
J. OPERATOR THEORY
58:1(2007), 175–203

© Copyright by THETA, 2007

PROPAGATION PHENOMENA FOR HYPONORMAL
2-VARIABLE WEIGHTED SHIFTS

RAÚL E. CURTO and JASANG YOON

Communicated by Florian-Horia Vasilescu

ABSTRACT. We study the class of hyponormal 2-variable weighted shifts with
two consecutive equal weights in the weight sequence of one of the coordinate
operators. We show that under natural assumptions on the coordinate opera-
tors, the presence of consecutive equal weights leads to horizontal or vertical
flatness, in a way that resembles the situation for 1-variable weighted shifts. In
1-variable, it is well known that flat weighted shifts are necessarily subnormal
(with finitely atomic Berger measures). By contrast, we exhibit a large col-
lection of flat (i.e., horizontally and vertically flat) 2-variable weighted shifts
which are hyponormal but not subnormal. Moreover, we completely charac-
terize the hyponormality and subnormality of symmetrically flat contractive
2-variable weighted shifts.
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1. INTRODUCTION

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary
and sufficient conditions on a pair of commuting subnormal operators on Hilbert
space to admit a joint normal extension. In previous work we have proved that
the (joint) hyponormality of the pair, while being a necessary condition, is by no
means sufficient ([13], [14]). We have also established that in a very special sit-
uation, hyponormality is indeed sufficient ([13], Theorem 5.2 and Remark 5.3).
This involves 2-variable weighted shifts with weight sequences which are con-
stant except for the 0-th row in the index set Z2

+. One is then tempted to claim
that a similar result might be true for weight sequences which are constant in a
slightly smaller domain of indices, e.g., those indices k ∈ Z2

+ with k1, k2 > 1.
However, in this paper we show that such is not the case, that is, hyponormality
and subnormality are quite different even in those cases.
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For α ≡ {αk}∞
k=0 a bounded sequence of positive real numbers (called

weights), let Wα : `2(Z+) → `2(Z+) be the associated unilateral weighted shift, de-
fined by Wαek := αkek+1 (all k > 0), where {ek}∞

k=0 is the canonical orthonormal
basis in `2(Z+). A quadratically hyponormal weighted shift Wα with αk+1 = αk
for some k > 1 must necessarily be (i) flat (i.e., α1 = α2 = α3 = · · · ), and
(ii) subnormal. For 2-variable weighted shifts associated with weight sequences
{αk}, {βk} ∈ `∞(Z2

+), we first establish the correct analogue of (i) (Theorem 3.3),
and we then show that there is a rich family of sequences {αk}, {βk} giving rise to
flat, non-subnormal, hyponormal 2-variable weighted shifts; this is in sharp con-
trast with the 1-variable situation. The optimality of Theorem 3.3 is established
through an elaborate construction which uses Bergman-like weighted shifts (The-
orem 3.14). Finally, in Section 5 we completely characterize the hyponormality
and subnormality of symmetrically flat contractive 2-variable weighted shifts,
which sheds new light on the relationship between flatness and subnormality.

Recall that a bounded linear operator T ∈ B(H) on a complex Hilbert
space H is normal if T∗T = TT∗; subnormal if T = N|H, where N is normal
and N(H) ⊆ H; and hyponormal if T∗T > TT∗. For k > 1 and T ∈ B(H), T is
k-hyponormal if (I, T, . . . , Tk) is (jointly) hyponormal. (For the definition of joint
hyponormality, see below.) Additionally, T is weakly k-hyponormal if p(T) is hy-
ponormal for every polynomial p of degree at most k. Thus, if T is k-hyponormal
then T is weakly k-hyponormal, and “hyponormality”, “1-hyponormality” and
“weak 1-hyponormality”are all identical notions [1]. On the other hand, results
in [10], [7] and [17] show that if T is weakly 2-hyponormal (also called quadrati-
cally hyponormal), then T need not be 2-hyponormal. The Bram-Halmos charac-
terization of subnormality ([5], III.1.9) can be paraphrased as follow: T is sub-
normal if and only if T is k-hyponormal for every k > 1 ([10], Proposition 1.9).
In particular, each subnormal operator is polynomially hyponormal (i.e., weakly
k-hyponormal for every k > 1). The converse implication, whether T polynomi-
ally hyponormal ⇒ T subnormal, was settled in the negative in [12]; indeed, it
was shown that there exists a polynomially hyponormal operator which is not 2-
hyponormal. Previously, S. McCullough and V. Paulsen had established [17] that
one can find a non-subnormal polynomially hyponormal operator if and only if
one can find a unilateral weighted shift with the same property. Thus, although
the existence proof in [12] is abstract, by combining the results in [12] and [17] we
now know that there exists a polynomially hyponormal unilateral weighted shift
which is not subnormal.

For S, T ∈ B(H) we let [S, T] := ST − TS. We say that a commuting n-tuple
T = (T1, . . . , Tn) of operators on H is (jointly) hyponormal if the operator matrix

[T∗, T] :=


[T∗1 , T1] [T∗2 , T1] · · · [T∗n , T1]
[T∗1 , T2] [T∗2 , T2] · · · [T∗n , T2]

...
...

. . .
...

[T∗1 , Tn] [T∗2 , Tn] · · · [T∗n , Tn]


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is positive on the direct sum of n copies of H (cf. [1], [10]). The n-tuple T is said to
be normal if T is commuting and each Ti is normal, and T is subnormal if T is the
restriction of a normal n-tuple to a common invariant subspace. Clearly, normal
⇒ subnormal ⇒ hyponormal.

For α ≡ {αk}∞
k=0 ∈ `∞(Z+) and Wα the associated unilateral weighted shift,

the moments of α are given as

γk ≡ γk(α) :=
{

1 if k = 0,
α2

0 · · · α
2
k−1 if k > 0.

It is easy to see that Wα is never normal, and that it is hyponormal if and only
if α0 6 α1 6 · · · . If αk+1 = αk for all k > 1, Wα is called flat. On occasion, we
will write shift(α0, α1, α2, . . .) to denote the weighted shift with weight sequence
{αk}∞

k=0. We also denote by U+ := shift(1, 1, 1, · · · ) the (unweighted) unilateral
shift, and for 0 < a < 1 we let Sa := shift(a, 1, 1, . . .); the shift Sa is the prototypical
flat weighted shift, and it is subnormal.

Similarly, consider double-indexed positive bounded sequences {αk}, {βk}
∈ `∞(Z2

+) , k ≡ (k1, k2) ∈ Z2
+ := Z+ × Z+ and let `2(Z2

+) be the Hilbert space
of square-summable complex sequences indexed by Z2

+. (Recall that `2(Z2
+) is

canonically isometrically isomorphic to `2(Z+)⊗ `2(Z+).) We define the 2-variable
weighted shift T by

T1ek := αkek+ε1 , T2ek := βkek+ε2 ,
where ε1 := (1, 0) and ε2 := (0, 1). Clearly,

(1.1) T1T2 = T2T1 ⇐⇒ βk+ε1 αk = αk+ε2 βk (all k).

In an entirely similar way one can define multivariable weighted shifts. Trivially,
a pair of unilateral weighted shifts Wα and Wβ gives rise to a 2-variable weighted
shift T ≡ (T1, T2), if we let α(k1,k2) := αk1

and β(k1,k2) := βk2 (all k1, k2 ∈ Z+).
In this case, T is subnormal (respectively hyponormal) if and only if so are T1
and T2; in fact, under the canonical identification of `2(Z2

+) and `2(Z+)⊗ `2(Z+),
T1 ∼= I ⊗Wα and T2 ∼= Wβ ⊗ I, and T is also doubly commuting. For this reason,
we do not focus attention on shifts of this type, and use them only when the above
mentioned triviality is desirable or needed.

We now recall a well known characterization of subnormality for single
variable weighted shifts, due to C. Berger (cf. [5], III.8.16): Wα is subnormal if
and only if there exists a probability measure ξ supported in [0, ‖Wα‖2] (called
the Berger measure of Wα) such that γk(α) := α2

0 · · · α
2
k−1 =

∫
tkdξ(t) (k > 1). For

instance, the Berger measures of U+ and Sa are δ1 and (1− a2)δ0 + a2δ1, respec-
tively, where δx denotes the point-mass probability measure with support the
singleton {x}.

If Wα is subnormal, and if for h > 1 we let Mh :=
∨
{ek : k > h} denote

the invariant subspace obtained by removing the first h vectors in the canonical
orthonormal basis of `2(Z+), then the Berger measure of Wα|Mh is 1

γh
thdξ(t). For

h = 2, one can use this to prove the following result.
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LEMMA 1.1. Let T≡shift(β0, β1, . . .) be a subnormal weighted shift, with Berger
measure η, and let TM be its restriction toM:=

∨
{e2, e3, . . .}. Then β2

1=
(∥∥ 1

t

∥∥
L1(ηM)

)−1.

Proof. We have as desired:∥∥∥1
t

∥∥∥
L1(ηM)

=
∫

1
t

( 1
γ2

t2dη(t)
)

=
1

γ2

∫
tdη(t) =

γ1

γ2
=

1
β2

1
.

COROLLARY 1.2. Let T ≡ (T1, T2) be a commuting 2-variable weighted shift,
assume that T2 is subnormal, and assume that there exists k1 > 0 such that α(k1,k2) =
α(k1,k2)+ε2

for all k2 > 2. Then β(k1,1) = β(k1,1)+ε1
.

Proof. Consider the 1-variable weighted shifts S := shift(β(k1,2), β(k1,3), . . .)
and S′ := shift(β(k1+1,2), β(k1+1,3), . . .). Since T2 is subnormal, we know that both S
and S′ are subnormal, with Berger measures η and η′, respectively. Since α(k1,k2) =
α(k1,k2)+ε2

, the commuting property (1.1) readily implies that β(k1,k2) = β(k1,k2)+ε1
for all k2 > 2, that is S = S′, that is, η = η′. By Lemma 1.1, we must have as
desired:

β2
(k1,1) =

(∥∥∥1
t

∥∥∥
L1(η)

)−1
=
(∥∥∥1

t

∥∥∥
L1(η′)

)−1
= β2

(k1,1)+ε1
.

2. PROPAGATION PHENOMENA FOR 1-VARIABLE WEIGHTED SHIFTS

In this section, we review some basic propagation phenomena for 1-variable
weighted shifts, and we then develop the results for the 2-variable case in Sections
3 and 4. J. Stampfli showed in [18] that for a subnormal weighted shift Wα, a
propagation phenomenon occurs which forces the flatness of Wα whenever two
equal weights are present.

PROPOSITION 2.1 (Subnormality, One-variable Case, [18]). Let Wα be a sub-
normal weighted shift with weight sequence {αk}∞

k=0. If αk = αk+1 for some k > 0, then
Wα is flat.

The first named author showed that in the presence of 2-hyponormality (re-
spectively quadratic hyponormality) of weighted shifts, a propagation phenom-
enon also occurs which forces the flatness of Wα whenever two equal weights
(respectively three equal weights) are present.

PROPOSITION 2.2 (2-hyponormality, One-variable Case), [7]). Let Wα be a 2-
hyponormal weighted shift with weight sequence {αk}∞

k=0. If αk = αk+1 for some k > 0,
then Wα is flat.

PROPOSITION 2.3 (Quadratic Hyponormality, One-variable Case, [7]). Let
Wα be a unilateral weighted shift with weight sequence {αk}∞

k=0, and assume that Wα is
quadratically hyponormal. If αk = αk+1 = αk+2 for some k > 0, then Wα is flat.

Y. Choi later improved Proposition 2.3, as follows.
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PROPOSITION 2.4 (Quadratic Hyponormality, One-variable Case, Improved
Version, [4]). Let Wα be a unilateral weighted shift with weight sequence {αk}∞

k=0, and
assume that Wα is quadratically hyponormal. If αk = αk+1 for some k > 1, then Wα is
flat.

Moreover, Y. Choi showed that, in the presence of polynomially hyponor-
mality, two consecutive equal weights again force flatness.

PROPOSITION 2.5 (Polynomially hyponormality, [4]). Let Wα be a unilateral
weighted shift with weight sequence {αk}∞

k=0, and assume that Wα is polynomially hy-
ponormal. If αk = αk+1 for some k > 0, then Wα is flat.

3. PROPAGATION IN THE 2-VARIABLE HYPONORMAL CASE

In this section, we show that if a commuting, (jointly) hyponormal pair T ≡
(T1, T2) with T1 quadratically hyponormal satisfies α(k1+1,k2) = α(k1,k2) for some

k1, k2 > 1, then (T1, T2(Uk2−1
+ ⊗ I)) is horizontally flat (see Definition 3.1 below);

this is the content of Theorem 3.3. We also prove that Theorem 3.3 is optimal
in the following sense: the propagation does not extend either to the left (0-th
column) or down (below k2-th level).

We begin with

DEFINITION 3.1. A 2-variable weighted shift T ≡ (T1, T2) is horizontally flat
(respectively vertically flat) if α(k1,k2) = α(1,1) for all k1, k2 > 1 (respectively β(k1,k2)
= β(1,1) for all k1, k2 > 1). We say that T is flat if T is horizontally and vertically
flat (cf. Figure 1), and we say that T is symmetrically flat if T is flat and α11 = β11.

LEMMA 3.2 ([6], Six-point Test). Let T ≡ (T1, T2) be a 2-variable weighted shift,
with weight sequences α and β. Then

[T∗, T] >0 ⇔ (([T∗j , Ti]ek+ε j , ek+εi ))
2
i,j=1 > 0 (all k ∈ Z2

+)

⇔

(
α2

k+ε1
−α2

k αk+ε2 βk+ε1−αkβk

αk+ε2 βk+ε1−αkβk β2
k+ε2

−β2
k

)
>0 (all k ∈ Z2

+).

THEOREM 3.3. Let T ≡ (T1, T2) be a commuting, hyponormal 2-variable
weighted shift.

(i) If T1 is quadratically hyponormal and α(k1,k2)+ε1
= α(k1,k2) for some k1, k2 > 1,

then (T1, T2(Uk2−1
+ ⊗ I) is horizontally flat.

(ii) If, instead, T2 is quadratically hyponormal and β(k1,k2)+ε2
= β(k1,k2) for some

k1, k2 > 1, then (T1(I ⊗Uk1−1
+ ), T2) is vertically flat.

Proof. Without loss of generality, we only prove (i). Consider the restricted
weight diagram based at (k1, k2) (see Figure 3).
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(0, 0) (1, 0) · · · (k1, 0) (k1 + 1, 0) · · ·

α0,0 α1,0 · · · αk1,0 αk1+1,0 · · ·

α0,1 1 · · · 1 1 · · ·

α0,2 1 · · · 1 1 · · ·

· · · · · · · · · · · · · · · · · ·

α0,k2
1 · · · 1 1 · · ·

α0,k2+1 1 · · · 1 1 · · ·

T1

(0, 1)

(0, 2)

...

(0, k2)

(0, k2 + 1)

T2

β0,0

β0,1

β0,2

...

β0,k2

.

..

β1,0

b

b

...

b

.

..

...

...

...

...

...

.

..

βk1,0

b

b

...

b

.

..

βk1+1,0

b

b

...

b

.

..

...

...

...

...

...

.

..

�

�

�

�

�

�

�

�

�

Figure 1. Weight diagram of a flat 2-variable weighted shift
(with round dots for horizontal flatness, triangular dots for
vertical flatness).

Recall that, by joint hyponormality, we have:(
α2

(k1,k2)+ε1
−α2

(k1,k2) α(k1,k2)+ε2
β(k1,k2)+ε1

−β(k1,k2)α(k1,k2)

α(k1,k2)+ε2
β(k1,k2)+ε1

− β(k1,k2)α(k1,k2) β2
(k1,k2)+ε2

− β2
(k1,k2)

)
>0.

Since α(k1,k2)+ε1
= α(k1,k2), it follows that

(3.1) α(k1,k2)+ε2
β(k1,k2)+ε1

= β(k1,k2)α(k1,k2).

By the commuting property (1.1),

(3.2) α(k1,k2)β(k1,k2)+ε1
= α(k1,k2)+ε2

β(k1,k2).
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(k1, k2) (k1 + 1, k2) (k1 + 2, k2)

αk1,k2
αk1+1,k2

αk1,k2+1

(k1, k2 + 1)

(k1, k2 + 2)

(k1 + 1, k2 + 1)

βk1,k2

βk1,k2+1

βk1+1,k2

Figure 2. Weight diagram for the Six-point Test.

T1

T2

(k1, k2) (k1 + 1, k2) (k1 + 2, k2) (k1 + 3, k2)

αk1,k2
αk1+1,k2

αk1+2,k2

αk1,k2+1 αk1+1,k2+1

(k1, k2 + 1)

(k1, k2 + 2)

βk1,k2

βk1,k2+1

βk1+1,k2

Figure 3. Weight diagram of the 2-variable weighted shift
in Theorem 3.3 (the two solid black dots represent equal
weights).

Therefore

α2
(k1,k2)+ε2

β(k1,k2) = α(k1,k2)+ε2
(α(k1,k2)+ε2

β(k1,k2)) = α(k1,k2)+ε2
(α(k1,k2)β(k1,k2)+ε1

)

= α(k1,k2)(α(k1,k2)+ε2
β(k1,k2)+ε1

) = α(k1,k2)(β(k1,k2)α(k1,k2)).

(the second equality follows by (3.2) and the last by (3.2)). Thus, α2
(k1,k2)+ε2

β(k1,k2)

= α(k1,k2)(β(k1,k2)α(k1,k2)), which implies that α(k1,k2)+ε2
= α(k1,k2). We now re-

call Theorem 2.4, which says that flatness can be propagated to the right, that is,
α(k1,k2)+ε1

= α(k1,k2)+2ε1
. It follows that α(k1,k2)+ε1+ε2

= α(k1,k2)+ε2
, and then two

equal weights occurs at level k2 + 1, which then implies α(k1,k2)+2ε2
= α(k1,k2)+ε2

=
α(k1,k2). It is now easy to see that for every level ` > k2 we must have α(k1,`) =
α(k1,k2) (all k1 > 1). Using Theorem 2.4 to propagate these equalities to the left,
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we eventually conclude that

α(k1,`) = α(1,k2) (k1 > 1, ` > k2).

We thus obtain that (T1, T2)|∨{e(k1,`) : k1>1, `>k2} is unitarily equivalent to the 2-
variable weighted shift (I ⊗ α(1,k2)U+, Wη ⊗ I), where ηk := β1,k+k2(k > 0). This

can be rephrased as saying that (T1, T2(Uk2−1
+ ) ⊗ I) is horizontally flat, as de-

sired.

REMARK 3.4. The proof of Theorem 3.3 shows that for T ≡ (T1, T2) com-
muting and hyponormal, and for k1, k2 > 0,

(3.3) α(k1,k2)+ε1
= α(k1,k2) ⇒ β(k1,k2) = β(k1,k2)+ε1

(by (3.1) and (3.2)). Moreover, if k2 > 1, α(k1,k2)+ε1
= α(k1,k2) and α(k1,k2)+ε1−ε2

=
α(k1,k2)−ε2

⇒ α(k1,k2)+ε1
= α(k1,k2)+ε1−ε2

.

REMARK 3.5. The proof of Theorem 3.3 also reveals that asking T ≡ (T1, T2)
to be jointly hyponormal is significantly stronger than asking both T1 and T2 to be
hyponormal. For, consider the 2-variable weighted shift whose weight diagram
is given by Figure 4. In Theorem 5.2 of [13], we established that in the case when
‖Wα‖ 6 1, T is subnormal if and only if T is hyponormal. Thus, a necessary con-
dition for the hyponormality of T is the subnormality of W0 := shift(α00, α10, . . .).
For 0 < a < 1, let x0 ≡ x1 := a and let xk := 1 (k > 2). Clearly W0 is hyponormal
and not subnormal, and if we take 0 < y 6 a2 we can guarantee that each of T1
and T2 is hyponormal, yet T is not. An alternative way to see this is observe that
if T were hyponormal then α01 would equal a, since α00 = α10.

We will now show that Theorem 3.3 is optimal in the following sense: the
propagation does not necessarily extend either to the left (0-th column) or down
(below k2-th level). To demonstrate this optimality, we first introduce the class of
Bergman-like weighted shifts.

DEFINITION 3.6. For ` > 1, the Bergman-like weighted shift on `2(Z+) is

B(`)
+ := shift

({√
`− 1

k+2 : k > 0
})

; that is,

B(`)
+ ek :=

√
`− 1

k + 2
ek+1 (k > 0).

In particular, B(1)
+ ≡ B+ := shift

(√
1
2 ,
√

2
3 ,
√

3
4 , . . .

)
is the Bergman shift.

REMARK 3.7. (i) B+ is subnormal with Berger measure dξ(s) := ds on [0, 1].

(ii) ([15], [11]) B(2)
+ is subnormal with Berger measure dξ(s) := sds

π
√

2s−s2
on

[0, 2].

Our next step is to show that B(`)
+ (` > 1) is always 2-hyponormal. To this

end, we need two preliminary results.
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(0, 0) (1, 0) (2, 0) · · ·

x0 x1 x2 · · ·

1 1 1 · · ·

1 1 1 · · ·

· · · · · · · · · · · ·

...

.

..

...

.

..

T1

(0, 1)

(0, 2)

...

T2

y

1

1

.

..

y

x0

1

1

.

..

y

x0x1

1

1

.

..

Figure 4. Weight diagram of the 2-variable weighted shift

in Remark 3.5.

LEMMA 3.8 (Nested Determinants Test; Special Case). If a > 0 and

det
(

a b
b c

)
> 0, then

 a b c
b c d
c d e

 > 0 ⇔ det

 a b c
b c d
c d e

 > 0.

Proof. Straightforward from Choleski’s Algorithm [2].

LEMMA 3.9 ([7]). Let Wαek = αkek+1 (k > 0) be a hyponormal weighted shift.
The following statements are equivalent:

(i) Wα is 2-hyponormal.
(ii) The following matrix is positive semi-definite for all k > −1:

(([W∗j
α , Wi

α]ek+j, ek+i))
2
i,j=1.

(iii) The next matrix is positive semi-definite for all k > 0, where as usual γ0 = 1,
γn = α2

0 · · · α
2
n−1 (n > 1):

(γkγk+i+j − γk+iγk+j)
2
i,j=1.
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(iv) The following Hankel matrix is positive semi-definite for all k > 0:

H(2; k) := (γk+i+j−2)
3
i,j=1.

We now use symbolic manipulation to prove the following result.

THEOREM 3.10. All Bergman-like weighted shifts B(`)
+ (` > 1) are 2-hyponormal.

Proof. By Lemma 3.8 and Lemma 3.9, to prove that B(`)
+ is 2-hyponormal it

suffices to see that det H(2; k) > 0 for all k > 0. Now, as desired:

det H(2; k) = γ3
k det

 1 α2
k α2

kα2
k+1

α2
k α2

kα2
k+1 α2

kα2
k+1α2

k+2
α2

kα2
k+1 α2

kα2
k+1α2

k+2 α2
kα2

k+1α2
k+2α2

k+3


= γ3

k
2(` + 1)((k + 2)`− 1)2((k + 3)`− 1)

(k + 2)3(k + 3)3(k + 4)2(k + 5)
> 0.

COROLLARY 3.11. For every ` > 1, the Bergman-like weighted shift B(`)
+ is

quadratically hyponormal.

REMARK 3.12. In [11], a much stronger result is proved: all Bergman-like
weighted shifts B(`)

+ (all ` > 1) are subnormal.

Theorem 3.14 below says that the amount of propagation provided by The-
orem 3.3 is maximum; briefly, we say that Theorem 3.3 is optimal. Observe that
for the 2-variable weighted shift in Figure 6, we have α(k1,k2)+ε1

= α(k1,k2) (all
k1 > 1, k2 > 2), yet α(k1,k2) < α(k1,k2)+ε1

for all k1 > 0 and k2 = 0, 1 and
α(0,k2) < α(1,k2) for all k2 > 0. In other words, the trivial weight structure present
in the subspace

∨
{e(k1,k2) : k1 > 1, k2 > 2} cannot be expanded either to the left

(0th column) or down (first row). First, we need an auxiliary result, of indepen-
dent interest.

LEMMA 3.13. Consider the 2-variable weighted shift T ≡ (T1, T2) given by Figure
5, where shift(x0, x1, x2, . . .) and shift(y0, y1, y2, . . .) are Bergman-like weighted shifts.
Assume that (T1, T2)|M is jointly hyponormal, whereM is the subspace associated to in-
dices k with k2 > 1. Then there exists a Bergman-like weighted shift shift(z0, z1, z2, . . .)
and a hyponormal weighted shift Wβ := shift(β0, β1, β2, . . .) (βn < βn+1 for all n > 0)
such that T is jointly hyponormal.

Proof. Let

shift(x0, x1, x2, . . .) ≡ shift
({√

p− 1
n + 2

: n > 0
})

,

shift(y0, y1, y2, . . .) ≡ shift
({√

q− 1
n + 2

: n > 0
})

,

shift(z0, z1, z2, . . .) ≡ shift
({√

r− 1
n + 2

: n > 0
})

,
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(0, 0) (1, 0) (2, 0) · · · (n, 0) (n + 1, 0)

z0 z1 z2 · · · zn · · ·

y0 y1 y2 · · · yn · · ·

x0 x1 x2 · · · xn · · ·

α0 1 1 1 · · · · · ·

α0 1 1 1 · · · · · ·

T1

(0, 1)

(0, 2)

(0, 3)

(0, 4)

T2

β0

β1

β2

β3

β4

β0y0

z0

β1x0

y0

β2α0

x0

β3

β4

β0y0y1

z0z1

β1x0x1

y0y1

β2α0

x0x1

β3

β4

...

..

.

.

..

...

..

.

β0

Qn−1

k=0

yk

zk

Qn−1

k=0

β1xk

yk

Qn−1

k=0

β2α0

xk

β3

β4

...

..

.

.

..

...

..

.

Figure 5. Weight diagram of the 2-variable weighted shift

in Lemma 3.13.

for some integers p < q < r. Since the restriction of (T1, T2) to
∨
{e(k1,k2) : k2 > 1}

is jointly hyponormal, it suffices to apply the Six-point Test (Lemma 3.2) to k =
(n, 0), with n > 0.

Case 1: k = (0, 0).

Here

M(0, 0) :=

 z2
1 − z2

0
y2

0β0
z0

− β0 · z0
y2

0β0
z0

− β0 · z0 β2
1 − β2

0


>0⇔ z2

0(z2
1−z2

0)(β2
1−β2

0)>β2
0(z2

0−y2
0)

2⇔
(

r− 1
2

)
(β2

1−β2
0)>6β2

0(r− q)2.

If we choose β0 such that β0 6 β1 and β2
1 > 12(r−q)2+2r−1

2r−1 β2
0, we obtain M(0, 0)>0.

Case 2: k = (n, 0) (n > 1).
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Here

M(n, 0) :=

 z2
n+1 − z2

n ynβ0
n
∏

k=0

yk
zk
− znβ0

n−1
∏

k=0

yk
zk

ynβ0
n
∏

k=0

yk
zk
− znβ0

n−1
∏

k=0

yk
zk

β2
1

n−1
∏

k=0

( xk
yk

)2 − β2
0

n−1
∏

k=0

( yk
zk

)2

 > 0

⇔ (z2
n+1−z2

n)
(

β2
1

n−1

∏
k=0

( xk
yk

)2
−β2

0

n−1

∏
k=0

(yk
zk

)2)
>β2

0

(
yn

n

∏
k=0

yk
zk
−zn

n−1

∏
k=0

yk
zk

)2

⇔ z2
n(z2

n+1−z2
n)
(

β2
1

n−1

∏
k=0

( xk
yk

)2
−β2

0

n−1

∏
k=0

(yk
zk

)2)
>β2

0

n−1

∏
k=0

(yk
zk

)2
(y2

n − z2
n)2

⇔ z2
n(z2

n+1 − z2
n)
(

β2
1

n−1

∏
k=0

( xkzk

y2
k

)2
− β2

0

)
>β2

0(y2
n − z2

n)2.

If we choose p, q and r such that xkzk
y2

k
> 3, then

r(n + 2)− 1
(n + 2)2(n + 3)

((12(r− q)2 + 2r− 1
2r− 1

) n−1

∏
k=0

( xkzk

y2
k

)2
− 1
)

> (r− q)2

(all n > 1), which implies M(n, 0) > 0 (all n > 1).
By Cases 1 and 2, it follows that (T1, T2) is jointly hyponormal.

THEOREM 3.14. For every k2 > 1 and 0 < α0 < 1 there exist
(i) a family {B(`i)

+ }k2−1
i=0 of Bergman-like weighted shifts, and

(ii) a subnormal weighted shift Wβ := shift(β0, β1, β2, . . .) (with βn < βn+1 for all
n > 0),
such that the commuting 2-variable weighted shift T ≡ (T1, T2) with a weight diagram

whose first k2 rows are B(`0)
+ , . . . , B

(`k2−1)
+ , whose remaining rows are Sα0 , and whose 0-th

column is given by Wβ, is (jointly) hyponormal (see Figure 6 for the case k2 = 2).

Proof. We divide the proof into three cases, according to the value of k2.

Case 1: k2 = 1.

For p > 1 let αm,0 ≡ xm :=
√

p− 1
m+2 (m > 0). Since the restriction of

(T1, T2) to
∨
{e(k1,k2) : k2 > 1} is unitarily equivalent to (I⊗ Sα0 , shift(β1, β2, . . .)⊗

I), to guarantee the hyponormality of (T1, T2) it suffices to apply the Six-point Test
(Lemma 3.2) to k = (m, 0), with m > 0.

Subcase 1: k = (0, 0).

Here we have

M(0, 0) :=

 x2
1 − x2

0
α2

0β0
x0

− β0x0
α2

0β0
x0

− β0x0 β2
1 − β2

0

=

(
1
6

β0
x0

(α2
0 − x2

0)
β0
x0

(α2
0 − x2

0) β2
1 − β2

0

)
> 0

⇔6β2
0(α2

0 − x2
0)

2 6 (β2
1 − β2

0)x2
0,(3.4)
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(0, 0) (1, 0) (2, 0) · · · (m, 0) (m + 1, 0)

y0 y1 y2 · · · ym · · ·

x0 x1 x2 · · · xm · · ·

α0 1 1 · · · 1 · · ·

· · · · · · · · · · · · · · · · · ·

α0 1 1 · · · 1 · · ·

T1

(0, 1)

(0, 2)

..

.

(0, n)

T2

β0

β1

β2

...

βn

β0x0

y0

α0β1

x0

β2

...

βn

β0x0x1

y0y1

α0β1

x0x1

β2

...

βn

...

..

.

.

..

...

..

.

β0

Qm−1

k=0

xk

yk

Qm−1

k=0

α0β1

xk

β2

...

βn

...

..

.

.

..

...

..

.

Figure 6. Weight diagram of the 2-variable weighted shift

in Theorem 3.14.

which imposes a condition on β0.

Subcase 2: k = (m, 0), with m > 1.

Fix m > 1 and let Pm :=
m−1
∏

k=0
xk. We then see that

M(m, 0) :=

 x2
m+1 − x2

m
α0β0
xmPm

− xm
α0β0
Pm

α0β0
xmPm

− xm
α0β0
Pm

β2
1 −

α2
0β2

0
P2

m

 > 0

⇔ x2
m(x2

m+1 − x2
m)(β2

1P2
m − α2

0β2
0) > α2

0β2
0(1− x2

m)2

⇔ x2
m(β2

1P2
m − α2

0β2
0) > (m + 2)(m + 3)α2

0β2
0(1− x2

m)2

⇔
β2

1P2
m

α2
0β2

0
> 1 + (m + 2)(m + 3)

( 1
xm

− xm

)2
.(3.5)
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We now let p = 3, so that x2
k > 2 (all k > 0) and therefore P2

m > 2m (all m > 1).
Since lim

m→∞
2m

(m+2)(m+3) = ∞, it is clear that we can find β0 sufficiently small so that

both (3.4) and (3.5) hold.
From Subcases 1 and 2, it follows that T is jointly hyponormal.

Case 2: k2 = 2.

Here we let p := 3, q := 18, β2 := 4β1 and β1 := 1
α0

, so that αm,1 ≡ xm :=√
p− 1

m+2 ≡
√

3− 1
m+2 and αm,0 ≡ ym :=

√
q− 1

m+2 ≡
√

18− 1
m+2 (m > 0).

Since the restriction of (T1, T2) to
∨
{e(k1,k2) : k2 > 2} is unitarily equivalent to (I⊗

Sα0 , shift(β2, β3, . . .)⊗ I), to guarantee the hyponormality of (T1, T2) it suffices to
apply the Six-point Test (Lemma 3.2) to k = (m, n), with m > 0 and 0 6 n 6 1.

Subcase 1: k = (0, 0).

Here M(0, 0) :=

 y2
1 − y2

0
x2

0 β0
y0

− β0y0
x2

0 β0
y0

− β0y0 β2
1 − β2

0

 > 0 ⇔ y2
0(y2

1 − y2
0)(β2

1 −

β2
0) > β2

0(x2
0 − y2

0)
2 ⇔ β2

1 > 547
7 β2

0, so M(0, 0) > 0 if and only if

(3.6)
547
7

α2
0β2

0 6 1.

Subcase 2: k = (m, 0) (all m > 1).

Fix m > 1 and let Pm :=
m−1
∏

k=0
xk and Qm :=

m−1
∏

k=0
yk. We have

M(m, 0):=

 y2
m+1 − y2

m xmβ0
xmPm
ymQm

− ymβ0
Pm
Qm

xmβ0
xmPm
ymQm

− ymβ0
Pm
Qm

β2
1α2

0
P2

m
− β2

0
P2

m
Q2

m

 > 0

⇔ y2
m(y2

m+1−y2
m)
( β2

1α2
0

P2
m
− β2

0
P2

m
Q2

m

)
> β2

0(y2
m − x2

m)2 P2
m

Q2
m

⇔ Q2
m

P4
m
−β2

0 >
225(m+2)2(m+3)

18m+35
β2

0⇔
Q2

m
P4

m
>
(225(m+2)2(m+3)

18m+35
+1
)

β2
0.

It follows that M(m, 0)>0 (all m>1) if and only if β2
0 6 f (m) := Q2

m

P4
m

(
225(m+2)2(m+3)

18m+35 +1
)

= 18m+35
225m3+1575m2+3618m+2735

m−1
∏

k=0

18k2+71k+70
9k2+30k+25 (all m > 1). Since f is an increasing

function of m, we see that M(m, 0) > 0 (all m > 1) if and only if

(3.7) β2
0 6 f (1) =

742
40765

∼= 0.018.

Subcase 3: k = (0, 1).
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Here we have

M(0, 1) :=

 x2
1 − x2

0
α2

0β1
x0

− β1x0
α2

0β1
x0

− β1x0 β2
2 − β2

1

 > 0

=

(
1
6

β1
x0

(α2
0 − x2

0)
β1
x0

(α2
0 − x2

0) 15β2
1

)
> 0 ⇔

(
α2

0 −
5
2

)2
6

25
4

,(3.8)

which certainly holds, since 0 < α0 < 1.

Subcase 4: k = (m, 1), with m > 1.

As in Subcase 2, fix m > 1 and let Pm :=
m−1
∏

k=0
xk. We then see that

M(m, 1) :=

 x2
m+1 − x2

m
α0β1
xmPm

− xm
α0β1
Pm

α0β1
xmPm

− xm
α0β1
Pm

β2
2 −

α2
0β2

1
P2

m

 > 0

⇔ x2
m(x2

m+1 − x2
m)(β2

2P2
m − α2

0β2
1) > α2

0β2
1(1− x2

m)2

⇔ x2
m(β2

2P2
m − 1) > (m + 2)(m + 3)(1− x2

m)2

⇔ β2
2 > g(m) :=

1
P2

m

(
1 +

(m + 3)(2m + 3)2

3m + 5

)
.(3.9)

It follows that M(m, 1) > 0 (all m > 1) if and only if β2 can be chosen to satisfy
(3.9) for all m > 1. Since g is a decreasing function of m, it suffices to guarantee
that β2

2 > g(1) = 27
5 . If we now recall that β2 = 4β1 and that β1 = 1

α0
, this

condition is equivalent to α2
0 6 80

27 , which always holds, since α0 < 1.
Therefore, appealing to Subcases 1, 2, 3 and 4, we see that (T1, T2) is hy-

ponormal if and only if β2
0 6 min

{
7

547α2
0
, 742

40765

}
. Finally, and since we clearly

have β0 < β1 < β2, we can use the construction in [18] to define Wβ, which
incidentally has a 2-atomic Berger measure (cf. [8]).

Case 3: k2 > 3.

Here we take p and q as in Case 2, to ensure that the restriction of T to
the subspace associated with subindices (m, n) with n > k2 − 2 is hyponormal.
Once this is done, we use Lemma 3.13 to obtain r, so that the restriction of T to
the subspace associated with subindices (m, n) with n > k2 − 3 is hyponormal.
Repeated application of Lemma 3.13 now completes the proof.

COROLLARY 3.15. Theorem 3.3 is optimal.
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4. PROPAGATION IN THE SUBNORMAL CASE

In this section, we show that Theorem 3.3 can be improved if one of the Ti’s
is quadratically hyponormal and the other is subnormal. In Theorem 4.7 and The-
orem 4.12, we consider horizontal flatness and optimality, and in Theorem 4.14,
we show that a subnormal 2-variable weighted shift with two horizontally con-
secutive equal weights and two vertically consecutive equal weights must nec-
essarily be flat. As in the previous section, we then establish that our result is
optimal (see Example 5.13 below). We begin with some definitions and prelimi-
nary results.

DEFINITION 4.1 ([13]). Let µ and ν be two positive measures on R+. We say
that µ 6 ν on X := R+, if µ(E) 6 ν(E) for all Borel subset E ⊆ R+; equivalently,
µ 6 ν if and only if

∫
f dµ 6

∫
f dν for all f ∈ C(X) such that f > 0 on R+.

DEFINITION 4.2 ([13]). Let µ be a probability measure on X×Y, and assume
that 1

t ∈ L1(µ). The extremal measure µext (which is also a probability measure) on
X ×Y is given by

dµext(s, t) := (1− δ0(t))
1

t
∥∥ 1

t

∥∥
L1(µ)

dµ(s, t).

DEFINITION 4.3 ([13]). Given a measure µ on X×Y, the marginal measure µX

is given by µX := µ ◦π−1
X , where πX : X×Y → X is the canonical projection onto

X. Thus, µX(E) = µ(E × Y), for every E ⊆ X. Observe that if µ is a probability
measure, then so is µX .

LEMMA 4.4 ([13], Subnormal backward extension of a 1-variable weighted
shift; cf. [7]). Let T ≡ shift(β0, β1, . . .) be a unilateral weighted shift whose restric-
tion TM to M :=

∨
{e1, e2, . . .} is subnormal, with Berger measure ηM. Then T is

subnormal (with measure η) if and only if
(i) 1

t ∈ L1(ηM);

(ii) β2
0 6

(∥∥ 1
t

∥∥
L1(ηM)

)−1.

In this case, dη(t) = β2
0
t dηM(t) +

(
1 − β2

0

∥∥ 1
t

∥∥
L1(ηM)

)
dδ0(t), where δ0 denotes the

Dirac measure at 0. In particular, T is never subnormal when ηM({0}) > 0.

LEMMA 4.5 ([13], Subnormal backward extension of a 2-variable weighted
shift). Consider the following 2-variable weighted shift (see Figure 7), and let M be the
subspace associated to indices k with k2 > 1. Assume that T|M is subnormal with
measure µM and that W0 := shift(α00, α10, . . .) is subnormal with measure ξ. Then T
is subnormal if and only if

(i) 1
t ∈ L1(µM);

(ii) β2
00 6

(∥∥ 1
t

∥∥
L1(µM)

)−1;

(iii) β2
00

∥∥ 1
t

∥∥
L1(µM)(µM)X

ext 6 ξ.
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(0, 0) (1, 0) (2, 0) · · · (m, 0) (m + 1, 0)

α0,0 α1,0 α2,0 · · · αm,0 αm+1,0

α0,1 α1,1 α2,1 · · · αm,1 · · ·

α0,2 α1,2 α2,2 · · · αm,2 · · ·

· · · · · · · · · · · · · · · · · ·

α0,n α1,n α2,n · · · αm,n · · ·

α0,n+1 α1,n+1 α2,n+1 · · · αm,n+1 · · ·

T1

(0, 1)

(0, 2)

...

(0, n)

(0, n + 1)

T2

β0,0

β0,1

β0,2

.

..

β0,n

β0,n+1

q

γ1,1

γ1,0

q

γ1,2

γ1,1

q

γ1,3

γ1,2

.

..

q

γ1,n+1

γ1,n

...

q

γ2,1

γ2,0

q

γ2,2

γ2,1

q

γ2,3

γ2,2

.

..

q

γ2,n+1

γ2,n

...

...

...

..

.

.

..

...

q

γm,1

γm,0

q

γm,2

γm,1

q

γm,3

γm,2

.

..

q

γm,n+1

γm,n

...

...

...

..

.

.

..

...

Figure 7. Weight diagram of the 2-variable weighted shift

in Lemma 4.5.

Moreover, if β2
00

∥∥ 1
t

∥∥
L1(µM) = 1, then (µM)X

ext = ξ. In the case when T is subnormal,
the Berger measure µ of T is given by

dµ(s, t)= β2
00

∥∥∥1
t

∥∥∥
L1(µM)

d(µM)ext(s, t)+
(

dξ(s)−β2
00

∥∥∥1
t

∥∥∥
L1(µM)

d(µM)X
ext(s)

)
dδ0(t).

LEMMA 4.6. Let T ≡ (T1, T2), let M be as in Lemma 4.5, and assume that
T|M is subnormal with Berger measure µM ≡ δ1 × η. Assume further that β2

00 =(∥∥ 1
t

∥∥
L1(µM)

)−1 and that Wα(0) := shift(α00, α10, α20, . . .) is subnormal. Then T is
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subnormal if and only if αi0 = 1 (all i > 0), that is, Wα(0) must necessarily be the
(unweighted) unilateral shift U+.

Proof. Assume first that T is subnormal. Since dµM(s, t) ≡ δ1(s)dη(t), we
must have

d(µM)X
ext =

(
(1− δ0(t))

1
t
∥∥ 1

t

∥∥
L1(µM)

dµM(s, t)
)X

= dδ1(s) = dξα(0) (s),

(the last equality follows by 4.5) where ξα(0) denotes the Berger measure of Wα(0) .
It follows that Wα(0) = U+.

Conversely, assume that Wα(0) = U+. By Lemma 4.4, shift(β00, β01, . . .) is
subnormal, and we let η̃ denote its Berger measure. If we now let µ := δ1 × η̃, it
easily follows that T is subnormal with Berger measure µ.

THEOREM 4.7. Let T ≡ (T1, T2) be commuting and hyponormal.
(i) If T1 is quadratically hyponormal, if T2 is subnormal, and if α(k1,k2)+ε1

= α(k1,k2)
for some k1, k2 > 0, then T is horizontally flat.

(ii) If, instead, T1 is subnormal, T2 is quadratically hyponormal, and if β(k1,k2)+ε2
=

β(k1,k2) for some k1, k2 > 0, then T is vertically flat.

Proof. Without loss of generality, we only consider the horizontally flat case,
and we further assume k2 = 2, that is, αk1,2 = αk1+1,2 for some k1 > 0. By
Theorem 3.3 and Proposition 2.4, two equal weights occur at level 3, i.e., αk1,3 =
αk1+1,3. Moreover, for every ` > 2 we have αk1,2 = αk1,` (all k1 > 1). We now
apply Corollary 1.2 to obtain β(k1,1) = β(k1,1)+ε1

(all k1 > 1). By the commuting
property (1.1), it follows that

(4.1) αk1,2 = αk1,1 = αk1+1,1 (all k1 > 1),

as desired.

COROLLARY 4.8. Let T ≡ (T1, T2) be a subnormal 2-variable weighted shift.
(i) If α(k1,k2)+ε1

= α(k1,k2) for some k1, k2 > 0, then T is horizontally flat.
(ii) If, instead, β(k1,k2)+ε2

= β(k1,k2) for some k1, k2 > 0, then T is vertically flat.

The proof follows straightforward from Theorem 4.7.

REMARK 4.9. Corollary 4.8 can also be obtained as a direct consequence of
Lemma 4.5 and Lemma 4.6.

Theorem 4.7 is optimal in the following sense: propagation does not neces-
sarily extend either to the left (0-th column) or down (0-th level). We will actually
establish a stronger result, that is, the optimality of Corollary 4.8. We first review
some basic facts.
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PROPOSITION 4.10 ([14]). Let

(4.2) αk :=


√

1
2 if k = 0,√
2k+ 1

2
2k+1

if k > 1.

Then Wα is subnormal with Berger measure ξα := 1
3 δ0(s) + 1

3 δ1/2(s) + 1
3 δ1(s).

PROPOSITION 4.11 ([14]). Let

α̂k :=


√

2 if k = 0,√
2k+1
2k+ 1

2
if k > 1,

then
∞
∏

n=0
α̂k =

√
3 . (Observe that α̂k = 1

αk
, for αk given by (4.2).)

THEOREM 4.12. Consider the weighted shift T ≡ (T1, T2) with weight diagram
given by Figure 8, where y < 1√

3
. Let W0 := shift(α0, α1, α2, . . .), with αk given by

(4.2) (k > 0). Then T is subnormal.

Proof. To check subnormality, we use Lemma 4.5. Since ξ0 = 1
3 (δ0 + δ 1

2
+

δ1) and dµM(s, t) = (dδ0(s) + dδ1(s))tdt, we get

β2
00

∥∥∥1
t

∥∥∥
L1(µM)

(µM)X
ext = y2(δ0 + δ1).

Now, y2(δ0 + δ1) 6 1
3 (δ0 + δ1) 6 ξ0. Lemma 4.5 now implies that T is subnor-

mal.

COROLLARY 4.13. Theorem 4.7 is optimal.

THEOREM 4.14. Let T ≡ (T1, T2) be a subnormal 2-variable weighted shift, and
assume that α(k1,k2)+ε1

= α(k1,k2) and β(`1,`2)+ε2
= β(`1,`2) for some k1, k2, `1, `2 > 0.

Then T is flat.

COROLLARY 4.15. Theorem 4.14 is optimal.

The proofs for the last three statments follow straightforward from Theo-
rem 4.12, Theorem 4.7 and Example 5.13 below, respectively.

5. SYMMETRICALLY FLAT 2-VARIABLE WEIGHTED SHIFTS

Recall that a 2-variable weighted shift T is flat if T is horizontally and ver-
tically flat, and symmetrically flat if T is flat and α11 = β11 (cf. Definition 3.1). In
Theorem 2.12 of [13]), we produced an example of a symmetrically flat, contrac-
tive, 2-variable weighted shift T ≡ (T1, T2) (that is, α11 = β11 = 1, and ‖T1‖ 6 1
and ‖T2‖ 6 1) with T1, T2 subnormal, such that T is hyponormal but not subnor-
mal. In this section, we study the class SFC of symmetrically flat, contractive,
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· · · · · · · · · · · · · · · · · ·

q

1

2 1 1 · · · 1 · · ·

q

1

2 1 1 · · · 1 · · ·

T1

(0, 1)

(0, 2)

.

..

(0, n)

(0, n + 1)

T2

y

q

2

3

q

3

4

...

q

n+1

n+2

..

.

y

q

2

3

q

3

4

...

q

n+1

n+2

..

.

y
q

5

6

q

2

3

q

3

4

...

q

n+1

n+2

..

.

...

...

..

.

...

.

..

..

.

y
√
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Figure 8. Weight diagram of the 2-variable weighted shift

in Theorem 4.12.

2-variable weighted shifts, with T1 and T2 subnormal, and we give a complete
characterization of hyponormality and subnormality within SFC; our main re-
sult is Corollary 5.6, which gives a concrete criterion for hyponormality and sub-
normality.

Symmetrically flat 2-variable weighted shifts are determined by three main
parts:

(i) a subnormal shift in the 0-th row (shift(x0, x1, x2 · · · ), with Berger measure
ξ);

(ii) a subnormal shift in the 0-th column (shift(y0, y1, y2, . . .), with Berger mea-
sure η);
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(iii) a positive number a (the α01 weight) (cf. Figure 9).
By Theorem 3.3 of [14], the measures ξ and η can be written as

(5.1) ξ ≡ pδ0 + qδ1 + [1− (p + q)]ρ, η ≡ uδ0 + vδ1 + [1− (u + v)]σ,

where 0 < p, q, u, v < 1, p + q 6 1, u + v 6 1, and ρ, σ are probability measures
with ρ({0} ∪ {1}) = σ({0} ∪ {1}) = 0. The following lemma is essential to detect
joint hyponormality in the presence of flatness.

LEMMA 5.1 ([13], Theorem 5.2). Let T ≡ (T1, T2), let M be the subspace asso-
ciated to indices k with k2 > 1, and assume that T|M is subnormal with Berger measure
δ1 × δ1. Assume further that T1 and T2 are contractions, that W0 := shift(α00, α10, . . .)
is subnormal with Berger measure ξ, and that T2 is subnormal. Then T is subnormal.

REMARK 5.2. Lemma 5.1 (together with its proof ([13], Theorem 5.2)) re-
veals that for the 2-variable weighted shift given by Figure 4, the hyponormality
of T2 is equivalent to the subnormality of T, which in turn is equivalent to the
hyponormality of T.

THEOREM 5.3. Let T ≡ (T1, T2) ∈ SFC be given by Figure 9. Then T is hy-
ponormal if and only if

(5.2) y0 6 h :=

√
x2

0y2
1(x2

1 − x2
0)

x2
0(x2

1 − x2
0) + (a2 − x2

0)
2

.

Proof. By Lemma 5.1 and Remark 5.2, the subnormality of T1 (respectively
T2) implies the subnormality of T|N (respectively T|M), where N (respectively
M) is the subspace associated to indices k with k1 > 1 (respectively indices k
with k2 > 1). Thus, to verify the hyponormality of T it suffices to apply the
Six-point Test (Lemma 3.2) to k = (0, 0). We have

 x2
1 − x2

0
a2y0
x0

− x0y0
a2y0
x0

− x0y0 y2
1 − y2

0

 > 0 ⇔ x2
0(y2

1 − y2
0)(x2

1 − x2
0) > y2

0(a2 − x2
0)

2

⇔ y0 6

√
x2

0y2
1(x2

1 − x2
0)

x2
0(x2

1 − x2
0) + (a2 − x2

0)
2

= h.(5.3)

It follows that T is hyponormal if and only if y0 6 h, as desired.

We next consider joint subnormality for 2-variable weighted shifts in SFC.
We recall Berger’s Theorem in the 2-variable case and the notion of moment of
order k for a pair (α, β) satisfying (1.1). Given k ∈ Z2

+, the moment of (α, β) of
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· · · · · · · · · · · · · · · · · ·
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.

ay0√
γn(ξ)

1

1

..

.

1

..

.

...

.

..

...

..

.

...

..

.

Figure 9. Weight diagram of a general symmetrically flat,
contractive, 2-variable weighted shift; η1 denotes the Berger
measure of shift(y1, y2, · · · ).

order k is

γk ≡ γk(α, β) :=


1 (k = 0),
α2

(0,0) · · · α
2
(k1−1,0) (k1 > 1 and k2 = 0),

β2
(0,0) · · · β2

(0,k2−1), (k1 = 0 and k2 > 1),

α2
(0,0) · · · α

2
(k1−1,0) · β2

(k1,0) · · · β2
(k1,k2−1) (k1 > 1 and k2 > 1).

We remark that, due to the commutativity condition (1.1), γk can be com-
puted using any nondecreasing path from (0, 0) to (k1, k2).
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LEMMA 5.4 (Berger’s Theorem, 2-variable case, [16]). A 2-variable weighted
shift T ≡ (T1, T2) admits a commuting normal extension if and only if there is a regular
Borel probability measure µ defined on the 2-dimensional rectangle R = [0, a1]× [0, a2]
(ai :=

∥∥Ti
∥∥2) such that γk =

∫∫
R

tkdµ(t) :=
∫∫
R

sk1 tk2dµ(s, t) (all k ∈ Z2
+).

THEOREM 5.5. Let T ≡ (T1, T2) ∈ SFC be given by Figure 9. Then T is subnor-
mal if and only if

y0 6 s := min
{√ q

a2 ,
√

p∥∥ 1
t

∥∥
L1(η1) − a2

}
.

Proof. Consider the subspaces M := {k ∈ Z2
+ : k2 > 1} and P := {k ∈ Z2

+ :
k1 > 1 and k2 > 1}, let T|M and T|P denote the restrictions of T to M and P , and
let η1 denote the Berger measure of shift(y1, y2, . . .). Since T2 is subnormal, and
since T|P is the restriction of T|M to the subspace P , we can apply Lemma 4.5 to
T|M and the subspace P (therefore using as initial data the measures δ1 × δ1 and
η1) to show that the subnormality of T2 implies a2δ1 6 η1, which in turn gives the
subnormality of T|M. The Berger measure of T|M, µM, is then given by

(5.4) µM = a2δ1 × δ1 + δ0 × (η1 − a2δ1).

Once we know this, we apply Lemma 4.5 again, but this time to the 2-variable
weighted shift T and the subspace M. First, observe that

∥∥ 1
t

∥∥
L1(µM) =

∥∥ 1
t

∥∥
L1(η1)

and from (5.4) we have

d(µM)ext(s, t)=d(a2δ1 × δ1 + δ0 × (η1 − a2δ1))ext(s, t)

=(1−δ0(t))
1

t
∥∥ 1

t

∥∥
L1(µM)

{a2dδ1(s)dδ1(t)+dδ0(s)(dη1(t)−a2dδ1(t))}

=
1∥∥ 1

t

∥∥
L1(η1)

{
a2dδ1(s)

dδ1(t)
t

+dδ0(s)
(dη1(t)

t
−a2 dδ1(t)

t

)}
and therefore(µM)X

ext = 1∥∥ 1
t

∥∥
L1(η1)

{
a2δ1+δ0

(∥∥∥ 1
t

∥∥∥
L1(η1)

−a2
)}

=
(

1− a2∥∥ 1
t

∥∥
L1(η1)

)
δ0

+ a2∥∥ 1
t

∥∥
L1(η1)

δ1. If we now apply Lemma 4.5 and recall (5.1), we see that the neces-

sary and sufficient condition for T to be subnormal is

y2
0

∥∥∥1
t

∥∥∥
L1(η1)

((
1− a2∥∥ 1

t

∥∥
L1(η1)

)
δ0 +

a2∥∥ 1
t

∥∥
L1(η1)

δ1

)
6 pδ0 + qδ1 + [1− (p + q)]ρ,

or equivalently,

y2
0

(∥∥∥1
t

∥∥∥
L1(η1)

− a2
)

6 py2
0a2 6 q.

It follows at once that T is subnormal if and only if y0 6 s, as desired.
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We summarize Theorems 5.3 and 5.5 as follows.

COROLLARY 5.6. The commuting subnormal pair T ≡ (T1, T2) in Figure 9 is
jointly hyponormal and not subnormal if and only if

s < y0 6 h.

Of course we know that s 6 h, but a priori we cannot tell whether the in-
equality can be strict. We will now exhibit a large collection of 2-variable weighted
shifts T ∈ SFC such that T is hyponormal but not subnormal; we will do this by
describing a collection of values for x0, x1, y0 and a for which s < h. To avoid a
trivial case, we shall assume y1 < 1. We begin with

LEMMA 5.7. For ξ ≡ pδ0 + qδ1 + (1− p− q)ρ as above, we have:
(i)
∫

s dξ(s) > q and
(ii)
∫

(1− s) dξ(s) > p.
In each case, strict inequality holds if and only if p + q < 1.

The proof is straightforward from the form of ξ.

PROPOSITION 5.8. Let x0

√
1−x2

1
1−x2

0
< a < x0. Then s < h.

Proof. We first observe that a straightforward calculation reveals that

(5.5) P := x2
0x2

1 + a2 − a2x2
0 − x2

0 > 0

whenever x0

√
1−x2

1
1−x2

0
< a. Now consider

h2

y2
1
−

1− x2
0

1− a2 =
x2

0(x2
1 − x2

0)
x2

0(x2
1 − x2

0) + (a2 − x2
0)

2
−

1− x2
0

1− a2

=
(x2

0 − a2)P
(1− a2)[x2

0(x2
1 − x2

0) + (a2 − x2
0)

2]
> 0.(5.6)

Next, we calculate

(5.7) 1− x2
0 ≡

∫
(1− s)dξ(s) > p (by Lemma 5.7(ii)).

Thirdly, we recall that, using Cauchy-Schwartz in L2(η1) for the first equality, we
have:

1 =
( ∫

dη1(t)
)2

6
∫

tdη1(t)
∫

1
t

dη1(t) = y2
1

∥∥∥1
t

∥∥∥
L1(η1)

<
∥∥∥1

t

∥∥∥
L1(η1)

.(5.8)

Finally, we have

(5.9)
p∥∥ 1

t

∥∥
L1(η1) − a2

<
p

(1− a2)
∥∥ 1

t

∥∥
L1(η1)

(since
∥∥∥1

t

∥∥∥
L1(η1)

> 1).
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We then have as desired (the second and the last equality follows by (5.9) and
(5.7), and by (5.8) and (5.6), respectively):

s2 6
p∥∥ 1

t

∥∥
L1(η1) − a2

<
p

(1− a2)
∥∥ 1

t

∥∥
L1(η1)

6
1− x2

0

(1− a2)
∥∥ 1

t

∥∥
L1(η1)

6
(1− x2

0)y2
1

1− a2 < h2.

PROPOSITION 5.9. Let x0 = a, and assume that p + q < 1. Then s < h.

Proof. First, observe that h = y1 when x0 = a; cf. (5.2). Then, by Lemma 5.7
and (5.9), for the second equation, and by (5.8), for the last, we have as desired:

s2 ≡ min
{ q

a2 ,
p∥∥ 1

t

∥∥
L1(η1) − a2

}
<

1− x2
0

(1− a2)
∥∥ 1

t

∥∥
L1(η1)

6 y2
1 = h2.(5.10)

We summarize the above facts in the following result.

THEOREM 5.10. Let x0

√
1−x2

1
1−x2

0
< a 6 x0, assume that p + q < 1, and choose y0

in the (nonempty!) interval (s, h]. Then the 2-variable weighted shift T≡T(x0, x1, y0, a)
is hyponormal but not subnormal.

We conclude this section by describing a class of numerical examples that
illustrates Theorem 5.10. Consider the 2-variable weighted shift whose weight
diagram is given by Figure 10.

To analyze this shift, we will need the following auxiliary results, of inde-
pendent interest.

LEMMA 5.11 (cf. [9]). For 0 < r 6 1 let

(5.11) βn(r) :=


√

3
4 r if n = 0,√
(n+1)(n+3)

(n+2)2 if n > 1.

Then Wβ(r) is subnormal.

Proof. On [0, 1], consider the probability measure

(5.12) dη(t) := (1− r2)dδ0(t) +
r2

2
dt +

r2

2
dδ1(t).

For n > 1 we have γn(β(r)) = r2 3
22 · 2·4

32 · 3·5
42 · · ·

n(n+2)
(n+1)2 = (n+2)r2

2(n+1) = r2

2 ·
1

n+1 +
r2

2 =
∫

tndη(t). Thus, η is the Berger measure of Wβ(r), so Wβ(r) is subnormal (all
r ∈ (0, 1]).

LEMMA 5.12. Let

β̂n :=

√
(n + 2)2

(n + 3)(n + 1)
(n > 1).

Then
∞
∏

n=1
β̂n =

√
3
2 . (Observe that β̂n = 1

βn
(all n > 1), if βn is given by (5.11).)
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Figure 10. Weight diagram of the 2-variable weighted shift

in Example 5.13.

Proof. Observe that the next converge to 3
2 as k → ∞:

k
∏

n=1
(β̂n)2 =

k
∏

n=1

(n+2)2

(n+3)(n+1) = 3(k+2)
2(k+3) .

EXAMPLE 5.13. (Illustration of Theorem 5.10) We first recall the three as-
sembly parts needed for a 2-variable weighted shift T to be in SFC:

(i) a subnormal shift in the 0-th row (shift(x0, x1, x2, . . .), with Berger measure
ξ);

(ii) a subnormal shift in the 0-th column (shift(y0, y1, y2, . . .), with Berger mea-
sure η); and
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(iii) a positive number a (the α01 weight).
Toward (ii) we shall use the shift in Lemma 5.11, with Berger measure given

by (5.12); toward (i) we shall use the measure

ξ :=
1
3
(δ0 + δ1/2 + δ1)

on [0, 1], so that p = q = 1
3 ; finally, toward (iii) we will keep a as a parameter. The

resulting 2-variable weighted shift will be denoted T(a; r). We will now specify
the values of a and r that make T(a; r) contractive, hyponormal, and not subnor-
mal. To guarantee that T(a; r) is a pair of contractions, and using Lemma 5.12, it

is easy to see that we need a 6
√

2
3 . Next, we observe that x0 =

√
1
2 , x1 =

√
5
6 ,

and dη1(t) = 2
3 [tdt + dδ1(t)] (t ∈ [0, 1]), so

∥∥ 1
t

∥∥
L1(η1) = 4

3 and y1 =
√

8
9 . More-

over, x0

√
1−x2

1
1−x2

0
=
√

1
6 . By Theorem 5.10, we need to keep a ∈ (

√
1
6 ,
√

1
2 ]. Thus,

for a ∈ (
√

1
6 ,
√

1
2 ] we calculate

h ≡

√
x2

0y2
1(x2

1 − x2
0)

x2
0(x2

1 − x2
0) + (a2 − x2

0)
2

=
2
√

2

3
√

1 + 6
(
a2 − 1

2
)2

a

√

3

4
r

q

1

6

q

1

2

0.5 -

0.6 -

0.7 -
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s

T is hyponormal but not subnormal for (a,

q

3

4
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Figure 11. Graphs of h and s on the interval [
√

1

6
,

√

1

2
].
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and

s ≡ min
{√ q

a2 ,
√

p(∥∥ 1
t

∥∥
L1(η1) − a2

)} = min
{ 1√

3a2
,

√
1

4− 3a2

}
=

√
1

4− 3a2 .

Thus, for a ∈ (
√

1
6 ,
√

1
2 ] we can then choose a value for y0 :=

√
3
4 r in the interval

( 1
2
√

1−a2
, 2

√
2

3
√

1+6(a2− 1
2 )2

] and ensure that T(a; r) is hyponormal and not subnormal

(cf. Figure 11).
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