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ABSTRACT. We consider an abstract version of a Dirac operator which de-
scribes a Hamiltonian of the chiral quark soliton model (CQSM) in nuclear
physics. The mass term of the Hamiltonian describing the concrete CQSM is
a matrix-valued function. Hence, the abstract CQSM Hamiltonian has struc-
tures different from the standard Dirac operator. We discuss the nonrelativis-
tic limit of the abstract CQSM Hamiltonian and show that a binding potential
appears as an effective potential. As an application of this abstract result, we
derive the nonrelativistic limit of the concrete CQSM.
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INTRODUCTION

In the theory of the quark, physicists use a Dirac operator with a matrix-
valued function mass term as an approximative theory. This model is called the
chiral quark soliton model (CQSM) [5]. From this model, many computational
results which are interesting from physical view points are derived ([5] and ref-
erences therein). But, as far as we know, only a few mathematically rigorous
analyses have been made on the CQSM [2]; we can expect that we can still find
various important results on this model.

In this paper, we consider the nonrelativistic limit of the abstract CQSM
which is an abstract version of the original CQSM. Since the mass term in the
CQSM is a matrix-valued function, it is very interesting to investigate whether
an effective potential appears or not. In discussing the nonrelativistic limit of
the standard Dirac operators, we have to renormalize the mass energy term in
order to avoid divergence difficulties. But, since the mass term in the CQSM is
a matrix-valued function, we can not expect that the standard renormalization is
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enough to treat our abstract CQSM. Hence it is also interesting to find a suitable
renormalization for our model.

The present paper is organized as follows. In Section 2, we present some
facts on self-adjoint operators in a Z2-graded Hilbert space. In Section 3, we in-
troduce the abstract CQSM and state the main result with respect to the nonrel-
ativistic limit of the abstract CQSM. We see that an effective potential which de-
scribes some kind of a binding of quark appears. In Section 4, we give a proof of
the main result. In Section 5, we discuss a typical example of the abstract CQSM.

1. PRELIMINARIES

1.1. SELF-ADJOINT OPERATORS ON A Z2-GRADED HILBERT SPACE. In this sub-
section, we recall some basic properties on self-adjoint operators in a Z2-graded
Hilbert space. For details, see [3].

Let X be a separable Hilbert space and Γ be a linear operator in X . We say
that the pair (X , Γ) is a Z2-graded Hilbert space if Γ is self-adjoint and unitary. The
linear operator Γ is called the grading operator in X . Throughout this paper, the
symbol Γ always stands for a grading operator in a suitable Hilbert space. We
set P± := (1± Γ)/2. Then we can easily check that P± are orthogonal projections
such that P+ + P− = 1 and P+P− = 0 = P−P+. Hence X has the following
Z2-graded structure:

X = ran(P+)⊕ ran(P−),
where ran(P±) denote the range of P± respectively. Let A be a linear operator
with Γdom(A) ⊂ dom(A) (dom(A) denotes the domain of A). If A satisfies
ΓAΓ = A, the linear operator A is called an even operator. On the other hand if
ΓAΓ = −A, the linear operator A is called an odd operator. The following lemmata
are fundamental:

LEMMA 1.1. Let A be an odd self-adjoint operator in a Z2-graded Hilbert space
(X , Γ) and let f be a continuous function on R. Then the following hold:

(i) If f is an even function i.e., f (−x) = f (x) (x ∈ R), then the linear operator
f (A) which is given by the functional calculus is even.

(ii) If f is an odd function i.e., f (−x) = − f (x) (x ∈ R), then the linear operator
f (A) is odd.

LEMMA 1.2. Let A be an even self-adjoint operator in a Z2-graded Hilbert space
(X , Γ) and let f be a continuous function on R. Then f (A) is even.

1.2. RELATIVE BOUNDED OPERATORS. Let A and B be linear operators on a
Hilbert space. If dom(A)⊂dom(B) and there exist constants r1(B; A) and r2(B; A)
such that for all f ∈ dom(A),

‖B f ‖ 6 r1(B; A)‖A f ‖+ r2(B; A)‖ f ‖,

we say that B is A-relative bounded. For notational simplicity, we write B ≺ A.
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LEMMA 1.3. Let B be a self-adjoint operator. Suppose that Bn ≺ A. Then Bj ≺
A (j = 1, . . . , n− 1). Moreover we can take r1(Bj; A) = r1(Bn; A) (j = 1, . . . , n− 1).

Proof. By the functional calculus, we have

‖Bn−1 f ‖ 6 ‖Bn f ‖+ ‖ f ‖

for all f ∈ dom(A). Hence

‖Bn−1 f ‖ 6 r1(Bn; A)‖A f ‖+ (1 + r2(Bn; A))‖ f ‖(1.1)

and we conclude that Bn−1 ≺ A. Repeating this argument, we get Bj ≺ A (j =
1, . . . , n − 1). Note that, by (1.1), we can take r1(Bn−1; A) = r1(Bn; A). Hence
we can also take r1(Bj; A) = r1(Bn; A) (j = 1, . . . , n − 1) by the repeating argu-
ment.

LEMMA 1.4. Let A and B be self-adjoint operators. Suppose that B2 ≺ A. Then:
(i) B ≺ A with r1(B; A) = εr1(B2; A) for all ε > 0;

(ii) B2 ≺ A2 with r1(B2; A2) = γr1(B2; A) for all γ > 0.

Proof. (i) For all f ∈ dom(A) and ε > 0,

‖B f ‖ 6 ε‖B2 f ‖+
1
4ε
‖ f ‖ 6 εr1(B2; A)‖A f ‖+

(
εr2(B2; A) +

1
4ε

)
‖ f ‖.

(ii) For all f ∈ dom(A2) and γ > 0,

‖B2 f ‖ 6 r1(B2; A)‖A f ‖+ r2(B2; A)‖ f ‖

6 r1(B2; A)
(

γ‖A2 f ‖+
1

4γ
‖ f ‖

)
+ r2(B2; A)‖ f ‖

= γr1(B2; A)‖A2 f ‖+
( r1(B2; A)

4γ
+ r2(B2; A)

)
‖ f ‖.

2. NONE RELATIVISTIC LIMIT OF THE ABSTRACT CQSM

Let (H, Γ) be a Z2-graded Hilbert space and let Q, M and G be self-adjoint
operators on H such that:

(i) Q and G are odd, and M is even;
(ii) Q and M strongly commute, i.e., their spectral measures commute;

(iii) G and M strongly commute;
(iv) M is bounded and

m := inf σ(M) > 0,

where σ(M) means the spectrum of M.

A linear operator H defined by

H := Q + ΓM eiG
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is called the abstract CQSM Hamiltonian. This operator can be regarded as an
abstract generalization of the CQSM Hamiltonian appeared in nuclear physics
[5]. This section concerns the limit c → ∞ of the scaled Hamiltonian

H(c) := cQ + ΓMc2 ei 1
c G.

In applications to concrete CQSM Hamiltonians, this limit corresponds to the
nonrelativistic limit.

First, we have to check the self-adjointness of H(c).

PROPOSITION 2.1. For all c > 0, H(c) is self-adjoint on dom(Q).

Proof. Since G is odd, we have

Γei 1
c GΓ = e−i 1

c G

by Lemma 1.1. Thus we get

(ΓMc2 ei 1
c G)∗ = e−i 1

c G Mc2Γ = ΓMc2 ei 1
c G,

i.e., ΓMc2 ei 1
c G is self-adjoint. Hence we obtain the desired result by the Kato-

Rellich theorem [4].

Next we have to find a “renormalized Hamiltonian". First we consider the
standard Dirac operator

HD(c) = −icα · ∇+ mc2β + V

to get a key to this problem. In this case, it is well-known that, in discussing
the nonrelativistic limit, we investigate HD(c) − mc2 instead of HD(c) in order
to avoid divergence difficulties coming from the mass term mc2β. In our case,
unfortunately, the situation is not so simple as the standard Dirac operator. To
see this reason, we expand our mass term ΓMc2 ei 1

c G with respect to 1/c and
obtain

ΓMc2 ei 1
c G = ΓMc2 + iΓcMG − 1

2
ΓMG2 + O(1/c).

From this equation, it is clear that ΓMc2 ei G
c contains two divergent terms ΓMc2

and iΓcMG. From the consideration of the standard Dirac operator, we can expect
that the term ΓMc2 can be renormalized by a method similar to the one for stan-
dard Dirac operator. But, because of the term iΓcMG, this standard procedure
is not enough, and we take the following linear operator as our renormalized
Hamiltonian:

Hren(c) := H(c)− Mc2 − icΓMG.
To discuss the nonrelativistic limit, we need a more assumption:

(v) G4 ≺ Q.

PROPOSITION 2.2. Let (i)–(v) be satisfied. Then:
(i) Hren(c) is self-adjoint on dom(Q) for all c > 0;

(ii) (1/2M)Q2 − (M/2)G2 is self-adjoint on dom(Q2) ((1/2M) := (2M)−1).
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Proof. By the assumption (v) and Lemma 1.3, we have G2 ≺ Q. Hence, by
Lemma 1.4, we obtain G ≺ Q and G2 ≺ Q2 with

r1(G; Q) = r1(G2; Q2) = εr1(G2; Q)(2.1)

for all ε > 0. Hence, taking ε such that ‖M‖r1(G; Q) < 1, we conclude (i) by the
Kato-Rellich theorem. Similarly, taking ε such that ‖M‖r1(G2; Q2)/m < 1, we
obtain (ii) by the Kato-Rellich theorem.

Now we state our main result of this paper.

THEOREM 2.3. Let (i)–(v) be satisfied. Then, for all z ∈ C\R,

norm- lim
c→∞

(Hren(c)− z)−1 = P+

( 1
2M

Q2 − M
2

G2 − z
)−1

,

where norm- lim
c→∞

means limit in the operator-norm topology.

REMARK 2.4. Physically the term (2M)−1Q2 corresponds to an abstract ver-
sion of a nonrelativistic Hamiltonian of a “quark". In this interpretation, the ap-
pearance of the effective potential −MG2/2 means the binding of the quark. This
may be connected with the confining effect of the quark.

3. PROOF OF THEOREM 2.3

We say that a closed linear operator A from a Hilbert space to a Hilbert
space is invertible if it is bijective. By the closed graph theorem, the inverse of an
invertible operator in bounded.

Let

K :=
1

2M
Q2

with domain dom(K) = dom(Q2) and let

Kz(c) := K − z− z2

2c2 M

for z ∈ C\R. Suppose that

1
c

<

√
2m|Imz|
|z|

.(3.1)

Then it is easy to check that Kz(c) is invertible in the operator-norm topology with

Kz(c)−1 =
∞

∑
n=0

( z2

2c2

)n
((K − z)−1M−1)n(K − z)−1.

LEMMA 3.1. Let

Π± := cQ + ΓMc2 ± Mc2 ± z.
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Let (3.1) be satisfied. Then

Π−1
± =

1
2Mc2 Π∓Kz(c)−1.

Proof. Easy or see Theorem 3.3 of [1].

The following lemma is often useful.

LEMMA 3.2. Let {A(κ)}κ>0 be a family of self-adjoint operators and B be a
bounded self-adjoint operator. Suppose that A(κ) and B are strongly commuting for
all κ > 0. Then, for all κ and z ∈ C\R satisfying

κ >
√

2|Rez| · ‖B‖,(3.2)

A(κ)− z−
( z

κ

)2B is invertible with:∥∥∥(
A(κ)− z−

( z
κ

)2
B
)−1∥∥∥ 6

(
|Imz| − 2

κ2 |Rez| · |Imz| · ‖B‖
)−1

.

Proof. Given a self-adjoint operator S in a Hilbert space, we denote its spec-
tral measure by ES. By the assumption, EA(κ) and EB commute for all κ > 0.
Hence we can define a two-dimensional spectral measure by EA(κ),B := EA(κ) ⊗
EB. It is not hard to check the invertibility of A(κ)− z − (z/κ)2B. For all ϕ ∈ H,
we get∥∥∥(

A(κ)− z−
( z

κ

)2
B
)−1

ϕ
∥∥∥2

=
∫ ∣∣∣λ− z−

( z
κ

)2
µ
∣∣∣−2

d‖EA(κ),B(λ, µ)ϕ‖2

6
∫ ∣∣∣Im(

z +
( z

κ

)2
µ
)∣∣∣−2

d‖EA(κ),B(λ, µ)ϕ‖2

=
∥∥∥∣∣∣Im(

z +
( z

κ

)2
B
)∣∣∣−1

ϕ
∥∥∥2

.

For all κ > 0 satisfying (3.2), we obtain∥∥∥∣∣∣Im(
z +

( z
κ

)2
B
)∣∣∣−1

ϕ
∥∥∥2

=
∫ ∣∣∣Imz +

2
κ2 Rez · Imz · µ

∣∣∣−2
d‖EB(µ)ϕ‖2

6
∫ ∣∣∣|Imz| − 2

κ2 |Rez| · |Imz| · ‖B‖
∣∣∣−2

d‖EB(µ)ϕ‖2

=
∣∣∣|Imz| − 2

κ2 |Rez| · |Imz| · ‖B‖
∣∣∣−2

‖ϕ‖2.

Combining these results, we have the desired assertion.

LEMMA 3.3. Let

Vc,+ := Mc2Γ[cos((1/c)G)− 1].

Then, for sufficiently large c, 1 + Vc,+P+Kz(c)−1 is invertible and

(Kz(c) + Vc,+P+)−1 = Kz(c)−1(1 + Vc,+P+Kz(c)−1)−1.(3.3)
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Proof. By Lemma 3.2 with A(c) := K + Vc,+P+ and B := M/2, the linear
operator Kz(c) + Vc,+P+ is invertible for sufficiently large c.

Note that Kz(c) + Vc,+P+ = (1 + Vc,+P+Kz(c)−1)Kz(c). This implies that 1 +
Vc,+P+Kz(c)−1 is bijective and that (3.3) holds.

LEMMA 3.4. Let

Vc,− := iΓMc2
[

sin((1/c)G)− 1
c

G
]
.

Then the following hold:

lim
c→∞

∥∥∥Vc,+
1

2Mc2 (cQ + z)(Kz(c) + Vc,+P+)−1
∥∥∥ = 0,(3.4)

lim
c→∞

∥∥∥Vc,−
1

2Mc2 (cQ + 2Mc2P+ + z)(Kz(c) + Vc,+P+)−1
∥∥∥ = 0.(3.5)

Proof. Noting the following fundamental inequalities |x − sin x| 6 |x|3/6
and 1− cos x 6 x2/2 for all x ∈ R, we obtain

‖Vc,+g‖ 6
1
2
‖M‖ · ‖G2g‖ for all g ∈ dom(G2),(3.6)

‖Vc,−g‖ 6
1
6c
‖M‖ · ‖G3g‖ for all g ∈ dom(G3).(3.7)

For simplicity, we denote Kz(c; V) := Kz(c) + Vc,+P+. By the assumption (v) and
Lemma 1.3, we have G2 ≺ Q. Hence, using (3.6), we get for all f ∈ H,

‖Vc,+(cQ + z)M−1Kz(c; V)−1 f ‖

6
1
2
‖M‖ · ‖G2(cQ + z)M−1Kz(c; V)−1 f ‖

6
1
2
‖M‖{r1(G2; Q)‖Q(cQ + z)M−1Kz(c; V)−1 f ‖

+ r2(G2; Q)‖(cQ + z)M−1Kz(c; V)−1 f ‖}

6 c‖M‖r1(G2; Q)‖KKz(c; V)−1 f ‖

+
1
2
‖M‖(r1(G2; Q)|z|+ r2(G2; Q)c)‖QM−1Kz(c; V)−1 f ‖

+ r2(G2; Q)
|z|
m
‖Kz(c; V)−1 f ‖.

For all ε > 0 and all g ∈ dom(Q2), it is easy to see that

‖Qg‖ 6 ε‖Q2g‖+
1
4ε
‖g‖.(3.8)

Using this, we have

‖QM−1Kz(c; V)−1 f ‖ 6 ε‖Q2M−1Kz(c; V)−1 f ‖+
1
4ε
‖M−1Kz(c; V)−1 f ‖

6 2ε‖KKz(c; V)−1 f ‖+
1

4εm
‖Kz(c; V)−1 f ‖.
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Hence ‖Vc,+(cQ+z)M−1Kz(c; V)−1 f ‖6d1(c)‖KKz(c; V)−1 f ‖+d2(c)‖Kz(c; V)−1 f ‖
where

d1(c) := ‖M‖r1(G2; Q)c + ε‖M‖(r1(G2; Q)|z|+ r2(G2; Q)c),

d2(c) :=
1
m

r2(G2; Q)|z|+ 1
8εm

‖M‖(r1(G2; Q)|z|+ r2(G2; Q)c).

By Lemma 3.5 below, we have ‖KKz(c; V)−1 f ‖ 6 d(‖(K + Vc,+P+)Kz(c; V)−1 f ‖+
‖Kz(c; V)−1 f ‖). Noting that

‖(K + Vc,+P+)Kz(c; V)−1 f ‖ =
∥∥∥(

Kz(c; V) + z +
z2

2c2 M−1
)

Kz(c; V)−1 f
∥∥∥

6 ‖ f ‖+
(
|z|+ |z|2

2c2m

)
‖Kz(c; V)−1 f ‖,

we obtain ‖KKz(c; V)−1 f ‖ 6 d{‖ f ‖+(1 + |z|+ |z|2/2c2m)‖Kz(c; V)−1 f ‖}. Taking
c0 > 0 sufficiently large,

q := sup
c>c0

‖Kz(c; V)−1‖ < ∞(3.9)

by Lemma 3.2. Therefore

‖KKz(c; V)−1‖ 6 d
{

1 +
(

1 + |z|+ |z|2

2c2m

)
q
}

6 const. < ∞(3.10)

for c > c0. Combining these results,∥∥∥Vc,+
1

2Mc2 (cQ + z)Kz(c; V)−1
∥∥∥ 6

const.
c2 (d1(c) + d2(c))

and we conclude (3.4).
Next we prove (3.5). Note that∥∥∥Vc,−

1
2Mc2 (cQ + 2Mc2P+ + z)Kz(c; V)−1

∥∥∥
6

∥∥∥Vc,−
1

2Mc2 (cQ + z)Kz(c; V)−1
∥∥∥ + ‖Vc,−P+Kz(c; V)−1‖ =: I1(c) + I2(c).

lim
c→∞

I1(c) = 0 can be proven in the same way as in the proof of (3.4). Hence we

have to show lim
c→∞

I2(c) = 0. By the assumption (v) and Lemma 1.3, we have

G3 ≺ Q. Applying (3.7), we get for all f ∈ H,

‖Vc,−P+Kz(c; V)−1 f ‖6‖M‖
6c

‖G3Kz(c; V)−1 f ‖

6
‖M‖

6c
{r1(G3; Q)‖QKz(c; V)−1 f ‖+r2(G3; Q)‖Kz(c; V)−1 f ‖}.
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By (3.8), we get

‖QKz(c; V)−1 f ‖ 6 ε‖Q2Kz(c; V)−1 f ‖+
1
4ε
‖Kz(c; V)−1 f ‖

6 2ε‖M‖ · ‖KKz(c; V)−1 f ‖+
1
4ε
‖Kz(c; V)−1 f ‖.

Using (3.9) and (3.10), we get ‖KKz(c; V)−1‖ 6 const. for c > c0 and

I2(c) 6
‖M‖

6c
const.

Thus we get (3.5).

LEMMA 3.5. There exists a constant d > 0 independent of c such that for all
g ∈ dom(K)

‖Kg‖ 6 d(‖(K + Vc,+P+)g‖+ ‖g‖).

Proof. Applying (3.6), we have ‖Kg‖ 6 ‖(K + Vc,+P+)g‖ + ‖Vc,+P+g‖ 6
‖(K + Vc,+P+)g‖+ (‖M‖/2) · ‖G2g‖ for all g ∈ dom(K). For all ε > 0,

‖G2g‖ 6 r1(G2; Q)‖Qg‖+ r2(G2; Q)‖g‖

6 εr1(G2; Q)‖Q2g‖+
( 1

4ε
r1(G2; Q) + r2(G2; Q)

)
‖g‖ (by (3.8))

6 2‖M‖r1(G2; Q)ε‖Kg‖+
( 1

4ε
r1(G2; Q) + r2(G2; Q)

)
‖g‖.

Hence ‖Kg‖6‖(K + Vc,+P+)g‖+‖M‖2εr1(G2; Q)‖Kg‖+(‖M‖/2)((1/4ε)r1(G2; Q)
+r2(G2; Q))‖g‖. Taking ε > 0 such that 1− ‖M‖2εr1(G2; Q) > 0, we obtain

‖Kg‖ 6
1

1− ‖M‖2εr1(G2; Q)
‖(K + Vc,+P+)g‖

+
‖M‖

2
1

1− ‖M‖2εr1(G2; Q)

( 1
4ε

r1(G2; Q) + r2(G2; Q)
)
‖g‖.

Therefore we get the desired assertion by taking

d := max
{ 1

1− ‖M‖2εr1(G2; Q)
,

‖M‖
2

1
1− ‖M‖2εr1(G2; Q)

( 1
4ε

r1(G2; Q) + r2(G2; Q)
)}

.

LEMMA 3.6. Let

Xz(c) :=
[
Vc,+

1
2Mc2 (cQ + z)+Vc,−

1
2Mc2 (cQ+2Mc2P++z)

]
(Kz(c)+Vc,+P+)−1.

Then, for sufficiently large c, the linear operator 1 + Xz(c) is invertible and

norm- lim
c→∞

(1 + Xz(c))−1 = 1.
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Proof. By Lemma 3.4, lim
c→∞

‖Xz(c)‖ = 0. Thus 1 + Xz(c) is invertible for

sufficiently large c. Moreover, (1 + Xz(c))−1 = 1 +
∞
∑

n=1
(−Xz(c))n in the operator-

norm topology. Therefore we obtain as c → ∞

‖(1 + Xz(c))−1 − 1‖ → 0.

THEOREM 3.7. For sufficiently large c,

(H(c)−Mc2−iΓcMG−z)−1=
(
P++

1
2Mc2 (cQ+z)

)
(Kz(c)+Vc,+P+)−1(1+Xz(c))−1.

Proof. Let Vc := Vc,+ + Vc,−. For sufficiently large c,

(H(c)− Mc2 − iΓcMG − z)−1

= (Π− + Vc)−1 = Π−1
− (1 + VcΠ−1

− )−1

=
1

2Mc2 Π+Kz(c)−1
(

1 + Vc
1

2Mc2 Π+Kz(c)−1
)

(by Lemma 3.1)

=
(

P++
1

2Mc2 (cQ + z)
)

Kz(c)−1×
{

1+Vc,+P+Kz(c)−1 +
Vc,+

2Mc2 (cQ + z)Kz(c)−1

+
Vc,−

2Mc2 (cQ + 2Mc2P+ + z)Kz(c)−1
}−1

=
(

P+ +
1

2Mc2 (cQ + z)
)

Kz(c)−1(1 + Vc,+P+Kz(c)−1)−1

×
{

1+
[ Vc,+

2Mc2 (cQ+z)+
Vc,−

2Mc2 (cQ+2Mc2P++z)
]

×Kz(c)−1(1+Vc,+P+Kz(c)−1)−1
}−1

=
(

P+ +
1

2Mc2 (cQ + z)
)
(Kz(c) + Vc,+P+)−1(1 + Xz(c))−1 (by Lemma 3.3).

This completes the proof.

Proof of Theorem 2.3. First, we show that

norm- lim
c→∞

(
P++

1
2Mc2 (cQ+z)

)
(Kz(c)+Vc,+P+)−1

= P+

(
K−M

2
G2−z

)−1
.(3.11)

Note that

(Kz(c) + Vc,+P+)−1 −
(

K − M
2

G2P+ − z
)−1

=
(

K − M
2

G2P+ − z
)−1( z2

2c2 M−Vc,+P+ −
M
2

G2P+

)
(3.12)

× (Kz(c) + Vc,+P+)−1.
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Using the fact |x2/2 + cos x − 1| 6 x4/4! and the functional calculus, we have∥∥∥(
Vc,+P+ +

M
2

G2P+

)
g
∥∥∥ 6

‖M‖
4!c2 ‖G4g‖(3.13)

for all g ∈ dom(G4). Hence, for all f ∈ H,∥∥∥(
Vc,+P+ +

M
2

G2P+

)(
K − M

2
G2P+ − z

)−1
f
∥∥∥

6
‖M‖
4!c2

∥∥∥G4
(

K − M
2

G2P+ − z
)−1

f
∥∥∥

6
‖M‖
4!c2

{
r1(G4; Q)

∥∥∥Q
(

K − M
2

G2P+ − z
)−1

f
∥∥∥

+ r2(G4; Q)
∥∥∥(

K − M
2

G2P+ − z
)−1

f
∥∥∥}

(by (v)).

By (3.8), we have∥∥∥Q
(

K − M
2

G2P+ − z
)−1

f
∥∥∥

6 ε
∥∥∥Q2

(
K − M

2
G2P+ − z

)−1
f
∥∥∥ +

1
4ε

∥∥∥(
K − M

2
G2P+ − z

)−1
f
∥∥∥

6 2ε‖M‖ ·
∥∥∥K

(
K − M

2
G2P+ − z

)−1
f
∥∥∥ +

1
4ε

∥∥∥(
K − M

2
G2P+ − z

)−1
f
∥∥∥

6 const.‖ f ‖.

Thus, ∥∥∥(
Vc,+P+ +

M
2

G2P+

)(
K − M

2
G2P+ − z

)−1∥∥∥ 6
const.

c2 .

By this and the fact lim
c→∞

‖(z2M/2c2)(Kz(c) + Vc,+P+)−1‖ = 0, we conclude that

norm- lim
c→∞

P+(Kz(c) + Vc,+P+)−1 = P+(K− (M/2)G2 − z)−1 by (3.12). Moreover,

it is not hard to see that

lim
c→∞

∥∥∥ 1
2Mc2 (cQ + z)(Kz(c) + Vc,+P+)−1

∥∥∥ = 0.

Hence we get (3.11).
Now Theorem 2.3 immediately follows from Theorem 3.7, Lemma 3.6 and

(3.11).

REMARK 3.8. We introduce

H1(c) := cQ + ΓMc2 cos((1/c)G).

In this case, we do not need the strange renormalization which appears in Theo-
rem 2.3. That is, the following holds.

THEOREM 3.9. Let (i)–(v) be satisfied. For all z ∈ C\R,

norm- lim
c→∞

(H1(c)− Mc2 − z)−1 = P+

( 1
2M

Q2 − M
2

G2 − z
)−1

.
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4. EXAMPLE

Let σj (j = 1, 2, 3) be the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and

αj =
(

σj 02
02 −σj

)
(j = 1, 2, 3), β =

(
02 12
12 02

)
,

where 02 and 12 are the 2 × 2 zero matrix and the 2 × 2 identity matrix respec-
tively. The matrix

γ5 := −iα1α2α3

is Hermitian with γ2
5 = 14 (the 4 × 4 identity matrix) satisfying the following

relations:
[αj, γ5] = 0 (j = 1, 2, 3), {β, γ5} = 0,

where we use the following notations [A, B] := AB− BA and {A, B} := AB + BA.
We set

σ := (σ1, σ2, σ3), α := (α1, α2, α3).

Let ∇ := (D1, D2, D3) with the generalized partial differential operator Dj

in the variable xj, the j-th component of x = (x1, x2, x3) ∈ R3. Then the free Dirac
operator with mass zero is defined by

Q := −iα · ∇ ⊗ 12

acting in L2(R3; C4)⊗C2. We take the linear operator β⊗ 12 as a grading operator
on L2(R3; C4)⊗C2. We note that Q is odd and self-adjoint. To introduce a mass
term for Q, let F : R3 → R be a measurable function such that F4 ≺ −iα · ∇
and set

G := γ5 ⊗ τ · nF
where τ := (τ1, τ2, τ3) with τj = σj (j = 1, 2, 3), n := (n1, n2, n3) with nj a real-
valued measurable function on R3 such that |n(x)| = 1 a.e. x ∈ R3. It is not hard
to check that G is odd and self-adjoint. Let M > 0 be a constant, then the triplet
(Q, M, G) satisfies all the conditions (i)–(v) in Section 1. The self-adjoint operator

H = Q + (β⊗ 12)M eiG

is called the chiral quark soliton model [5].
Let

H(c) := cQ + (β⊗ 12)Mc2 ei 1
c G.

Then we can apply Theorem 2.3 and obtain the following.

THEOREM 4.1. For all z ∈ C\R,

norm- lim
c→∞

(H(c)− Mc2 − i(β⊗ 12)cMG − z)−1 = P+

(
− ∆

2M
− M

2
F2 − z

)−1
⊗ 12.
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