
J. OPERATOR THEORY
58:1(2007), 205–226

© Copyright by THETA, 2007

ON THE SIMPLE C∗-ALGEBRAS ARISING FROM
DYCK SYSTEMS

KENGO MATSUMOTO

Communicated by Kenneth R. Davidson

ABSTRACT. The Dyck shift DN for 2N brackets (N > 1) gives rise to a purely
infinite simple C∗-algebra OLCh(DN ) , that is not stably isomorphic to any Cuntz-
Krieger algebra. It is presented as a unique C∗-algebra generated by N partial
isometries and N isometries subject to certain operator relations. The canoni-
cal AF subalgebra FLCh(DN ) of OLCh(DN ) has a unique tracial state. For the gauge
action on the C∗-algebra OLCh(DN ) , a KMS state at inverse temperature log β
exists if and only if β = N + 1 . The admitted KMS state is unique. The GNS
representation of OLCh(DN ) by the KMS state yields a factor of type III1/(N+1).
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1. INTRODUCTION

The theory of symbolic dynamics has a close relationship to automata the-
ory and language theory. In the theory of formal language, there is a family of
universal languages, called Dyck languages, introduced in [1] . The symbolic
dynamics generated by the languages are called the Dyck shifts DN , N ∈ N (cf.
[1], [9], [10], [11]). They are nonsofic subshifts. Their alphabet consists of the
2N brackets: (1, . . . , (N , )1, . . . , )N . The forbidden words consist of words that do
not obey the standard bracket rules. In [12], the Cantor horizon λ-graph system
for DN has been introduced as an irreducible λ-graph system that presents the
subshift DN . It is a minimal irreducible component of the canonical λ-graph sys-
tem of DN . Hence it gives rise to a purely infinite simple C∗-algebra denoted
by O

LCh(DN ) . Its K-groups are realized as the K-groups for the Cantor horizon
λ-graph system LCh(DN) and computed to be

K0(O
LCh(DN ) ) ∼= Z/NZ⊕ C(K, Z), K1(O

LCh(DN ) ) ∼= 0
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for 1 < N ∈ N, where C(K, Z) denotes the abelian group of all integer valued
continuous functions on a Cantor discontinuum K ([12], Corollary 3.17). For N =
1, the algebra O

LCh(DN ) goes to the Cuntz algebra O2.
In this paper we first study the operator relations of the canonical generators

of the algebras. We prove the following theorem.

THEOREM 1.1. For N ∈ N, the C∗-algebra O
LCh(DN ) associated with the Cantor

horizon λ-graph system LCh(DN) for the Dyck shift DN is unital, separable, nuclear,
simple and purely infinite. It is the unique C∗-algebra generated by N partial isometries
Si, i = 1, . . . , N and N isometries Ti, i = 1, . . . , N subject to the following operator
relations, where Eµ1···µl = S∗µ1

· · · S∗µl
Sµl · · · Sµ1 for µ1, . . . , µl ∈ {1, . . . , N}:

N

∑
j=1

S∗j Sj = 1,(1.1)

Eµ1···µl =
N

∑
j=1

SjS∗j Eµ1···µl SjS∗j + Tµ1 Eµ2···µl T
∗
µ1

, l = 2, 3, . . . .(1.2)

We note that the above relations for N = 1 go to the relations of the canoni-
cal generators of the Cuntz algebra O2.

By using the above operator relations, we next study KMS states for gauge
action on the C∗-algebra O

LCh(DN ) . The result is the following:

THEOREM 1.2. For a positive real number β, a KMS state on O
LCh(DN ) at inverse

temperature log β exists if and only if β = N + 1. The admitted KMS state is unique.

The value log(N + 1) is the topological entropy of the Dyck shift DN [9].
We will prove that the fixed point algebra O

LCh(DN )
αDN

of O
LCh(DN ) under the

gauge action αDN is a simple AF algebra with a unique tracial state (Theorem
5.14). We need a combinatorial argument using Catalan numbers and their gen-
erating function for the proof of uniqueness of tracial state on the AF algebra. As
a consequence we have

THEOREM 1.3. Let πϕ(O
LCh(DN ) )′′ be the von Neumann algebra generated by the

GNS-representation πϕ(O
LCh(DN ) ) of the algebra O

LCh(DN ) by the unique KMS state ϕ.
Then πϕ(O

LCh(DN ) )′′ is the injective factor of type III1/(N+1).

Corresponding results for Cuntz algebras and Cuntz-Krieger algebras are
seen in [24] and [4] respectively. Related results for Cuntz-Krieger type algebras
are seen in many authors [5], [6], [8], [13], [22], [23], [26], etc.

2. THE λ-GRAPH SYSTEMS FOR THE DYCK SHIFTS

Throughout this paper N > 1 is a fixed positive integer. In what follows,
Z+ denotes the set {0, 1, . . . } of nonnegative integers.
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We consider the Dyck shift DN with alphabet Σ = Σ− ∪ Σ+ where Σ− =
{α1, . . . , αN}, Σ+ = {β1, . . . , βN}. The symbols αi, βi correspond to the brackets
(i, )i respectively. The Dyck inverse monoid DN has the relations

(2.1) αiβ j =

{
1 if i = j,
0 otherwise,

for i, j = 1, . . . , N [10], [11]. A word ω1 · · ·ωn of Σ is admissible for DN precisely

if
n
∏

m=1
ωm 6= 0. For a word ω = ω1 · · ·ωn of Σ, we denote by ω̃ its reduced form.

Namely ω̃ is a word of Σ ∪ {0, 1} obtained after the operations (2.1). Hence a
word ω of Σ is forbidden for DN if and only if ω̃ = 0.

A λ-graph system L = (V, E, λ, ι) over an alphabet Σ consists of a vertex set
V = V0 ∪ V1 ∪ V2 ∪ · · · , an edge set E = E0,1 ∪ E1,2 ∪ E2,3 ∪ · · · , a labeling map
λ : E → Σ and a surjective map ιl,l+1 : Vl+1 → Vl for each l ∈ Z+. The sets Vl
and El,l+1 are finite for each l ∈ Z+. An edge e ∈ El,l+1 has its source vertex s(e)
in Vl , its terminal vertex t(e) in Vl+1 and its label λ(e) in Σ. It yields a subshift
by taking the set of all label sequences appearing in the labeled Bratteli diagram.
There are many λ-graph systems that present a given subshift. Among them the
canonical λ-graph system is a generalization of the left-Krieger cover graph for a
sofic shift, and its strong shift equivalence class is a complete invariant for topo-
logical conjugacy of subshifts [15]. The canonical λ-graph system LC(DN) for the
Dyck shift DN together with its K-groups has been calculated in [18]. One how-
ever sees that the λ-graph system LC(DN) is not irreducible, so that the resulting
C∗-algebra O

LC(DN ) is not simple. The Cantor horizon λ-graph system LCh(DN) for
DN is a minimal irreducible component of the canonical λ-graph system LC(DN).
It gives rise to a purely infinite simple C∗-algebra O

LCh(DN ) that is a quotient of
O

LC(DN ) by an ideal [20]. The K-groups of the C∗-algebra O
LCh(DN ) are realized as

the K-groups of the λ-graph system LCh(DN) and computed to be

K0(O
LCh(DN ) ) ∼= Z/NZ⊕ C(K, Z), K1(O

LCh(DN ) ∼= 0 ([12]).

Let us describe the Cantor horizon λ-graph system LCh(DN) of DN . Let ΣN be the
full N-shift {1, . . . , N}Z. We denote by Bl(DN) and Bl(ΣN) the set of admissible
words of length l of DN and that of ΣN respectively. The vertices Vl of LCh(DN) at
level l are given by the words of length l consisting of the symbols of Σ+. That is,

Vl = {(βµ1 · · · βµl ) ∈ Bl(DA) : µ1 · · · µl ∈ Bl(ΣN)}.

Hence the cardinal number of Vl is Nl . The mapping ι(= ιl,l+1) : Vl+1 → Vl
deletes the rightmost symbol of a word such as

ι((βµ1 · · · βµl+1)) = (βµ1 · · · βµl ), (βµ1 · · · βµl+1) ∈ Vl+1.

There exists an edge labeled αj from (βµ1 · · · βµl ) ∈ Vl to (βµ0 βµ1 · · · βµl ) ∈ Vl+1
precisely if µ0 = j, and there exists an edge labeled β j from (β jβµ1 · · · βµl−1) ∈ Vl
to (βµ1 · · · βµl+1) ∈ Vl+1. It is easy to see that the resulting labeled Bratteli diagram
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with ι-map becomes a λ-graph system over Σ, denoted by LCh(DN), that presents
the Dyck shift DN [12]. We use the lexicographic order from left on the words in
the symbols in Σ+, that is, we assign to a word (βµ1 · · · βµl ) of vertex in Vl the
number N(µ1 · · · µl)

N(µ1 · · · µl) = 1 +
l

∑
n=1

(µn − 1)Nl−n.

Hence the vertex set Vl bijectively corresponds to the set of positive integers less
than or equal to Nl . We write the vertex (βµ1 · · · βµl ) ∈ Vl as vl

N(µ1···µl)
.

3. THE C∗-ALGEBRA O
LCh(DN )

We first see that the C∗-algebra O
LCh(DN ) is simple and purely infinite. This

fact is first observed in Proposition 2.2, Corollary 3.13 of [12].
A λ-graph system L = (V, E, λ, ι) is said to satisfy λ-condition (I) if for every

vertex v ∈ Vl of L there exist at least two paths with distinct label sequences start-
ing with the vertex v and terminating with the same vertex. A λ-graph system L

is said to be λ-irreducible if for an ordered pair of vertices u, v ∈ Vl , there exists
a number Ll(u, v) ∈ N such that for a vertex w ∈ Vl+Ll(u,v) with ιLl(u,v)(w) = u,
there exists a path π in L such that s(π) = v, t(π) = w, where ιLl(u,v) means
the Ll(u, v)-times compositions of ι, and s(π), t(π) denote the source vertex, the
terminal vertex of π, respectively [19].

PROPOSITION 3.1. The λ-graph system LCh(DN) is λ-irreducible, and it satisfies
λ-condition (I). Hence the C∗-algebra O

LCh(DN ) is simple and purely infinite.

Proof. Let vl
i be a vertex in Vl . We write i = N(i1 · · · il) for some i1 · · · il ∈

Bl(ΣN). Take µ1, ν1 ∈ {1, . . . , N} with µ1 6= ν1, and ζ2 · · · ζ2l+2 ∈ B2l+1(ΣN).
There exist two distinct paths labeled βi1 · · · βil βµ1 and βi1 · · · βil βν1 whose sources
are both vl

i and terminals are both v2l+1
N(ζ2···ζ2l+2) ∈ V2l+1. Hence LCh(DN) satisfies

λ-condition (I).
Let vl

j be a vertex in Vl so that j = N(j1 · · · jl) for some j1 · · · jl ∈ Bl(ΣN)

respectively. For any vertex v2l
k ∈ V2l such that ι(v2l

k ) = vl
j, we may write k =

V(j1 · · · jlhl+1 · · · h2l) for some hl+1 · · · h2l ∈ Bl(ΣN). Then there exists a path
labeled βi1 · · · βil starting at vl

i and terminating at v2l
k . This means that LCh(DN) is

λ-irreducible. By [19], the C∗-algebra O
LCh(DN ) is simple and purely infinite.

We will study operator relations of the canonical generators of the C∗-alge-
bra O

LCh(DN ) to prove Theorem 1.1. By Corollary 5.2 of [12] and a general structure
result for the C∗-algebra OL associated with λ-graph system L ([16], Theorem A),
we have:
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LEMMA 3.2. The C∗-algebra O
LCh(DN ) is unital, separable, nuclear, simple and

purely infinite. It is the universal unique concrete C∗-algebra generated by partial isome-
tries sγ, γ ∈ Σ and projections el

i , i = 1, 2, . . . , Nl , l ∈ Z+ satisfying the following
operator relations:

∑
γ∈Σ

sγs∗γ = 1,(3.1)

Nl

∑
i=1

el
i = 1, el

i =
Nl+1

∑
j=1

Il,l+1(i, j)el+1
j ,(3.2)

sγs∗γel
i = el

isγs∗γ,(3.3)

s∗γel
isγ =

Nl+1

∑
j=1

Al,l+1(i, γ, j)el+1
j ,(3.4)

for i = 1, 2, . . . , Nl , l ∈ Z+, γ ∈ Σ, where Vl = {vl
1, . . . , vl

Nl},

Al,l+1(i, γ, j) =

{
1 if s(e) = vl

i , λ(e) = γ, t(e) = vl+1
j for some e ∈ El,l+1,

0 otherwise,

Il,l+1(i, j) =

{
1 if ιl,l+1(vl+1

j ) = vl
i ,

0 otherwise,

for i = 1, 2, . . . , Nl , j = 1, 2, . . . , Nl+1, γ ∈ Σ.

Note that the partial isometry sγ corresponds to the edges labeled γ, and
the projection el

i corresponds to the vertex vl
i . We will prove Theorem 1.1 from

Lemma 3.2 by using the structure of the λ-graph system LCh(DN).
Let sγ, γ ∈ Σ and el

i , i = 1, . . . , Nl , l ∈ Z+ be as in Lemma 3.2. Define the
operators Si, Ti, i = 1, . . . , N by setting

Si := sαi , Ti := sβi for i = 1, . . . , N.

As the word αiβ j is forbidden for i 6= j, we note SiTj = 0 for i 6= j. We will first
show that the operators Si, Ti, i = 1, . . . , N satisfy the relations (1.1) and (1.2).

LEMMA 3.3. The operators Ti, i = 1, . . . , N are isometries.

Proof. The first equality of (3.2) and (3.4) implies

T∗
i Ti =

Nl

∑
k=1

s∗βi
el

ksβi =
Nl+1

∑
h=1

( Nl

∑
k=1

Al,l+1(k, βi, h)
)

el+1
h .

For the symbol βi every vertex vl+1
h has a unique incoming edge labeled βi. This

means
Nl

∑
k=1

Al,l+1(k, βi, h) = 1 so that T∗
i Ti = 1.

We put Eµ1···µl = S∗µ1
· · · S∗µl

Sµl · · · Sµ1 for µ1, . . . , µl ∈ {1, . . . , N}.
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PROPOSITION 3.4. The operators Si, Ti, i = 1, . . . , N satisfy the relations (1.1)
and (1.2).

Proof. By (3.4) and (3.2), one has for a fixed l ∈ Z+,

S∗i Si =
Nl

∑
j=1

Nl+1

∑
k=1

Al,l+1(j, αi, k)el+1
k .

Every vertex vl+1
k ∈ Vl+1 has a unique incoming edge labeled a symbol in Σ−, so

that
N
∑

i=1

Nl

∑
j=1

Al,l+1(j, αi, k) = 1 for each k = 1, . . . , Nl+1. Hence we have
N
∑

i=1
S∗i Si =

Nl+1

∑
k=1

el+1
k = 1. By using (3.3), (3.4) and the first equality of (3.2) recursively, we

know that Eµ1···µl commutes with both SjS∗j and TjT∗
j for j = 1, . . . , N. We note

that the relation (3.1) implies
N
∑

j=1
(SjS∗j + TjT∗

j ) = 1 so that

Eµ1···µl =
N

∑
j=1

SjS∗j Eµ1···µl SjS∗j +
N

∑
j=1

TjT∗
j Eµ1···µl TjT∗

j .

As Sµ1 Tj = 0 if µ1 6= j, the second summation in the right hand side above goes

to Tµ1 T∗
µ1

Eµ1···µl Tµ1 T∗
µ1

. Now by (3.4), one has Eµ1 = s∗αµ1
sαµ1

=
2
∑

j=1
A0,1(1, αµ1 , j)e1

j

and A0,1(1, αµ1 , j) = 1 if and only if v1
j = (βµ1) and hence j = N(µ1). This means

that Eµ1 = e1
N(µ1). Similarly we have

Eµ1···µl = s∗αµ1
· · · s∗αµl

sαµl
· · · sαµ1

=
Nl−1

∑
il−1=1

Nl

∑
il=1

Al−1,l(il−1, αµl , il)s∗αµ1
· · · s∗αµl−1

el
il

sαµl−1
· · · sαµ1

=
N

∑
i1=1

· · ·
Nl−1

∑
il−1=1

Nl

∑
il=1

A0,1(1, αµ1 , i1) · · · Al−1,l(il−1, αµl , il)el
il

and
N
∑

i1=1
· · ·

Nl−1

∑
il−1=1

A0,1(1, αµ1 , i1) · · · Al−1,l(il−1, αµl , il) = 1 if and only if vl
il

= (βµ1

· · · βµl ) and hence il = N(µ1 · · · µl). This means that Eµ1···µl = el
N(µ1···µl)

. Hence

we have T∗
µ1

Eµ1···µl Tµ1 =
Nl+1

∑
j=1

Al,l+1(N(µ1 · · · µl), βµ1 , j)el+1
j . Since Al,l+1(N(µ1

· · · µl), βµ1 , j) = 1 if and only if j = N(µ2 · · · µlµl+1µl+2) for some µl+1, µl+2 ∈
{1, . . . , N}, and the equality ∑

µl+1,µl+2=1,...,N
Eµ2···µl µl+1µl+2 = Eµ2···µl holds, we have
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T∗
µ1

Eµ1···µl Tµ1 = Eµ2···µl so that

Tµ1 T∗
µ1

Eµ1···µl Tµ1 T∗
µ1

= Tµ1 Eµ2···µl T
∗
µ1

.

Thus we conclude that the equality (1.2) holds.

We next study the converse argument. Let Si, i = 1, . . . , N be partial isome-
tries and Ti, i = 1, . . . , N isometries satisfying the operator relations (1.1) and
(1.2).

LEMMA 3.5.
N

∑
j=1

(SjS∗j + TjT∗
j ) = 1,(3.5)

S∗i Si =
N

∑
j=1

SjS∗j S∗i SiSjS∗j + TiT∗
i , i = 1, . . . , N.(3.6)

Proof. For l = 2 at (1.2), we have

Eµ1µ2 =
N

∑
j=1

SjS∗j Eµ1µ2 SjS∗j + Tµ1 Eµ2 T∗
µ1

.

By summing up these relations over µ2 = 1, . . . , N and using (1.1), the relation
(3.6) follows. The relation (3.5) follows by summing up (3.6) over i = 1, . . . , N
and using (1.1).

LEMMA 3.6. For i, j, µ1, . . . , µl ∈ {1, . . . , N}, we have:

(i) T∗
i S∗j SjTi =

{
1 if i = j,
0 if i 6= j.

(ii) T∗
i Eµ1···µl Ti =

{
Eµ2···µl if i = µ1,
0 if i 6= µ1.

Proof. (i) By (3.6), we have

T∗
i S∗i SiTi =

N

∑
j=1

T∗
i SjS∗j S∗i SiSjS∗j Ti + T∗

i TiT∗
i Ti.

The relation (3.5) implies T∗
i Sj = 0 for i, j = 1, . . . , N so that the above equality

goes to T∗
i S∗i SiTi = T∗

i Ti = 1. By the relation (1.1), one has
N
∑

j=1
T∗

i S∗j SjTi = T∗
i Ti =

1 so that T∗
i S∗j SjTi = 0 for i 6= j.

(ii) By (1.2), we have

T∗
i Eµ1···µl Ti =

N

∑
j=1

T∗
i SjS∗j Eµ1···µl SjS∗j Ti + T∗

i Tµ1 Eµ2···µl T
∗
µ1

Ti.
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Since T∗
i Sj = 0 for i, j, and T∗

i Tµ1 = 0 for i 6= µ1, the above equality goes to

T∗
i Eµ1···µl Ti = T∗

i Tµ1 Eµ2···µl T
∗
µ1

Ti =

{
Eµ2···µl if i = µ1,
0 otherwise.

LEMMA 3.7. Keep the above notations. The projection Eµ1···µl commutes with both
SjS∗j and TjT∗

j for j = 1, . . . , N.

Proof. By (1.2), we have

SiS∗i Eµ1···µl =
N

∑
j=1

SiS∗i SjS∗j Eµ1···µl SjS∗j + SiS∗i Tµ1 Eµ2···µl T
∗
µ1

.

By (3.5), S∗i Sj = 0 for i 6= j, and S∗i Tµ1 = 0 for all i, µ1. Hence the above equal-
ity goes to SiS∗i Eµ1···µl = SiS∗i Eµ1···µl SiS∗i so that SiS∗i commutes with Eµ1···µl . By

(1.2), we have TiT∗
i Eµ1···µl =

N
∑

j=1
TiT∗

i SjS∗j Eµ1···µl SjS∗j + TiT∗
i Tµ1 Eµ2···µl T

∗
µ1

. By (3.5),

T∗
i Tµ1 = 0 for i 6= µ1, and T∗

i Sj = 0 for all i, j. Hence we have

TiT∗
i Eµ1···µl =

{
Tµ1 Eµ2···µl T

∗
µ1

if i = µ1,
0 otherwise.

so that TiT∗
i commutes with Eµ1···µl .

PROPOSITION 3.8. Keep the above notations. Define

sαi := Si, sβi := Ti for i = 1, . . . , N

and

el
N(µ1···µl)

:= Eµ1···µl (= S∗µ1
· · · S∗µl

Sµl · · · Sµ1) for µ1 · · · µl ∈ Bl(ΣN).

Then the family of operators sγ, γ ∈ Σ, el
N(µ1···µl)

, µ1 · · · µl ∈ Bl(ΣN) satisfies the rela-
tions (3.1), (3.2), (3.3) and (3.4).

Proof. The relation (3.1) is nothing but (3.5). The relation (1.1) implies that
∑

µ1∈B1(ΣN)
e1

N(µ1) = 1. Suppose that ∑
µ1···µl∈Bl(ΣN)

el
N(µ1···µl)

= 1 holds for l = k. As

S∗µ1
· · · S∗µk

Sµk · · · Sµ1 =
N

∑
j=1

S∗µ1
· · · S∗µk

S∗j SjSµk · · · Sµ1 ,

the equality ∑
µ1···µl∈Bl(ΣN)

el
N(µ1···µl)

= 1 holds for l = k + 1 and hence for all l by

induction. The above equality implies

Il,l+1(N(µ1 · · · µl), N(ν1 · · · νl+1)) =

{
1 if ν1 · · · νl = µ1 · · · µl ,
0 otherwise,

so that the relation (3.2) holds. The equality (3.3) comes from the preceding
lemma.
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We will finally show the equality (3.4). For µ1 · · · µl ∈ Bl(ΣN) and αk ∈
Σ− we have s∗αk

el
N(µ1···µl)

sαk = S∗k S∗µ1
· · · S∗µl

Sµl · · · Sµ1 Sk = Al,l+1(N(µ1 · · · µl), αk,

N(kµ1 · · · µl))el+1
N(kµ1···µl)

. Since Al,l+1(N(µ1 · · · µl), αk, j) = 0 if j 6= N(kµ1 · · · µl),
one has

s∗αk
el

N(µ1···µl)
sαk = ∑

ν1···νl+1∈Bl+1(ΣN)
Al,l+1(N(µ1 · · · µl), αk, N(ν1 · · · νl+1))el+1

N(ν1···νl+1).

We also have by Lemma 3.6 (ii)

s∗β j
el

N(µ1···µl)
sβ j

= T∗
j Eµ1···µl Tj =

{
Eµ2···µl if j = µ1,
0 otherwise,

=

 ∑
µl+1,µl+2∈B2(ΣN)

S∗µ2
· · · S∗µl

S∗µl+1
S∗µl+2

Sµl+2 Sµl+1 Sµl · · · Sµ2 if j = µ1,

0 otherwise.

Since Al,l+1(N(µ1 · · · µl), β j, N(ν1 · · · νl+1)) = 1 precisely if j = µ1 and νi = µi+1
for i = 1, . . . , l − 1, and 0 otherwise, we have

s∗β j
el

N(µ1···µl)
sβ j = ∑

ν1···νl+1∈Bl+1(ΣN)
Al,l+1(N(µ1 · · · µl), β j, N(ν1 · · · νl+1))el+1

N(ν1···νl+1).

Therefore (3.4) holds.

By Proposition 3.4 and Proposition 3.8, the family of the operator relations
(1.1) and (1.2) is equivalent to the family of the operator relations (3.1), (3.2), (3.3)
and (3.4). Thus by Proposition 3.1 and Lemma 3.2 we conclude Theorem 1.1.

4. KMS STATES ON O
LCh(DN )

This section is devoted to proving Theorem 1.2. The result in this section for
the uniqueness of KMS state on O

LCh(DN ) is directly deduced from the result in
the next section for the uniqueness of tracial state on the AF algebra F

LCh(DN ) . We
will in this section give a direct and easy proof of the uniqueness of KMS state on
O

LCh(DN ) .
Suppose that partial isometries Si, i=1, . . . , N and isometries Ti, i=1, . . . , N

satisfy the relations (1.1) and (1.2). They generate the C∗-algebra O
LCh(DN ) . By

the uniqueness of the algebra O
LCh(DN ) subject to the relations (1.1) and (1.2), the

correspondence
Si → zSi, Ti → zTi for i = 1, . . . , N

for z ∈ T = {z ∈ C : |z| = 1} yields an action of T on O
LCh(DN ) . It is called the

gauge action and is denoted by αDN . A state ϕ on O
LCh(DN ) is called a KMS state at
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inverse temperature log β for 0 < β ∈ R if

ϕ(aαDN
i log β(b)) = ϕ(ba)

for all a, b in a dense αDN -invariant ∗-subalgebra of the analytic elements of the
action αDN on O

LCh(DN ) . The gauge action αDN on the C∗-algebra O
LCh(DN ) is a full

C∗-dynamical system considered in [26] and a quasi-free dynamics of Pimsner
algebra considered in [13] (cf. [25], and Proposition 6.1 of [16]). General theory of
KMS states for the C∗-algebras constructed from Hilbert C∗-bimodules in [26] and
[13] says that a state ϕ on O

LCh(DN ) is a KMS state at inverse temperature log β if
and only if ϕ satisfies the following condition ([26], Lemma 1.2, [13], Theorem 2.5;
cf. Theorem 3.6 of [22]):

(4.1)
N

∑
j=1

ϕ(S∗j xSj + T∗
j xTj) = βϕ(x) for x ∈ A

LCh(DN )

where A
LCh(DN ) is the commutative C∗-subalgebra generated by the projections

Eµ1···µl = S∗µ1
· · · S∗µl

Sµl · · · Sµ1 , µ1, . . . , µl ∈ {1, . . . , N}. By Lemma 1.2 of [26], by
[13] or a similar result of Proposition 3.4 in [22], the condition (4.1) is equivalent
to the condition:

(4.2)

ϕ(Sµk · · · Sµ1 xS∗ν1
· · · S∗νk

) = δµ1···µk ,ν1···νk
1
βk ϕ(xS∗ν1

· · · S∗νk
Sµk · · · Sµ1),

ϕ(Tµk · · · Tµ1 xT∗
ν1
· · · T∗

νk
) = δµ1···µk ,ν1···νk

1
βk ϕ(xT∗

ν1
· · · T∗

νk
Tµk · · · Tµ1),

for x ∈ A
LCh(DN ) and µ1, . . . , µk, ν1, . . . , νk ∈ {1, . . . , N}.

Put T0 =
N
∑

j=1
Sj. We first note the following proposition.

PROPOSITION 4.1. The C∗-subalgebra C∗(T0, T1, . . . , TN) of O
LCh(DN ) generated

by T0, T1, . . . , TN is canonically isomorphic to the Cuntz algebra ON+1. Hence there
exists a unital embedding ι : ON+1 → O

LCh(DN ) satisfying αDN
z ◦ ι = ι ◦ α

ΣN+1
z for

z ∈ T where αΣN+1 is the gauge action on ON+1.

Proof. The equality (1.1) implies that T0 is an isometry. Hence the equality

(3.5) implies the relation
N
∑

i=0
TiT∗

i = 1.

We henceforth assume that ϕ is a KMS state on O
LCh(DN ) at inverse temper-

ature log β for some 0 < β ∈ R.

LEMMA 4.2. (i) β = N + 1, and

(ii)
N
∑

j=1
ϕ(SjS∗j ) = ϕ(TiT∗

i ) = 1
N+1 for i = 0, 1, . . . , N.

Proof. Since there exists a unital embedding ι : ON+1 ↪→ O
LCh(DN ) compati-

ble to their gauge actions, the restriction of ϕ to the subalgebra ON+1 yields a KMS
state on ON+1 at inverse temperature log β for the gauge action. Hence by [24] β
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must be N + 1 and the admitted KMS state is unique such that ϕ(TiT∗
i ) = 1

N+1

for i = 0, 1, . . . , N. As T0T∗
0 =

N
∑

j=1
SjS∗j , we get the desired equalities.

LEMMA 4.3. (i) ϕ(Eµ1) = 1
N+1 + 1

N+1

N
∑

µ0=1
ϕ(Eµ0µ1).

(ii) ϕ(Eµ1···µl )= 1
N+1 ϕ(Eµ2···µl )+

1
N+1

N
∑

µ0=1
ϕ(Eµ0µ1···µl ) for µ1, . . . , µl ∈{1, . . . , N}.

Proof. (i) By (4.2) one sees

ϕ(Sµ0 Eµ0µ1 S∗µ0
) =

1
N + 1

ϕ(Eµ0µ1 S∗µ0
Sµ0) =

1
N + 1

ϕ(Eµ0µ1).

The relation (3.6) together with the previous lemma implies

ϕ(Eµ1) =
1

N + 1

N

∑
µ0=1

ϕ(Eµ0µ1) +
1

N + 1
.

(ii) One similarly sees that by (4.2)

ϕ(Sµ0 Eµ0µ1···µl S
∗
µ0

) =
1

N + 1
ϕ(Eµ0µ1···µl S

∗
µ0

Sµ0) =
1

N + 1
ϕ(Eµ0µ1···µl ),

ϕ(Tµ1 Eµ2···µl T
∗
µ1

) =ϕ(Eµ2···µl T
∗
µ1

Tµ1) =
1

N + 1
ϕ(Eµ2···µl ),

so that the desired equalities hold by (1.2).

Keep the above notations. We set ul
µ1···µl

= ϕ(Eµ1···µl ) for µ1, . . . , µl ∈
{1, . . . , N} and l ∈ N so that

N

∑
µ1,...,µl=1

ul
µ1···µl

= 1, 0 6 ul
µ1···µl

6 1,

u1
µ1

=
1

N + 1
+

1
N + 1

N

∑
µ0=1

u2
µ0µ1

,

ul
µ1···µl

=
1

N + 1
ul−1

µ2···µl
+

1
N + 1

N

∑
µ0=1

ul+1
µ0µ1···µl

.

We put for i = 1, . . . , N,

V1
i = u1

i , V2
i =

N

∑
µ0=1

u2
µ0i, . . . , V l

i =
N

∑
µ0,...,µl−2=1

ul
µ0µ1···µl−2i, . . .

They satisfy the relations:
(i) V1

i = 1
N+1 + 1

N+1 V2
i for i = 1, . . . , N.

(ii) V l
i = N

N+1 V l−1
i + 1

N+1 V l+1
i for i = 1, . . . , N.

If a sequence {xl}∞
l=1 of nonzero real numbers satisfies the conditions:
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(1) x1 = 1
N+1 + 1

N+1 x2,
(2) xl = N

N+1 xl−1 + 1
N+1 xl+1 for l = 2, 3, . . . ,

then xl = (Nl−1 + Nl−2 + · · ·+ N2 + N + 1)x1 − (Nl−2 + Nl−3 + · · ·+ N2 + N +
1). As xl > 0 for all l ∈ N, we have x1 > 1

N . Here we note the next elementary
fact:

LEMMA 4.4. If sequences {xl,i}∞
l=1, i = 1, . . . , N of nonzero real numbers satisfy

the following conditions:
(i) x1,i = 1

N+1 + 1
N+1 x2,i;

(ii) xl,i = N
N+1 xl−1,i + 1

N+1 xl+1,i;

(iii)
N
∑

i=1
xl,i = 1 for all i = 1, . . . , N;

then we have xl,i = 1
N for all l = 1, 2, . . . , and i = 1, . . . , N.

Lemma 4.4 directly implies that V l
i = 1

N for all l ∈ N and i = 1, . . . , N. We
put for k ∈ N and i, ν1, . . . , νk ∈ {1, . . . , N},

V1
i,ν1···νk

(k) = Nkuk+1
iν1···νk

,

V2
i,ν1···νk

(k) = Nk
N

∑
µ1=1

uk+2
µ1iν1···νk

,

· · ·

V l
i,ν1···νk

(k) = Nk
N

∑
µ1,...,µl−1=1

uk+l
µ1···µl−1iν1···νk

,

· · ·

We put V l
i (0) = V l

i for k = 0. By induction on k, the following relations hold:

LEMMA 4.5. (i) V1
i,ν1···νk

(k) = 1
N+1 + 1

N+1 V2
i,ν1···νk

(k) for i = 1, . . . , N.

(ii) V l
i,ν1···νk

(k) = N
N+1 V l−1

i,ν1···νk
(k) + 1

N+1 V l+1
i,ν1···νk

(k) for i = 1, . . . , N.

(iii)
N
∑

i=1
V l

i,ν1···νk
(k) = 1.

Therefore we have

COROLLARY 4.6. For k = 0, 1, . . . , and l = 1, 2, . . . and i, ν1, . . . , νk ∈
{1, . . . , N}, we have V l

i,ν1···νk
(k) = 1

N . In particular, we have ul
µ1···µl

= 1
Nl .

Proof. By the previous lemma, one directly has V l
i,ν1···νk

(k) = 1
N . For l = 1, it

follows that 1
N = V1

i,ν1···νk
= Nkuk+1

iν1···νk
for all i, ν1, . . . , νk ∈ {1, . . . , N}.

Therefore a KMS state ϕ satisfies the equality

ϕ(Eµ1···µl ) =
1

Nl for µ1, . . . , µl ∈ {1, . . . , N}.
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Conversely we see

PROPOSITION 4.7. If a state ϕ on the C∗-algebra A
LCh(DN ) generated by the pro-

jections Eµ1···µl , µ1, . . . , µl ∈ {1, . . . , N} satisfies the condition

ϕ(Eµ1···µl ) =
1

Nl for µ1, . . . , µl ∈ {1, . . . , N},

then ϕ can be uniquely extended on O
LCh(DN ) to a KMS state at inverse temperature

log(N + 1).

Proof. By the relation (1.2), we have

N

∑
j=1

T∗
j Eµ1···µl Tj = T∗

µ1
Tµ1 Eµ2···µl Tµ1 T∗

µ1
= Eµ2···µl

so that

ϕ
( N

∑
j=1

(S∗j Eµ1···µl Sj + T∗
j Eµ1···µl Tj)

)
=

N

∑
j=1

ϕ(Ejµ1···µl
) + ϕ(Eµ2···µl )

= N × 1
Nk+1 +

1
Nk−1 = (N + 1)ϕ(Eµ1···µl ).

Hence ϕ satisfies (4.1) and it can be extended to a KMS state on O
LCh(DN ) . The

uniqueness of the extension to a KMS state on O
LCh(DN ) comes from a general

theory of [26], [13] or a similar result to [22].

Therefore we conclude Theorem 1.2. We finally remark that the value
log(N + 1) is the topological entropy of the subshift DN . Corresponding result
for Cuntz-Krieger algebras has been shown in [4].

5. TRACIAL STATE ON THE CANONICAL AF ALGEBRA

We denote by F
LCh(DN ) the fixed point algebra O

LCh(DN )
αDN of O

LCh(DN ) under
the gauge action αDN . By [16], one knows that the algebra F

LCh(DN ) is an AF alge-
bra. The restriction of a KMS state to the subalgebra F

LCh(DN ) yields a tracial state
on it. In this section we will prove that tracial state on F

LCh(DN ) is unique. Its proof
needs some combinatorial properties of the generators Si, Ti, i = 1, . . . , N. By us-
ing the uniqueness of tracial state on F

LCh(DN ) , one can determine the type of the
von Neumann algebra M = πϕ(O

LCh(DN ) )′′ generated by the GNS-representation
πϕ of O

LCh(DN ) by the KMS state ϕ. As a consequence we will show that the alge-
bra M is a factor of type III1/(N+1).

PROPOSITION 5.1. The AF algebra F
LCh(DN ) is simple.

Proof. We note that the Bratteli diagram of the AF algebra F
LCh(DN ) is given

by the λ-graph system LCh(DN) [16]. By Proposition 3.1, the λ-graph system
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LCh(DN) is λ-irreducible so that there is no proper hereditary subset. Hence the
AF algebra F

LCh(DN ) is simple.

Let us consider the inverse monoid M1,N generated by N + 1 elements
α0, β1, . . . , βN with relations: α0βi = 1 for i = 1, . . . , N. The set of the elements
α0, β1, . . . , βN is denoted by Σ1,N . Then a word γ1 · · · γn of Σ1,N is called acceptable
if γ1 · · · γn = 1. It is clear that if a word γ1 · · · γn is acceptable, then n = 2k for
some k ∈ N and γ1 = α0, γn = βi for some i = 1, . . . , N. Let L1,N(2k) be the set
of all acceptable words of length 2k. Recall that D1 is the Dyck inverse monoid
generated by 2 elements α, β that satisfy αβ = 1. The acceptable words of D1
are similarly defined to those of M1,N . It is well-known that the cardinal number
of the set of all acceptable words of D1 of length 2k is the k-th Catalan number
Ck = 1

k+1

(2k
k
)
(= 2k!

k!(k+1)! ), where C0 is defined to be 1. Therefore we have

(5.1) |L1,N(2k)| = NkCk.

Let Si, Ti, i = 1, . . . , N be the generators of O
LCh(DN ) as in Theorem 1.1. We put for

γ ∈ Σ1,N

T̃γ =

{
T0 if γ = α0,
Tj if γ = β j,

where T0 =
N
∑

j=1
Sj.

LEMMA 5.2. For i = 1, . . . , N we have:
(i) S∗i Si > TiT∗

i .
(ii) For an acceptable word γ1 · · · γ2k ∈ L1,N(2k), one has

(5.2) S∗i Si > T̃γ1 · · · T̃γ2k TiT∗
i T̃∗

γ2k
· · · T̃∗

γ1
.

Proof. (i) The inequality (i) is clear from (3.6).
(ii) As γ1 · · · γ2k ∈ L1,N(2k) is acceptable, k symbols of {γ1, . . . , γ2k} are α0

and the other k symbols are of Σ+ = {β1, . . . , βN}. Let βi1 , . . . , βik be the symbols
in Σ+ that appear in γ1 · · · γ2k. Since SiTj = 0 for i 6= j by Lemma 3.6, one has
T0Tj = SjTj. The acceptable word γ1 · · · γ2k uniquely determines an admissible
word µ(γ) = (µ(γ)1, . . . , µ(γ)2k) ∈ B2k(DN) of the Dyck shift DN such that the
corresponding element of the Dyck inverse monoid DN is the unit 1. In the λ-
graph system LCh(DN), every vertex v2k+2

j in V2k+2 has a unique in-coming path
labeled µ(γ)βi. All the paths labeled µ(γ)βi start at the unique vertex in V1 corre-
sponding to the word βi. An edge in E0,1 labeled αi is unique and it terminates at
the vertex corresponding to the word βi. This means that the following inequality
holds

s∗αi
sαi > sµ(γ)βi

s∗µ(γ)βi

in the C∗-algebra O
LCh(DN ) . As sαi = Si and sµ(γ)βi

= T̃γ1 · · · T̃γ2k Ti one concludes
the desired inequality.
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The inequality (i) in Lemma 5.2 is interpreted to be the inequality (5.3) for
k = 0.

Recall that by Proposition 4.1, the C∗-algebra C∗(T̃α0 , T̃β1 , . . . , T̃βN ) gener-
ated by T̃α0 = T0, T̃βi = Ti, i = 1, . . . , N is canonically isomorphic to the Cuntz
algebra ON+1.

LEMMA 5.3. For i = 1, . . . , N and distinct acceptable words γ1 · · · γ2k ∈
L1,N(2k) and δ1 · · · δ2n ∈ L1,N(2n), the projections

T̃γ1 · · · T̃γ2k TiT∗
i T̃∗

γ2k
· · · T̃∗

γ1
and T̃δ1 · · · T̃δ2n TiT∗

i T̃∗
δ2n

· · · T̃∗
δ1

are orthogonal.

Proof. If n = k, the assertion is immediate. Suppose k > n. If the projec-
tion T̃γ1 · · · T̃γ2k TiT∗

i T̃∗
γ2k

· · · T̃∗
γ1

is not orthogonal to T̃δ1 · · · T̃δ2n TiT∗
i T̃∗

δ2n
· · · T̃∗

δ1
, one

sees T̃γ1 · · · T̃γ2n+1 = T̃δ1 · · · T̃δ2n Ti so that γj = δj for j = 1, . . . , 2n and γ2n+1 = βi.
Since both γ1 · · · γ2k and δ1 · · · δ2n are acceptable, one has that γ2n+1 · · · γ2k is ac-
ceptable. Hence γ2n+1 must be α0, that is a contradiction.

In what follows, let φ be a tracial state on the AF algebra F
LCh(DN ) . We will

prove that φ coincides with the restriction of the KMS state ϕ to the subalgebra
F

LCh(DN ) .

LEMMA 5.4. For an acceptable word γ1 · · · γ2k ∈ L1,N(2k), one has

φ(T̃γ1 · · · T̃γ2k TiT∗
i T̃∗

γ2k
· · · T̃∗

γ1
) =

1
(N + 1)2k+1 .

Proof. Since the C∗-algebra C∗(T̃α0 , T̃β1 , . . . , T̃βN ) is canonically isomorphic
to the Cuntz algebra ON+1, the projection T̃γ1 · · · T̃γ2k TiT∗

i T̃∗
γ2k

· · · T̃∗
γ1

is a minimal
projection in the matrix algebra M(N+1)2k+1(C) of size (N + 1)2k+1. As the state
φ gives rise to a unique tracial state on the matrix algebra, the desired equality
holds.

Now we refer a combinatorial property of the Catalan numbers Ck, k ∈ Z+.
It is well-known that the equality

∞

∑
k=0

Ckxk =
1

2x
(1−

√
1− 4x).

holds. Hence we have

LEMMA 5.5.
∞
∑

k=0

Nk

(N+1)2k+1 Ck = 1
N .

We then have

PROPOSITION 5.6. φ(S∗i Si) = 1
N .
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Proof. We first note the equality φ(TiT∗
i ) = 1

N+1 . By Lemma 5.2, Lemma 5.3,
Lemma 5.4 and Lemma 5.5 with (5.1), we have

φ(S∗i Si) >
∞

∑
k=0

|L1,N(2k)|
(N + 1)2k+1 =

1
N

for i = 1, . . . , N.

The relation (1.1) implies φ(S∗i Si) = 1
N .

We will next show that φ(S∗µl ···µ1
Sµl ···µ1) = 1

Nl for all l ∈ N.
In the Dyck inverse monoid D1 generated by 2 elements α, β satisfying αβ =

1, we set for k > l − 1

C(l−1)
k = |{(δ1, . . . , δ2k) : δi ∈ {α, β}, δ1 · · · δ2k = 1, δ1 = · · · = δl−1 = α}|,

C(0)
k = Ck.

Hence we have C(1)
k = Ck.

LEMMA 5.7. C(l−1)
k = C(l−2)

k − C(l−3)
k−1 .

Proof. We have

C(l−1)
k = C(l−2)

k − |{(δ1, . . . , δ2k) ∈ C(l−2)
k : δl−1 = β}|.

By deleting δl−2δl−1 in the set {(δ1, . . . , δ2k) ∈ C(l−2)
k : δl−1 = β}, we see

|{(δ1, . . . , δ2k) ∈ C(l−2)
k : δl−1 = β}| = C(l−3)

k−1

so that the desired equality holds.

Let MN+1,N be the inverse monoid generated by α0, α1, . . . , αN , β1, . . . , βN
with relations

α0βi = αiβi = 1 for i = 1, . . . , N and αiβ j = 0 for i 6= j.

In the inverse monoid MN+1,N , we put for k > l− 1 and µ1, . . . , µl−1 ∈ {1, . . . , N},
LN(2k; µl−1 · · · µ1) = {(γ1, . . . , γ2k−(l−1)) ∈ Σ

2k−(l−1)
1,N : αµl−1 · · · αµ1 γ1 · · · γ2k−(l−1)

=1}. It is easy to see that

(5.3) |LN(2k; µl−1 · · · µ1)| = C(l−1)
k Nk−(l−1).

Similarly to the previous discussions we have

LEMMA 5.8. For k > l − 1, µ1, µ2, . . . , µl ∈ {1, . . . , N} and (γ1, . . . , γ2k−(l−1))
∈ LN(2k; µl−1 · · · µ1) we have:

(i) S∗µ1
· · · S∗µl

Sµl · · · Sµ1 > T̃γ1 · · · T̃γ2k−(l−1) Tµl T
∗
µl

T̃∗
γ2k−(l−1)

· · · T̃∗
γ1

.
(ii) Let (γ′1, . . . , γ′2k′−(l−1)) ∈ LN(2k′; µl−1 · · · µ1) be an acceptable word such that

(γ1, . . . , γ2k−(l−1)) 6= (γ′1, . . . , γ′2k′−(l−1)). Then the projections

T̃γ1 · · · T̃γ2k−(l−1) Tµl T
∗
µl

T̃∗
γ2k−(l−1)

· · · T̃∗
γ1

and T̃γ′1
· · · T̃γ′2k′−(l−1)

Tµl T
∗
µl

T̃∗
γ′2k′−(l−1)

· · · T̃∗
γ′1

are orthogonal.
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(iii) φ(T̃γ1 · · · T̃γ2k−(l−1) Tµl T
∗
µl

T̃∗
γ2k−(l−1)

· · · T̃∗
γ1

) = 1
(N+1)2k−(l−1)+1 .

LEMMA 5.9.
∞
∑

k=l−1

1
(N+1)2k−l+2 C(l−1)

k Nk−(l−1) = 1
Nl .

Proof. As C(0)
k = C(1)

k = Ck, the desired equalities hold for l = 1, 2. Suppose
that the desired equalities hold for all l less than m. By Lemma 5.7 one has

∞

∑
k=m−1

1
(N + 1)2k−m+2 C(m−1)

k Nk−(m−1)

=
∞

∑
k=m−1

1
(N + 1)2k−m+2 C(m−2)

k Nk−(m−1)−
∞

∑
k=m−1

1
(N + 1)2k−m+2 C(m−3)

k−1 Nk−(m−1).

The first summand above goes to{ ∞

∑
k=m−2

1
(N+1)2k−(m−1)+2 C(m−2)

k Nk−(m−2)− 1
(N+1)2(m−2)−(m−1)+2 C(m−2)

m−2

} N+1
N

=
( 1

Nm−1 −
1

(N + 1)m−1

)N + 1
N

.

The second summand above goes to

∞

∑
k−1=m−2

1
(N + 1)2(k−1)−m+4 C(m−3)

k−1 Nk−1−(m−2)

=
{ ∞

∑
h=m−3

1
(N+1)2h−{(m−3)+1}+2 C(m−3)

h Nh−(m−3)− 1
(N+1)2(m−3)−(m−2)+2 C(m−3)

m−3

} 1
N

=
( 1

Nm−2 −
1

(N + 1)m−2

) 1
N

.

Hence we see that the desired equality holds for l = m.

Therefore we have

PROPOSITION 5.10. φ(S∗µ1
· · · S∗µl

Sµl · · · Sµ1) = 1
Nl .

Proof. By Lemma 5.8 with (5.4), one has

φ(S∗µ1
· · · S∗µl

Sµl · · · Sµ1) >
∞

∑
k=l−1

1
(N + 1)2k−l+2 C(l−1)

k Nk−(l−1) =
1

Nl .

As the relation (1.1) implies the equality

N

∑
µ1,...,µl=1

φ(S∗µ1
· · · S∗µl

Sµl · · · Sµ1) = 1,

one gets the desired equality.
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For η1, . . . , ηk ∈ Σ = {α1, . . . , αN , β1, . . . , βN}, let sηi , ηi ∈ Σ be the operator
defined in Proposition 3.8. We will next prove the equality

φ(sη1 · · · sηk S∗µ1
· · · S∗µl

Sµl · · · Sµ1 s∗ηk
· · · s∗η1

) =
1

(N + 1)k Nl

for µ1, . . . , µl ∈ {1, . . . , N}. We first note the equality

SnTn = T0Tn for n = 1, . . . , N

because SjTn = 0 for j 6= n by Lemma 3.5. For ηi ∈ Σ, we put

Tηi =

{
T0 if ηi ∈ {α1, . . . , αN},
Tj if ηi = β j.

LEMMA 5.11. For µ1, . . . , µl∈{1, . . . , N}, γ1 · · · γ2k−(l−1)∈LN(2k; µl−1 · · · µ1)
and η1 · · · ηm ∈ Bm(DN) with m 6 l, suppose sη1 · · · sηm T̃γ1 · · · T̃γ2k−(l−1) Tµl 6= 0. Then
we have

(5.4) sη1 · · · sηm T̃γ1 · · · T̃γ2k−(l−1) Tµl = Tη1 · · · Tηm T̃γ1 · · · T̃γ2k−(l−1) Tµl .

Proof. By applying the relation α0βi = 1 for i = 1, . . . , N, we may write
the word γ1 · · · γ2k−(l−1) as the reduced word such as βh1

· · · βhl−1
. We will prove

the assertion by induction on m. For m = 1, if ηm = β j for some j = 1, . . . , N,
then sβ j = Tj so that (5.5) hods. If ηm = αj for some j = 1, . . . , N, the condition

sαj T̃γ1 · · · T̃γ2k−(l−1) Tµl 6= 0 implies j = h1 and

sαr T̃γ1 · · · T̃γ2k−(l−1) Tµl = 0 for all r 6= h1,

because αrγ1 · · · γ2k−(l−1) is not admissible in DN . Since T0 =
N
∑

r=1
sαr , one has

sαr T̃γ1 · · · T̃γ2k−(l−1) Tµl = T0T̃γ1 · · · T̃γ2k−(l−1) Tµl , so that (5.5) holds. Suppose next
that the desired equality holds for all m′ less than m. Since

sη2 · · · sηm T̃γ1 · · · T̃γ2k−(l−1) Tµl 6= 0

one has by hypothesis of induction

sη1 sη2 · · · sηm T̃γ1 · · · T̃γ2k−(l−1) Tµl = sη1 Tη2 · · · Tηm T̃γ1 · · · T̃γ2k−(l−1) Tµl .

If η1 = β j for some j = 1, . . . , N, then sη1 = Tj and hence (5.5) holds. Suppose next
η1 = αj for some j = 1, . . . , N. We note that Tη2 · · · Tηm T̃γ1 · · · T̃γ2k−(l−1) Tµl 6= 0 and
m 6 l − 1. Since the reduced form of γ1 · · · γ2k−(l−1) is βh1

· · · βhl−1
, the reduced

form of η2 · · · ηmγ1 · · · γ2k−(l−1) must be of the form βq1 · · · βqt . Hence j must be
q1 and

sαp T̃γ1 · · · T̃γ2k−(l−1) Tµl = 0 for all p 6= q1,

because αpγ1 · · · γ2k−(l−1) is not admissible in DN . Hence we have

sαj Tη2 · · · Tηm T̃γ1 · · · T̃γ2k−(l−1) Tµl = T0Tη2 · · · Tηm T̃γ1 · · · T̃γ2k−(l−1) Tµl

so that (5.5) holds. Therefore the equality (5.5) holds for all m 6 l.
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Keeping the notations above we have

LEMMA 5.12. φ(Tη1 · · ·Tηm T̃γ1 · · · T̃γ2k−(l−1) Tµl T
∗
µl

T̃∗
γ2k−(l−1)

· · · T̃∗
γ1

T∗
ηm · · · T∗

η1
)

= 1
(N+1)2k−l+2+m .

Proof. The operators Tηi and T̃γj are Tn for n = 0, 1, . . . , N. Since Tn are

isometries satisfying
N
∑

j=0
TjT∗

j = 1, one gets the desired equality.

PROPOSITION 5.13. Suppose sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

6= 0. Then

φ(sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

) =
1

(N + 1)mNl .

Proof. By Lemma 5.8 (i), one has for k > l − 1,

Eµ1···µl > T̃γ1 · · · T̃γ2k−(l−1) Tµl T
∗
µl

T̃∗
γ2k−(l−1)

· · · T̃∗
γ1

for all γ1 · · · γ2k−(l−1) ∈ LN(2k; µl−1 · · · µ1) so that sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

>

sη1 · · · sηm T̃γ1 · · · T̃γ2k−(l−1) Tµl T
∗
µl

T̃∗
γ2k−(l−1)

· · ·T̃∗
γ1

s∗ηm · · ·s
∗
η1

. Since the λ-graph system

LCh(DN) is predecessor-separated, the projection Eµ1···µl is a minimal projection in
the commutative C∗-algebra generated by all projections of the form s∗ζm

· · · s∗ζ1
sζ1

· · · sζm for all ζ1, . . . , ζm ∈ Σ, m 6 l. The condition sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

6= 0
implies the inequality

s∗ηm · · · s∗η1
> Eµ1···µl

so that sη1 · · · sηm T̃γ1 · · · T̃γ2k−(l−1) Tµl 6= 0. Hence by Lemma 5.11 one sees sη1 · · · sηm

Eµ1···µl s
∗
ηm · · · s∗η1

> Tη1 · · · Tηm T̃γ1 · · · T̃γ2k−(l−1) Tµl T
∗
µl

T̃∗
γ2k−(l−1)

· · · T̃∗
γ1

T∗
ηm · · · T∗

η1
. By

(5.4), Lemma 5.8 (ii), Lemma 5.9 and Lemma 5.12, one gets

φ(sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

) >
∞

∑
k=l−1

1
(N + 1)2k−l+2+m C(l−1)

k Nk−(l−1)

=
1

(N + 1)m

∞

∑
k=l−1

1
(N + 1)2k−l+2 C(l−1)

k Nk−(l−1)

=
1

Nl(N + 1)m .

Since each vertex (βµ1 · · · βµl ) ∈ Vl corresponding to the projection Eµ1···µl has N
incoming edges labeled β j, j = 1, . . . , N and one incoming edge labeled αµ1 , the
total number

|{δ1 · · · δm ∈ Bm(DN) : sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

6= 0}|

is (N + 1)m. By the equality

∑
η1,...,ηm∈Bm(DN)

∑
µ1,...,µl=1,...,N

sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

= 1,
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we obtain

φ(sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

) =
1

Nl(N + 1)m .

Therefore we conclude

THEOREM 5.14. The AF algebra F
LCh(DN ) has a unique tracial state. The admitted

tracial state φ is the restriction of the KMS state ϕ on O
LCh(DN ) to F

LCh(DN ) .

Proof. By Proposition 5.10, the equality φ(Eµ1···µl ) = 1
Nl holds for µ1, . . . , µl

∈ {1, . . . , N}. For η1, . . . , ηm ∈ Σ, if sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

6= 0 we see that the
equality s∗ηm · · · s∗η1

sη1 · · · sηm Eµ1···µl = Eµ1···µl holds so that we have

φ(sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

) =
1

(N + 1)m φ(s∗ηm · · · s∗η1
sη1 · · · sηm Eµ1···µl ).

Hence the state φ satisfies the equalities:

φ(sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

)=

{
1

(N+1)m Nl if = sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

6= 0,

0 if = sη1 · · · sηm Eµ1···µl s
∗
ηm · · · s∗η1

= 0.

It coincides with the restriction of the unique KMS state ϕ to the AF algebra
F

LCh(DN ) .

REMARK. Theorem 1.2 is deduced from Theorem 5.14, because KMS state
on the algebra O

LCh(DN ) is uniquely determined by a tracial state on the AF algebra
satisfying (4.2).

By using uniqueness of tracial state on the AF algebra F
LCh(DN ) with Theo-

rem 1.2, we may prove the following theorem.

THEOREM 5.15. Let πϕ(O
LCh(DN ) )′′ be the von Neumann algebra generated by

the GNS-representation πϕ(O
LCh(DN ) ) of the algebra O

LCh(DN ) by the unique KMS state
ϕ. Then πϕ(O

LCh(DN ) )′′ is the injective factor of type III1/(N+1).

Proof. We put M = πϕ(O
LCh(DN ) )′′. As the KMS state ϕ on O

LCh(DN ) is
unique, the von Neumann algebra M is a factor. Since the C∗-algebra O

LCh(DN )

is nuclear [16], it is an injective factor. The GNS representation πϕ is faithful so
that we may regard O

LCh(DN ) as a subalgebra of M. Similarly the von Neumann
subalgebra πϕ(F

LCh(DN ) )′′ of M generated by the algebra πϕ(F
LCh(DN ) ) is a factor

because the C∗-algebra F
LCh(DN ) has a unique tracial state by Theorem 5.14 and

the tracial state is faithful.
Let σ be an action of R on the von Neumann algebra M defined by σt(πϕ(a))

= α−t log(N+1)(a), a ∈ O
LCh(DN ) , t ∈ R. Since ϕ is a KMS state at inverse temper-

ature log(N + 1) for gauge action, it yields a KMS state at inverse temperature
−1 for σ on O

LCh(DN ) . That is ϕ(xσ−1(y)) = ϕ(yx) for y an analytic elements
of (O

LCh(DN ) , σ, R) and x ∈ O
LCh(DN ) . Since ϕ is σ-invariant, the automorphisms

σt, t ∈ R can be extended to automorphisms on the factor M, denoted by σt. This
means that σt = σ

ϕ
t the modular automorphisms of M. As the algebra F

LCh(DN )
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is realized as the fixed point algebra O
LCh(DN )

αDN
of O

LCh(DN ) under the gauge
action αDN , it is routine to check that the fixed point algebra Mσ coincides with
πϕ(F

LCh(DN ) )′′. Since Mσ is a factor, the Connes spectrum Γ(σ) coincides with
the Arveson spectrum Sp(σ). By a similar manner to the proof of Theorem 8 in
[4] one knows that Sp(σ) = Z log(N + 1). This implies that the von Neumann
algebra M is a factor of type IIIλ, where λ = e− log(N+1) = 1

N+1 .

The above theorem means that the exponent of the topological entropy of
the Dyck shift DN appears in the type of the factor representation of the unique
KMS state on the C∗-algebra O

LCh(DN ) by the gauge action.
General construction of simple C∗-algebras of Dyck systems of topological

Markov chains will be studied in a forthcoming paper [21].
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