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ABSTRACT. We consider a real analogue of the result of A. Ocneanu about the
actions of discrete amenable groups on W∗-algebras. One gives the classifica-
tion up to outer conjugacy of the actions of amenable groups on the hyperfinite
real factor of type II1. A main result is the uniqueness up to outer conjugacy
of the free action of an amenable group on the hyperfinite real factor of type
II1.
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1. INTRODUCTION

The classical papers by Connes [2] and [4] showed that the structure of fac-
tors is closely connected with properties of their automorphisms. In [5] and [3]
Connes gave the complete classification of periodic automorphisms of hyperfi-
nite type II1 factor and described the outer conjugation classes of automorphisms
of injective type II∞ factors. On the other hand the classification of periodic auto-
morphisms of W∗-algebras is a classification of the actions of a finite cyclic group
Zn on W∗-algebra, where n is a period of automorphism. In [6] Jones generalized
the Connes work for arbitrary finite groups. In [10] and [7] the classifications of
the actions are given for amenable discrete and compact abelian groups.

The classification of periodic automorphisms of hyperfinite real types II1,
II∞ factors were taken by Rakhimov and Usmanov in [12], [13]. In [11] those
results generalized for arbitrary finite groups.

In the present paper the author will consider the actions of discrete amenable
groups on real W∗-algebras. Similarly to the complex case (Ocneanu’s work), one
gives a complete classification (up to outer conjugacy) of the actions of a discrete
amenable group on the hyperfinite real factor of type II1.
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2. PRELIMINARIES

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert
space H. A weakly closed ∗-subalgebra A with identity element 1I in B(H) is
called a W∗-algebra. A real ∗-subalgebra < ⊂ B(H) is called a real W∗-algebra if it
is closed in the weak operator topology and < ∩ i< = {0}. A real W∗-algebra <
is called a real factor if its center Z(<) contains only elements of the form {λ1I},
λ ∈ R. We say that a real W∗-algebra < is of the type Ifin, I∞, II1, II∞, or IIIλ,
(0 6 λ 6 1) if the enveloping W∗-algebra A(<) has the corresponding type in
the ordinary classification of W∗-algebras. A linear mapping α of an algebra into
itself with α(x∗) = α(x)∗ is called a ∗-automorphism if α(xy) = α(x)α(y); involu-
tive ∗-antiautomorphism if α(xy) = α(y)α(x) and α2(x) = x. If α is an involutive
∗-antiautomorphism of W∗-algebra M, we denote by (M, α) the real W∗-algebra,
generated by α, i.e. (M, α) = {x ∈ M : α(x) = x∗} (see [1]).

Let N be a real or complex W∗-algebra and G be a group, the identity of G
will be written as 1. An action of G on N is a homomorphism θ : G → Aut(N); θ is
called free if θg ∈ Int(N) (g 6= 1); crossed if θ1 = Id and θgθhθ−1

gh ∈ Int(N), for any
g, h ∈ G, where Aut(N) (respectively Int(N)) is the group of all ∗-automorphisms
(respectively inner ∗-automorphisms) of N. Two actions θ and θ′ of G on N are
called conjugate if there is a ∗-automorphism σ of N such that σθgσ−1 = θ′g, for
all g ∈ G; outer conjugate if there are a unitary cocycle u for θ, i.e. unitaries
ug ∈ N, g ∈ G with ugh = ugθg(uh) and a ∗-automorphism σ of N such that
σAdugθgσ−1 = θ′g, for all g ∈ G.

3. MODEL ACTION

Let G be an amenable group and K be a paving structure of G, Sn
i , Kn

i and
Mn the sets of G, constructed in the Chapter 3 of [10]. We use K and those sets
to index the matrix units of an UHF-algebra. Let E0 be a finite dimensional factor
of dimension |S0|; Fn be a factor of dimension |Mn| (n > 0) and En+1 = En ⊗ Fn.
Let E be the finite factor obtained as weak closure of the UHF-algebra

⋃
n

En on

the GNS representation associated to its canonical trace. Let (en
s1,s2

) (si ∈ Sn) be a
system of matrix units in En and un

g be a unitary of En given by

un
g = ∑

i
∑
(k,s)

en
(k1,s),(k,s)

where g ∈ G, i ∈ In, (k, s) ∈ Kn
i × Sn

i , k1 = `n
g(k) and `n

g : Kn → Kn is the
approximate left g-translation defined in 3.4 of [10].

We define the canonical involutive ∗-antiautomorphism αn of En as

αn(en
s1,s2

) = en
s2,s1

.

It is easy see that αn(un
g) = (un

g)∗, g ∈ G.
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Since |Sn| → ∞, E is a hyperfinite factor of type II1; for each g ∈ G,
ug = lim

n→∞
un

g ∗-strongly was shown in 4.4 of [10] to exist and yield a faithful

representation of G in E. Let α be the canonical involutive ∗-antiautomorphism
of E, generated by (αn)n∈N. For each n, E = En ⊗ ((En)′ ∩ E) and (En)′ ∩ E is a
hyperfinite subfactor of E type II1, on which Adug acts almost trivially. The three
(E, (ug), α) is called the submodel; Adug the submodel action and α the submodel
involution.

Let R be a countably infinite tensor product of copies of the submodel factor
E, taken with respect to the normalized trace, and for each g ∈ G, we let θo

g and αo

be the corresponding tensor product of copies of the submodel action Adug and
submodel involution α respectively. Then R is the hyperfinite factor of type II1,
θo is a free action of G on R (for each g ∈ G we have θo

g ∈ Aut(R)), and αo is an
involutive ∗-antiautomorphism of R with θo · αo = αo · θo. We call < = (R, αo)
the real model and θo : G → Aut(R) the model action. The restriction of θo to < we
denote again by θo and we call it the real model action.

4. PROPERLY AND STRONGLY OUTER AUTOMORPHISM.
NONABELIAN ROHLIN THEOREM

Let M be a W∗-algebra and ω be a free ultrafilter on N (i.e. a maximal filter
which doesn’t contain finite sets). A sequence (xn)n∈N of elements in M is called
central (respectively ω-central), if it is the element of the C∗-algebra L∞(N, M),
and for each ψ ∈ M∗ we have ‖[ψ, x]‖ → 0, when n → ∞ (respectively n → ω).
Let

⊕
∞

M be the direct sum of a countable number of copies of M and let Jω =

{(xn) ∈
⊕
∞

M: xn → 0 ∗-strongly, when n → ω}, M̃ = {(xn) ∈
⊕
∞

M: xn = x,

∀n}. Let ρ be the canonical homomorphism of
⊕
∞

M onto
⊕
∞

M/Jω. Put Mω =

(
⊕
∞

M/Jω) ∩ ρ(M̃)′. It is known that Mω is the algebra of all equivalence classes

of ω-centralizing sequences in M (see [9]). Moreover, the quotient C∗-algebra
(Mω/Jω) ∩ ρ(M̃)′ we denote by Mω, where Mω is the normalizing algebra of Jω.

Similarly we define <ω, where < is a real W∗-algebra, moreover, in [14] it
is proved that the ∗-algebra of central sequences <ω is a real W∗-algebra and
A(<)ω = <ω + i<ω.

For a ∗-automorphism (or ∗-antiautomorphism) β of M (respectively of <)
the mapping (xn)n∈N → (β(xn))n∈N defines a ∗-automorphism (or ∗-antiauto-
morphism) βω of Mω (respectively of <ω). If α is an involutive ∗-antiautomor-
phism of M it is easy to see that the real W∗-algebra (Mω, αω) coincides with
(M, α)ω. a ∗-automorphism β is called properly outer if none of its restrictions
under a nonzero invariant central projection is inner. By Lemma 2.4.1 of [1] a
∗-automorphism β of σ-finite real W∗-algebra < is properly outer if and only if
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its linear extension on A(<) is so. In other words, a ∗-automorphism β of W∗-
algebra M with βα = αβ is properly outer if and only if β is properly outer on
(M, α). We call β strongly outer if the restriction of β to the relative commutant
of any countable β-invariant subset of Mω is properly outer. An action θ of G on
Mω is strongly free if all θg (g 6= 1) are strongly outer. It is easy to show that a
∗-automorphism β of M with βα = αβ is strongly outer if and only if β is strongly
outer on (M, α), and an action θ of G on Mω with θgα = αθg (∀g) is strongly free
if and only if the action θ|<ω of G on (M, α)ω is strongly free.

Now we shall give a real analogue of Rohlin Theorem, the proof of which is
carried out easily, similarly to the proof of Theorem 6.1 in [10], if we also follow
the scheme of Subsections 2.3 and 2.4 of [1].

THEOREM 4.1 (Nonabelian Real Rohlin Theorem). Let G be a discrete coun-
table amenable group, M be a W∗-algebra with separable predual and α be an involutive ∗-
antiautomorphism of M. Let θ : G → Aut(Mω) be a crossed action which is semiliftable
(see 5.2 of [10]), strongly free and αω-invariant. Let φ be a faithful normal α-invariant
state on M such that θ|Z(M) leaves φ|Z(M) invariant. Let ε > 0 and K1, . . . , KN be an
ε-paving family of subsets of G. Then there is a partition of unity (ei,k)i=1,...,Nj ;k∈Ki

in
(M, α)ω such that:

(i)
N

∑
i=1

|Ki|−1 ∑
k,`∈Ki

|θk`−1(ei,`)− ei,k|φ 6 5
√

ε ;

(ii) [ei,k, θg(ej,`)] = 0 , for all g, i, j, k, ` ;
(iii) θgθh(ei,k) = θgh(ei,k) , for all g, h, i, k.

Moreover, (ei,k)i,k can be chosen in the relative commutant in (M, α)ω of any given
countable subset of (M, α)ω.

5. MAIN RESULTS

A (real) cocycle crossed action of countable discrete group G on real W∗-
algebra (M, α) is a pair (θ, u), where θ : G → Aut(M) and u : G × G → U(M)
satisfy for g, h, k ∈ G

θgθh = Adug,hθgh, ug,hugh,k = θg(uh,k)ug,hk,

θgα = αθg, α(ug,h) = u∗g,h, u1,g = ug,1 = 1I.

(θ, u) is called centrally free if θ is free with the obvious adaptation of the def-
inition. The real cocycle u is the real coboundary of v (denote as u = ∂v), if
v : G → U(M) satisfies ug,h = θg(v∗h)v∗gvgh and α(vg) =v∗g, ∀g, h ∈ G.

Throughout in future, G will be an amenable group.

THEOREM 5.1. Let M be a W∗-algebra with separable predual and α be an invo-
lutive ∗-antiautomorphism of M. Let φ ∈ M+

∗ be faithful and α-invariant. If (θ, u) is
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a centrally free (real) cocycle crossed action of G on (M, α), such that θ|Z(M) preserves
φ|Z(M), then u is a real coboundary.

Moreover, given any ε > 0 and any finite F ⊂ G, there exists δ > 0 and a finite
K ⊂ G such that if ‖ug,h − 1I‖#

φ < δ (g, h ∈ K), then u = ∂v with ‖vg − 1I‖#
φ < δ,

g ∈ F.

The proof of theorem follows from Theorem 7.5 of [10] with regard to α(vg)
= v∗g (g ∈ G), since it is given for the (real) cocycle u.

A real factor < is called a real McDuff factor if it is isomorphic to R ⊗ <,
where R is the hyperfinite real factor of type II1. It is easy to see that the envelop-
ing W∗-algebra of a real McDuff factor is also a McDuff factor, since A(R ⊗<) =
A(R)⊗A(<) ([8]) and A(R) is the hyperfinite factor of type II1 ([1]).

LEMMA 5.2. Let < be a real McDuff factor. If θ : G → Aut(<ω) is a semiliftable
strongly free action, then (<ω)θ is of the type II1.

Proof. Since A(<) is a McDuff factor and the linear extension θ : G →
Aut A(<)ω of θ is also a semiliftable strongly free action by Lemma 8.3 of [10]
the fixed point algebra (A(<)ω)θ is of the type II1. Hence (<ω)θ is also of the type
II1.

By means of the lemma that follows we can lift constructions from <ω to <.

LEMMA 5.3. Let M be a factor, α be an involutive ∗-antiautomorphism of M and
θ : G → Aut(M) be a centrally free α-invariant action. Let (vg) ⊂ (M, α)ω (i.e.
(vg) ⊂ Mω with αω(vg) = v∗g ) be a (real) cocycle for (θg)ω and (ei,j)i,j∈I (|I| < ∞)
be matrix units in (M, α)ω such that

(Advg θω
g )(ei,j) = ei,j, i, j ∈ I, g ∈ G.

Then there exist representing sequences (Eν
i,j)ν for ei,j, which for ν ∈ N are matrix units

in (M, α), and (vν
g)ν for vg, which for each ν form a (θg)-cocycle in (M, α), such that

(Advν
g θg)(Eν

i,j) = Eν
i,j, i, j ∈ I, g ∈ G, ν ∈ N.

The proof of lemma follows from Lemma 8.4 of [10] with regard to αθg =
θgα, αω(vg) = v∗g and αω(ei,j) = ej,i (i, j ∈ I, g ∈ G).

In future let (M, α) be a real McDuff factor with separable predual and θ :
G → Aut(M) be a centrally free α-invariant action, let ε > 0, Ψ be a finite α-
invariant subset of M+

∗ and F be a finite subset of G. If we use lemmas and the
scheme of proof of Theorem 8.5 in [10], we obtain

THEOREM 5.4. There exists a cocycle (vg) for (θg) with α(vg) = v∗g and a II1
hyperfinite real subfactor R ⊂ (M, α) such that

(M, α) = R ⊗ (R′ ∩ (M, α)), (Advg θg)|R = idR and

‖vg − 1I‖#
ψ < ε, ‖ψ ◦ PR′∩(M,α) − ψ‖ < ε, ψ ∈ Ψ, g ∈ F.

This implies



132 A.A. RAKHIMOV

COROLLARY 5.5. θ is outer conjugate to idR ⊗ θ.
Moreover, given any ε > 0, finite F ⊂ G, and ψ ∈ M+

∗ with ψ · α = ψ, there
exists an (θg)-cocycle (vg) such that α(vg) = v∗g, (Advgθg) is conjugate to idR ⊗ θ

and ‖vg − 1I‖#
ψ < ε (g ∈ F).

Similarly to Theorem 5.4 we may obtain the following theorem.

THEOREM 5.6. There exists a cocycle (vg) for (θg) with α(vg) = v∗g and a II1
hyperfinite real subfactor R ⊂ (M, α) such that

(M, α) = R ⊗ (R′ ∩ (M, α)), (Advg θg)(R) = R,

(Advg θg|R) is conjugate to the model action θo and

‖vg − 1I‖#
ψ < ε, ‖ψ ◦ PR′∩(M,α) − ψ‖ < ε, ψ ∈ Ψ, g ∈ F.

This implies

COROLLARY 5.7. θ is outer conjugate to θo ⊗ θ .

Applying the scheme of proof of [11] and 9.1–9.4 of [10] we obtain

THEOREM 5.8. If θ is an approximately inner and ψo ∈ M+
∗ with ψoα = ψo, then

there exists a cocycle (vg) for (θg) with α(vg) = v∗g and a II1 hyperfinite real subfactor
R ⊂ (M, α) such that

(M, α) = R ⊗ (R′ ∩ (M, α)), (Advg θg)(R) = R,

(Advg θg|R) is conjugate to the model action θo and

(Advg θg|R′∩(M,α)) = idR′∩(M,α), ‖vg − 1I‖#
ψo < ε, g ∈ F.

From the above results we can easily obtain

THEOREM 5.9. If θ is an approximately inner, θ is outer conjugate to θo ⊗
id(M,α).

Proof. By Corollary 5.7 θo is outer conjugate to θo ⊗ idR. From Theorem 5.8
we infer that θ is outer conjugate to θo ⊗ idR′∩(M,α) and hence to θo ⊗ idR ⊗
idR′∩(M,α) = θo ⊗ id(M,α).

From the uniqueness, up to conjugacy, of an involutive ∗-antiautomorphism
of the hyperfinite type II1 factor M ([14]) and from Ct(M, α) = Int(M, α), Int(M, α)
= Aut(M, α) ([1]) we obtain the main result of the paper

COROLLARY 5.10. Any two free actions of the amenable group G on the hyperfi-
nite real factor of type II1 are outer conjugate.
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