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ABSTRACT. An interpolation function of order n is a positive function f on
(0, ∞) such that ‖ f (A)1/2T f (A)−1/2‖ 6 max(‖T‖, ‖A1/2TA−1/2‖) for all n ×
n matrices T and A such that A is positive definite. By a theorem of Donoghue,
the class Cn of interpolation functions of order n coincides with the class of
functions f such that for each n-subset S = {λi}n

i=1 of (0, ∞) there exists a
positive Pick function h on (0, ∞) interpolating f at S. This note comprises
a study of the classes Cn and their relations to matrix monotone functions of
finite order. We also consider interpolation functions on general unital C∗-
algebras.
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1. INTRODUCTION

An interpolation function h relative to a positive operator A in a Hilbert space
H is a positive continuous function defined on the spectrum of A fulfilling the
condition

(1.1) ‖h(A)1/2Th(A)−1/2‖ 6 max(‖T‖, ‖A1/2TA−1/2‖)

for every bounded operator T on H. By a theorem of Donoghue [6], [5] (cf. also
[1], [2]), it is known that the class of interpolation functions relative to A coin-
cides precisely with the class of restrictions to σ(A) of positive Pick functions, i.e.,
functions of the form

(1.2) h(λ) =
∫

[0,∞]

(1 + t)λ

1 + tλ
d$(t), λ > 0,

where $ is some positive Radon measure on [0, ∞]. The convex cone of functions
having such a representation is denoted by the symbol P′.
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Now fix n ∈ N, and assume that H = `n
2 is an n-dimensional Hilbert space.

We shall say that a function h defined on R+ = (0, ∞) is an interpolation function
of order n and write h ∈ Cn if h satisfies (1.1) for every positive operator A ∈ B(`n

2 ).
By the cited theorem of Donoghue, a function f belongs to Cn if and only if for
every n-set {λi}n

i=1 ⊂ R+ there exists a function h ∈ P′ such that f (λi) = h(λi)
for i = 1, . . . , n. (Of course, the function h depends on f and the set {λi}n

i=1 and
is in general not unique.)

The classes Cn are related to the classes P′n of positive matrix monotonic func-
tions of order n on R+. This is the set of functions h : R+ → R+ having the
property that for any positive definite n × n-matrices A, B, the condition A 6 B

implies h(A) 6 h(B). Indeed, it is known that
∞⋂

n=1
P′n =

∞⋂
n=1

Cn = P′. The equal-

ity
⋂

P′n = P′ is a well-known theorem of Löwner [13], whereas the fact that⋂
Cn = P′ is essentially due to Foiaş and Lions [8].

We remark that Löwner’s original proof of the fact that
⋂

P′n = P′ depends
on the theory of interpolation of matrix monotone functions by Pick functions.
A standard source on this type of interpolation is Donoghue’s book [7]. Indeed,
by a result from Löwner’s theory, a matrix monotone function h ∈ P′n can be
interpolated at any subset of R+ consisting of 2n− 1 points by a P′-function, but
the latter condition is in general not sufficient for h ∈ P′n to hold. We will use this
fact later in Section 3 to prove that P′n+1 ⊆ C2n+1 ⊆ C2n ⊆ P′n for all n, where all
inclusions are proper for appropriate values of n.

We finally remark that a third scale of classes of functions, denoted Mn, were
introduced by G. Sparr [16], as a means of obtaining a new proof of Löwner’s
Theorem. The key observation in Sparr’s proof is that the classes Mn satisfy
Pn+1 ⊆ Mn ⊆ Pn, where Pn is the class of all real-valued matrix monotone func-
tions of order n on R+. The Mn’s are moreover defined in a way which is similar
to the classes C2n, but there are some differences. In the sequel, we will reserve
the letter Mn for the algebra of complex n× n-matrices.

New proofs of Löwner’s and Donoghue’s Theorems can be found in [1], [2].

2. PRELIMINARIES

In this section, we begin by giving a presentation of earlier results which we
shall use and discuss further later on.

Let Mn := B(`n
2 ) denote the space of complex n × n matrices, identified in

the natural way with the space of bounded operators on `n
2 . We shall write A > 0

if and only if A ∈ Mn is a positive definite matrix. (More generally, we shall
write a > 0 if a is a positive element of a unital C∗-algebra A such that 0 6∈ σ(a).)
The class (convex cone) P′n of (positive) matrix monotonic functions of order n is by
definition the set of functions h : R+ → R+ such that

A, B ∈ Mn and 0 < A 6 B imply h(A) 6 h(B).



INTERPOLATION CLASSES 411

(Here h(A) and h(B) denote the usual functional calculus in the C∗-algebra Mn.)
In this notation, the well-known theorem of Löwner [13] becomes

(2.1)
∞⋂

n=1

P′n = P′,

where P′ is the class of functions representable in the form (1.2) with some pos-
itive Radon measure $ on [0, ∞]. We shall occasionally need to use the class of
(not necessarily positive) Pick functions on R+, which we denote by P or some-
times P(R+). This is the class of functions h : R+ → R which are real-analytic
on R+ and admit of analytic continuation to the upper half-plane in C and have
non-negative imaginary parts there. It can be shown [7] that

(2.2) P′ = { f ∈ P : f > 0 on R+}.

In [12] it was shown that all the classes P′n are different, i.e.

(2.3) P′n+1 $ P′n, n ∈ N.

(As noted in [12], (2.3) was previously asserted by Donoghue ([7], p. 83), but
without a detailed proof.)

In 1961, Foiaş and Lions [8] introduced the class of “interpolation functions"
and established their basic properties. For A ∈ Mn such that A > 0, we define the
A-norm on Mn by ‖T‖A = ‖A1/2TA−1/2‖. We note that for c > 0, the statement
‖T‖A 6 c is equivalent to A−1/2T∗ATA−1/2 6 c2, i.e., T∗AT 6 c2 A. We shall
say that a function h : R+ → R+ is an interpolation function of order n, and that it
belongs to the class Cn if and only if

‖T‖h(A) 6 max(‖T‖, ‖T‖A), ∀ T, A ∈ Mn : A > 0,

or, equivalently,

(∀ T, A ∈ Mn) : A > 0, T∗T 6 1, T∗AT 6 A imply T∗h(A)T 6 h(A).

Evidently Cn+1 ⊆ Cn for all n. In [8], Foiaş and Lions proved an equivalent of the
following statement:

(2.4)
∞⋂

n=1

Cn = P′.

See Remark 3.2 (cf. also [1] and [2], Section 4).
In 1967, Donoghue [6], [5] proved a stronger version of the Foiaş–Lions The-

orem. In order to formulate Donoghue’s Theorem in its full generality, let H be a
Hilbert space, and A, B fixed positive, injective (possibly unbounded) operators
in H such that there exists a positive number r such that, in the sense of quadratic
forms,

(2.5)
1
r

A(1 + A)−1 6 B 6 r(1 + A).
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Consider the condition

(2.6) ‖T‖B 6 max(‖T‖, ‖T‖A), ∀ T ∈ B(H).

This condition is equivalent to the following statement: for all T ∈ B(H) such that
T∗T 6 1 and T∗AT 6 A holds: T∗BT 6 B. In particular, if we take T = E to be
an orthogonal projection, this implication says: EAE 6 E implies EBE 6 B. But
for orthogonal projections, the condition EAE 6 A is equivalent to that A and E
commute. Thus B commutes with every orthogonal projection which commutes
with A, that is, B is affiliated with A. It now follows from von Neumann’s Bicom-
mutator Theorem that B = f (A) for some Borel measurable positive function f
on σ(A). With somewhat more effort, it is possible to prove that f may be taken
to be continuous.

FACT 2.1. Suppose that (2.5) and (2.6) holds. Then there exists a (unique) contin-
uous positive function h on σ(A) such that B = h(A).

For a proof of Fact 2.1, we refer to Lemma 2 of [6], or Lemma 1.1 of [2].
We remark that, in our applications of Fact 2.1 in this paper, the operators A and
B will be bounded above and below, whence the condition (2.5) will be trivially
satisfied.

DEFINITION 2.2. Let P′|σ(A) be the convex cone of restrictions to σ(A) of
functions in P′ (of the form (1.2)). Let CA be the class of continuous functions
h : σ(A) → R+ such that the corresponding operator B = h(A) fulfills (2.6). We
refer to CA as the class of interpolation functions with respect to A.

THEOREM 2.3. The class of interpolation functions with respect to A coincides
precisely with the set of restrictions to σ(A) of P′-functions. In other words,

(2.7) CA = P′|σ(A).

The original formulation of this theorem ([6], Theorem 1) is in the guise
of interpolation theory. A proof of this theorem in the present form is given in
Theorem 7.1 of [1] (the finite-dimensional case) and [2] (the infinite-dimensional
case).

The following corollary is immediate from Theorem 2.3.

COROLLARY 2.4. A function f : R+ → R+ belongs to Cn if and only if for every
n-set S = {λi}n

i=1, there exists a P′-function h interpolating f at S, i.e. f (λi) = h(λi)
for i = 1, . . . , n.

3. A STUDY OF THE CLASSES Cn AND P′n

We shall now consider the problem of finding the precise relations between
the classes of monotone functions and interpolation functions of finite order. In
[1], it was observed that P′n+1 ⊆ C2n ⊆ P′n. We shall now see that this observation
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can quite easily be improved, by using two theorems from the Löwner theory, as
stated in Donoghue’s book [7], Chapter XIV.

We have the following theorem.

THEOREM 3.1. For all n ∈ N holds:

(3.1) P′n+1 ⊆ C2n+1 ⊆ C2n ⊆ P′n.

Moreover, P′n and Cn are different classes for all n,

(3.2) P′n $ Cn.

Proof. “P′n+1 ⊆ C2n+1": Let f ∈ P′n+1 and let S = {λi}2n+1
i=1 ⊆ R+ be a subset

consisting of 2n + 1 points, where 0 < λ1 < · · · < λ2n+1. Then by Theorem I,
p. 128 of [7], there exists a function h ∈ P, rational of degree at most n, such that
h(λi) = f (λi), i = 1, . . . , 2n + 1. Following Donoghue [7], we associate to the set
S the polynomial

S(λ) =
2n+1

∏
i=1

(λ− λi).

By Theorem III, p. 131 in [7] we have

(3.3) ( f (λ)− h(λ))S(λ) > 0, λ > 0.

But in the interval λ ∈ (0, λ1), S(λ) is negative, and thus by (3.3), f (λ)− h(λ) 6 0
there. But this means that h(λ) > f (λ) > 0, λ ∈ (0, λ1), since f is positive on R+.
Thus (since h ∈ P, and since Pick functions are non-decreasing) we obtain h > 0
on R+, i.e., h ∈ P′ (see (2.2)). Thus f coincides on the set S with a P′-function,
and since S = {λi}2n+1

i=1 ⊆ R+ was arbitrary, we deduce using Corollary 2.4 that
f ∈ C2n+1.

“C2n ⊆ P′n": This is done as in [1], by using Donoghue’s trick ([6], pp. 266–
267). We include the proof for completeness. Let f ∈ C2n and let A, B ∈ Mn,
0 < A 6 B. Form the 2n× 2n matrices

A1 =
(

B 0
0 A

)
, T =

(
0 0
1 0

)
.

Then

T∗A1T =
(

A 0
0 0

)
6
(

B 0
0 A

)
= A1,

so we deduce that T∗ f (A1)T 6 f (A1), or(
f (A) 0

0 0

)
6
(

f (B) 0
0 f (A)

)
.

We deduce that f (A) 6 f (B), i.e. f ∈ P′n. This concludes the proof of (3.1).
To prove that P′n ⊆ Cn for all n ∈ N we now use (3.1) in the following way:

P′n ⊆ C2n−1 ⊆ Cn, n > 1.
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If n > 3, we have furthermore, using (2.3), then (3.1)

P′n $ P′n−1 ⊆ C2n−3 ⊆ Cn.

This proves (3.2) for all n > 3.
For n = 2, we argue as follows. The function h(λ) = min(1, λ) is quasi-

concave, and thus is C2 by Proposition 3.7 below. But by a theorem of Löwner
([13], top of p. 187), a function in P′2 is either constant or strictly increasing,
whence the function h above cannot be in P′2. This finishes the proof of (3.2)
in the case n = 2. Finally, for n = 1 (3.2) is obvious, because any positive function
which is somewhere strictly decreasing belongs to C1 but not to P′1.

REMARK 3.2. Combining Theorem 3.1 with Löwner’s theorem (equation
(2.1)), we obtain a proof of the Foiaş–Lions theorem (equation (2.4)).

REMARK 3.3. We shall prove below that all inclusions in (3.1) are proper for
small values of n. (More precisely, we will prove that C4 $ P′2 $ C3 $ C2 $ P′1 $
C1.)

CONJECTURE 3.4. All inclusions in (3.1) are proper for all n.

Let S ⊆ R+ be an arbitrary set and f : S → R+ a function. We define
the reverse and dual functions f ∗ and f̌ on the set S−1 = { 1

λ : λ ∈ S} by f ∗(λ) =
λ f (1/λ) and f̌ (λ) = 1

f (1/λ) . We also define f̃ : S → R+ by f̃ (λ) = ( f̌ )∗(λ) = λ
f (λ) .

PROPOSITION 3.5. A function f : R+ → R+ belongs to the class Cn if and only
if one (and then all three) of the functions f ∗, f̌ , and f̃ belong to Cn.

Proof. It suffices to note that a function belongs to Cn if and only if f |S ∈ P′|S
for every n-set S ⊆ R+ and observe that the class P′ is closed under the operations
h 7→ h∗ and h 7→ ȟ. The latter statement is clear if h is a constant, and otherwise if
one of the functions h, ȟ or h∗ has positive imaginary part in the upper half plane,
then clearly so does the other two.

A result related to Proposition 3.5 is found in Theorem III of [5].
Recall that a function f belongs to Cn if and only if for all subsets {λi}n

i=1 ⊆
R+ consisting of n points, we have that f |{λi}n

i=1 ∈ P′|{λi}n
i=1. We shall need the

following lemma:

LEMMA 3.6. A function h : {λi}n
i=1 → R+ belongs to P′|{λi}n

i=1 if and only if
for all scalar sequences (ai)n

i=1 holds:

(3.4)
n

∑
i=1

ai
λi

t + λi
> 0, t > 0 implies

n

∑
i=1

aih(λi) > 0.

Proof. Our proof follows Lemma 7.1 of [1], and the subsequent remarks.
⇒: Let h be a P′-function and let $ be the positive Radon measure on [0, ∞]

occurring in the representation (1.2) of h. Assuming that the function v(t) :=
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n
∑

i=1
ai

λi
t+λi

in non-negative for all t > 0, we infer that also the function u(t) :=

(1 + t−1)v(t−1) =
n
∑

i=1
ai

(1+t)λi
1+tλi

is non-negative on [0, ∞]. The property (3.4) now

follows, because
n

∑
i=1

aih(λi) =
n

∑
i=1

ai

∫
[0,∞]

(1 + t)λi
1 + tλi

d$(t) =
∫

[0,∞]

u(t)d$(t) > 0.

⇐: Suppose that h is any function defined on a given finite subset {λi}n
i=1 ⊂

R+ such that (3.4) holds. We can without loss of generality assume that the point
1 belongs to the set {λi} (replace the function h(λ) by h(cλ) for some suitable
c > 0). Let C = C([0, ∞]) be the unital C∗-algebra of continuous complex-valued
functions on the compact set [0, ∞]. Define functions ei(t) := (1+t)λi

1+tλi
and let V

denote the linear span of the ei’s. Note that V is a finite-dimensional subspace of
C, containing the unit 1 = e1(t) ∈ C. The condition (3.4) says precisely that the
functional φ : V → C defined by φ : ∑ aiei 7→ ∑ aih(λi) is a positive functional
on V in the sense that if u ∈ V and u(t) > 0 for all t > 0, then φ(u) > 0. By
well-known properties of positive functionals this is equivalent to ‖φ‖ = φ(1).
Let Φ : C → C be a Hahn-Banach extension of φ to C of the same norm. Then
‖Φ‖ = ‖φ‖ = φ(1) = Φ(1), and it follows that Φ is a positive functional on C. But
then, by the Riesz Representation Theorem, there exists a positive Radon measure
$ on [0, ∞] such that Φ(u) =

∫
[0,∞]

u(t)d$(t) for all u ∈ C, and in particular

h(λi) = φ(ei) = Φ(ei) =
∫

[0,∞]

(1 + t)λi
1 + tλi

d$(t), i = 1, . . . , n.

But in view of the representation (1.2), this latter equation means precisely that
h ∈ P′|{λi}n

i=1, and our lemma is proved.

3.1. INVESTIGATIONS OF THE CLASSES C2 AND C3. We shall now undertake a
closer study of the classes Cn for n = 2 and n = 3. Our point of departure will be
Corollary 2.4, a function h : R+ → R+ belongs to Cn if and only if its restriction
to any subset of R+ consisting of n points coincides there with a P′ function.

Recall (cf. e.g. [4]) that a positive function h on R+ is quasi-concave if h(t) 6
h(s) max(1, t

s ) for all s, t > 0. Let Q denote the class of all quasi-concave functions
on R+. We have the following result.

PROPOSITION 3.7. C2 = Q.

Proof. “Q ⊆ C2". Take f ∈ Q. Let s, t ∈ R+ and assume with no loss of
generality that t > s. Since f (t) 6 f (s) t

s , we can then find an affine positive
function h on R+ such that h(s) = f (s) and h(t) = f (t). (To see this, note that in
the extreme case f (t) = f (s) t

s , our h is simply the linear function h(λ) = f (s) λ
s .)
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But this function h belongs to P′. Thus f coincides at any two points of R+ with
a P′-function, i.e. f ∈ C2.

“C2 ⊆ Q". Take f ∈ C2. Take two points s, t ∈ R+. Then there exists a
P′-function h such that f (s) = h(s) and f (t) = h(t). But P′-functions are quasi-
concave. Thus f (t) = h(t) 6 h(s) max(1, t

s ) = f (s) max(1, t
s ), i.e. f ∈ Q.

REMARK 3.8. A function h is quasi-concave if and only if h is increasing
and t 7→ h(t)

t is decreasing on R+. This yields that quasi-concave functions are
continuous on R+. Thus, by Proposition 3.7, Cn ⊆ C2 ⊆ C(R+) for n > 2, where
C(R+) is the set of continuous functions on R+.

We shall now turn to the problem of characterizing the class C3. To this
end, our main tool will be polynomial techniques which essentially go back to
Sparr [16].

The important observation now is that the property (3.4) is inherited by Cn-
functions in the following sense: f belongs to Cn if and only if for all n-subsets
{λi}n

i=1 ⊆ R+ we have

(∀(ai)
n
i=1 ∈ Rn) :

( n

∑
i=1

ai
λi

t + λi
> 0, ∀t > 0

)
implies

n

∑
i=1

ai f (λi) > 0.

We shall now use this characterization of Cn functions to prove a more con-
venient one in the case n = 3. In the sequel, we shall denote by Pn the linear
space of real polynomials of degree at most n.

PROPOSITION 3.9. Let f : R+ → R+ be an arbitrary function. The following
conditions are equivalent:

(i) f ∈ C3;
(ii) for any scalar triple (ai)3

i=1 ∈ R3 holds

(3.5)
3

∑
i=1

ai
λi

t + λi
> 0, t > 0 implies

3

∑
i=1

ai f (λi) > 0;

(iii) for any three numbers ε, λ, ω ∈ R+ such that ε < λ < ω, and any polynomial
P ∈ P2 such that P(t) > 0, t > 0 we have

(3.6)
P(−ε)

ε(λ− ε)(ω − ε)
f (ε)− P(−λ)

λ(λ− ε)(ω − λ)
f (λ) +

P(−ω)
ω(ω − ε)(ω − λ)

f (ω) > 0;

(iv) f is concave, and for all ε, λ, ω ∈ R+ such that ε < λ < ω and all numbers c > 0
we have

(3.7) f (λ) 6
( ε + c

λ + c

)2 λ(ω − λ)
ε(ω − ε)

f (ε) +
(ω + c

λ + c

)2 λ(λ− ε)
ω(ω − ε)

f (ω);

(v) f is concave, and for all c > 0, the function λ 7→ (λ + c)2 f (λ)
λ is convex on R+.

Proof. (i) ⇐⇒ (ii): This is clear by the preceding remarks.
(ii) ⇐⇒ (iii): Take an arbitrary function f : R+ → R+.
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Take ε, λ, ω as in (iii) and put L(t) = (t + ε)(t + λ)(t + ω). For P ∈ P2, we
define ai = ai(P), i = 1, 2, 3 by

(3.8)
P(t)
L(t)

= a1
ε

t + ε
+ a2

λ

t + λ
+ a3

ω

t + ω
,

where

(3.9) a1 =
P(−ε)

ε(λ− ε)(ω − ε)
, a2 = − P(−λ)

λ(λ− ε)(ω − λ)
, a3 =

P(−ω)
ω(ω − ε)(ω − λ)

.

By (3.9) is defined a linear bijection

P2 → R3 : P 7→ a = (ai)
3
i=1.

Moreover, by (3.8), it is clear that P(t) > 0, t > 0 if and only if the corresponding
sum a1(P) ε

t+ε + a2(P) λ
t+λ + a3(P) ω

t+ω is > 0 for t > 0. Thus for a function f :
R+ → R+, the assertions (3.5) and (3.6) are equivalent, as desired.

(iii) ⇐⇒ (iv): Let C denote the cone of polynomials P ∈ P2 such that P(t) >
0 for all t > 0. Let G denote the subcone of C consisting of polynomials P of
exact degree 2 such that P(0) > 0. Let f : R+ → R+ be an arbitrary function.
Since G is dense in C, it is sufficient to show that the property that (3.6) holds
for f is equivalent to (3.7) for polynomials in the cone G. Fix a polynomial P ∈
G. Multiplying P by a positive constant does not change the problem, so we
can assume that the leading coefficient of P is 1. Moreover, since P(0) > 0, the
constant term of P is of the form c2 for some number c > 0. Thus P(t) = t2 + bt +
c2 for some constants b ∈ R and c > 0. But since P(c) = c(b + 2c) > 0, this yields

b + 2c > 0.

We have thus the following decomposition of a generic polynomial P:

P(t) = a((t− c)2 + (b + 2c)t),

where a is the leading coefficient of P and the term b + 2c is non-negative.
By these considerations, it is clear that a function f satisfies (3.6) for all poly-

nomials P ∈ C if and only if it satisfies that same condition with respect to special
polynomials of the form

(I) P(t) = (t− c)2 where c > 0 and
(II) P(t) = t.

Consider first the case P(t) = t. Then (3.6) becomes

f (λ) >
ω − λ

ω − ε
f (ε) +

λ− ε

ω − ε
f (ω).

Setting λ = αε + (1− α)ω, this means f (λ) > α f (ε) + (1− α) f (ω), i.e. f is concave
on R+.
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There remains to investigate the case of polynomials of the form P(t) =
(t− c)2 where c > 0. But in this case, (3.6) becomes

(ε + c)2

ε(λ− ε)(ω − ε)
f (ε)− (λ + c)2

λ(λ− ε)(ω − λ)
f (λ) +

(ω + c)2

ω(ω − ε)(ω − λ)
f (ω) > 0,

which is readily seen to be equivalent to (3.7).
(iv) ⇐⇒ (v): Let 0 < ε < ω be given together with a number α ∈ (0, 1), and

put λ = αε + (1− α)ω. Then (3.7) becomes

f (λ) 6
( ε + c

λ + c

)2 λ

ε
α f (ε) +

(ω + c
λ + c

)2 λ

ω
(1− α) f (ω),

which means precisely that the function x 7→ (x + c)2 f (x)
x is convex.

We have the following corollary.

COROLLARY 3.10. Let f ∈ C3. Then f is C1-smooth on R+, and moreover
(i) the function λ 7→ λ f (λ) is convex on R+;

(ii) the function λ 7→ f (λ) is concave on R+;
(iii) the function λ 7→ f (λ)

λ is convex on R+.

Proof. Let f ∈ C3. The convexity of all functions gc(λ) = (λ + c)2 f (λ)
λ , c > 0

implies that lim
c→0

gc(λ) = λ f (λ) is convex and also lim
c→∞

gc(λ)
c2 = f (λ)

λ is convex.

Thus the properties (i),(ii), (iii) follow from (v) of Proposition 3.9.
We prove that f is C1-smooth. Fix a point λ ∈ R+. Since f is concave, the

right and left derivatives f ′(λ+) and f ′(λ−) exist and satisfy f ′(λ−) > f ′(λ+).
Similarly the convex function g(λ) = λ f (λ) is right and left differentiable at λ
and g′(λ−) 6 g′(λ+). But since g′(λ±) = f (λ) + λ f ′(λ±), this implies f ′(λ−) 6
f ′(λ+). Therefore, we must have f ′(λ−) = f ′(λ+), i.e. f ∈ C1.

REMARK 3.11. Note that for given t > 0 the P′-function h(λ)= λ
1+tλ satisfies

d2

dλ2

( (c + λ)2

λ

λ

1 + tλ

)
= 2

(ct− 1)2

(1 + tλ)3 > 0, λ > 0.

By this observation and a convexity argument, one obtains an alternative
proof of the fact that all P′ functions fulfill the condition (v) of Proposition 3.9.

EXAMPLE 3.12. Let F be the convex set of C3-functions such that f (1/2) =
1
2 and f (2) = 1, and let F1 = { f (1) : f ∈ F}. F1 is a closed convex set of R+,
i.e. an interval of the form [θ0, θ1] for some θ0, θ1 ∈ R+. Since functions in F are
concave, it becomes obvious that θ0 > 2

3 ·
1
2 + 1

3 · 1 = 2
3 . Furthermore, by choosing

f (λ) = 1+λ
3 , we see that this bound is attained, i.e. θ0 = 2

3 . Moreover, trivially
θ1 6 1 because functions in F are increasing. To determine the precise value of θ1,
we make use of the relation (3.7) with ε = 1

2 and ω = 2 and an arbitrary number
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c > 0 . It yields

f (1) 6
( 1

2 + c
1 + c

)2 4
3

f (1/2) +
(2 + c

1 + c

)2 1
6

f (2) =
( 1

2 + c
1 + c

)2 2
3

+
(2 + c

1 + c

)2 1
6

, c > 0.

Minimizing the expression in the right hand side, one obtains that the infimum is
attained for c = 1, and equals 3

8 + 3
8 = 3

4 . Thus θ1 6 3
4 . But since the P′-function

h(λ) = 3
2

λ
1+λ belongs toF1, and h(1) = 3

4 , we deduce that θ1 > 3
4 , andF1 = [ 2

3 , 3
4 ].

If f ∈ F and f (1) = θ, then an explicit P′-function h interpolating f at the
points 1

2 , 1 and 2 is given by h(λ) = (5θ−3)λ+3−4θ
(6θ−4)λ+5−6θ . In a similar way, one can deduce

that a non-constant C3-function can be interpolated at an arbitrary 3-subset of R+
by a linear fractional P′-function.

EXAMPLE 3.13. The conditions (i), (ii), (iii) of Corollary 3.10 are not suffi-
cient to guarantee that a function belongs to C3. A counterexample is provided
by the function

f (λ) = 2
λ

1 + λ
+
( λ

1 + λ

)2
.

Indeed, f ′′(λ) = −2 1+4λ
(1+λ)4 , d2

dλ2 {λ f (λ)} = 2 2+5λ
(1+λ)4 and d2

dλ2 {
f (λ)

λ } = 6 λ
(1+λ)4

i.e. f fulfills conditions (i), (ii) and (iii). However, it turns out that the function
g3/2(λ) = (λ + 3

2 )2 f (λ)
λ satisfies g′′3/2(λ) = − 1

2
4+λ

(1+λ)4 , i.e. g3/2 fails to be convex (it
is even concave!) whence f 6∈ C3 by (v) of Proposition 3.9.

3.2. THE GAP BETWEEN C3 AND P′2. We know from Theorem 3.1 that P′2 ⊆ C3.
Our main result in this subsection is the following.

PROPOSITION 3.14. P′2 $ C3.

Recall ([6], Section VII, Theorem III and Section VIII, Theorem IV) that a
function f : R+ → R+ is in P′2 if and only if f is C1-smooth, the derivative f ′ is
non-negative and convex and the suitably normalized Schwarzian derivative

(3.10) S f (λ) :=
2
3

f ′(λ) f ′′′(λ)− f ′′(λ)2 = 4 det

(
f ′(λ) f ′′(λ)

2
f ′′(λ)

2
f ′′′(λ)

6

)
> 0

at all points λ ∈ R+ where it makes sense (i.e. almost everywhere on R+ by the
convexity of f ′). (Similar characterizations of P′n for every fixed n can be found in
Donoghue’s book [7], Section VII, Theorem VI and Section VIII, Theorem V.)

We now observe that Hansen, Ji and Tomiyama [12] have recently proved
that for every integer n > 2, there exists a positive constant cn such that the
function

(3.11) gn(λ) =
n

∑
k=1

1
2k− 1

( cnλ

1 + λ

)2k−1
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satisfies gn ∈ P′n. Furthermore, they prove that any function gn of the form (3.11)
does not belong to P′n+1. Let αn denote the supremum of numbers cn such that the
corresponding function gn (3.11) belongs to P′n. We have the following lemma.

LEMMA 3.15. α2
2 = 1

2 .

Proof. Consider for K > 0 the function

(3.12) fK(λ) = K
λ

1 + λ
+
( λ

1 + λ

)3
.

The set of K’s such that fK ∈ P′2 is easily seen to be the interval [3α−2
2 , ∞). Let us

compute the first three derivatives of fK:

(3.13)


f ′K(λ) = (3+K)λ2+2Kλ+K

(1+λ)4 ,

f ′′K(λ) = −2 (3+K)λ2+(2K−3)λ+K
(1+λ)5 ,

f ′′′K (λ) = 6 (3+K)λ2+(2K−6)λ+K+1
(1+λ)6 .

Note that f ′K > 0 on R+ for all K > 0, which is a necessary condition for fK ∈ P′2
to hold. Recall that if f is any smooth increasing function such that S f > 0, then
f ′ is necessarily convex (even logarithmically convex, cf. [6], p. 74). The lemma
will thus follow if we can prove that the Schwarzian derivative satisfies S fK > 0
on R+ if and only if K > 6. In order to see this, we compute

S fK(λ) =
24(1 + 2λ) + 4(K − 6)(λ + 1)2

(1 + λ)10 .

It is evident that this expression is positive for all λ > 0 if and only if K > 6.

We shall now consider the condition fK ∈ C3, where fK is defined as above
(3.12). The set of K’s such that this is true is an interval of the form [β, ∞) for some
β > 0. By the preceding proposition and Theorem 3.1, we know that β 6 6. We
shall show that in fact:

LEMMA 3.16. β 6 3.

Proof. It is immediate from (3.13) that fK is concave on R+ if K > 3. Thus
by Proposition 3.9, it suffices to prove that, for every c > 0, the function

gc(λ) :=
(λ + c)2 f3(λ)

λ

is convex on R+. But a direct computation yields:

g′′c (λ) =
4λ2(2c− 3)2 + 2λ((2c− 3)2 + 3) + (4c− 3)2 + 3

2(1 + λ)5 ,

which is evidently positive for λ > 0. The proof is finished.
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REMARK 3.17. By a slightly longer argument, it is possible to prove that β =
3. (For each fixed positive number K < 3, the corresponding function gc(λ) =
(λ + c)2 fK(λ)

λ fails to be convex for c = 3
2 . We omit the details.)

Proof of Proposition 3.14. By the foregoing lemmas, the function (for exam-
ple)

f3(λ) = 3
λ

1 + λ
+
( λ

1 + λ

)3

belongs to C3 \ P′2.

3.3. THE GAP BETWEEN P′2 AND C4. In this subsection, we want to prove the
following.

PROPOSITION 3.18. C4 $ P′2.

Proof. (Cf. Sparr [16], p. 274). We know that C4 ⊆ P′2. To prove that the
inclusion is proper, we shall exploit a fact from Donoghue’s book ([7], Section VII,
Theorem IV and Section VIII, Theorem III) that a non-constant function f : R+ →
R+ satisfies f ∈ P′2 if and only if f is of class C1 and the derivative f ′ is of the
form

f ′(λ) =
1

c(λ)2

with some concave function c : R+ → R+. We choose c(x) = min(1 + x, 2) and

f (λ) =

λ∫
0

dx
c(x)2 =

{
λ

1+λ λ 6 1,
1
4 (1 + λ) λ > 1.

Then f ∈ P′2. We shall show that f 6∈ C4. Indeed let λi = i, i = 1, 2, 3 and λ4 ∈ R+
an arbitrary point. If it were true that f ∈ C4, we could find a P′-function h
interpolating f at the points λi. However, the only P′-function interpolating f at
the points λ1, λ2 and λ3 is the affine function h(λ) = 1

4 (1 + λ). Thus f (λ4) =
h(λ4) = 1

4 (1 + λ4) for all points λ4 ∈ R+, a contradiction. This shows that f 6∈
C4.

REMARK 3.19. It is a simple consequence of the above proof that a C4 func-
tion is either affine or is strictly concave on R+.

3.4. INTERPOLATION FUNCTIONS ON UNITAL C∗-ALGEBRAS. In this subsection,
we prove three propositions, which allow us to transport results from the theory
of interpolation functions to unital C∗-algebras (other than B(H)). The corre-
sponding problem for monotone functions was considered in [12].

Let A be a unital C∗-algebra. We will denote by Â a complete collection of
representatives of the unitary equivalence classes of non-zero irreducible repre-
sentations of A.
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For a fixed strictly positive element a of A, we define the a-norm on A by

‖x‖a = ‖a1/2xa−1/2‖.

Our goal in this section is to characterize the strictly positive elements b ∈ A such
that the interpolation inequality

(3.14) ‖x‖b 6 max(‖x‖, ‖x‖a), ∀x ∈ A

is satisfied.
It is sometimes convenient to reformulate the condition (3.14) in the follow-

ing way:

(3.15) ∀x ∈ A : x∗x 6 1 and x∗ax 6 a imply x∗bx 6 b.

The set of b’s such that (3.15) (or, equivalently, (3.14)) holds form a convex
cone. Below, we shall address the problem of finding necessary and sufficient
conditions for an element b to belong to that cone.

3.4.1. A SUFFICIENT CONDITION. We have the following proposition.

PROPOSITION 3.20. Assume that a and b are fixed strictly positive elements of a
unital C∗-algebra A. Suppose that for each irreducible representation π ∈ Â there exists
a function hπ ∈ P′ such that π(b) = hπ(π(a)). Then the interpolation inequality (3.14)
holds.

Proof. Let ϕ be a pure state on A and let {Hϕ, πϕ, ξϕ} be the corresponding
GNS representation, i.e.,

ϕ(x) = (πϕ(x)ξϕ, ξϕ)Hϕ , x ∈ A.

Since ϕ is pure, πϕ is irreducible whence by assumption πϕ(b) = hϕ(πϕ(a)) for
some function hϕ ∈ P′|σ(πϕ(a)). We conclude that hϕ ∈ Cπϕ(a) by (2.7). In
particular, the following implication holds:

x ∈ A, x∗x 6 1 , x∗ax 6 a,

implies πϕ(x)∗πϕ(x) 6 1 and πϕ(x)∗πϕ(a)πϕ(x) 6 πϕ(a), and so

πϕ(x)∗hϕ(πϕ(a))πϕ(x) 6 hϕ(πϕ(a)).

This yields

(3.16) ϕ(b− x∗bx) = (πϕ(b)ξϕ, ξϕ)Hϕ − (πϕ(x)∗πϕ(b)πϕ(x)ξϕ, ξϕ)Hϕ > 0

for every pure state ϕ. But since all states belong to the weak* closed convex hull
of the pure states, the conclusion of (3.16) remains true for all states ϕ, i.e.,

b− x∗bx > 0.

The proposition follows.
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3.4.2. A NECESSARY CONDITION. We shall now prove a partial converse to Propo-
sition 3.20. In order to formulate our result, we need to make some preliminary
remarks.

Fix a strictly positive element a of a unital C∗-algebra A. We shall operate
under the following “technical" assumption on a and A:

(3.17) π{x∈A :‖x‖61, ‖x‖a 61} st
={T∈B(Hπ) :‖T‖61, ‖T‖π(a) 61} ∀π∈Â,

where “st" denotes the closure with respect to the strong operator topology on
B(Hπ).

REMARK 3.21. When a = 1, the statement (3.17) holds; indeed, it is equiv-
alent to the Kaplansky Density Theorem. Moreover, (3.17) is trivially satisfied
e.g. for C∗-algebras having the property that every irreducible representation is
finite-dimensional. At present, we do not know whether or not (3.17) holds in
general.

We have the following proposition.

PROPOSITION 3.22. Let A be a unital C∗-agebra and a > 0 a fixed element of
A such that the condition (3.17) is satisfied. Let b be another strictly positive element
of A such that the interpolation inequality (3.14) holds for all x ∈ A. Then, for every
irreducible representation π ∈ Â, there exists a function hπ ∈ P′ such that π(b) =
hπ(π(a)) .

We shall need a simple lemma.

LEMMA 3.23. Let A be a unital C∗-algebra and π : A → B(H) a representation
of A on some Hilbert space H. Let a ∈ A be a fixed element such that a > 0, and put
A = π(a). Let ε > 0 be given. Suppose that an operator T ∈ π(A) satisfies ‖T‖ 6 1
and ‖T‖A 6 1. Then there exists an element x ∈ A such that π(x) = T, ‖x‖ 6 1 + ε
and ‖x‖a 6 1 + ε.

Proof. Let uλ be an approximate unit for the ideal π−1({0}), and take x0 ∈ A
such that π(x0) = T. Put xλ = x0(1 − uλ). Then π(xλ) = T, and moreover by
standard facts about approximate units ([14], Section 3)

‖T‖ = lim ‖xλ‖ and ‖A1/2TA−1/2‖ = lim ‖a1/2xλa−1/2‖.

Thus, letting x = xλ with some sufficiently large λ, we obtain an element with
desired properties.

Proof of Proposition 3.22. Let π : A → B(H) be an irreducible representation
ofA. Put A = π(a) and B = π(b). Fix T ∈ B(H) such that ‖T‖ 6 1 and ‖T‖A 6 1.
Take ε > 0 and let ξ be a unit vector of H.

By the assumption (3.17), there exists S ∈ π(A) such that ‖S‖ 6 1 and
‖S‖A 6 1 and also

(3.18) ‖B1/2(T − S)B−1/2ξ‖ <
ε

2
.
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(We have here used the simple fact that the map X 7→ B1/2XB−1/2 is a homeo-
morphism with respect the strong topology on B(H).)

We now use Lemma 3.23 to find a lifting x ∈ A of S such that ‖x‖ 6 1 + ε
2

and ‖x‖a 6 1 + ε
2 . By the condition (3.14), then ‖x‖b 6 1 + ε

2 . Applying the
representation π it yields ‖S‖B 6 1 + ε

2 . Combining this estimate with (3.18), we
obtain ‖B1/2TB−1/2ξ‖ 6 ‖B1/2(T − S)B−1/2ξ‖ + ‖B1/2SB−1/2ξ‖ < 1 + ε. Since
ε > 0 was arbitrary, it yields ‖B1/2TB−1/2ξ‖ 6 1, and since the unit vector ξ
was arbitrary, we get ‖T‖B 6 1. We infer that ‖T‖B 6 max(‖T‖, ‖T‖A) for all
T ∈ B(H). We may thus apply Donoghue’s Theorem (Fact 2.1 and Theorem 2.3).
It yields that B = h(A) for some function h ∈ P′|σ(A), as desired.

3.4.3. INTERPOLATION FUNCTIONS. Let CA be the set of all continuous positive
functions h on R+ such that ‖x‖h(a) 6 max(‖x‖, ‖x‖a) for all x, a ∈ A such that
a > 0. It makes sense to refer to CA as the class of interpolation functions with
respect to A. In this notation, of course, CMn coincides with the class Cn of inter-
polation functions of order n. It will be convenient to define Cn also for n = ∞.
We make the following convention

(3.19) C∞ = P′.

Let C(R+) denote the class of continuous functions on R+. We have the
following proposition:

PROPOSITION 3.24. Let A be a unital C∗-algebra and let n = sup{dim(π) :
π ∈ Â}. Then Cn ∩ C(R+) ⊆ CA. Moreover, if the condition (3.17) is satisfied for all
a ∈ A such that a > 0, then CA = Cn ∩ C(R+).

REMARK 3.25. If n > 2, then Cn ⊆ C(R+) by Remark 3.8. Taking the inter-
section with C(R+) in Proposition 3.24 is thus only necessary when n = 1.

Proof of Proposition 3.24. Fix a strictly positive element a ∈ A and a func-
tion f ∈ Cn ∩ C(R+). For every irreducible representation π of A we have that
dim(π) 6 n, whence there is a function hπ ∈ P′ such that f = hπ on σ(π(a)). It
follows that f (π(a)) = hπ(π(a)). Applying Proposition 3.20, we conclude that
(3.14) is valid, i.e., ‖x‖ f (a) 6 max(‖x‖, ‖x‖a) for all x ∈ A. Since a > 0 was
arbitrary, f ∈ CA.

In the other direction, if f ∈ CA, then f ∈ C(R+) by definition. Fix an
element a ∈ A such that a > 0. If the condition (3.17) is satisfied, then Proposi-
tion 3.22 yields that π( f (a)) = hπ(π(a)) for a P′-function hπ . Since f and hπ are
continuous, this yields that f = hπ on σ(π(a)). If n is finite, then σ(π(a)) can be
taken to be any n-subset of R+, and it follows that h ∈ Cn. On the other hand,
if n = ∞, the same argument shows that h ∈ Ck for all finite k, and thus h ∈ P′

by (2.4).

3.5. COMPLETELY POSITIVE MAPS AND A THEOREM OF HANSEN. Let A be a C∗-
algebra and let ϕ : A → B(H) be a completely positive map from A to B(H)
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for some Hilbert space H. Then, by Stinespring’s Theorem, there exists a Hilbert
space K, a representation π : A → B(K) and a map V ∈ B(H, K) such that
ϕ(x) = V∗π(x)V, x ∈ A, and moreover ‖ϕ‖cb = ‖ϕ‖ = ‖ϕ(1)‖ = ‖V∗V‖ = ‖V‖2

cf. [3]. Thus if ϕ is contractive, ‖V‖ 6 1. Fix an element a ∈ A, a > 0. We shall
associate to ϕ the following operators in B(H ⊕ K):

A =
(

ϕ(a) 0
0 π(a)

)
, T =

(
0 0
V 0

)
.

Evidently, A > 0, and if we moreover require that 0 6∈ σ(ϕ(a)), then A > 0.
Moreover,

(3.20) T∗T 6 1 and T∗AT =
(

ϕ(a) 0
0 0

)
6
(

ϕ(a) 0
0 π(a)

)
= A.

Let n be the dimension of H ⊕ K, where we allow the case n = ∞. We shall make
use of the convention (3.19). We have the following result.

PROPOSITION 3.26. In the above situation holds: if h ∈ Cn, then ϕ(h(a)) 6
h(ϕ(a)).

Proof. The case n = ∞ is (the corollary in [10]), so we may assume that n
is finite. It then follows from (3.20) and the assumption h ∈ Cn that T∗h(A)T 6
h(A), or (

ϕ(h(a)) 0
0 0

)
6
(

h(ϕ(a)) 0
0 h(π(a))

)
and the proposition follows.

EXAMPLE 3.27. Positive linear functionals are completely positive. In this
example, we shall consider the algebra A = C(X) where X is compact. Let
x1, x2 ∈ X, 0 < λ < 1, and consider the positive functional

ϕ( f ) = λ f (x1) + (1− λ) f (x2), f ∈ C(X).

Then ϕ( f ) = V∗π( f )V, where

π( f ) =
(

f (x1) 0
0 f (x2)

)
, V =

(
λ1/2

(1− λ)1/2

)
.

In this case, n = dim(H ⊕ K) = 3. Thus, Proposition 3.26 yields that if a > 0 and
h ∈ C3, then ϕ(h(a)) 6 h(ϕ(a)), or

λh(a(x1)) + (1− λ)h(a(x2)) 6 h(λa(x1) + (1− λ)a(x2)).

This is an alternative way to see that C3 functions are concave.
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3.6. A FURTHER PROPERTY OF INTERPOLATION FUNCTIONS. Let H be a Hilbert
space and N ∈ N a fixed number. Let A ∈ B(H) be a fixed strictly positive
operator. Let us say that a function h : σ(A) → R+ belongs to the class CN

A if and
only if

(3.21) ∀({Tk}N
k=1 ⊆ B(H)) :

N

∑
k=1

T∗k Tk 6 1 and
N

∑
k=1

T∗k ATk 6 A

implies

(3.22)
N

∑
k=1

T∗k h(A)Tk 6 h(A).

This definition actually coincides with the previous definition of the class
CA, i.e. we have:

PROPOSITION 3.28. CA = CN
A .

Proof. It is clear that CN
A ⊆ CA (choose Ti = 0 for i > 2) . We show the

reverse inclusion. Consider the following operators in B(`N
2 (H)):

T =


T1 0 · · · 0
T2 0 · · · 0
...

...
...

TN 0 · · · 0

 , A1 =


A 0 · · · 0
0 A · · · 0
...

...
...

0 0 · · · A

 .

Evidently the condition (3.21) implies that T∗T 6 1 and T∗A1T 6 A1. Moreover
the operators A and A1 have the same spectra. We infer by Theorem 2.3 that
CA = P′|σ(A) = CA1 . In particular, if h ∈ CA, it yields that T∗h(A1)T 6 h(A1),
which is readily seen to imply the condition (3.22), i.e. we have h ∈ CN

A .

We note the following corollary.

COROLLARY 3.29. A function f belongs to Cn if and only if for every positive
definite matrix A ∈ Mn, and every finite set of matrices {Ti}N

i=1 ⊆ Mn, we have the

implication
N
∑
1

T∗i Ti 6 1 and
N
∑
1

T∗i ATi 6 A implies
N
∑
1

T∗i f (A)Ti 6 f (A).
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