆ C∗

r (G)α. Then λ ◦ π is
injective by Theorem 3.18, and hence π is injective, and hence an isomorphism.
It follows also that λ is injective (this could also be deduced from nuclearity of
C∗(G), proved below, and [1]). We have that C∗(G) ×α T2 = π̃(Θ ×β T2) is AF,
and hence A, which is strongly Morita equivalent to A ×α T2 ×α̂ Z2, is nuclear
and classifiable. Simplicity and pure infiniteness follow from Corollary 2.19.

The following proposition is necessary for our application of the results of
this paper in [16]. The proof is immediate from the description of Θ by generators
and relations. (We remark that in that application, the graphs Fi will be chosen to
represent Kirchberg algebras having K-theory of the form (Z, 0) or (0, Z), while
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the graphs Ei will be chosen to represent Kirchberg algebras with preassigned K0
and trivial K1.)

PROPOSITION 3.20. Let Γi be a subgroup of Aut (Ei) fixing the vertex vi. There
is a homomorphism Γ0 × Γ1 → Aut (Θ) defined on generators by letting Γ0 act on E0, Γ1
on E1, and the trivial action on D, F0 and F1. Moreover, if x0 ∈ E0

0 is fixed by Γ0, then
the corner of Θ defined by the projection P(x0,w0) is invariant for the action of Γ0 × Γ1.

4. THE K-THEORY OF A

We may now omit the use of the ∗-isomorphism π, and identify Θ with
A. We let B denote the subalgebra of A generated by the edges of Ω in

⋃
i

Ei ×

Fi. Thus B is isomorphic to the direct sum of the algebras O(Ei) ⊗ O(Fi). This
isomorphism can be described explicitly by means of generators and relations as
follows

S(e,z) 7→ Se ⊗ Pz, S(y, f ) 7→ Py ⊗ S f , P(y,z) 7→ Py ⊗ Pz.

We note that even though Pui contains the range projections of Sαi and Sεi , this
does not affect the above isomorphism. It is here that the infinite valence of the
graphs Ei and Fi at the vertices vi and wi is crucial.

Note that the K-theory of B is well-understood and easily computed (see,
e.g., [16]). In Theorem 4.7 we will prove that the inclusion of B into A induces an
isomorphism in K-theory. This fact is exploited in [16] and [17]. Let us briefly de-
scribe how UCT Kirchberg algebras with prescribed K-theory may be constructed
in this way (see [16] for details). Let G0 and G1 be the desired K-groups. Let E0
and E1 be directed graphs defining Kirchberg algebras with K∗O(Ei) = (Gi, 0),
and satisfying the hypothesis of Definition 2.1 (such graphs are described in [16]).
Let F0 and F1 be directed graphs (also satisfying the hypothesis of Definition 2.1)
defining the C∗-algebras stable-O∞ and -P∞ (i.e. having K-theory (Z, 0) and (0, Z)
— see [16]). By the Künneth theorem we have K∗(B) = (G0, G1).

We now return to the study of the AF-algebra A ×α T2. It follows from the
fact that the ideals In are AF that the inclusion of In into A ×α T2 induces an
injection in K0. We let φ denote the automorphism α̂(1,1) ∗ of K0(A ×α T2). We
have

K0(A×α T2) =
⋃
n∈Z

φn(K0(Aα)).

We let W = K0(A ×α T2) and Wn = K0(In). Thus Wn ⊇ Wn+1 and W =
⋃

n∈Z
Wn.

Since W0 ∼= K0(Aα), W0 is generated by elements of the form [SµS∗µ], where µ is
a finite path. If t(µ) = t(ν) and `(µ) = `(ν) then SµS∗ν is a partial isometry in Aα

implementing an equivalence between SµS∗µ and SνS∗ν, so that [SµS∗µ] = [SνS∗ν].
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LEMMA 4.1. Let µ and σ be finite paths with t(σ) = o(µ). Then α̂`(σ)∗([SµS∗µ]) =
[SσµS∗σµ].

Proof. Let f ∈ C(T2, A) be given by f = ζ`(σ)SσµS∗µ. Routine computations
give

f ∗ f = ζ`(σ)SµS∗µ = α̂`(σ)(SµS∗µ), and f f ∗ = SσµS∗σµ.

We note that B is invariant under α. The crossed product B ×α T2 is an AF-
subalgebra of A ×α T2, and is isomorphic to a direct sum of tensor products of
AF-algebras:

B×α T2 ∼=
⊕

i

(O(Ei)×T)⊗ (O(Fi)×T).

LEMMA 4.2. Let i : B×α T2 → A×α T2 be the inclusion map. Then i∗ is injective
in K0.

Before giving the proof, we give a preliminary lemma describing the finite
dimensional approximants to the AF core of the relative Toeplitz algebra of an
ordinary graph. We remark that this is an easier version of Proposition 3.17.

LEMMA 4.3. Let E be a finite directed graph. Let S ⊆ E0 not contain any sink of
E. For k > 1 let Ck(E, S) be the finite dimensional C∗-subalgebra of T O(E, S) given by

Ck(E, S) = span
{

SpS∗q : p, q ∈
⋃
j6k

Ej, `(p) = `(q)
}

.

For y ∈ E0 \ S let ξy ∈ Ck(E, S) be given by

ξy = Py − ∑
e∈E1(y)

SeS∗e .

For 0 6 j < k and y ∈ E0 \ S let

N(k)
j (y) = {SpξyS∗p : p ∈ Ej, t(p) = y}.

For y ∈ E0 let

N(k)
k (y) = {SpS∗p : p ∈ Ek, t(p) = y}.

Set

N(k) =
⋃
{N(k)

j (y) : 0 6 j < k, y ∈ E0 \ S} ∪
⋃
{N(k)

k (y) : y ∈ E0}.

Then
(i) N(k) is a maximal family of pairwise orthogonal minimal projections in Ck(E, S).

(ii) Let a ∈ N(k)
i (y) and b ∈ N(k)

j (z), where 0 6 i, j 6 k and y, z ∈ E0. Then a and
b are equivalent in Ck(E, S) if and only if i = j and y = z.
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Proof. We first note that

ξySe = 0 for y ∈ E0 \ S, e ∈ E1,(4.1)

S∗pSq = 0 if and only if p and q are not comparable, for p, q ∈ E∗.(4.2)

It follows easily that

Spξt(p)S
∗
pSqξt(q)S

∗
q 6= 0 if and only if p = q and t(p), t(q) ∈ E0 \ S;

SpS∗pSqS∗q = 0 if `(p) = `(q) = k and p 6= q;

Spξt(p)S
∗
pSqS∗q = 0 if `(p) < `(q) and t(p) ∈ E0 \ S.

Therefore the projections of N(k) are pairwise orthogonal. We now consider the
minimality and equivalence of projections in N(k) together. For this, fix paths r,
s ∈

⋃
j6k

Ej with `(r) = `(s). Let t(p), t(q) ∈ E0 \ S with `(p), `(q) < k, and suppose

that

(4.3) Spξt(p)S
∗
pSrS∗s Sqξt(q)S

∗
q 6= 0.

Then (4.1) and (4.2) imply that r � p, s � q, and S∗pSr = S∗q Ss. Hence t(p) = t(q)
and `(p) = `(q), as required by (ii). Moreover if p = q then the product in (4.3)
equals Spξt(p)S∗p, proving that Spξt(p)S∗p is minimal. If p, q ∈ Ek and if

(4.4) SpS∗pSrS∗s SqS∗q 6= 0,

then r � p, s � q, and S∗r Sp = S∗s Sq, so t(p) = t(q) as required by (ii). Moreover if
p = q then the product in (4.4) equals SpS∗p, proving that SpS∗p is minimal. Finally,
let t(p) ∈ E0 \ S with `(p) < k, and `(q) = k, and consider Spξt(p)S∗pSrS∗s SqS∗q 6=
0. It follows from (4.1) and (4.2) that r � p and s � q. Then SrS∗s Sq = Sq′

where `(q′) = k. Since `(p) < k, it follows from the same considerations that
ξt(p)S∗pSq′ = 0. Thus Spξt(p)S∗p and SqS∗q are inequivalent.

For the reverse implication in (ii), note that if `(p) = `(q) < k and y =
t(p) = t(q) ∈ E0 \ S then

(SqξyS∗p)
∗(SqξyS∗p) = SpξyS∗p, (SqξyS∗p)(SqξyS∗p)

∗ = SqξyS∗q ,

and if `(p) = `(q) = k and t(p) = t(q), then

(SqS∗p)
∗(SqS∗p) = SpS∗p, (SqS∗p)(SqS∗p)

∗ = SqS∗q .

Finally, we show that ∑ N(k) = 1. For convenience we will let ξy = 0 for
y ∈ S. Then for any y ∈ E0 we have:

Py = ξy + ∑
e1∈E1(y)

Se1 S∗e1
= ξy + ∑

e1∈E1(y)

Se1

(
ξt(e1) + ∑

e2∈E1(t(e1))

Se2 S∗e2

)
S∗e1
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= ξy + ∑
p∈E1(y)

Spξt(p)S
∗
p + ∑

p∈E2(y)

SpS∗p = · · · =

=
k−1

∑
i=0

∑
p∈Ei(y)

Spξt(p)S
∗
p + ∑

p∈Ek(y)

SpS∗p.

The result follows by summing over y ∈ E0.

Proof of Lemma 4.2. By repeated application of φ it suffices to show that i∗ :
K0(Bα) → K0(Aα) is injective. Letting Aα

k = Θ
β
k (via the isomorphism π), we have

Aα =
⋃
k

Aα
k . We define finite dimensional approximating subalgebras to Bα in a

manner similar to the Θ
β
k . Namely, let

X(0)
k =

1⋃
i=0

⋃
j,j′6k

Ej
i,k × Fj′

i,k.

(Thus X(0)
k is the set of paths µ in Xk that do not contain edges from D.) Now let

Bα
k = span {SµS∗ν : µ, ν ∈ X(0)

k , `(µ) = `(ν)}. It is clear that Bα =
⋃
k

Bα
k and that

Bα
k ⊆ Aα

k . We will show that the inclusion Bα
k ⊆ Aα

k induces an injection in K0.
This will prove the lemma.

We note that Bα
k
∼=

⊕
i

Ck(Ei,k, S(Ei,k)) ⊗ Ck(Fi,k, S(Fi,k)). Thus every mini-

mal projection in Bα
k corresponds to a tensor product of minimal projections from

Ck(Ei,k, S(Ei,k)) and Ck(Fi,k, S(Fi,k)), and two such are equivalent in Bα
k if and only

if they are separately equivalent in each factor. Note that, while λk(x) and ρk(x)
(Definition 3.13) belong to Bα

k , ωk(x) 6∈ Bα
k if x ∈ {u0, u1}. We define ω

(0)
k (x) ∈ Bα

k
by

ω
(0)
k (x) = λk(x)ρk(x).

Then ω
(0)
k (ui) is a minimal projection in Bα

k (although it is not minimal in Θ
β
k ).

Note that if x = (y, z) ∈ Ω
(0,0)
k then λk(x) corresponds to ξy ⊗ Pz, ρk(x) corresonds

to Py ⊗ ξz, and ω
(0)
k (x) corresponds to ξy ⊗ ξz, while if µ = (p, q) ∈ X(0)

k , then

SµS∗µ corresponds to SpS∗p ⊗ SqS∗q . For µ ∈ X(0)
k with `(µ) 6 (k − 1, k − 1) and

t(µ) = (y, z) with y 6∈ S(Ei,k) and z 6∈ S(Fi,k), we define

θ
(0)
4 (µ) = Sµω

(0)
k (t(µ))S∗µ ∈ Bα

k ,

analogously to Definition 3.16(iv). Then the projections in Bα
k of the form θi(µ),

1 6 i 6 3, and θ
(0)
4 (µ), form a complete family of pairwise orthogonal minimal

projections. By Lemma 4.3 we see that they satisfy the conditions for equivalence
given in Proposition 3.17(ii). From Definition 3.13 we see that if θ

(0)
4 (µ) 6= θ4(µ),

then
θ
(0)
4 (µ) = θ4(µ) + θi1(τ1) + θi2(τ2) + · · · ,
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where `(τ1), `(τ2), . . . > `(µ). This observation has the following consequence.
Choose bases for K0(Aα

k ) and K0(Bα
k ) consisting of classes of minimal projections

as above. If the bases are ordered by increasing length of the underlying paths,
then the matrix of the map K0(Bα

k ) → K0(Aα
k ) induced from inclusion is lower

triangular, with 1’s on the diagonal. Thus the map is injective.

We let Y denote K0(B×α T2). By Lemma 4.2 we may identify Y with i∗(Y) ⊆
W. We now give a key lemma, that is based on the fact that the (ordinary) graph
D connecting the 2-graphs Ei × Fi defines the Cuntz algebra O2 (with trivial K-
theory).

LEMMA 4.4. (2φ− id)W ⊆ Y.

Proof. Let x ∈ W. For n ∈ Z large enough we have φn(x) ∈ W0. If (2φ −
id)φn(x) ∈ Y, then since Y is φ-invariant we get (2φ − id)(x) ∈ φ−nY = Y. So
we may assume that x ∈ W0. Since W0 = K0(Aα) is generated by elements of the
form [SµS∗µ] for finite paths µ, we may assume that x = [SµS∗µ].

Case (i). Suppose t(µ) ∈ E0
i × F0

i for some i. Since the K0-class of the pro-
jection is unchanged if the path is replaced by a new path with the same length
and terminus, we may assume that µ ∈ (Ei × Fi)∗, and so that x ∈ Y.

Case (ii). Suppose t(µ) ∈ {a0, a1}. For definiteness we suppose t(µ) = a0.
For the rest of this argument we will omit the subscript on a0, β0, γ0 and δ0. Then
we may assume that µ = νβm for some m > 0 and some path ν with t(ν) = a. We
note that

Sβm S∗βm = Sβm (SβS∗β + SγS∗γ + SδS∗δ)S∗βm , while φ[Sβm S∗βm ] = [Sβm+1 S∗
βm+1 ].

Hence [Sβm S∗βm ] = 2[Sβm+1 S∗
βm+1 ] + [SβmδS∗βmδ] ∈ 2φ[Sβm S∗βm ] + Y, since t(βmδ) =

ui. Therefore (2φ− id)[Sβm S∗βm ] ∈ Y. Thus

(2φ− id)[SµS∗µ] = (2φ− id)φ[Sνβm S∗νβm ]

= α̂`(ν)∗ ◦ (2φ− id)[Sβm S∗βm ], by Lemma 4.1,

∈ α̂`(ν)∗(Y) ⊆ Y.

LEMMA 4.5. ker (id− φ) ⊆ Y.

Proof. Let x ∈ ker (id− φ). Then

x = φ(x) = φ(x)− (id− φ)(x) = (2φ− id)(x) ∈ Y.

The preceding and following lemmas will allow us to show that the K-
theory of A ×α T2 ×φ Z is given by the subalgebra B. We let ψ = α̂(1,0)∗, so that φ

and ψ generate the action of Z2 on W. We note that since B is invariant for α, Y is
invariant for ψ as well as for φ.

LEMMA 4.6. W/(id− φ)W ∼= Y/(id− φ)Y, and the isomorphism is equivariant
for ψ.
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Proof. First we show that W = (id − φ)W + Y. Let x ∈ W. By Lemma 4.4
we have φ(x) = (id − φ)(x) + (2φ − id)(x) ∈ (id − φ)W + Y. Applying φ−1 we
see that x ∈ (id− φ)W + Y. Now we have

W
(id− φ)W

=
(id− φ)W + Y

(id− φ)W
∼=

Y
Y ∩ ((id− φ)W)

.

We will show that Y ∩ ((id − φ)W) = (id − φ)Y, which will conclude the proof.
The containment “⊇” is clear. For the containment “⊆”, let y ∈ Y with y =
(id− φ)(x) for some x ∈ W. Then φ(x) = y + (2φ− id)(x) ∈ Y, by Lemma 4.4. It
follows that x ∈ Y, so that y ∈ (id− φ)Y.
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THEOREM 4.7. K∗(A) ∼= K∗(B).

Proof. Lemmas 4.5 and 4.6 and the Pimsner-Voiculescu exact sequence show
that K∗(A×α T2 ×φ Z) and K∗(B×α T2 ×φ Z) are isomorphic, equivariantly for ψ.
Another application of Pimsner-Voiculescu, together with Takai-Takesaki duality,
gives a commuting diagram of long exact sequences:

· · · −−−−→ W
(id−φ)W

id−ψ
−−−−→ W

(id−φ)W −−−−→ K0(A) −−−−→x∼= x∼= xi∗

· · · −−−−→ Y
(id−φ)Y

id−ψ
−−−−→ Y

(id−φ)Y −−−−→ K0(B) −−−−→

−−−−→ ker (id− φ)
id−ψ
−−−−→ ker (id− φ) −−−−→ K1(A) −−−−→ · · ·∥∥∥ ∥∥∥ xi∗

−−−−→ ker (id− φ)
id−ψ
−−−−→ ker (id− φ) −−−−→ K1(B) −−−−→ · · ·
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It follows from the five lemma that K∗(A) ∼= K∗(B).

THEOREM 4.8. Let k > 1 be given. For 0 6 i and 1 6 j 6 k let Ei,j be an
irreducible directed graph with distinguished vertex vi,j emitting infinitely many edges.
For i > 0 let Di be a copy of the graph D in Definition 2.1 (with vertices ui−1, ui,
ai, a′i — see figure 2). Let Ω be the object obtained from the 1-graphs {Di} and the
product k-graphs {Ei1 × · · · × Ei,k} by identifying the vertex ui with (vi,1, . . . , vi,k) as in
Definition 2.1. Let A be the C∗-algebra defined by the generators S and relations R as in
Definition 3.3 (modified in the obvious way). Then A is the unique stable UCT Kirchberg
algebra with K-theory equal to

∞⊕
i=0

K∗
( k⊗

j=1

O(Ei,j)
)

.

Proof. This follows from Corollary 3.19 and Theorem 4.7. (The uniqueness
is a result of Zhang, [19].)
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