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ABSTRACT. The paper presents lower bounds for the spectral radii of refine-
ment and subdivision operators with continuous matrix symbols and with di-
lations from a class of isotropic matrices. This class contains main dilation ma-
trices used in wavelet analysis. After obtaining general formulas, two kinds of
estimates for the spectral radii are established: namely, estimates using point
values of the symbols, as well as other ones making use of integrals on special
subsets of the torus Ts. For some symbol classes the exact value of the spectral
radius of the refinement operator is found.
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INTRODUCTION

Let X be a set, and let s > 1 be a positive integer. As usual, the symbol Xs is
used for the Cartesian product of s copies of X. If X is also a normed space, then
the set Xs has the norm

‖y‖s = ‖y‖Xs :=
( s

∑
k=1

‖xk‖2
)1/2

where y = (x1, x2, . . . , xs) ∈ Xs and ‖ · ‖ denotes the corresponding norm on X.
Moreover, let Xs×s denote the set of all s× s matrices with entries from X.

Consider the unit circle T := {z ∈ C : z = eix, x ∈ R}, and an essen-
tially bounded measurable matrix-function a : Ts → Cm×m with the Fourier
representation a(x) ∼ ∑

k∈Zs
akeikx, x ∈ Rs. If M is an s × s matrix with integer

entries, then a and M generate two operators widely used in computer graph-
ics and wavelet analysis: namely, the operator RM

a : Lm
2 (Rs) → Lm

2 (Rs) and the
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operator SM
a : lm

2 (Zs) → lm
2 (Zs) defined by

RM
a ϕ := ∑

k∈Zs
ak ϕ(M · −k); (SM

a ξ)j := ∑
k∈Zs

aj−Mkξk, j ∈ Zs.

In passing, note that a non-singular integer matrix M is often called a dilation
matrix if

(0.1) lim
n→∞

M−n = 0,

but our considerations here are not restricted to this condition. Thus let us assume
that M is a non-singular matrix with integer entries, and for convenience call such
matrices dilation matrices.

The operators RM
a and SM

a are referred to as refinement and subdivision
operators, respectively. In wavelet literature the matrix-function a is called the
mask of the corresponding operator, but throughout this paper it will also be
called the symbol of the operator RM

a or SM
a . An important role of the refinement

and subdivision operators lies in the construction and study of wavelet bases.
Thus under some conditions the solutions of the equations

(0.2) ϕ = RM
a ϕ,

called refinable or M-refinable vector functions, produce wavelets. The opera-
tor SM

a arises when one applies an iteration procedure to solve equation (0.2),
[8]. Spectral radii ρ(RM

a ) and ρ(SM
a ) of these operators are used to establish the

convergence of the iterative algorithm mentioned [3], [13], [15], [22], [25], [26]
and to study the regularity of the refinable functions [4], [5], [6], [7], [9], [10],
[13], [16], [17], [25], [26], [27], [34]. On the other hand, these two operators are
closely associated with the transfer operator, also called the Ruelle operator or
the Perron–Frobenius–Ruelle operator, which finds various applications in statis-
tical mechanics, dynamical systems and ergodic theory [20], [29], [30], [31], [32],
[33].

Despite this, the evaluation of ρ(RM
a ) and ρ(SM

a ) remains an open question.
The most essential progress so far has been made for m = 1 in the case s = 1.
However, even in this relatively simple situation the evaluation of the spectral
radius heavily depends upon the concrete form of the symbol, and usually the
symbol of these operators is assumed to be a polynomial, so the corresponding
spectral radius is evaluated using different limit characteristics of auxiliary finite
matrices [4], [9], [13], [35], [36]. More detailed results have been obtained for the
so-called continuous refinement operator TM

a defined by

TM
a f :=

∫
Rs

a(· − My) f (y)dy.

Thus it was shown in [14] that for a compactly supported non-negative function
a : Rs → C and for a dilation matrix M satisfying condition (0.1) the spectral
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radius of the operator TM
a can be found by the formula

(0.3) ρ(TM
a ) =

1√
|det M|

∫
Rs

a(y)dy.

A different approach to the evaluation of the spectral radius of the operator TM
a

has been employed in [12], where formula (0.3) was proved assuming not that a
is non-negative and a compactly supported function but rather that a ∈ L1(Rs).
Note that for such symbols, the integral in (0.3) has to be replaced by its modulus.
Moreover, condition (0.1) can be dropped for some classes of matrices M. It is also
worth mentioning that the approach of [12] leads to the same limit expression for
ρ(TM

a ) and ρ(RM
a ). Thus one could expect that obtaining more convenient formu-

las for ρ(RM
a ) would be similar to that problem for ρ(TM

a ). However, in contrast
to operator TM

a the peculiarities of the symbol of the operator RM
a preclude such

an effective formula for ρ(RM
a ) as (0.3) is for ρ(TM

a ). It turns out that evaluation of
the spectral radius of the operator RM

a presents a problem similar to that for the
operator SM

a , so these two operators are considered here together.
Note that even for m = 1 and s = 1 there are only a few papers devoted

to the evaluation of the spectral radius of the operator SM
a for non-polynomial

symbols. Thus for symbols whose Fourier coefficients are rapidly decreasing,
two approximate algorithms have been proposed in [5]. Other results concerning
continuous symbols can be found in [18], [19]. In [11], estimates for the spectral
radii of the operators RM

a and SM
a with piecewise continuous symbol a are estab-

lished. In some cases, the spectral radii of SM
a and RM

a have been estimated by
using the supremum norm of the function a. As a rule, it is very difficult to extend
the methods and results obtained in the case m = 1 and s = 1 to the multivariate
cases m > 1 and s > 1, and it appears that only the paper [28] and the recently
published paper [4] contain some results concerning the approximate calculation
of the spectral radius of SM

a for the case m > 1 and s > 1. Note that the dilation
matrix M in [28] is supposed to be isotropic, i.e. such that

MM∗ = λI,

where λ > 1 and I is the identity matrix.
The general case s > 1 and m > 1 for a class of dilation matrices is consid-

ered in the present paper. This class includes known isotropic matrices encoun-
tered in wavelet analysis. However, in contrast to [28], approximation methods
are not used and the corresponding spectral radius is estimated from below. For
m = 1, in some cases the estimates obtained yield

(0.4) ρ(RM
a ) =

1√
|det M|

‖a‖∞,

and sufficient conditions for equality (0.4) are given below. Estimates for ρ(SM
a )

are also presented in this paper.
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Let us describe the set of dilations considered here, starting with an exam-
ple. An isotropic dilation often employed in work on bivariate refinable functions
is the matrix

M =
(

1 −1
1 1

)
,

with eigenvalues λ1 = 1− i and λ2 = 1 + i. Representing these eigenvalues in the
polar form λ1 = r exp(iπq1) and λ2 = r exp(iπq2) one can pay attention to two
remarkable properties they have: namely, the indices q1(= −1/4) and q2(= 1/4)
are rational, and there exists a positive integer l(= 2) such that |λ1|l = |λ2|l is an
integer greater than one. It is easily seen that the second property is inherent for
any isotropic dilation matrix, but the first is not. This motivates the introduction
of a set Ms of all isotropic dilation matrices M with the property that for any
eigenvalue λj = r exp(iπqj) of M, the index qj, j = 1, 2, . . . , m is rational. Note
that for s = 2 any dilation matrix M of the form

M =
(

a b
b −a

)
, a2 + b2 > 2

is in Ms.
The aim of this paper is to obtain spectral radius estimates for the operators

RM
a and SM

a with a continuous symbol a and isotropic dilation matrix M ∈ Ms.
The paper is organized as follows. In Section 1 certain properties of the refine-
ment and subdivision operators are presented, and lower estimates are estab-
lished for spectral radii in terms of multiplier norms of sequences of matrix-
functions. In Section 2 the notion of µ-cyclic p-tuples is introduced and applied
to obtain estimates of the spectral radii, using values of their symbols on special
sets of points. In Section 3, integral estimates for the spectral radii of the refine-
ment operator RM

a are established. Section 4 gives sufficient conditions when the
spectral radius of the refinement operator can be calculated exactly via formula
(0.4).

1. GENERAL ESTIMATES FOR THE SPECTRAL RADIUS OF SUBDIVISION
AND REFINEMENT OPERATORS

Let a ∈ Lm×m
∞ (Ts) and let ‖a‖∞ denote the multiplier norm of a on Lm×m

2 (Ts)
or Lm×m

2 (Rs) — i.e. the norm of the operator of multiplication by a on the corre-
sponding space Lm

2 . It is known that

(1.1) ‖a‖∞ = max
16j6m

ess sup
x∈Rs

√
λj(x), t = eix ∈ Ts,

where λj(x), j = 1, 2, . . . , m are the eigenvalues of the matrix a∗a. Of course, if a is
a constant matrix, then

‖a‖∞ = max
16j6m

√
λj
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and if a ∈ Cm×m(Ts), then for any tk ∈ Ts

‖a(tk)‖∞ 6 ‖a‖∞.

Let us also recall that the norm of any linear bounded operator A on Lm
2 (Rs)

satisfies the equation

(1.2) ‖A‖2 = ‖AA∗‖,

and the spectral radius of A can be represented in the form

(1.3) ρ(A) = lim
n→∞

‖An‖1/n.

Further, let us adopt the notation
n
∏
k=j

Ak for the following ordered product Aj Aj+1

· · · An of elements Aj, Aj+1, . . . , An.
We start with the refinement operator RM

a .

THEOREM 1.1. If {ak} ∈ lm×m
1 (Zs) and M is a non-singular integer matrix, then

(1.4) ρ(RM
a ) =

1√
|det M|

lim
n→∞

∥∥∥ n−1

∏
k=0

a((MT)k·)
∥∥∥1/n

∞
.

Proof. Let BM : Lm
2 (Rs) → Lm

2 (Rs) be the operator defined by

BM f (x) = f (Mx), x ∈ R.

To derive (1.4) we use the corresponding formulas [1], [2] for the spectral radius
of weighted shift operators. Denote by F the Fourier transform on Lm

2 (Rs), i.e.

F f =
1

(2π)s/2

∫
Rs

e−i (·) y f (y)dy.

It is easily seen that for any b ∈ Rs Feib·F−1 f = f (· − b). Thus, if {ak} ∈ lm×m
1 (Zs),

the matrix a is continuous on Rs and

(1.5) RM
a = BMFaF−1.

Consider an s × s non-singular matrix C, and for any matrix-function a : Rs →
Cm×m define the matrix aC : Rs → Cm×m by

aC(x) := a((CT)−1x).

Now the refinement operator RM
a can be represented in the form

RM
a = F

( aM√
|det M|

VM

)
F−1

where the operator VM : Lm
2 (Rs) → Lm

2 (Rs) defined by

VM =
1√

|det M|
B(MT)−1
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is an invertible isometry. Since F and F−1 are also isometrical operators on the
space Lm

2 (Rs), the equation

(1.6) ρ(RM
a ) = ρ

( aM√
|det M|

VM

)
holds. Applying now the corresponding results [1], [2], [21], [24] to the weighted
shift operator aM/(

√
|det M|) VM and using relation (1.6), one obtains:

ρ(RM
a ) =

1√
|det M|

lim
n→∞

∥∥∥ n−1

∏
k=0

a((MT)−k−1·)
∥∥∥1/n

∞

=
1√

|det M|
lim

n→∞

∥∥∥ n−1

∏
k=0

a((MT)k·)
∥∥∥1/n

∞
.

Let us also consider the weighted shift operator UM
a : Cm(Rs) → Cm(Rs)

defined by

(1.7) UM
a =

a√
|det M|

BMT .

COROLLARY 1.2. If the matrices a and M satisfy the conditions of Theorem 1.1,
then

(1.8) ρ(RM
a ) = ρ(UM

a ).

With reference to the operator RM
a below, let us always assume that the se-

quence of Fourier coefficients of the symbol a belongs to the space lm×m
1 (Zs).

COROLLARY 1.3. If a and M satisfy the assumptions of Theorem 1.1, then

(1.9) ρ(RM
a ) 6

‖a‖∞√
|det M|

.

On the other hand, for any sequence xn ∈ Rs

(1.10) ρ(RM
a ) >

1√
|det M|

lim sup
n→∞

∥∥∥ n−1

∏
k=0

a((MT)kxn)
∥∥∥1/n

∞
.

COROLLARY 1.4. Let a and M satisfy the assumptions of Theorem 1.1 and let
‖a‖∞ = ‖a(0)‖∞. If a(0) is a normal matrix, then

(1.11) ρ(RM
a ) =

‖a(0)‖∞√
|det M|

.

Proof. Inequality (1.10) implies that for any subsequence {nj} ⊂ N

(1.12) ρ(RM
a ) >

1√
|det M|

lim
nj→∞

‖(a(0))nj‖1/nj
∞ .
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If a(0) is a self-adjoint matrix, then ‖(a(0))2‖∞=‖a(0)‖2
∞ which yields ‖(a(0))2j‖∞

= ‖(a(0))‖2j
∞ for any j ∈ N. Now let a(0) be a normal matrix, when

‖(a(0))2j
‖∞ = ‖(a(0))2j

(a∗(0))2j
‖1/2

∞ = ‖(a(0)a∗(0))2j
‖1/2

∞ = ‖a(0)‖2j

∞.

Thus taking the subsequence nj = 2j, j ∈ N, equality (1.11) follows from (1.9) and
(1.12).

Consider now the subdivision operator SM
a . It is easily seen that the operator

SM
a is isometrically isomorphic to the operator ŜM

a : Lm
2 (Ts) → Lm

2 (Ts),

(1.13) ŜM
a f (x) = a(x) f (MTx), t = ei2πx, x ∈ Rs.

Let q > 2 denote the absolute value of the determinant of M. For a positive integer
n, let E(n)

j + (MT)nZs, j = 0, 1, . . . , qn − 1 be the distinct elements of the quotient

space Zs/(MT)nZs such that E(n)
0 = 0. For n = 1 the corresponding elements E(1)

j
are denoted by Ej, j = 0, 1, . . . , q− 1.

Moreover, by A(n)
M = A(n)

M (x), x ∈ Ts we denote the matrix

A(n)
M (x) =

n

∏
k=1

aMk (x)
n−1

∏
k=0

a∗Mn−k (x).

THEOREM 1.5. Let a ∈ Lm×m
∞ (Ts) and let M be a dilation matrix. Then

(1.14) ρ(SM
a ) =

1√
|det M|

lim
n→∞

∥∥∥ qn−1

∑
j=0

A(n)
M (· + E(n)

j )
∥∥∥1/2n

∞
.

Proof. Consider the operator T̂M
a : Lm

2 (Ts) → Lm
2 (Ts) defined by

T̂M
a g =

1
|det M|

q−1

∑
j=0

aM(·+ Ej)g((MT)−1(·+ Ej)).

Then the adjoint for the operator T̂M
a has the form

(1.15) (T̂M
a )∗ = ŜM

a∗ .

Relation (1.15) is widely used if m = 1 and s > 1. For m > 1 it can be derived from
known results for the scalar case, and to obtain (1.15) one can exploit formula (3.5)
of [7]. Taking into account (1.2) and (1.15) one obtains ‖(ŜM

a )n‖2 = ‖(ŜM
a∗ )

n‖2 =
‖(T̂M

a )n(ŜM
a∗ )

n‖. Let g ∈ Lm
2 (Ts). Then the function (T̂M

a )n(ŜM
a∗ )

ng can be expressed
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in the form

(1.16)

(T̂M
a )n(ŜM

a∗ )
ng(x)

=
1

|det M|n
q−1

∑
jn=0

q−1

∑
jn−1=0

· · ·
q−1

∑
j1=0

( n

∏
k=1

aMk

(
x +

k

∑
l=1

(MT)l−1Ejn−l+1

)
×

n

∏
k=1

a∗Mn−k+1

(
x +

n−k

∑
l=1

(MT)lEjn−l+1

))
g(x)

=
1

|det M|n
q−1

∑
jn=0

q−1

∑
jn−1=0

· · ·
q−1

∑
j1=0

( n

∏
k=1

aMk

(
x +

n

∑
l=1

(MT)l−1Ejn−l+1

)
×

n

∏
k=1

a∗Mn−k+1

(
x +

n

∑
l=1

(MT)lEjn−l+1

))
g(x)

=
( 1
|det M|n

qn−1

∑
j=0

A(n)
M (x + E(n)

j )
)

g(x).

Note that the lines 4 and 5 in this transformation follow from the assumption that
M is an integer matrix, and the final step uses the fact that the complete set of
coset representatives {E(n)

j }qn−1
j=0 and the set {E + MTE + · · ·+ (MT)n−1E}, where

E :=
{

E0, E1, . . . , Eq−1

}
, coincide.

Thus equality (1.16) shows that (T̂M
a )n(ŜM

a∗ )
n is just the operator of mul-

tiplication by the matrix (1/|det M|n)
qn−1
∑

j=0
A(n)

M (x + E(n)
j ). This implies formula

(1.14).

As an immediate consequence of formula (1.14) we note the following esti-
mates.

COROLLARY 1.6. Let a and M satisfy the assumptions of Theorem 1.5. Then

(1.17) ρ(SM
a ) 6 lim

n→∞

∥∥∥ n−1

∏
k=0

a((MT)k·)
∥∥∥1/n

∞
.

In addition, if m = 1 and the function a is continuous on Ts, then for any sequence
xn ∈ Rs

(1.18) ρ(SM
a ) >

1√
|det M|

lim sup
n→∞

∥∥∥ n−1

∏
k=0

a((MT)kxn)
∥∥∥1/n

∞
.

REMARK 1.7. The important point to note here is that RM
a and SM

a as opera-
tors are of a very different nature. Thus if the refinement operator RM

a is generated
by an invertible shift operator, the subdivision operator SM

a is related to a similar
but non-invertible operator. It is known [1], [2] that the weighted shift operators
generated by non-invertible maps are studied in less detail, and results obtained
often depend on the concrete form of the corresponding operator. It seems that
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formula (1.14) for the spectral radius of the subdivision operator SM
a acting on the

space of vector-valued functions belongs to such results. At least, the author is
not aware of similar representations for other classes of weighted shift operators.

2. ESTIMATES USING POINT VALUES OF THE SYMBOL

It is not an easy task to evaluate the spectral radii of the operators RM
a and

SM
a using relations (1.4) and (1.14). However, for some classes of dilation matrices

these formulas lead to estimates of ρ(RM
a ) and ρ(SM

a ) which do not contain a limit
but only the spectral norms of certain constant matrices.

For any a ∈ Lm×m
∞ (Ts) consider the quantity

Sn(a, M) :=
∥∥∥ n−1

∏
k=0

a((MT)k·)
∥∥∥1/n

∞
.

The following statement turns out to be useful in the problem under considera-
tion. Its proof follows immediately from (1.1).

LEMMA 2.1. Let P = (p, p, . . . , p), p ∈ R+ be a fixed vector and let

ãp(x) := a(Px), x ∈ Rs.

Then
Sn(a, M) = Sn(ãp, M).

A consequence of this result is that while studying the limit in (1.4) one can
always assume a to be a 1s-periodic matrix-functions, so henceforth the symbol
a of the corresponding operators will be identified with matrix-functions on the
torus Ts := Rs�Zs. Note that the 1s-periodicity of the symbol a can be assumed
from the very beginning, as was done earlier in the case of the subdivision opera-
tor. Nevertheless, Lemma 2.1 allows the subdivision and refinement operators to
be replaced by operators with the same spectral radii, and this property will be
exploited below.

LEMMA 2.2. Let M ∈ Ms. Then there exist numbers µ, q ∈ N, µ > 2 and matri-
ces A0, A1, . . . , Aq−1 ∈ Zs×s such that for any number n ∈ N the matrix (MT)n can be
represented in the form

(2.1) (MT)n = Ar µl I,

where r, l ∈ N are defined by the equation n = lq + r, 0 6 r 6 q− 1.

Proof. By Schur’s theorem [23], p.176, there exists a unitary matrix U and
an upper triangular matrix T such that M = UTU∗. However, M is an isotropic
dilation matrix, therefore

(2.2) MM∗ = λI
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with a λ > 1, and hence TT∗ = λI. Since the matrix T is upper triangular, the
latter equation implies that T is a diagonal matrix with elements the eigenvalues
of M. Let λj = λ1/2eiπ(pj/qj), j = 1, 2, . . . , m be the eigenvalues of M, and let u ∈ N
be the smallest number such that λu/2 ∈ N. Set

q := 2 lcm (q1, q2, . . . , qm, u).

Then λq ∈ N and qpj/qj = 2k j with k j ∈ N, j = 1, 2, . . . , m. Set µ := λq.
Now one can use the representation M = UTU∗ to obtain Mq = UTqU∗ =
Uλq diag (ei2πk1 , ei2πk2 , . . . , ei2πkm )U∗ = µI, so that writing n ∈ N in the form
n = ql + r, 0 6 r 6 q− 1 one has

Mn = Mql+r = µl Mr.

Thus, representation (2.1) is valid with Ar = (MT)r, 0 6 r 6 q− 1, and the proof
is complete.

Let us now fix µ, p ∈ N, µ > 2 and let d0, d1, . . . , dp−1 ∈ N ∩ [0, µ− 1]. Con-
sider a repeating fraction x(p) = 0.d0, d1, . . . , dp−1 with the base µ, i.e.

x(p) =
(d0

µ
+

d1

µ2 + · · ·+
dp−1

µp

)
+

( d0

µp+1 +
d1

µp+2 + · · ·+
dp−1

µ2p−1

)
+· · · .

Each such point may be associated with an ordered set [x(p)] = {x(p)
0 , . . . , x(p)

p−1}
of p repeating fractions

x(p)
0 = 0.d0d1 · · · dp−1 , x(p)

1 = 0.d1d2 · · · d0 , . . . , x(p)
p−1 = 0.dp−1d0 · · · dp−2 ,

with the base µ. The set [x(p)] is called the µ-cyclic p-tuple corresponding to the
point x(p) and the set of all µ-cyclic p-tuples is denoted by C(p)

µ . The number p is
referred to as the length of the corresponding tuple.

LEMMA 2.3. Let a ∈ C(T) and [x(p)] = {x(p)
0 , x(p)

1 , . . . , x(p)
p−1} ∈ C

(p)
µ . Then for

any l ∈ N such that
l ≡ r mod p, 0 6 r 6 p− 1

one has
a(µl x(p)) = a(x(p)

r ).

The proof of this result is straightforward from the definition of [x(p)].
Now for any fixed number p ∈ N consider a system which consists of s

µ-cyclic p-tuples [x(p)
1 ], [x(p)

2 ], . . . , [x(p)
s ]. Recall that

[x(p)
j ] = {x(p)

j,0 , x(p)
j,1 , . . . , x(p)

j,p−1}, j = 1, 2, . . . , s.

Combining the corresponding elements of these tuples, one can form vector-
columns x̃(p)

k , k = 0, 1, . . . , p− 1 where

x̃(p)
0 = (x(p)

1,0 , x(p)
2,0 , . . . , x(p)

s,0 )T , . . . , x̃(p)
p−1 = (x(p)

1,p−1, x(p)
2,p−1, . . . , x(p)

s,p−1)
T .
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Let [x̃(p)] denote the family {x̃(p)
0 , x̃(p)

1 , . . . , x̃(p)
p−1}, and the set of all such elements

[x̃(p)] is C(p),s
µ . (Note that this notation differs from our previous agreement con-

cerning the sets obtained via Cartesian products.) Let us now introduce the class
W = W(Ts) of continuous functions with absolutely convergent Fourier series,
and proceed to estimate the spectral radius of the operator RM

a with symbols from
Wm×m(Ts). In passing, note that some of the results established remain valid for
the matrix-functions a of Lm×m

∞ (Ts).
Let M ∈ Ms be a dilation matrix and let A1, A2, . . . , Aq−1 be the matrices

introduced in Lemma 2.2. For any matrix-function a we define a matrix ba,M by

ba,M(x) := a(x)a(A1x) · · · a(Aq−1x).

The use of sequences generated by µ-cyclic p-tuples leads to the following general
estimates for the spectral radius of the refinement operator.

THEOREM 2.4. Let a ∈ Wm×m(Ts). Then for any p ∈ N and for any [x̃(p)] =
{x̃(p)

0 , x̃(p)
1 , . . . , x̃(p)

p−1} ∈ C
(p),s
µ the following inequality holds:

(2.3) ρ(RM
a ) >

1√
|det M|

lim sup
l→∞

∥∥∥( p−1

∏
r=0

ba,M(x̃(p)
r )

)l∥∥∥1/lqp

∞
.

Proof. Fix p ∈ N, and for the sequence {nl}l∈N = {lpq}l∈N set xnl := x̃(p)
0 .

Then by inequality (1.10) of Corollary 1.3 the spectral radius ρ(RM
a ) satisfies the

inequality ρ(RM
a ) > 1/

√
|det M| lim sup

l→∞

∥∥∥ nl−1
∏
j=0

a((MT)jxnl )
∥∥∥1/nl

∞
. Application of

Lemma 2.2 and Lemma 2.3 to the matrix
nl−1
∏
j=0

a((MT)jxnl ) yields

∥∥∥ nl−1

∏
j=0

a((MT)jxnl )
∥∥∥1/nl

∞
=

∥∥∥ lp−1

∏
j=0

ba,M(µj x̃(p)
0 )

∥∥∥1/lpq

∞
=

∥∥∥ l−1

∏
j=0

p−1

∏
r=0

ba,M(x̃(p)
r )

∥∥∥1/lpq

∞
,

which implies inequality (2.3).

Consider now some consequences of Theorem 2.4.

(1) m = 1, s = 1.
In this case, M is the operator of multiplication by an integer which implies

that q = 1, µ = M if M > 2 and q = 2, µ = M2 if M 6 −2. Assume first
that M > 2. Since all factors in the product (2.3) commute with each other, the
following results are obtained (cf. also [11]):

COROLLARY 2.5. Let a ∈ W(T) and M > 2 be a positive integer. Then for any
M-cyclic p-tuple [x(p)] the spectral radius of the operator RM

a satisfies the inequality

(2.4) ρ(RM
a ) >

1√
M

( p−1

∏
r=0

|a(x(p)
r )|

)1/p
.
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COROLLARY 2.6. Let a ∈ W(T) and M > 2 be a positive integer. Then the
spectral radius of the operator RM

a satisfies the inequality

ρ(RM
a ) >

1√
M

sup
p∈N

max
[x(p) ]∈C(p)

µ

( p−1

∏
r=0

|a(x(p)
r )|

)1/p
.

An interesting result appears if one assumes that M 6 −2. Then q = 2 and
µ = M2, so the estimates of the spectral radius of the operator RM

a undergo a
modification.

COROLLARY 2.7. Let a ∈ W(T) and M 6 −2 be a negative integer. Then for any
M2-cyclic p-tuple [x(p)] the spectral radius of the operator RM

a satisfies the inequality

ρ(RM
a ) >

1√
|M|

( p−1

∏
r=0

|a(x(p)
r )a(Mx(p)

r )|
)1/2p

.

This result can be considered as a bridge between the multivariate case
where matrix dilations with negative determinants are allowed and the one vari-
able case, where mainly positive dilations has been considered. Moreover, it
shows that representation (2.1) can be of interest even in the case of functions
of one variable.

(2) m = 1, s > 1.
In this case the factors in (2.3) commute with each other, but the expression

in the right-hand side of (2.3) becomes more complicated.

COROLLARY 2.8. Let a ∈ W(Ts) and M ∈ Ms. Then for any [x̃(p)] ∈ C(p),s
µ the

spectral radius of the operator RM
a satisfies the inequality

(2.5) ρ(RM
a ) >

1√
|det M|

( q−1

∏
j=0

p−1

∏
r=0

|a(Aj x̃
(p)
r )|

)1/qp

where the matrices A0, A1, . . . , Aq−1 are defined in Lemma 2.2.

(3) m > 1, s > 1.
In this case the factors in (2.3) generally do not commute, but a simplifica-

tion of relation (2.3) is sometimes possible.

COROLLARY 2.9. Let a ∈ Wm×m(Ts) and M ∈ Ms. If there is [x̃(p)] ∈ C(p),s
µ

such that
p−1
∏

r=0
ba,M(x̃(p)

r ) is a normal matrix, then the spectral radius of the operator RM
a

satisfies the inequality

(2.6) ρ(RM
a ) >

1√
|det M|

∥∥∥ p−1

∏
r=0

ba,M(x̃(p)
r )

∥∥∥1/qp

∞
.

The proof of inequality (2.6) mainly follows the arguments used in the proof
of Corollary 1.4.
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As we have seen, it is possible to get lower estimates for the spectral radius
of the operator RM

a by using the multiplier norm of certain constant matrices.
However, from a practical point of view it is preferable to work with supremum
norms of functions instead of matrix multiplier norms, and a simplification can
be achieved in some cases where matrix a has special properties. For example,
assume that a is unitarily equivalent to a functional diagonal matrix, i.e. there
exists a constant unitary matrix U such that a(x) = Ud(x)U∗, x ∈ Rs where
d(x) = diag(λ1(x), λ2(x), . . . , λs(x)). Moreover, let us also assume that the ma-
trix a possesses a dominant eigenvalue, i.e. an eigenvalue λj0 such that

|λj0(x)| > |λj(x)|, j ∈ {1, 2, . . . , m}

for all x ∈ Rs. In this case the spectral radius of RM
a can be estimated by using

values of the function λ0 only, since under this condition, the matrices a((MT)j·)
and a((MT)k·) commute for any non-negative integers j, k. Therefore for any
[x̃(p)] ∈ C(p),s

µ the spectral radius of the operator RM
a satisfies the inequality

(2.7) ρ(RM
a ) >

1√
|det M|

( p−1

∏
r=0

|Λa,M(x̃(p)
r )|

)1/qp

where Λa,M(x) = λj0(x)λj0(A1x) · · · λj0(Aq−1x).
Taking into account Corollary 1.6 one can get lower bounds for the spectral

radius of the subdivision operator SM
a which are analogous to the estimates for

ρ(RM
a ) established above.

3. INTEGRAL ESTIMATES

As was mentioned in Corollary 1.2, the spectral radius of the refinement
operator RM

a : Lm
2 (Ts) → Lm

2 (Ts) is equal to the spectral radius of the weighted
shift operator

UM
a :=

a√
|det M|

BMT

considered on the space Cm(Ts). Such operators play an important role in var-
ious fields of mathematics, so they have attracted meticulous attention in liter-
ature, both generally and also for operators belonging to special classes [1], [2].
In particular, it is known that the spectral radius of the weighted shift opera-
tor can be expressed in terms of probabilistic measures, invariant with respect to
the corresponding shift [21], [24]. Thus the construction of appropriate invariant
measures is of great importance, and leads to estimates of the spectral radius for
the operator under consideration. Let us assume that a ∈ W(Ts), M ∈ Ms and
consider the operator RM

a again. By Corollary 1.2 and by Theorem 4.4 of [2] (see
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also Theorem 6.1 of [1]) one obtains

(3.1) ρ(RM
a ) =

1√
|det M|

max
ν∈IMT

exp
( ∫

Ts

ln |a(x)|dνx

)
,

where IMT denotes the set of all probabilistic Borel measures on the torus Ts

invariant with respect to the automorphism x → MTx of this torus. Let us recall
that a measure ν is MT-invariant if for every ν-measurable set S ⊂ Ts the equality
ν(M−1

T (S)) = ν(S) holds.
Equation (3.1) is a source of a variety of integral estimates for the spectral

radii of the operator RM
a and some of these inequalities are given below.

Consider first estimates of the spectral radius of the refinement operator RM
a

that use integrals over one-dimensional subsets. Let E be a subset of Ts defined
by

E := {y ∈ Ts : y = (x, x, . . . , x), x ∈ T}.

THEOREM 3.1. Let a ∈ W, M ∈ Ms and let q be the smallest positive integer
from Lemma 2.2. Then the spectral radius of the operator RM

a satisfies the inequality

(3.2) ρ(RM
a ) >

1√
|det M|

exp
(1

q

q−1

∑
j=0

∫
T

ln |ã((MT)jx)|dx
)

,

where ã((MT)jx) := a((MT)j(x, x, . . . , x)) and dx is the normalized Lebesgue measure
on the circle T.

Proof. Consider the sets Ej = (MT)jE ⊂ Ts, j ∈ N+ where E0 := E and
N+ := N∪ {0}. By Lemma 2.2, for every n1, n2 ∈ N+ such that n1 − n2 = qm, m ∈
Z, the subsets En1 and En2 belong to the same equivalency class of the torus Ts.

Let m denote the normalized Lebesgue measure on the circle T and let ψ :
T → Ts be the mapping defined by

ψ(x) = (x, x, . . . , x), x ∈ T.

Now one can introduce a measure µ on Ts in the following way:

(i) If S is a subset of Ej for some j = 0, 1, . . . , q− 1, then

µ(S) =
m(S̃)

q
,

where S̃ is the pre-image of the set S under the mapping (MT)jψ : T → Ej.

(ii) µ(Ts \
⋃q−1

j=0 Ej) = 0.

It is evident that µ is a normalized measure on Ts, so one only needs to check
that this measure is MT-invariant. If q > 1, the MT-invariance of µ is obvious.
For q = 1, let us fix a positive integer λ and consider the mapping ϕλ defined by

ϕλ(x) = λx, x ∈ T.
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A straightforward computation shows that the Lebesgue measure is ϕλ-invariant,
and so is µ.

Thus relation (3.1) yields ρ(RM
a ) > 1/

√
|det M| exp

( ∫
Ts

ln |a(x)|dµx

)
= 1/

√
|det M| exp

(
1
q

q−1
∑

j=0

∫
Ej

ln |a(x)|dµx

)
. Using now the MT-invariance of the mea-

sure µ, one obtains

ρ(RM
a ) >

1√
|det M|

exp
(1

q

q−1

∑
j=0

∫
Ej

ln |a(x)|dµx

)

=
1√

|det M|
exp

(1
q

q−1

∑
j=0

∫
T

ln |ã((MT)jx)|dx
)

,

so the proof is complete.

Note that there are many other lower estimates for ρ(RM
a ) that can be ex-

pressed in terms of one-dimensional integrals. For example, let k1, k2, . . . , ks be
positive integers and let Dµ

K denote the diagonal matrix

Dµ
K = diag (µk1 , µk2 , . . . , µks ),

when the following theorem provides another option for obtaining a lower esti-
mate of the spectral radius ρ(RM

a ) via one-dimensional integrals.

THEOREM 3.2. Let a ∈ W(Ts) and M ∈ Ms. Then the spectral radius of the
operator RM

a satisfies the inequality

(3.3) ρ(RM
a ) >

1√
|det M|

exp
(1

q

q−1

∑
j=0

∫
T

ln |ã((MT)jDµ
Kx)|dx

)
.

The proof is similar to that of Theorem 3.1 and is omitted here.
In addition to the estimates represented by one-dimensional integrals, there

exists a variety of estimates of ρ(RM
a ) given by integrals of higher dimensions.

These lower bounds can be obtained in the same way as estimates (3.2), (3.3).
For example, let us formulate a result similar to Theorem 3.1. Thus consider
a partition Π of the set of the positive integers I := {1, 2, . . . , s} into l subsets

I1, I2, . . . , Il such that I =
l⋃

k=1
Ik, and Ik1

∩ Ik2 = ∅ if k1 6= k2. For each such

partition Π let Ek
Π denote the subset of Ts defined by

Ek
Π := {(x1, x2, . . . , xs) ∈ Ts : xi1 = xi2 if i1, i2 ∈ Ik, k = 1, 2, . . . , l}.
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In particular, if Π consists of only one set I1 = I, then E1
Π = E and we are in

the situation considered in Theorem 3.1. Assume now that the set Ik has dk el-
ements where 1 6 dk 6 s. Thus on the set Ek

Π there are only s − dk + 1 inde-
pendent variables within the set {x1, x2, . . . , xs}, so there is a natural mapping
ψEk

Π
: Ts−dk+1 → Ek

Π that identifies the torus Ts−dk+1 with the set Ek
Π .

THEOREM 3.3. Let a ∈ W(Ts) and M ∈ Ms. Then the spectral radius of the
operator RM

a satisfies the inequality

(3.4) ρ(RM
a ) >

1√
|det M|

exp
(1

q

q−1

∑
j=0

∫
Ts−dk+1

ln |a((MT)jψEk
Π
(x))|dx

)
,

where dx is the normalized Lebesgue measure on the torus Ts−dk+1.

As before, for the proof one has to use an appropriate MT-invariant normal-
ized measure. This can be done analogous to the proof of Theorem 3.1.

REMARK 3.4. Estimates (3.2)–(3.4) can also be proved by using the proper-
ties of µ-cyclic tuples C p

µ only. In the case s = 1, such a method was employed
in [11].

4. EXACT VALUES OF THE SPECTRAL RADII FOR REFINEMENT OPERATORS

Let us now consider some classes of symbols where one can provide the
exact value of the spectral radius for the operator RM

a . Let A denote the maximum
of the function |a|, and let M(a) be the set of points of Ts where |a| attains its
maximum.

THEOREM 4.1. Let a ∈ W(Ts) and M ∈ Ms. If there exists an element [x̃(p)] =
{x̃(p)

0 , . . . , x̃(p)
p−1} ∈ C

(p),s
µ such that for all k = 0, . . . , q− 1 and for all j = 0, . . . , p− 1

(4.1) (MT)k x̃(p)
j ∈ M(a),

then

ρ(RM
a ) =

A√
|det M|

,(4.2)

A√
|det M|

6 ρ(SM
a ) 6 A.(4.3)

Proof. Equality (4.2) follows from (1.9) and (2.5). For inequality (4.3) one
has to invoke relations (1.17), (1.18) and the proof of Theorem 2.4 where the limit

lim sup
n→∞

∥∥∥ n−1
∏

k=0
a((MT)kxn)

∥∥∥1/n

∞
has been estimated.
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Note that the estimates in (4.3) are sharp. The upper bound is achieved for
any constant symbol a whereas the lower bound appears in examples considered
in [13], [15].

COROLLARY 4.2. If the symbol a of the refinement operator RM
a has non-negative

Fourier coefficients, then

ρ(RM
a ) =

|a(0)|√
|det M|

.

Proof. If the Fourier coefficients of a are non-negative, then

|a(x)| 6 ∑
k∈Zs

ak = |a(0)|

and the results follows from the fact that 0 is a µ-cyclic 0-tuple.

To study a more general situation, let us fix an ε > 0 and consider the set

Eε
a := {x ∈ Ts : |a(x)| > A− ε},

where A means the modulus maximum of the function a on Ts as before. Having
defined the set Eε

a, for each positive integer p let us introduce a set NM
p (Eε

a) by

NM
p (Eε

a) :=
{

j ∈ Zs :
j

µp − 1
∈ Eε

a

}
,

and recall that any µ-cyclic p-tuple [x(p)] = {x(p)
0 , x(p)

1 , . . . , x(p)
p−1} ∈ C(p)

µ can be
represented as

(4.4) [x(p)] =
{ r0

µp − 1
,

r1

µp − 1
, . . . ,

rp−1

µp − 1

}
where r0, r1, . . . , rp−1 are non-negative integers which do not exceed µp − 2, [11].
Moreover, the integer r0 defines the numbers r1, r2, . . . , rp−1 and their order. Thus,

if a column of s non-negative integers r = (r(1)
0 , r(2)

0 , . . . , r(s)
0 )T , 0 6 r(i)

0 6 µp − 2
is given, then there are p columns rl , l = 0, 1, . . . , p− 1 consisting of non-negative
integers which appear in the representations (4.4) of the corresponding µ-cyclic
p-tuples, defined by rl := (r(1)

l , r(2)
l , . . . , r(s)

l )T , l = 0, 1, . . . , p − 1 with r0 := r.

Recall that 0 6 r(i)
l 6 µp − 2 for all l = 0, 1, . . . , p− 1 and for all i = 1, 2, . . . , s. For

convenience, the set of such families of columns {r0, . . . , rp−1} is denoted by R.
Consider now a system of congruences

(4.5) (MT)krlu = nkl mod µp − 1
k = 0, 1, . . . , q− 1; l = 0, 1, . . . , p− 1

where u ∈ N is an unknown positive integer and where the vectors nT
kl =

(n(1)
kl , n(2)

kl , . . . , n(s)
kl ) are supposed to be in (NM

p (Eε
a))

s for all k = 0, 1, . . . , q − 1
and l = 0, 1, . . . , p− 1.
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THEOREM 4.3. Let a ∈ W(Ts), M ∈ Ms and µ, q, ε be as above. If there
exists p ∈ N such that system (4.5) is solvable for at least one family of columns
{r0, . . . , rp−1} ∈ R and for at least one choice of vectors nT

kl ∈ (NM
p (Eε

a))
s, then the

spectral radii of the operators SM
a and RM

a satisfy the inequalities

(4.6) ρ(SM
a ) >

A√
|det M|

− ε, ρ(RM
a ) >

A√
|det M|

− ε.

Proof. Let nT
kl , k = 0, 1, . . . , q− 1; l = 0, 1, . . . , p− 1 and {r0, . . . , rp−1} be, re-

spectively, vectors from NM
p (Eε

a)
s and the family of columns of non-negative in-

tegers from R such that system of congruences (4.5) is solvable. For any solution
u∗ of such system define a function au∗ by

au∗ := a(u∗·).

Then au∗ is a 1s-periodic function, and Lemma 2.1 implies ρ(RM
a ) = ρ(RM

au∗
).

However, by Corollary 2.8 the spectral radius of the operator RM
au∗

can be esti-
mated as follows

ρ(RM
au∗

) >
1√

|det M|

( q−1

∏
k=0

p−1

∏
l=0

∣∣∣a(u∗(MT)krl
µp − 1

)∣∣∣)1/qp

>
1√

|det M|

( q−1

∏
k=0

p−1

∏
l=0

∣∣∣a( nkl
µp − 1

)∣∣∣)1/qp
>

A√
|det M|

− ε.

This completes the proof for the operator RM
a . The estimates for the spectral ra-

dius of the operator SM
a can be obtained similarly.

Combining the last result with Corollary 1.3 leads to another sufficient con-
dition for the equality (0.4).

THEOREM 4.4. Let a ∈ W(Ts) and M ∈ Ms. If for any ε > 0 system (4.5) is
solvable in the sense of Theorem 4.3, then ρ(RM

a ) = A/
√
|det M|.

Thus, knowledge of the maximum of the symbol often allows us to obtain
the exact value of the spectral radius for the refinement operator. A natural ques-
tion to ask is whether the spectral radius of the refinement operator can always
be given by formula (0.4). The answer to this question is no. A counterexample
can be constructed using results of [35].

As far as the subdivision operators SM
a are concerned, the location of exact

values of their spectral radii is more complicated, cf. (4.3) and the remark in the
proof of Theorem 4.1. Thus to improve estimate (4.3) one has to study expression
(1.14) in more detail.
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