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ON THE SIMPLE C*-ALGEBRAS ARISING FROM
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ABSTRACT. The Dyck shift Dy for 2N brackets (N > 1) gives rise to a purely
infinite simple C*-algebra O gcupy), that is not stably isomorphic to any Cuntz-
Krieger algebra. It is presented as a unique C*-algebra generated by N partial
isometries and N isometries subject to certain operator relations. The canoni-
cal AF subalgebra F gcipy) of O acnpy) has a unique tracial state. For the gauge
action on the C*-algebra Ogcupy), a KMS state at inverse temperature log 8
exists if and only if B = N + 1. The admitted KMS state is unique. The GNS
representation of O zcupy) by the KMS state yields a factor of type Iy /(n41)-
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1. INTRODUCTION

The theory of symbolic dynamics has a close relationship to automata the-
ory and language theory. In the theory of formal language, there is a family of
universal languages, called Dyck languages, introduced in [1] . The symbolic
dynamics generated by the languages are called the Dyck shifts Dy, N € N (cf.
[1], [9], [10], [11]). They are nonsofic subshifts. Their alphabet consists of the
2N brackets: (1,...,(N,)1,---,)N- The forbidden words consist of words that do
not obey the standard bracket rules. In [12], the Cantor horizon A-graph system
for Dy has been introduced as an irreducible A-graph system that presents the
subshift Dy. It is a minimal irreducible component of the canonical A-graph sys-
tem of Dy. Hence it gives rise to a purely infinite simple C*-algebra denoted
by Ogcnpy)- Its K-groups are realized as the K-groups for the Cantor horizon

A-graph system £¢(PN) and computed to be
Ko(Ogenpy)) = Z/NZ & C(],Z), Ki(Ogenpy)) =0
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for 1 < N € N, where C(R,Z) denotes the abelian group of all integer valued
continuous functions on a Cantor discontinuum £ ([12], Corollary 3.17). For N =
1, the algebra O qcupy) goes to the Cuntz algebra O,.

In this paper we first study the operator relations of the canonical generators
of the algebras. We prove the following theorem.

THEOREM 1.1. For N € N, the C*-algebra OQCh(DN) associated with the Cantor
horizon A-graph system £CMDPN) for the Dyck shift Dy is unital, separable, nuclear,
simple and purely infinite. 1t is the unique C*-algebra generated by N partial isometries
Si,;i = 1,...,N and N isometries T;,i = 1,..., N subject to the following operator
relations, where Ey;..,;, = S;‘,l . S;QISW Sy foryy,..,m €4{1,... N}

N
(1.1) 25;-*5]- =1,
j=1
N
(1.2) Epyoy = ) Si8 By SiS; + Ty Epyeo Ty 1=2,3,...
j=1

We note that the above relations for N = 1 go to the relations of the canoni-
cal generators of the Cuntz algebra O,.

By using the above operator relations, we next study KMS states for gauge
action on the C*-algebra O sci(py)- The result is the following:

THEOREM 1.2. For a positive real number B, a KMS state on O gcn( (Dy) y at inverse
temperature log B exists if and only if B = N + 1. The admitted KMS state is unique.
The value log(N + 1) is the topological entropy of the Dyck shift Dy [9].

We will prove that the fixed point algebra O 2Ch(DN>"‘DN of Ogcnipy) under the

gauge action aPN is a simple AF algebra with a unique tracial state (Theorem
5.14). We need a combinatorial argument using Catalan numbers and their gen-
erating function for the proof of uniqueness of tracial state on the AF algebra. As

a consequence we have

THEOREM 1.3. Let 71y(O scnpy) )" be the von Neumann algebra generated by the
GNS-representation 71 (O acnny) ) of the algebra O wcnpy) by the unique KMS state ¢.
Then 11 (O acnipy))" is the injective factor of type 111y /(N4 1).-

Corresponding results for Cuntz algebras and Cuntz-Krieger algebras are
seen in [24] and [4] respectively. Related results for Cuntz-Krieger type algebras
are seen in many authors [5], [6], [8], [13], [22], [23], [26], etc.

2. THE A-GRAPH SYSTEMS FOR THE DYCK SHIFTS

Throughout this paper N > 1 is a fixed positive integer. In what follows,
Z denotes the set {0,1, ... } of nonnegative integers.
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We consider the Dyck shift Dy with alphabet £ = X~ U X" where X~ =
{ay,...,an}, X7 = {B1,...,Bn}. The symbols a;, B; correspond to the brackets
(i, )i respectively. The Dyck inverse monoid Dy has the relations

@.1) aij = {1 e

0 otherwise,
fori,j =1,...,N[10], [11]. A word w; - - - wy of X is admissible for Dy precisely
n

if TT wy # 0. Foraword w = ws -- - wy, of X, we denote by w its reduced form.
m=1

Namely @ is a word of X U {0,1} obtained after the operations (2.1). Hence a
word w of X is forbidden for Dy if and only if w = 0.

A A-graph system £ = (V, E, A, 1) over an alphabet X consists of a vertex set
V=WuViuWU. -, anedgeset E = Eg; UE1p UEy3U---, a labeling map
A E — X and a surjective map 1,1 : Vi1 — Vj foreach ! € Z . The sets V;
and E; 4, are finite for each | € Z,. An edge e € Ej;;; has its source vertex s(e)
in V}, its terminal vertex t(e) in V;,; and its label A(e) in X. It yields a subshift
by taking the set of all label sequences appearing in the labeled Bratteli diagram.
There are many A-graph systems that present a given subshift. Among them the
canonical A-graph system is a generalization of the left-Krieger cover graph for a
sofic shift, and its strong shift equivalence class is a complete invariant for topo-
logical conjugacy of subshifts [15]. The canonical A-graph system £¢(PN) for the
Dyck shift Dy together with its K-groups has been calculated in [18]. One how-
ever sees that the A-graph system £C(PN) is not irreducible, so that the resulting
C*-algebra O ,c(py) is not simple. The Cantor horizon A-graph system £CHDN) for
Dy is a minimal irreducible component of the canonical A-graph system £C(Pn),
It gives rise to a purely infinite simple C*-algebra O scupy) that is a quotient of
O qcioy) by an ideal [20]. The K-groups of the C*-algebra O scnipy) are realized as
the K-groups of the A-graph system £°*(PN) and computed to be

Ko(Ogenon) = Z/NZOC(8,2), Ki(Oganny) 20 ((12)).

Let us describe the Cantor horizon A-graph system €PN of Dy. Let Xy be the
full N-shift {1,..., N}%”. We denote by B;(Dy) and B;(Zy) the set of admissible
words of length / of Dy and that of X respectively. The vertices V; of £ChDN) 4t
level [ are given by the words of length I consisting of the symbols of X*. That is,

Vi={(Bu - Bu) € Bi(Da) :p1---p € Bi(XN)}-

Hence the cardinal number of V; is N'. The mapping «(= 1;,1) : Viy1 — V]
deletes the rightmost symbol of a word such as

((Buy = Buppr)) = Buy = Buy)r - Buy =+ Bupsy) € Vi

There exists an edge labeled a; from (B, -+ By;) € Vi to (BugPuy - Buy) € Visa
precisely if y9 = j, and there exists an edge labeled ; from (8;By, - By,_,) € Vi
to (Buy -+ Buy1) € Vig1- Itis easy to see that the resulting labeled Bratteli diagram
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with i-map becomes a A-graph system over X, denoted by £°*(PN), that presents
the Dyck shift Dy [12]. We use the lexicographic order from left on the words in
the symbols in X, that is, we assign to a word (B, - - - By,) of vertex in V; the
number N (- - - )

Hence the vertex set V] bijectively corresponds to the set of positive integers less

1 : !
than or equal to N'. We write the vertex (B, --- By,) € V; as UNGig i)

3. THE C*-ALGEBRA O ciy)

We first see that the C*-algebra O ocupy) is simple and purely infinite. This
fact is first observed in Proposition 2.2, Corollary 3.13 of [12].

A A-graph system £ = (V, E, A, 1) is said to satisfy A-condition (I) if for every
vertex v € V) of £ there exist at least two paths with distinct label sequences start-
ing with the vertex v and terminating with the same vertex. A A-graph system £
is said to be A-irreducible if for an ordered pair of vertices u, v € Vj, there exists
a number L;(u,v) € N such that for a vertex w € Vi, (,) with (wo) () = u,
there exists a path 7 in £ such that s(7r) = v, t(7r) = w, where (L1(*?) means
the L;(u, v)-times compositions of ¢, and s(7t), t(7r) denote the source vertex, the
terminal vertex of 7, respectively [19].

PROPOSITION 3.1. The A-graph system £CM(PN) is A-irreducible, and it satisfies
A-condition (I). Hence the C*-algebra O ocupy) is simple and purely infinite.

Proof. Let vf be a vertex in V;. We write i = N(iy - ;) for some i1 ---i; €
B;(2XN). Take pq,1v17 € {1,...,N} with u1 # vy, and 0o+ {142 € Byi1(ZN)-
There exist two distinct paths labeled B;, - - - B; By, and B;; - - - B;, B, whose sources

241 € V1. Hence £CM(PN) satisfies

/ .
are both v; and terminals are both UN(a-Zar2)

A-condition (I).

Let v} be a vertex in V; so that j = N(j; ---j;) for some j; ---j; € Bj(Zn)
respectively. For any vertex v%l € Vy such that t(vil) = vé, we may write k =
V(j1---jihyyg1-- - hy) for some hy,q---hy € Bj(Xy). Then there exists a path
labeled B;, - - - B;, starting at Uf and terminating at vil. This means that £*(Pn) ig
A-irreducible. By [19], the C*-algebra O scnipy) is simple and purely infinite. &

We will study operator relations of the canonical generators of the C*-alge-
bra O zcnpy) to prove Theorem 1.1. By Corollary 5.2 of [12] and a general structure
result for the C*-algebra O ¢ associated with A-graph system £ ([16], Theorem A),
we have:



C*-ALGEBRAS ARISING FROM DYCK SYSTEMS 209

LEMMA 3.2. The C*-algebra O 2Ch(Dy) is unital, separable, nuclear, simple and
purely infinite. It is the universal unique concrete C*-algebra generated by partial isome-
tries s,y € X and projections ef,i =12,...,N, 1 e Z4 satisfying the following
operator relations:

(3.1) Y sysh =1,
yeX
Nl Nl+1
(3.2) Yoe=1 =Y Ll
i=1 j=1
(3.3) SySye el = elsarsy,
Nl+1
(3.4) sheisy = Y Apaa(i,vj)e ZHI
j=1

fori= 1,2,...,N, 1 ¢ Zy,v € X, where V; = {Ull,...,le,},
1 if s(e) = vf,)\(e) =1,t(e) = l“for somee € Ejjiq,
0 otherwise,

1 if ypa (ot =,

0 otherwise,

Al,l+1(i/ r)//j) = {

Lia(ig) = {

fori=1,2,...,N, j=1,2,...,N*1, ye 5.

Note that the partial isometry s, corresponds to the edges labeled <y, and

the projection ef corresponds to the vertex vf. We will prove Theorem 1.1 from
Lemma 3.2 by using the structure of the A-graph system £*(Pn),
Lets,,v € X and ef,i =1,...,N,l € Z, be as in Lemma 3.2. Define the

operators S;, T;,i = 1,..., N by setting
Si =8y, Tj:=sp, fori=1,...,N.

As the word «;f; is forbidden for i # j, we note 5;T; = 0 for i # j. We will first
show that the operators S;, T;,i = 1,..., N satisfy the relations (1.1) and (1.2).

LEMMA 3.3. The operators T;,i = 1,..., N are isometries.
Proof. The first equality of (3.2) and (3.4) implies

Nl NH»l NI
= Fin =% (Bt
k=1 h=

For the symbol §; every vertex U;;Ll has a unique incoming edge labeled ;. This

Nl
means ), Ajjyq(k,Bi,h) =1sothat T;T; = 1. 1
k=1

We put Eyy..py = Sy - S5, Spy -+ Sy forpg, ..o,y € {1,..., N}
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PROPOSITION 3.4. The operators S;, T;,i = 1,..., N satisfy the relations (1.1)
and (1.2).

Proof. By (3.4) and (3.2), one has for a fixed | € Z,

N! NIt1

Sisi=) Z Appia (o kel
o1 k=

Every vertex vk 1 ¢ Vi,1 has a unique incoming edge labeled a symbol in X,
N N!

that ) E Aj1+1(, i, k) = 1 for each k = 1,..., N1 Hence we have Z SiS; =
i=1j=1 i=1

N1+1

Z e = 1. By using (3.3), (3.4) and the first equality of (3.2) recursively, we

know that Ey, ..., commutes with both §; S* and T; T* forj =1,...,N. We note

that the relation (3.1) implies Z (S]-S]*-‘ + T]T]*) = 1 so that
j=1

N N
Epjoopy = Zl SjS;FEﬂl"‘ﬂlst; + 21 ]}]—}*Eﬂl"'F‘l]}]}*'
j= i=

As 5, T; = 01if g # j, the second summation in the right hand side above goes
2

to Ty, Ty, Epyeo Ty, Tyiy- Now by (3.4), one has Ey, = 55, sa,, = '21 Ao (L, apy, f)ej
]:

and Ag(1,ay,,j) = 1if and only if v]l. = (By,) and hence j = N(p1). This means

that £, = e}\,( ) Similarly we have

P
ok *
EVI"'VI - slxyl T S’X}Il s“}’[ T S‘Xﬂl
N171 NI
!
- Z Z A 11(11 1,06;41,11) Xpq '”s:‘l‘zfleils"‘mfl T Sagy
l[ 1= 111 1
N NI-1 NI
. . . !
=) Y Y ALy, i) Ay, e, e,
=1 i_=1i=1
N NI 1
and '21' -y 1A01(1 Sy, i1) - Al (i1, 0, i) = 1if and only if o = (B,
= ijq=
. ) g
-+ By,) and hence iy = N(pq - -- ;). This means that E;..,,, = CN (gt Hence
Nl l )
we have Ty Eyy.p Ty = ‘Zl A (N ), B e 1. Since Ajj1(N(pa
]=

1), Buy,j) = 1if and only if j = N(pp - ﬂzﬂl+1#z+z) for some py 1, p112 €
{1,...,N}, and the equality y Eyy- iy = Epp--py holds, we have
P 2=1,.
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T;;lEm...me = Ey,...; so that

Ty Ty Eprop Ty Ty = Ty By Ty -
Thus we conclude that the equality (1.2) holds. 1

We next study the converse argument. Let S;,i = 1,..., N be partial isome-
tries and T;,i = 1,..., N isometries satisfying the operator relations (1.1) and
(1.2).

LEMMA 3.5.
N
(3.5) g(sjsj +TT) =1,
]:
N
(3.6) S?Si = ZSjS;SjSiSjS;+TiTi*r i=1,...,N.
j=1

Proof. Forl =2 at (1.2), we have
N
* * *
Epp, = 21 SiS} EuurSiS; + Ty Eyy Ty -
]:

By summing up these relations over yp = 1,..., N and using (1.1), the relation
(3.6) follows. The relation (3.5) follows by summing up (3.6) overi = 1,...,N
and using (1.1). 1

LEMMA 3.6. Fori,j, p1,..., 4 € {1,..., N}, we have:

AL
O1sisT =40 Tl
0 ifi#j.

(i) Ty By Ty = o T2

0 ifi # 1.

Proof. (i) By (3.6), we have
N
Ti*S?SiTi = Z Ti*SjS;S?SiSjS;fTi + Ti*TiTi*Ti-
j=1

The relation (3.5) implies T;S; = 0 fori,j = 1,..., N so that the above equality
N
goes to T;'S;S;T; = T;T; = 1. By the relation (1.1), one has }° Ti*S]f‘SjTi =TT, =
j=1
1 so that Ti*S]’»*S]'Ti =0fori #j.
(ii) By (1.2), we have

N
T} Eppyo Ti = 21 T; St Epyogy SiSTTi + T7 Toy By Ty T
j=
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Since T;S; = 0 for i, j, and T;T), = 0 for i # 1, the above equality goes to

E,.. ifi =
* ok * _ Ho U “I/ll,
T By Ti = T Ty By TmTi - {0 e otherwise

LEMMA 3.7. Keep the above notations. The projection Ey, ..., commutes with both
55; and T]'T;‘forj =1,...,N.
Proof. By (1.2), we have

N
8iS;Epymy = ), SiS1SiS; EpyoySiS; + SiSi Tyy Epgroy Ty, -
j=1

By (3.5), §;S; = 0 fori # j, and STy, = 0 for all 7, 1. Hence the above equal-
ity goes to S;S7Ey,..u; = S;S{Ey,..;;SiS; so that S;SF commutes with E, ... By
N
(1.2), wehave T;T}Ey, .., = 121 Tﬂ“i*S]'S]’fEm...mSjS;‘ + TiT; Ty, Eyey T, - By (3.5),
]:
T Ty, =0fori # py,and T;S; = 0 for all ;, j. Hence we have
Tu Epyeo, T i1 =g
T.T*E, .. — |2 IR T T2 ’
SR {0 otherwise.

so that T;T;" commutes with E,..,,,. 1

PROPOSITION 3.8. Keep the above notations. Define
Se; = Si, g =T; fori=1,...,N
and
NGy = B (= Spy -+ St Sy -+ Swy) for pa -y € By(Zy).
Then the family of operators s,y € X, eé\,wmm),yl -+ 11 € Bj(XN) satisfies the rela-
tions (3.1), (3.2), (3.3) and (3.4).

Proof. The relation (3.1) is nothing but (3.5). The relation (1.1) implies that

Y el =1Supposethat Y e\, =1holdsfor! =k As
1 EB1(ZN) N H1H€BI(ZN) Np--p0)

N
5;1 . ”S;ksyk Sy = .Z%S;;I .. 'S:lks}ksjsﬂk Sy,
=

the equality Y eé\]( o) = 1 holds for I = k + 1 and hence for all by
p1-H1€Bi(EN)

induction. The above equality implies

1 ifvy-vp=p---py,

I (N(py -+ py), N(vy - - vp4q)) = .
0 otherwise,

so that the relation (3.2) holds. The equality (3.3) comes from the preceding
lemma.
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We will finally show the equality (3.4). For pq---py; € Bj(Xn) and ay €
X~ we have sy ey, o Sa = SiSpy S5 Su o S Sk = A (N (- ),
N(kpr - 11))eN G- SINCE Appin (N - ), g, ) = 0if j # N(kpy - ),
one has
S N iy ) Stk = )3 A (N(pa = ), i, N(vi - vi))ep(y -

vV 41 €814 (EN)

We also have by Lemma 3.6 (ii)
x ]
BN (u1-++11)°Bj

E,,.. lf] =M
_ _ Ho U ’
- TJ‘*EM‘“HI j= { e

0 otherwise,
L S; -5y S;1+1S}41+zsﬂl+zsﬂl+1sl41 S}lz if j = m,
= { Mi+1H12€B2(ZN)
0 otherwise.

Since Ay 1 (N(p1 - w1), Bjy N(v1 -+ v141)) = 1 precisely if j = pg and v; = piq
fori=1,...,1 — 1, and 0 otherwise, we have

S8, EN () 7 = Y Anpa (NG ), B N == vig1)Je, -

vV 41€B 1 (EN)

Therefore (3.4) holds. 1

By Proposition 3.4 and Proposition 3.8, the family of the operator relations
(1.1) and (1.2) is equivalent to the family of the operator relations (3.1), (3.2), (3.3)
and (3.4). Thus by Proposition 3.1 and Lemma 3.2 we conclude Theorem 1.1.

4. KMS STATES ON O ,cipy)

This section is devoted to proving Theorem 1.2. The result in this section for
the uniqueness of KMS state on O qci(py,) is directly deduced from the result in
the next section for the uniqueness of tracial state on the AF algebra F ,cup,). We
will in this section give a direct and easy proof of the uniqueness of KMS state on
O aCh(Dy) -

Suppose that partial isometries S;,i=1,..., N and isometries T;,i=1,...,N
satisfy the relations (1.1) and (1.2). They generate the C*-algebra O ,cup,). By
the uniqueness of the algebra O ech(py) subject to the relations (1.1) and (1.2), the
correspondence

S; —2zS;, T;,—zI; fori=1,...,N

forz € T = {z € C: |z|] = 1} yields an action of T on O£Ch(DN It is called the
gauge action and is denoted by aPN. A state ¢ on O ocnpy) is called a KMS state at
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inverse temperature log § for 0 < g € Rif
plaa;), 5(b)) = g(ba)

for all 4,b in a dense a“N-invariant x-subalgebra of the analytic elements of the
action aPN on O ecnpy)- The gauge action aPN on the C*-algebra O ecnpy) is a full
C*-dynamical system considered in [26] and a quasi-free dynamics of Pimsner
algebra considered in [13] (cf. [25], and Proposition 6.1 of [16]). General theory of
KMS states for the C*-algebras constructed from Hilbert C*-bimodules in [26] and
[13] says that a state ¢ on O acuipy) is a KMS state at inverse temperature log § if
and only if ¢ satisfies the following condition ([26], Lemma 1.2, [13], Theorem 2.5;
cf. Theorem 3.6 of [22]):

Dy

N
4.1) 1 go(S]*xS]« + T]*xT]) = Bep(x) forx € Aycnpy)
]:

where A cnpy) is the commutative C*-subalgebra generated by the projections
Epyooyy = Sy 55,8 - Spys 1, -,y € {1,..., N}. By Lemma 1.2 of [26], by
[13] or a similar result of Proposition 3.4 in [22], the condition (4.1) is equivalent
to the condition:

P(Sy -+ S xSs, -+ St = 5,”1"'}%”1"”1(#4)(](51}51 S5 S S,

4.2)
(P(Tyk o mele o le‘k) = 5}11"'FkrV1"'Vk%(P(le)/kl o T]j‘kTHk o Tm)/

for x € Agcnoy) and yq, ..., 4, V1, vk € {1,...,N}.

N
Put Ty = S;. We first note the following proposition.

j=1

PROPOSITION 4.1. The C*-subalgebra C*(To, Ty, . .., Tn) of O acuipy) generated
by To, Ty,. .., TN is canonically isomorphic to the Cuntz algebra On,q. Hence there
exists a unital embedding 1 : Oni1 — Ogcnpy
z € T where a*N+1 is the gauge action on Oy 1.

.. 0D b3
) satisfying a; N o1 = 1oaz N for

Proof. The equality (1.1) implies that Tj is an isometry. Hence the equality
N
(3.5) implies the relation }_ T;T; = 1.
i=0
We henceforth assume that ¢ is a KMS state on O zcnpy) at inverse temper-
ature log 8 for some 0 < B € R.
LEMMA 4.2. () B=N+1,and

N
(ii) '21 9(S;57) = 9(T;T) = ~o fori=0,1,...,N.
]:

Proof. Since there exists a unital embedding : : Oy11 < Ogcnpy) compati-
ble to their gauge actions, the restriction of ¢ to the subalgebra Oy yields a KMS
state on On41 at inverse temperature log § for the gauge action. Hence by [24]
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must be N + 1 and the admitted KMS state is unique such that ¢(T;T}") = ﬁ
N

fori=0,1,...,N. AsToT; = L. S]'S]*, we get the desired equalities. 1
j=1

N
LEMMA 43. (i) @(Ey,) = o + ; ¢(Epgpy )-

MZ

1(p(Emm...m)for Wi, .-, €{l,...,N}
Ho=

(if) @(Epyoopyy) = ﬁ¢(EH2"'V1)+W
Proof. (i) By (4.2) one sees
. 1 . 1
@ (SpoEpo Sp) = N+ 1(P(EH0H15#()SP‘0) “N+1 1(P(Euom)-
The relation (3.6) together with the previous lemma implies

1 1
¢(Ey,) = N1l ;toZ::l @(Epopy) + Nil

(ii) One similarly sees that by (4.2)

. 1 . 1
QD(SHUEHOM“'MSW) :TH?(Eﬂoﬂl"'HzSyosﬂo) = TH?(EHOHl"'Hz)/

" 1
P(To By Tiy) =9 (Epigooopy Ty Ty ) = N1 ? B,

so that the desired equalities hold by (1.2). 1

Keep the above notations. We set ”541-“141 = @(Epy...py) for py,...,p €
{1,...,N} and ! € N so that
al 1 1
)y Uy =10 Oty S L
Hippy =1
1 1 Y
1 _ 2
MVI_N+1+N+1ZuHOV1’
Ho=1
N
y vV oo 1 s
P T N+1 +1 Upiz-py N+1 | Hota--Hr
Ho=
Weputfori=1,...,N,
1 1 2 Yo ! S !
Vi=u, V= Z Wgir =+ Vi = Z Wpopy - py_air
Ho=1 Hopesth—2=1

They satisfy the relations:
(1)V1 N+1+N+1V fori=1,...,N.
(11)Vl.l—N+1ViI 1—|—N+1Vl+1forz—1 ., N.
If a sequence {x;}7°; of nonzero real numbers satisfies the conditions:
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(1) x1 = o7 + FoT X2
) x = %1 + ghgxg for 1 =2,3
then x; = (N'-1 + N'=2 ¢

-4+ N?2+N+1)x; — (N72 4 NI-3
).Asx; > Oforalll € N, we have x; >
fact:

-+ N?+ N+
Here we note the next elementary

LEMMA 4.4. If sequences {x;}7>,i =1
the following conditions

N of nonzero real numbers satisfy
: 1 1 .
@) X1, = NI1 T Ny1X2i

(i) X7 = X1 + N X100
N
(i) Y x;; =1foralli=1,...,N;
i=1
then we have x; ; = %foralll =1,2,...,andi=1,...,N.
Lemma 4.4 directly implies that V/ = § foralll € Nandi =1
putfork € Nandi,vq,...,vx € {1,...,N},

.,N. We
1 k. k+1
‘/l',l/lmllk (k) N 11/1 R%
2 k - k+2
‘/i,Vl'-'Vk (k) = N Z u,u]iV]“‘Vkl
pi=1
1 k N k+1
‘/irvl"'vk (k) =N Z Wiy vy
Py -1 =1
We put V/(0) = Vl for k = 0. By induction on k, the following relations hold
LEMMA 4.5. (i) V}Vl Vk(k) N1 N Vi () fori=1,..,N.
1 1+1 ;
(11)Vllv1 o (k) = N+1V1v1 Vk(k)+N+1V+ (k) fori=1,...,N.
(iii) z vi o (k) =1
=1 Uk
Therefore we have
COROLLARY 4.6. Fork=0,1,...,andl =1,2,... andi Vi,...,Vk €
{1,..., N}, we have l _“Vk(k) =1 In partzcular we have ”ul W= ﬁ
Proof. By the previous lemma, one directly has V! SO (k) = % Forl =1,it
follows that + §= Vllv1 . = Nu i»‘fl_.vk foralli,vy,..., v, € {1,...,N}. 1

Therefore a KMS state ¢ satisfies the equality

1
@(Epypy) = N foruy,...,up€{1,...,N}.
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Conversely we see
PROPOSITION 4.7. If a state ¢ on the C*-algebra A ,cnpy) generated by the pro-
jections Ey,...py, pi1, - .., 4y € {1,..., N} satisfies the condition
1
N foryy, ...,y €4{1,...,N},

then ¢ can be uniquely extended on O gcupy) to a KMS state at inverse temperature
log(N +1).

Proof. By the relation (1.2), we have

4’(5141'-'}!1) =

N
Z T Epyoy Ty = Ty Ty Epeoy Ty Ty = Epigeoy

j=1
so that
N N
fP(Z(S Epuy-vy S+ T gy ]) Y P(Ejygy) + @B
j=1 j=1
1 1
=N x W + W = (N+1)¢(Eﬂlﬂl>

Hence ¢ satisfies (4.1) and it can be extended to a KMS state on O scupy). The
uniqueness of the extension to a KMS state on O ,cipy) comes from a general
theory of [26], [13] or a similar result to [22]. &

Therefore we conclude Theorem 1.2. We finally remark that the value
log(N + 1) is the topological entropy of the subshift Dy. Corresponding result
for Cuntz-Krieger algebras has been shown in [4].

5. TRACIAL STATE ON THE CANONICAL AF ALGEBRA

We denote by F .cnpy) the fixed point algebra O qcnp “DN of O scnpy) under
the gauge action aPN. By [16], one knows that the algebra F ecnpy) 1s an AF alge-
bra. The restriction of a KMS state to the subalgebra F .cnpy) yields a tracial state
onit. In this section we will prove that tracial state on F ,cn( DN) is unique. Its proof
needs some combinatorial properties of the generators S;, T;,i = 1,..., N. By us-
ing the uniqueness of tracial state on F ;cu(py), one can determine the type of the
von Neumann algebra M = 714 (O zcnioy) )" generated by the GNS-representation
7t of O gcnpy) by the KMS state ¢. As a consequence we will show that the alge-
bra M is a factor of type Iy /(n41)-

PROPOSITION 5.1. The AF algebra F qcnpy,) is simple.

Proof. We note that the Bratteh diagram of the AF algebra F .cipy) is given
by the A-graph system £*(PN) [16]. By Proposition 3.1, the A-graph system
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£CHDN) is A-irreducible so that there is no proper hereditary subset. Hence the
AF algebra F qcupy) is simple. &

Let us consider the inverse monoid M, 5 generated by N + 1 elements
«g,B1,- .., Bn with relations: agff; = 1fori = 1,...,N. The set of the elements
«g,B1, ..., BN is denoted by X1 . Then a word y; - - - v, of X1 y is called acceptable
if y1---yn = 1. It is clear that if a word < - - - 7, is acceptable, then n = 2k for
some k € Nand v = ag, v, = Bi forsomei =1,...,N. Let L1 ny(2k) be the set
of all acceptable words of length 2k. Recall that D; is the Dyck inverse monoid
generated by 2 elements «, § that satisfy af = 1. The acceptable words of D
are similarly defined to those of M . It is well-known that the cardinal number
of the set of all acceptable words of D; of length 2k is the k-th Catalan number
Cr = 27 (%) (= m2), where Cp is defined to be 1. Therefore we have

=+ RIk+1)1
(5.1) |Ly n(2K)| = NXCy.
LetS;, T;,i = 1,..., N be the generators of O oCh(Dy) as in Theorem 1.1. We put for
vE XN
TW{TO %f’)/:t)(o,
Ty iy =gj,

where Ty = g‘, S;.
j=1
LEMMA 5.2. Fori=1,..., N we have:
(@) S§;S; > T;T;.
(ii) For an acceptable word <y - - - o € Lq1,n(2k), one has
(5.2) SiSi=>T, - ThkT-T*T;Zk Ty,

Proof. (i) The inequality (i) is clear from (3.6).

(ii) As 1 - - Y2k € L1n(2k) is acceptable, k symbols of {1,..., 7o} are ag
and the other k symbols areof Z* = {By,...,Bn}. Let Bi, ..., Bj, be the symbols
in X* that appear in 71 - - - 7. Since S;T; = 0 for i # j by Lemma 3.6, one has
ToT; = S;T;. The acceptable word 71 - - - 7 uniquely determines an admissible
word pu(y) = (u(¥)1,-.., #(¥)2k) € Bok(Dn) of the Dyck shift Dy such that the
corresponding element of the Dyck inverse monoid Dy is the unit 1. In the A-
graph system £°"(PN), every vertex 02 i 242 in Vi 1 has a unique in-coming path
labeled (y)B;. All the paths labeled i (y)B; start at the unique vertex in V; corre-
sponding to the word B;. An edge in E; labeled «; is unique and it terminates at
the vertex corresponding to the word ;. This means that the following inequality
holds

* *
Sa;Se; Z Su(7)BiSu(1)p;

in the C*-algebra O scnpy). As Sy, = Sj and sy, )p, = T% e T’sz T; one concludes
the desired inequality. 1
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The inequality (i) in Lemma 5.2 is interpreted to be the inequality (5.3) for
k=0.

Recall that by Proposition 4.1, the C*-algebra C*(T,XO, Tﬁw- .., T.BN) gener-
ated by T,XO = Ty, T.Bi = T;,i = 1,...,N is canonically isomorphic to the Cuntz
algebra On1.

LEMMA 5.3. Fori=1,...,N and distinct acceptable words 7y - - - yox €
Lin(2k) and 61 - - - 62, € Ly N(2n), the projections
Ty T T Ty, Ty and Ty - Ty TT Ty - Tj

Yok
are orthogonal.

Proof. If n = k, the assertion is immediate. Suppose k > n. If the projec-

tion T71 : T“rsz T T,‘;Zk T* is not orthogonal to T5 Ttgzn T;T; T*Zﬂ : T*1 one

sees T71 e T’anﬂ T51 T§2n T; so thaty; = d;forj=1,...,2nand 72,41 = B
Since both 71 - - - yox and 67 - - - b2, are acceptable, one has that 7,41 - - - Yo is ac-
ceptable. Hence 77,41 must be ay, that is a contradiction. &

In what follows, let ¢ be a tracial state on the AF algebra F ocupy). We will
prove that ¢ coincides with the restriction of the KMS state ¢ to the subalgebra
F acnipy) -

£ChDN

LEMMA 5.4. For an acceptable word 1 - - - yox € L1 n(2Kk), one has

1

¢(Tyy - T T T, - Ts) = (N 12

T2k T

Proof. Since the C*-algebra C*(Tao, Tﬁl’ . T,gN) is canomcally isomorphic

to the Cuntz algebra Oy, 1, the projection T% . TAYZkT T; T;Zk T* is a minimal

projection in the matrix algebra My 1)2c1(C) of size (N + l)ZkH. As the state

¢ gives rise to a unique tracial state on the matrix algebra, the desired equality
holds. 1

Now we refer a combinatorial property of the Catalan numbers Cy, k € Z.
It is well-known that the equality

Y G = i(1 — V1 —4x).
fr 2x

holds. Hence we have

LEMMA 5.5. z Cr = 3-

W
We then have

PROPOSITION 5.6. ¢(SS;) = 5.



220 KENGO MATSUMOTO

Proof. We first note the equality ¢(T;T;") = ﬁ By Lemma 5.2, Lemma 5.3,
Lemma 5.4 and Lemma 5.5 with (5.1), we have

|L1,n(2K)| 1 :
$(57S;) /2 N+12k+1:ﬁ fori=1,...,N.

The relation (1.1) implies ¢(S;'S;) = % 1

We will next show that ¢(S;; ..., Spyopy) = # foralll € N.
In the Dyck inverse monoid ID; generated by 2 elements &, § satisfying af =
1, wesetfork>1—1

-
C< V= {6, L 00) 16 € {a, B}, 010 =1,01 = - =01 = &},

Hence we have C,El) = Cg.
LEMMA 5.7. C(l D= C,Elfz) - C,El:f).
Proof. We have
GV =G Gy o) €GP o = BY.
By deleting §; 9, 1 in the set {(J1,...,dx%) € C( -2, 0;_1 = B}, we see

1-2 l 3
{1 o) €GP o = B} = )
so that the desired equality holds. &
Let M1,y be the inverse monoid generated by ag, a1,...,an,B1,..., BN
with relations
CKOIBZ'ZIXZ‘,BZ'=1 fori=1,...,N and 0(1"3]'20 fOI‘i#]’.
In the inverse monoid My 41 n, weputfork > [ —1land pq,..., 431 € {1,...,N},
-1
Ln@k g m) ={(r,- - vok—-1)) € XY N( D m Y2k (1-1)
=1}. It is easy to see that
-1 —(1—
(5.3) LN (@K g - )| = G VNE O,
Similarly to the previous discussions we have
LEMMAS5.8. Fork>1—1, g, pp,..., 4y €4{1,...,N}and (71, .. .,'ka_(l_l))

€ LnyQk; py_q - - - u1) we have:

(@) 5;1 T S;]S‘ul oSy 2 Ty e T72k—(l—1) Ty, T;; T;Zk T

(ii) Let (74, - .- /%k’—(l—l)) € LN(2K; py_1 -~ pq) be an acceptable word such that
(Y- Y2k—1-1) # (Y1, - ’7/2k’—(l—l))‘ Then the projections

T T * ok Tk T T * ok *
Ty Ty Ty Tusz ooy T and Ty - "Tv;k,( )TP"TVIT’YZk/ - T%

are orthogonal.
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(iii) ¢(Ty, - - - T’sz—(l—l)TVlT T’sz -1y T3,) = (NF1)ZF—0-DT-
&= 1-1) \pk—(1—
LEMMASS. } WCIE INK-(-1) — 1,
Proof. As C; 0 — Clg ) = = Cy, the desired equalities hold for | = 1,2. Suppose

that the desired equa11t1es hold for all I less than m. By Lemma 5.7 one has
[o0] 1 (m7
(N + 1)2k m+2 Ck

Z
l
i 1 C(m*2>Nk7(m71)_ i

e 1 N+1)2k m+2 k1

1) \yk—(m—1)
k=
1

(m=3) \tk—(m—1
(N+l)2k m+2ck 1 N (m= )'

The first summand above goes to

{ i 1 C(m=2) jk—(m—2) _ 1 = )} N+1
el 2N—|—1)2k (m-1)+2 "k (N+1) (m—2)—(m—1)+2 ~m—=2 N
( 1 W A+1

The second summand above goes to

3 1 (m=3) nrk—1—(m~2)
C N
i T
Iy 1 (m-3) \jh—{(m-3) _ 1 (m-3)) 1
_{ Z (N+1) T (s N (N+1)2<m—3>—<m—zmcm73 }N

~ ( ' . ) 1
-\ Nm—2 (N + 1)m72 N’
Hence we see that the desired equality holds for [ = m. 1

Therefore we have

PROPOSITION 5.10. ¢(Sy;, -~ 57, S -+ Spy) = -
Proof. By Lemma 5.8 with (5.4), one has
G(SE S5 Sy Sy) > i ;C(l—l)Nk—(l—l) _1
" Hi=H H1 P (N+1)2k—l+2 k N!

As the relation (1.1) implies the equality

N
Z 4,(5;1 . ..5;15]41 . "5;41) =1,

et =1
one gets the desired equality.
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Forny,...,nx € £ ={a1,...,&n,B1,---, BN}, let sy, n; € X be the operator
defined in Proposition 3.8. We will next prove the equality

* * * 1
P(Syy - SyeSpy - Sy Spy oSSy Sy, (N + 1)kN!

for p1,...,4; € {1,...,N}. We first note the equality
57Tw =TT, forn=1,...,N
because S;T, = 0 for j # n by Lemma 3.5. For ;; € X, we put

= Ty ifﬂiE{al,...,lXN},
Ty = {T- B
i ity =B
LEMMA 5.11. For Wi, --- ,}116{1, . .,N}, Y1 ’sz—(l—l)ELN(Zk} Hi—1- ‘141)
and 1 - m € By (DN ) withm < 1, suppose sy, - - - sy, T“n e T'YZk—(l—l) Ty, # 0.Then
we have

(5.4) Sy St T“n T T'sz—(l—l) Tﬂz = T’h o 'Tﬂm T“n T T'sz—(l—l) TIM'

Proof. By applying the relation agB; = 1 fori = 1,...,N, we may write
the word 1 - - - Yo_(1—1) as the reduced word such as By, - - - By, ,. We will prove
the assertion by induction on m. For m = 1, if ,, = ,B]- forsomej =1,...,N,
then sg;, = T] so that (5.5) hods. If n,, = & for some j = 1,..., N, the condition

Sa; T% e T’szf(m) Ty, # 0implies j = hy and
Sa, T% e T"szf iy T =0 forall 7 # hy,

because ar7y1 - - yo_(1-1) is not admissible in Dy. Since Ty = Z Sq,, one has

Sa, T“n e Tmf(lfl) Ty, = TOTHY1 Thk @ Ty, so that (5.5) holds Suppose next
that the desired equality holds for all m’ less than m. Since

Sa " St T’h U T'sz—(l—l)Tﬂl #0
one has by hypothesis of induction

SpSy Sy Ly Ty Ty = S Ty === Ty Ty =+ Ty gy Ty
If171 = Bjforsomej=1,..., N, thens,, = T;and hence (5.5) holds. Suppose next
1 = aj forsome j =1,..., N. We note that T,72 Ty TAY1 . Tm ¢ Ty #0and
< I — 1. Since the reduced form of 71 - - yor_(1—1) i8 Bp, == B, 4/ the reduced
form of 172 - < - w1 - - - Yok—(1—1) must be of the form By, - - - B4,. Hence j must be
g1 and

Sa, ”T% e Tmf(m) T, =0 forallp # q,
because a1 - - - Yok—(1—1) is not admissible in Dy. Hence we have
S”‘jT”IZ o 'Tﬂm T“n T’sz (- 1)T - TOT’?z Tﬁm T’h U T'sz—(l—])TP’I
so that (5.5) holds. Therefore the equality (5.5) holds forall m < I. &
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Keeping the notations above we have

LEMMA 5.12. gb(T,h---T,,mT%--~T72k_(]_1)TMT;IT;2k Ty T, - Ty)
1
= Ny Tz

Proof. The operators T,ﬁ and T%, are T, forn = 0,1,...,N. Since T, are

N
isometries satisfying ). T;T;" = 1, one gets the desired equality. 1
j=0

PROPOSITION 5.13. Suppose sy, - - - Sy, Eyy.opy sy, -+ - sy, # 0. Then

1
* * _
(P(Sﬂl T SﬂmE}ll”'Vlsﬂm e S’71) - (N+ 1)le !

Proof. By Lemma 5.8 (i), one has fork > [ -1,

T o * ok Tk

Epjopy 2 Ty - - T’szf (1-1) Ty, TmT’sz . T“Yl
for all Y1 Yok— (l 1) € LN(Zk Hi—1- ;41) so that Syt 'SﬂmE}‘l“'ﬂlS;m e 'S;;l =
Sy - Sryme' T’YZk—(I—l) Ty, T;:lT,’;Zk o T:;l 7w " Sy, - Since the A-graph system

£CMDN) is predecessor-separated, the projection E up--p; 18 @ minimal projection in
the commutative C*-algebra generated by all projections of the form s; - --s7 s¢,
-8, forall 0y, ..., ¢m € X,m <I. The condition sy, - - -S,YWE},]...MS,’;W . -s,’;l #0
implies the inequality
Spu Sy 2 By
so that sy, - - -sqm Ty, - T«mk -1 Ty # 0. Hence by Lemma 5.11 one sees s, - - - sy,

=k
EVI"'”IS:;m o T’71 Tﬂm T71 ) T72k—(l—1 Ty, T;z Tz;zk (1-1) T:;1 Tﬂm T By
(5.4), Lemma 5 8 (ii), Lemma 5.9 and Lemma 5.12, one gets
E * - 1 C( *1)Nk7(171)
¢(S771 C S B S Z (N+1) 2k—1+2+m ~k
k:l 1
i (1=1) \k—(1-1)
C, /NTUT
k
N+1 g ( N+1 2k=1+2
B 1
NN +1)m”

Since each vertex (B, - - - By,) € V) corresponding to the projection Ey,, ..., has N
incoming edges labeled B;,j = 1,..., N and one incoming edge labeled a,,, the
total number

{61 6m € Bu(DN) = Sy + Sy Epiy Sy, -+ - Sy # 0}
is (N +1)™. By the equality

* *
Z 2 5771 e S’//mEVI”'VISV/m e S771 - 1’
11 €Bm (DN) H1,-stt1=1,..,N
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we obtain
r * * _ 1
Py Sy By Sy 5y,) = NN+ 1) !

Therefore we conclude

THEOREM 5.14. The AF algebra F ycnpy) has a unique tracial state. The admitted
tracial state ¢ is the restriction of the KMS state ¢ on O acnpy) t0 F gcnpy)-

Proof. By Proposition 5.10, the equality ¢(Ey;....,) = ﬁ holds for pq, ...,
€{l,...,N}.Formy,...,ym € Z,if Syy v osquM...ﬂ,s;m . ~s;;1 # 0 we see that the
equality s;, “SymEpy--y = Epy-y holds so that we have

1 *
(P(Sﬁl T SﬁmEﬂl"'P‘lS;;m o 'S;;l) = (N + 1)m (P(s:;m TSy S 'S’7mE}41'“I41)'

*
. 51715771 .

Hence the state ¢ satisfies the equalities:

R {(I\I+11)ml\ﬂ %f =5Sm 'S'/mEHl“‘VlSijzm . '57:71 #0,

0 if =sy, Sy By Sy oSy = 0.
It coincides with the restriction of the unique KMS state ¢ to the AF algebra
FEC”(DN)' [ |

REMARK. Theorem 1.2 is deduced from Theorem 5.14, because KMS state
on the algebra O sci(py) is uniquely determined by a tracial state on the AF algebra
satisfying (4.2).

By using uniqueness of tracial state on the AF algebra F ,ci(py) with Theo-
rem 1.2, we may prove the following theorem.

THEOREM 5.15. Let 714(O gcnpy))” be the von Neumann algebra generated by
the GNS-representation 714 (O acnpy) ) of the algebra O wcupy) by the unique KMS state
@- Then 719(O qcnpy) )" is the injective factor of type TILy /(N4 1).-

Proof. We put M = 714(O4cnpy))”’- As the KMS state ¢ on Ogciipy) is
unique, the von Neumann algebra M is a factor. Since the C*-algebra O cnioy)
is nuclear [16], it is an injective factor. The GNS representation 7, is faithful so
that we may regard O £CHON) as a subalgebra of M. Similarly the von Neumann
subalgebra 77, (F ocnpy))"” of M generated by the algebra 7, (F qcniny)) is a factor
because the C*-algebra F ) has a unique tracial state by Theorem 5.14 and
the tracial state is faithful.

Let 0 be an action of R on the von Neumann algebra M defined by o} (77, (a))
= &_t1og(N+1)(@), @ € Ogcnpy),t € R. Since ¢ is a KMS state at inverse temper-
ature log(N + 1) for gauge action, it yields a KMS state at inverse temperature
—1 for 0 on Ogcnpy)- That is g(xo_1(y)) = ¢@(yx) for y an analytic elements
of (Ogcupy),0,R) and x € Ogcnpy)- Since ¢ is o-invariant, the automorphisms
o1, t € R can be extended to automorphisms on the factor M, denoted by o;. This
means that 0; = ¢} the modular automorphisms of M. As the algebra F 2ChDy)

ECh Dy
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. . . . DN
is realized as the fixed point algebra O.cupy)”  of Ogcnpy) under the gauge
DN

action a™", it is routine to check that the fixed point algebra M“ coincides with
7o(F acnipy))”. Since M is a factor, the Connes spectrum I'(0) coincides with
the Arveson spectrum Sp(c). By a similar manner to the proof of Theorem 8 in
[4] one knows that Sp(c) = Zlog(N + 1). This implies that the von Neumann
algebra M is a factor of type III,, where A = e~ 108(N+1) — ﬁ 1

The above theorem means that the exponent of the topological entropy of
the Dyck shift Dy appears in the type of the factor representation of the unique
KMS state on the C*-algebra O zcnipy) by the gauge action.

General construction of simple C*-algebras of Dyck systems of topological
Markov chains will be studied in a forthcoming paper [21].
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