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ABSTRACT. For an R-linear operator A the resolvent operator is defined out-
side the spectrum of A while the cosolvent operator is defined outside the
proper values of A. In this paper these two functions are studied. Series ex-
pansions are given. A new characterization for the eigenvalues of real matri-
ces is obtained. The cosolvent operator is used to define and analyze analytic
functions of A. An application of this leads to a decomposition of R-linear
operators. Classes of structured R-linear operators are considered.
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INTRODUCTION

In real linear matrix analysis on Cn we are concerned with R-linear opera-
tors defined as

(0.1) x 7−→ Ax = Ax + A#x

for a pair of square matrices A, A# ∈ Cn×n. If A# = 0, then we have the ordinary
matrix-vector product and the operator A is C-linear, while with A = 0 we are
dealing with a conlinear, i.e., antilinear operator. In this manner real linear ma-
trix analysis extends classical matrix theory. For the background of this topic, its
applications and computational tools it provides, see [3], [10], [8], [7], [2]. See also
our recent survey paper [9].

In this paper we study functions associated with the eigenvalues and the
proper values of A. The set of eigenvalues of A consists of those λ ∈ C for which
λI −A is not invertible. The resolvent operator

(0.2) λ 7−→ R(λ,A) = (λI −A)−1

of A, defined for λ outside the eigenvalues of A, gives rise to a real analytic func-
tion. We derive various series expansions for the resolvent operator and make
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remarks on its growth properties. Classes of R-linear operators are introduced
for which the behavior of the resolvent operator can be regarded as understood,
such as normal and circulant-like structures.

The minimal polynomial of A is defined to be the monic polynomial of the
least degree annihilating A. The set of proper values of A consists of the zeros of
its minimal polynomial. Even though for matrices the eigenvalues and the proper
values coincide, for R-linear operators this does not hold in general. In fact, the
set of eigenvalues of A is typically a continuum, and can even be empty, while
the set of its proper values is always discrete and nonempty. The proper values of
A determine the spectrum of the real matrix representation ofA. This interpreted
conversely provides a new characterization for the eigenvalues of real matrices.
The cosolvent operator of A is given by the analytic continuation of the series
expansion

λ 7−→ C(λ,A) =
∞

∑
k=0

λ−k−1Ak

which we show to be analytic exactly outside the proper values of A. With the
cosolvent operator functions of A can be defined and analyzed. Using this, a
decomposition of A is introduced.

This paper is organized as follows. In Section 1, after a summary of basic
facts from real linear matrix analysis, the R-linear resolvent operator is consid-
ered starting from its various series expansions. In Section 2 classes of R-linear
operators are introduced in view of the relatively simple behavior of their re-
solvent and cosolvent operators. Section 3 deals first with polynomials in an
R-linear operator. With the minimal polynomial the proper values are character-
ized. A determinant-like scalar is obtained. To define more general functions,
the cosolvent operator is applied. To operate with functions of R-linear operators
to vectors, in Section 4 some preliminary remarks on local aspects for R-linear
operators are made.

We remark that in this paper we are only concerned with R-linear operators
on Cn while Cn is regarded as representing a finite dimensional Hilbert space
where the conjugation is defined. Infinite dimensional Hilbert spaces are not
considered.

1. THE RESOLVENT OPERATOR

In Cn, regarded as a vector space over C, we use the standard inner product.
We denote the set of R-linear operators on Cn by Mn. Defining the scalar multi-
plication from the left, Mn becomes a vector space over C of dimension 2n2 once
the sum operation is defined in an obvious way. In view of the definition (0.1), we
denote an R-linear operator A ∈ Mn interchangeably by A + A#τ, where τx = x
is the conjugation operator on Cn.
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The spectrum of A ∈ Mn, denoted by σ(A), is the set of eigenvalues of A,
i.e., it consists of those points λ ∈ C for which λI −A is not invertible. A nonzero
vector x ∈ Cn with Ax = λx is called a respective eigenvector. The spectrum of
A is an algebraic plane curve of degree 2n at most [3], [10]. For points λ outside
σ(A) the resolvent operator of A is defined by the formula (0.2).

In connection with the resolvent operator it might actually be natural to
consider the entire family of linear fractional transformations of A, i.e., those

B = (αI − βA)(γI − δA)−1

with α, β ∈ C and γ
δ 6∈ σ(A). This is because a spectral mapping theorem then

holds [9]. Moreover, if λ ∈ σ(A) andAx = λx, then (γ− δλ)x is an eigenvector of
B corresponding to the eigenvalue α−βλ

γ−δλ . Hence, even though a complex multiple
of x is no longer an eigenvector of A in general, it is still an eigenvector of a linear
fractional transformed A.

The operator norm ofA is set as ‖A‖ = max
x 6=0

‖Ax‖
‖x‖

, where ‖x‖ denotes the 2-

norm of a vector x. In addition to the straightforward bound ‖A‖ 6 ‖A‖+ ‖A#‖,
let S (M) = 1

2 (M + MT) denote the symmetric part of a matrix M ∈ Cn×n. Then
there holds ‖A‖ 6 (‖A‖2 + 2‖S (A∗A#)‖+ ‖A#‖2)1/2.

With these preliminaries, suppose A,B ∈ Mn and take λ ∈ C\R. Because
(λA)B 6= A(λB) in general, Mn is not an algebra over C. This defect has peculiar
consequences such as the fact that Jacobson’s lemma (see, e.g., [1]) fails to hold,
i.e., if λI −AB is invertible, then λI − BA may not be invertible. The following,
however, is proved in the classical way.

PROPOSITION 1.1. Assume A,B ∈ Mn. Then σ(AB) ∩R = σ(BA) ∩R and if
B is C-linear, then σ(AB) = σ(BA).

For the same reason other familiar identities must be handled with care in
Mn. In case of the resolvent identity, take µ and λ outside the spectrum of A to
have

(1.1) (λI −A)−1 − (µI −A)−1 = (λI −A)−1(µ− λ)(µI −A)−1,

i.e., the scalar multiplication on the right must be performed between the resol-
vent operators. This yields

(λI −A)−1(µ− λ)(µI −A)−1 = (µI −A)−1(µ− λ)(λI −A)−1

even though the resolvent operators do not commute.
Observe that the resolvent operator is not analytic.

PROPOSITION 1.2. Assume A + A#τ ∈ Mn. If for some λ0 ∈ C the following
limit exists, then A# = 0:

(1.2) lim
λ→λ0

1
λ− λ0

(R(λ,A)−R(λ0,A))

.
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Proof. Denote R(λ0,A) = R + R#τ. Using the resolvent identity we have

1
λ− λ0

(R(λ,A)−R(λ0,A)) =
−1

λ− λ0
R(λ,A)(λ− λ0)R(λ0,A).

Applying this for λ−λ0 ∈ R we obtain−R(λ0,A)2 for the limit (1.2). Combining
this with taking the limit for λ − λ0 ∈ iR gives R#R# = 0 and R#R = 0. Then
R(λ0,A)2 = R(R + R#τ). Since this is invertible, also R must be invertible. Hence
the conlinear part of R(λ0,A) equals zero. This implies that A# = 0.

For real analyticity of the resolvent operator, with the resolvent identity (1.1)
we can compute partial derivatives. For the first order we have for λ = s + it

∂

∂s
(λI−A)−1

|λ=λ0
=−(λ0 I−A)−2 and

∂

∂t
(λI−A)−1

|λ=λ0
=−(λ0 I−A)−1i(λ0 I−A)−1.

Using these together with the product rule of differentiation, higher order partial
derivatives follow readily. These yield us the Taylor series expansion

(1.3) R(s + it,A) =
∞

∑
j=0

∞

∑
k=0

(s− s0)j(t− t0)kAj,k

of the resolvent operator at λ0 = s0 + it0 with the estimate ‖Aj,k‖ 6 (j+k)!
j!k! ‖(λ0 I −

A)−1‖j+k+1 so that max{|s − s0|, |t − t0|} < 1
2‖(λ0 I−A)−1‖ is a sufficient condition

on convergence. As expected, the validity of the Taylor series expansion is linked
with the growth properties of the resolvent operator.

Aside from the Taylor series (1.3), at infinity the resolvent operator can be
expanded into the Neumann series as

(1.4) R(λ,A) =
∞

∑
k=0

( 1
λ
A

)k 1
λ

being valid at least for |λ| > ‖A‖. Similarly, we have the second Neumann series

(1.5) (λI −A− B)−1 =
∞

∑
k=0

((λI −A)−1B)k(λI −A)−1

being valid at least for λ outside σ(A) satisfying ‖(λI −A)−1B‖ < 1. With this,
fix λ outside the spectrum of A and assume B = −µ ∈ C. Then

(1.6) λ +
{

µ ∈ C : ‖(λI −A)−1‖ <
1
|µ|

}
gives us a set in the complement of σ(A). Hence for the points λ + µ in (1.6) we
have yet another series expansion of the resolvent operator as the following, once
(λI −A)−1 is known:

((λ + µ)I −A)−1 =
∞

∑
k=0

((λI −A)−1µ)k(λI −A)−1.



REAL LINEAR RESOLVENT AND COSOLVENT 233

For the growth of the norm of the resolvent operator we have an analogy of
the classical estimate.

THEOREM 1.3. Let A ∈ Mn. Then for any λ ∈ C we have

(1.7)
1

dist(λ, σ(A))
6 ‖(λI −A)−1‖.

Proof. We assume that σ(A) is non-empty and that λ is not in the spectrum
of A since otherwise the claim is true. Take µ ∈ C such that µ + λ is the closest
point in σ(A) to λ. Then by (1.6) we must have ‖(λI −A)−1‖ > 1

|µ| .

If the spectrum of A is empty, then it is understood that the left-hand side
of the inequality (1.7) is zero.

DEFINITION 1.4. The adjoint of an R-linear operator A = A + A#τ is A∗ =
A∗ + A#

Tτ.

For every λ outside σ(A) we have ‖(λI − A)−1‖ = ‖(λI − A∗)−1‖ [3].
Therefore σ(A∗) = σ(A).

If A∗ = A, then A is said to be self-adjoint. If A∗A = I, then A is unitary.

PROPOSITION 1.5. Let A + A#τ ∈ Mn be self-adjoint with the real eigenvalues
λ1 6 λ2 6 · · · 6 λk. If λj+1 − λj > 2‖A#‖, then σ(A) is separated by a vertical line

crossing the real axis at
λj+1+λj

2 .

Proof. The field of values

(1.8) F(A) = {x∗Ax ∈ C : with ‖x‖ = 1}

of A contains σ(A). With iA we have the value ix∗Ax + ix∗A#x such that ix∗Ax
is pure imaginary by the fact that A is Hermitian. Since F(iA) = iF(A), the
imaginary part of any eigenvalue of A is bounded by ‖A#‖.

With r ∈ R the operator norm of R(r,A) equals the reciprocal of the dis-

tance to the nearest real eigenvalue of A [10]. For d =
λj+1−λj

2 > 0 we thus have
1

dist(r,σ(A)) 6 1
d by Theorem 1.3, where r =

λj+1+λj
2 .

In the con-linear case all the conditions on the resolvent operator are neces-
sarily circular symmetric with respect to the origin due to the following proposi-
tion.

PROPOSITION 1.6. Let A be conlinear, i.e., A = A#τ with A# ∈ Cn×n. Then
λ 7−→ ‖(λI −A)−1‖ is circular symmetric with respect to the origin.

Proof. Let x ∈ Cn be of unit length realizing min
y∈Cn , ‖y‖=1

‖λy− A#y‖ and sup-

pose µ ∈ C satisfies |µ| = |λ|. Then for any θ ∈ R we have ‖µeiθ x − A#eiθ x‖ =
‖µe2iθ x − A#x‖. Hence choosing θ such that µe2iθ = λ gives the same mini-
mum.
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It is instructive to use the concanonical form of A# to study the resolvent
operator of A#τ. For the concanonical form, recall that a 2k-by-2k quasi-Jordan
block is

(1.9) Q2k(µ) =
[

0 I
J 0

]
=

[
0 I

Jk(µ) 0

]
with µ ∈ C,

where Jk(µ) is a k-by-k Jordan block. A quasi-Jordan matrix is the direct sum of
quasi-Jordan blocks. For any square matrix A# we have A# = S−1(J ⊕ Q)S with
a Jordan matrix J, a quasi-Jordan matrix Q and an invertible matrix S. This is the
concanonical form of A# of Hong and Horn [5]. Denote D# = J ⊕Q. Then

(λI − A#τ)−1 = S−1
((

λI − 1
λ

D#D#

)−1
+ (|λ|2D#

−1 − D#)−1τ
)

S

under sufficient assumptions on invertibility. Treating the parts of the resolvent
operator separately, we have the bounds ‖R(λ)‖ 6 κ(S)

∥∥(
λI − 1

λ
D#D#

)−1∥∥ as

well as ‖R#(λ)‖ 6 κ(S)‖(|λ|2D#
−1 − D#)−1‖, where κ(S) = ‖S‖‖S−1‖.

In case the spectrum is empty, the lower bound (1.7) is vacuous. For a more
versatile bound, independent of the size of the spectrum of A, take λ ∈ C and a
unit vector x ∈ Cn and set c = ‖λx−Ax‖. Then for any µ outside σ(A) we have
1 = ‖x‖ = ‖(µI −A)−1(µI −A)x‖ 6 ‖(µI −A)−1‖(|λ− µ|+ c), so that

(1.10)
1

|λ− µ|+ c
6 ‖(µI −A)−1‖.

In particular, if the spectrum is nonempty and λ is a nearest eigenvalue to µ,
then we obtain (1.7) by picking x to be an eigenvector corresponding to λ. (And
conversely, if a unit vector x is given, then to minimize c we should choose λ =
x∗Ax.)

If A has an eigenvalue, then x and Ax are parallel for any corresponding
eigenvector x. Equivalently, we have

(
I − xx∗

x∗x
)
Ax = 0. This admits a generaliza-

tion when we consider, for x ∈ Cn restricted to be of unit length, the local minima
of the map

(1.11) x 7−→ ‖((x∗Ax)I −A)x‖2 = (Ax)∗Ax− |x∗Ax|2

on the unit sphere. We denote by δ(A) the set of points λ = x∗Ax, where x ∈ Cn

is of unit length such that (1.11) attains a local minimum at x.

PROPOSITION 1.7. Assume A ∈ Mn and λ = x∗Ax ∈ δ(A). Then

‖(λI −A)x‖−1 = ‖(λI −A)−1‖.

Proof. If λ = x∗Ax ∈ δ(A) is an eigenvalue of A, then the claim is true.
Hence suppose x∗Ax is not an eigenvalue of A. To show that the reciprocal of
‖(λI−A)x‖ equals ‖(λI−A)−1‖, factor λI−A = UDV∗ with unitary U ,V ∈ Mn
and D = D + D#τ with diagonal matrices D and D#; see [3]. Hence we have
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‖(λI −A)x‖ = ‖Dy‖ with y = V∗x. If

‖Dy‖ > ‖(λI −A)−1‖ = min
z∈Cn , ‖z‖=1

‖Dz‖,

then choose yε of unit length arbitrarily close to y such that ‖Dy‖ > ‖Dyε‖. This
can be done since D is diagonal. Then with xε = Vyε we have a vector of unit
length arbitrarily close to x such that

‖λx−Ax‖ > ‖λxε −Axε‖ > ‖(x∗εAxε)xε −Axε‖.

This is a contradiction and therefore ‖Dy‖ = 1
|D−1‖ .

We have δ(A) 6= ∅ by the fact that the map (1.11) is continuous and defined
on a compact set. Moreover, there holds σ(A) ⊂ δ(A) ⊂ F(A), where F(A)
denotes the field of values of A defined in (1.8). Also δ(λA) = λδ(A) and δ(λI +
A) = λ + δ(A) for any λ ∈ C.

EXAMPLE 1.8. Let A# ∈ Cn×n. Then δ(A#τ) is circular symmetric with re-
spect to the origin by the proof of Proposition 1.6. For A = αI + A#τ with α ∈ C
and A#

T = −A# we have δ(A) = {α}. To see that δ(A) 6= σ(A) can hold, take
A =

[ 0 1
−1 0

]
τ whose spectrum is empty.

An R-linear operator A needs to be genuinely R-linear for δ(A) to yield
points outside the spectrum as follows.

THEOREM 1.9. For A ∈ Cn×n the map λ 7→ ‖(λI − A)−1‖ is not constant in an
open set.

Proof. Assume ζ is not in the spectrum of A and set Â = (ζ I − A)−1. Then
for 4z = 4s + i4t small enough we have

M4z = ((ζ +4z)I − A)−1 =
∞

∑
k=0

(−1)k4zk Âk+1.

Hence M4s = Â∗ Â +4s(−Â∗ Â2 − Â∗2 Â +4s · · · ). If a unit vector x realizes the
norm of Â, we have

(1.12) M4sx = ‖Â‖2x +4s(−Â∗ Â2 − Â∗2 Â +4s · · · )x.

If the norm of the resolvent is constant in a neighborhood of ζ, the last term in
(1.12) must be identically zero. Hence (Â∗ Â2 + Â∗2 Â)x = 0. The same arguments
with Mi4t give (Â∗ Â2 − Â∗2 Â)x = 0. Summing these yield Â∗ Â2x = 0, which is
a contradiction since Â is invertible.

Combining Proposition 1.7 with (1.12) we obtain the following corollary.

COROLLARY 1.10. For A ∈ Cn×n there holds δ(A) = σ(A).

See Proposition 2.2 below for another family of R-linear operators whose
members A satisfy δ(A) = σ(A).
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With A =
[ 0 1
−1 0

]
τ from Example 1.8 we can infer that the map

λ 7−→ log ‖(λI −A)−1‖

need not be subharmonic (it has a local maximum at λ = 0 in this particular case).
For subharmonicity in the C-linear case, see [1].

2. NORMAL AND CIRCULANT-LIKE STRUCTURES

In what follows we give examples of R-linear operators whose resolvent
operator is readily computable. To this end, with α, β ∈ C, the R-linear operator
defined by

(2.1) x 7−→ αx + βx

is called a circlet and denoted by α + βτ. At times it is very useful to regard
circlets as to extend scalars.

We have (λI − α− βτ)−1 = 1
|λ−α|2−|β|2 (λ− α + βτ) so that the spectrum of

a circlet α + βτ is the circle of radius |β| centered at α. In particular, the set of
circlets is a noncommutative ring. For the operator norm

(2.2) ‖(λI − α− βτ)−1‖ =
1

|λ− α| − |β|
holds.

For more generality, an R-linear operator D = D + D#τ ∈ Mn is said to
be diagonal if both D and D# are diagonal matrices. Equivalently, D is the direct
sum of circlets on C.

DEFINITION 2.1. A ∈ Mn is normal if there exists a unitary matrix U ∈
Cn×n such that U∗AU is diagonal.

If A is normal, then its spectrum consists of the circles corresponding to the
spectra of the circlets on the diagonal of U∗AU. In particular, then σ(A) 6= ∅ so
that by (2.2) we have the following result.

PROPOSITION 2.2. If A ∈ Mn is normal, then the equality holds in (1.7).

Normal R-linear operators can be identified as follows, where H = 1
2 (A +

A∗) and K = 1
2i (A − A∗) denote the Hermitian and skew-Hermitian parts of

A ∈ Cn×n.

THEOREM 2.3. A ∈ Mn is normal if and only if A is normal and A#, HA# and
KA# are symmetric.

Proof. Use Corollary 5.3 of [4] together with the fact that due to normality
the matrices H and K commute to deduce that there exists a unitary matrix U ∈
Cn×n such that U∗AU is diagonal.
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An algorithm to diagonalize a normal R-linear operator A is obtain by ap-
plying plane rotations, as in Jacobi’s method for normal matrices, to annihilate
off-diagonal elements of A and A#.

Equality can hold in (1.7) for every λ even if A is not normal.

EXAMPLE 2.4. Let A : C3 → C3 be the direct sum of
[ 0 1
−1 0

]
τ on C2 and 0

on C. Hence the resolvent operator (λI −A)−1 is the direct sum of

(2.3)
1

|λ|2 + 1

( [
λ 0
0 λ

]
+

[ 0 1
−1 0

]
τ
)

on C2 whose norm is
1√

|λ|2 + 1
,

and 1
λ on C whose norm is 1

|λ| . Thus the norm of the resolvent of A equals the
reciprocal of the distance to the spectrum even though A is not normal.

For a canonical family of normal R-linear operators, in what follows we
denote by P ∈ Cn×n the “backward identity”, i.e., the permutation matrix with
ones on the diagonal joining the left lower corner with the right upper corner. By
C we denote the set of circulant matrices.

DEFINITION 2.5. Let P be the backward identity. Then A ∈ Cn×n is called a
circulant-Hankel matrix if A = PC for C ∈ C.

In other words, a circulant-Hankel matrix has cyclically appearing antidi-
agonals. We denote such matrices by PC.

EXAMPLE 2.6. If A ∈ C and A# ∈ PC, then A is normal and can be diagonal-
ized with U = 1√

n Fn, where Fn is the Fourier matrix [10].

We do not know if the spectrum of a nonnormal A + A#τ ∈ Mn can be
empty in case A# is symmetric while no restrictions are set on A. In the dimen-
sions 1 and 2 we have the following suggestive result.

PROPOSITION 2.7. Assume A ∈ Mn, with n = 1 or 2, has a symmetric antilin-
ear part A#. Then σ(A) 6= ∅.

Proof. The case n = 1 is clear so let us consider n = 2. After a possible
similarity transformation with a unitary U ∈ C2×2, we can assume the antilinear
part of A to be diagonal, say A# = diag(d1, d2). Consider (λI − A)x − A#x =
0. We can assume a12 6= 0 since otherwise the spectrum consists of circles and
is thereby non-empty. Solving x2 from the first equation gives x2 = 1

a12
((λ −

a11)x1 − d1x1). Substituting this into the second equation yields

(−a21a12 + (λ− a22)(λ− a11)− d1d2)x1 − (d1(λ− a22) + d2(λ− a11))x1 = 0.

For some λ ∈ C this must have a non-zero solution since a scalar real linear
equation ax1 − bx1 = 0 has a non-zero solution x1 if and only if |a| = |b|. To see
this, observe that −a21a12 + (λ− a22)(λ− a11)− d1d2 is a polynomial, so it has a
zero. Moreover, it is of degree two while d1(λ− a22) + d2(λ− a11) is of degree one
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so that it grows faster in absolute value as |λ| → ∞. Therefore, being continuous,
they must equal in modulus at some point λ ∈ C.

The proof is valid also in the case there exists an invertible S ∈ C2×2 such
that SA#S−1 is diagonal.

The case n = 2 is of interest because then the eigenvalue problem can still
be solved by hand as follows. With a unitary U ∈ C2×2 let N = UAU∗ be the
Schur decomposition of A. Take N = UAU∗ and look at the eigenvalue problem[

n11 n12
0 n22

] [
x1
x2

]
+

[
n#11 n#12
n#21 n#22

] [
x1
x2

]
= λ

[
x1
x2

]
.

We assume n#21 6= 0 since otherwise the spectrum is known (Theorem 2.6 of [3]).
Without loss of generality, we may assume n11 = 0 (after translating the problem
by n11 I). Scale the eigenvector so that x2 is of unit modulus, i.e., x2 = eiθ2 with
θ2 ∈ [0, 2π). Then solve x1 from the second equation in terms of x2 and λ insert it
in the first equation. As a result, we end up having an equation of the form

(2.4) |λ|2 + bλ + c = 0 with b = b(θ2), c = c(θ2) ∈ C.

From this it is a simple task to find λ in terms of θ2 (and all those θ2 ∈ [0, 2π) for
which there exists a solution λ give rise to the corresponding eigenvector x with
x2 = eiθ2 ).

In view of these two dimensional manipulations, define a more general
circulant-like structure as follows.

DEFINITION 2.8. C + PC ⊂ Cn×n consists of the matrices representable as
the sum of a circulant matrix and a circulant-Hankel matrix.

Observe that C+ PC is an algebra over C.

PROPOSITION 2.9. Let A, A# ∈ C+ PC. Then A + A#τ is unitarily similar to an
R-linear operator with blocks of size 2-by-2 at most located at the respective positions.

Proof. Take U = 1√
n Fn, where Fn is the Fourier matrix. Then U∗AU =

D1 + D2 ⊕ D̃1, where D1 is a diagonal matrix while D2 is a scalar and D̃1 ∈
C(n−1)×(n−1) is antidiagonal, i.e., non-zero elements appear only on the diago-
nal joining the left lower corner with the right upper corner. Similarly we obtain
U∗A#U = D3 + D4 ⊕ D̃2, where D3 is a diagonal matrix while D2 is a scalar and
D̃2 ∈ C(n−1)×(n−1) is antidiagonal. Denote by ej the standard basis vectors of
Cn. For n even, span {e1, e n

2 +1} and span {ej+1, en−j+1}, for j = 1, . . . , n−2
2 , are

mutually orthogonal invariant subspaces of U∗AU. For n odd, span {e1} and
span {ej+1, en−j+1}, for j = 1, . . . , n−1

2 , are mutually orthogonal invariant sub-
spaces of U∗AU. The claim follows after applying the corresponding permuta-
tion similarity transformation.

By the reasoning that led to the equation (2.4), a closed form solution to the
spectrum can be given for R-linear operators characterized by this proposition.
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In this sense the eigenvalue problem can be regarded as understood for A ∈ Mn
with the parts from C+ PC.

For another instance where (2.4) is of use, consider the following structure
proposed in [8].

EXAMPLE 2.10. Assume the right-rank of A is at most j, i.e., A is repre-
sentable as A = (U + Vτ)W∗ with U, V, W ∈ Cn×j. Then for A∗ this forces any of
its eigenvectors to belong to the span of the columns of W. Hence, since this is an
invariant subspace of A∗, for j = 2 we can consider the restriction of A∗ to it and
find a closed form solution to the spectrum.

The same holds if the left-rank of A is at most two, i.e., we have A =
W(U∗ + VTτ) with U, V, W ∈ Cn×2.

To end this section, observe that an R-linear operatorA can be split uniquely
into the so-called real and imaginary parts as A = R+ iI , where

R =
1
2
(A + A# + (A# + A)τ) and I =

1
2i

(A− A# + (A# − A)τ),

i.e., the ranges of R and I belong to Rn. For such parts (or C-linearly similar to
such parts) we have the following way of locating the spectrum.

PROPOSITION 2.11. λ = reiθ is an eigenvalue of M + Mτ ∈ Mn if and only if
r ∈ σ(e−iθ M + eiθ M).

Proof. Assume Mx = λx with λ = reiθ . Since the left-hand side belongs
to Rn, we must have x = e−iθy with y ∈ Rn. Hence we obtain an equivalent
standard eigenvalue problem (e−iθ M + eiθ M)y = ry.

3. THE COSOLVENT OPERATOR AND FUNCTIONS OF R-LINEAR OPERATORS

The eigenvalues of a matrix are determined by the zeros of its minimal poly-
nomial. In this section we develop the respective structure in Mn. In this case the
role of the zeros of the minimal polynomial is taken by the so-called proper val-
ues. The resolvent operator is replaced with the cosolvent operator allowing us
to define analytic functions of R-linear operators.

For a tool needed in what follows, define ψ : Mn → C2n×2n by

(3.1) ψ(A) =
[

A A#

A# A

]
.

We call ψ(A) the complex matrix representation of A. The function ψ is injective
and isometric and satisfies ψ(A+B) = ψ(A) + ψ(B) and ψ(AB) = ψ(A)ψ(B) for
A,B ∈ Mn. With the unitary matrix E = 1√

2

[ I iI
I −iI

]
we obtain the so-called real
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matrix representation

(3.2) φ(A) = E∗ψ(A)E =
[

Re(A + A#) Im(−A + A#)
Im(A + A#) Re(A− A#)

]
of A. Then φ : Mn → R2n×2n is bijective and has the same properties as ψ. From
this we can conclude that σ(ψ(A)) = σ(φ(A)) consists of at most 2n points and
is symmetrically located with respect to the real axis.

Let now q(z) =
k
∑

j=0
cjzj be a polynomial with the coefficients cj = sj + itj ∈

C. Then the polynomial q in A ∈ Mn is defined to be the R-linear operator

q(A) =
k

∑
j=0

cjAj. The set of polynomials in A, which we denote by P(A), is a sub-

space of Mn of dimension 2n at most. It is invariant under multiplications from
the right by polynomials in A with real coefficients. In fact, if q = q1q2 for two
polynomials q1 and q2 such that q2 has real coefficients, then q(A) = q1(A)q2(A).

If A = SBS−1 for an invertible S ∈ Mn, then we have

(3.3) q(A) = S
( k

∑
j=0

(sj + S−1iStj)B j
)
S−1.

In particular, q(A) = Sq(B)S−1 in case q has real coefficients, or S is C-linear. If
S is conlinear, then q(A) = Sq∗(B)S−1, where q∗(z) = q(z).

DEFINITION 3.1. The minimal polynomial of A ∈ Mn is the monic polyno-
mial q of the least degree annihilating A. The zeros of q are called the proper
values of A.

The uniqueness of the minimal polynomial follows by the reasoning analo-
gous to the C-linear case. The degree of the minimal polynomial of A ∈ Mn is
bounded by 2n and if A# = 0, then by n [3]. In particular, the dimension of P(A)
equals the degree of the minimal polynomial of A. If r ∈ R, then the degrees of
the minimal polynomial of A and rI +A coincide.

Assume q is the minimal polynomial of A ∈ Mn. Then A is said to be
algebraic of degree deg(q). The degree of A is denoted by deg(A). By (3.3), for
an invertible C-linear S we have deg(S−1AS) = deg(A).

PROPOSITION 3.2. Let A ∈ Mn. If the left-rank of A is j, then A is algebraic of
degree 2j + 1 at most.

Proof. By Example 2.10, we may assume A = W(U∗ + VTτ) with U, V, W ∈
Cn×j. Let AW denote the restriction of A to the span of the columns of W which
is an invariant subspace of A. Then p(AW) = 0 for a polynomial of degree 2j at
most. But then also p(A)A = 0, since the range of A is in the span of the columns
of W. Since the polynomial q2(z) = z has real coefficients, the polynomial pq2
annihilates A.
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PROPOSITION 3.3. Let A ∈ Cn×n. Then A + Aτ ∈ Mn is algebraic of degree
n + 1 at most.

Proof. The restriction of A to Rn gives rise to an R-linear operator with the
minimal polynomial p of degree n at most. Since the range of A belongs to Rn,
we have p(A)A = 0 and the polynomial p(z)z thus annihilates A.

Observe that we can have a difference in taking the adjoint.

EXAMPLE 3.4. The degrees of the minimal polynomial of an R-linear oper-
ator and its adjoint can differ. To see this, take a so-called operet O = (u + vτ)w∗

such that d = w∗u 6∈ R and w∗v = 0 with v 6= 0. Then O2 = Od, i.e., we
have O∗2 − dO∗ = 0 so that p(z) = z2 − dz is the minimal polynomial of O∗.
The minimal polynomial of O is q(z) = z3 − (d + d)z2 + |d|2z. Therefore also
dim P(O) > dim P(O∗). Observe though that p and q have two common zeros.
This is not an accident; see Theorem 3.13.

Example 3.4 also illustrates that it is of interest to set the “right” polynomial
in A by performing the scalar multiplication from the right.

DEFINITION 3.5. Let q(z) =
k
∑

j=0
cjzj. Then the respective right polynomial

in A ∈ Mn is the R-linear operator qr(A) =
k
∑

j=0
Ajcj.

In general q(A) 6= qr(A). By taking the adjoint of a polynomial in A we
obviously obtain a right polynomial in A∗. The set of right polynomials in A is
a linear manifold over R of Mn. Observe though that if the scalar multiplication
in Mn had been defined from the right, then the set of right polynomials in A
would be a subspace of Mn such that for A,B ∈ Mn

(A,B) = tr (B∗A + B#
T A#)

would give us an inner product on Mn. Then computing the first linearly depen-
dent element in the sequence {I,A∗,A2∗, . . .}, for instance, by using the Gram-
Schmidt process with respect to this inner product would yield us the minimal
polynomial of A, after taking the adjoint.

With the minimal polynomial we have a determinant-like scalar as follows.

PROPOSITION 3.6. Let q(z) = zk +
k−1
∑

j=0
cjzj be the minimal polynomial of A ∈

Mn. Then A is invertible if and only if c0 6= 0.

Proof. Assume that A is invertible. If c0 = 0, then
(
Ak−1 +

k−1
∑

j=1
cjAj−1

)
A =

0. Hence applying A−1 from the right shows that q was not the minimal polyno-
mial of A, which is a contradiction. Therefore c0 6= 0.
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Assume A is not invertible. If c0 6= 0, then Ak +
k−1
∑

j=1
cjAj = c0 I. Thus,

1
c0

(
Ak−1 +

k−1
∑

j=1
cjAj−1

)
A = I, which contradicts the assumption that A is not

invertible. Hence c0 = 0.

If S ∈ Cn×n is invertible, then A and SAS−1 have the same minimal poly-
nomial and hence the same c0, i.e., c0 is preserved in C-linear similarity transfor-
mations.

Let q(z) = zk +
k−1
∑

j=0
cjzj be the minimal polynomial of an invertible A ∈ Mn.

Because then c0 6= 0, applying A−1 from the right to the identity q(A) = 0 gives
explicitly the inverse of A as a polynomial in A of degree k− 1.

For more general functions of R-linear operators, consider the Sylvester
equation

(3.4) λC(λ,A)− C(λ,A)A = I.

whose solution C(λ,A) we call the cosolvent operator of A. For |λ| > ‖A‖ we

have the expansion C(λ,A) =
∞

∑
k=0

λ−k−1Ak and otherwise extend this series by

analytic continuation. Hence we obtain an analytic function outside its poles.
The poles of the cosolvent operator of A are denoted by σC(A). In particular, if
A is C-linear, then its cosolvent operator coincides with its resolvent operator. In
such a case σC(A) thus consist of at most n complex numbers.

Before inspecting properties of the cosolvent operator, we give two further
examples. To this end, if S ∈ Cn×n is invertible, then

(3.5) C(λ, SAS−1) = SC(λ,A)S−1.

EXAMPLE 3.7. For a circlet α + βτ the cosolvent is

C(λ, α + βτ) =
1

λ2 − (α + α)λ + |α|2 − |β|2
(λ− α + βτ)

having singularities at λ = Re α ±
√
|β|2 − (Im α)2. Consequently, for a normal

A ∈ Mn we can use this blockwise with (3.5) to find its cosolvent operator.

The above formula for the cosolvent operator of a circlet can also be used
in the upper (equivalently lower) triangular case to locate σC(A). Recall that A +
A#τ is said to be upper triangular if A and A# are upper triangular matrices. If
SAS−1 is upper triangular with an invertible S ∈ Cn×n, then the poles of the
cosolvents on the diagonal of SAS−1 determine σC(A).

With these remarks, the conlinear case can be handled as follows.

EXAMPLE 3.8. Let A# = S−1(J ⊕Q)S be the concanonical form of A#. Since
for a Jordan matrix J we know σC(Jτ), to have σC(A#τ) it suffices to find σC(Q2kτ)



REAL LINEAR RESOLVENT AND COSOLVENT 243

for a quasi-Jordan block Q2k = Q2k(µ) =
[

0 I
Jk(µ) 0

]
=

[
0 I
J 0

]
. The eigenvalues of

Q2k are µ1/2. Knowing this we obtain

C(λ, Q2kτ) =
[

λ(λ2 I−J)−1 0
0 λ(λ2 I−J)−1

]
+

[
0 (λ2 I−J)−1

(λ2 I−J)−1 J 0

]
τ.

To study the cosolvent operator of A we define an auxiliary C-linear opera-
tor A : Mn →Mn as

(3.6) A(X ) = XA,

i.e., the “right multiplication by A” on Mn. In what follows we establish a con-
nection between the spectrum of A and σC(A).

For a polynomial p(z) =
k
∑

j=0
cjzj with the coefficients cj = sj + itj ∈ C

p(A)(X ) =
k

∑
j=0

cjXAj = X
k

∑
j=0

sjAj + iX
k

∑
j=0

tjAj

for X ∈ Mn. Hence for a C-linear X this equals X p(A). Therefore p(A)(I) =
p(A) in particular. Moreover, P(A) is an invariant subspace of p(A) for any poly-
nomial p such that

(3.7) p(A)(q(A)) = p(A)(q(A)(I)) = pq(A)

holds for any polynomial q. In case p has real coefficients, with B = p(A) we
have the equality B = p(A).

The eigenvalue problem for the matrix representations (3.1) and (3.2) of A
can be formulated in terms of the operator A.

PROPOSITION 3.9. Let A ∈ Mn. Then σ(A) = σ(ψ(A)).

Proof. Assume λ ∈ σ(A). Then A(X ) = λX if and only if ψ(A)∗
[

X∗
X#

∗

]
=

λ
[

X∗
X#

∗

]
. Hence any non-zero column of

[
X∗
X#

∗

]
gives an eigenvector of ψ(A)∗

corresponding to λ. Therefore λ ∈ σ(ψ(A)).
Conversely, take an eigenvector of ψ(A)∗ corresponding to λ repeatedly n

times to form the columns of
[

X∗
X#

∗

]
. Then X + X#τ gives an eigenvector of A

corresponding to λ.

Hence the spectrum of A is symmetrically located with respect to the real
axis implying that as such it cannot yield σC(A). For a correct object, denote
by AI the restriction of A to the subspace P(A). By its invariance, there holds
σ(AI) ⊂ σ(A).

THEOREM 3.10. Assume A ∈ Mn. Then C(λ,A) = R(λ, AI)(I) and

σC(A) = σ(AI).
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Proof. For |λ|> ‖A‖ we have R(λ, AI)(I) =
∞
∑

j=0
λ−j−1Aj = C(λ,A) and hence

both extend uniquely to have the same domain of definition. Applying (3.7) for

any polynomial q(z) =
k
∑

j=0
cjzj we have R(λ, AI)(q(A)) =

k
∑

j=0
cjR(λ, AI)(I)Aj so

that the spectrum of AI consists of the poles of R(λ, AI)(I).

Since the minimal polynomials ofA and AI coincide, we have the following
corollary.

COROLLARY 3.11. The set of proper values of A equals σC(A).

We denote the proper values of A interchangeably by σC(A) and call σC(A)
the proper values of A. Consequently, there are at most deg(A) distinct proper
values.

EXAMPLE 3.12. For an illustration of Corollary 3.11, let A, A# ∈ C + PC.
Then by Proposition 2.9 we can consider 2-by-2 problems to locate σC(A). Hence
we need to find the zero sets of polynomials of degree at most four, after finding
the minimal polynomial for each 2-by-2 problem separately.

Under similarity transformations the proper values behave as follows.

THEOREM 3.13. Let A ∈ Mn and assume S ∈ Mn is invertible. Then

σC(SAS−1) ⊂ σ(ψ(A)) and σC(SA∗S−1) ⊂ σ(ψ(A)).

Proof. Let first S = I. For the first inclusion, the poles of R(λ, AI)(I) are
among the poles of R(λ, A) which, by Proposition 3.9, are exactly the points of
σ(ψ(A)). Since σ(ψ(A)) is located symmetrically with respect to the origin, we
have σ(ψ(A∗)) = σ(ψ(A)∗) = σ(ψ(A)). Hence the second inclusion follows from
σC(A∗) ⊂ σ(ψ(A∗)).

The general case follows from the equality σ(ψ(SAS−1)) = σ(ψ(A)).

This is quite striking because A and A∗ can even have a different number of
proper values; see Example 3.4. Observe also that the minimal polynomials (and
their degrees) of A and SAS−1 differ in general.

From Theorem 3.13 it follows that the absolute values of the proper values
of A are bounded by the norm of A.

COROLLARY 3.14. The set of algebraic elements of degree k at most is closed in
Mn for any k ∈ N.

Proof. For any A we have ‖A‖ = ‖ψ(A)‖. Moreover, if q is the minimal
polynomial of A, then its roots are contained in σ(ψ(A)). Using these two facts
together with the steps of the proof of Theorem 3.2.6 in [1] gives the claim.

PROPOSITION 3.15. Let A ∈ Mn. Then σC(A)∩R=σ(A)∩R=σ(ψ(A))∩R.



REAL LINEAR RESOLVENT AND COSOLVENT 245

Proof. Since the second equality is know, we only need to prove the first
one.

We have σC(A) = σ(AI) ⊂ σ(A) = σ(ψ(A)). On the other hand, since
real numbers commute with the cosolvent operator, we also have σ(A) ∩ R ⊂
σ(AI) ∩R. But σ(A) ∩R=σ(ψ(A))∩ R.

It thus follows that σC(rI +A) = r + σC(A) for r ∈ R. This does not hold for
complex translations r. To see this, take A with the empty spectrum and use the
fact that σC(A) is never empty together with Proposition 3.15. To get an idea of the
behavior of proper values in complex translations, look at circlets in Example 3.7.

Observe that the map

(3.8) A 7−→ σC(A)

is not continuous in Mn in general. In fact, consider the C-linear circlet α + βτ
with α = i and β = 0 so that σC(α + βτ) = {i}. Take a perturbation ε1 + ε2τ

with ε1, ε2 ∈ R. Then i + ε1 + ε2τ has the proper values ε1 ±
√

ε2
2 − 1 given by the

formula presented in Example 3.7.
In spite of this we have the following “extended” continuity of (3.8) by the

fact that the map A 7→ σ(ψ(A)) is continuous in Mn.

THEOREM 3.16. Assume A ∈ Mn. If λ ∈ σ(ψ(A)), then either λ ∈ σC(A) or
λ ∈ σC(A).

Proof. Let p be the minimal polynomial of AI and assume that for λ ∈
σ(ψ(A)) neither λ ∈ σC(A) nor λ ∈ σC(A). Take the monic polynomial s of
the smallest possible degree such that the product ps has real coefficients. Then
neither λ nor λ is a zero of s. Moreover, 0 = p(AI)(s(A)) = ps(A) to which
corresponds ψ(ps(A)) = ps(ψ(A)) by the fact that the coefficients of ps are real.
Hence ps annihilates also ψ(A). This is a contradiction since neither λ nor λ was
a zero of ps.

We can thus conclude that knowing the proper values of A yields the spec-
trum of its matrix representations (3.1) and (3.2). This surprising fact could pos-
sibly be benefitted from in designing algorithms to compute eigenvalue approxi-
mations to real matrices.

We can also conclude that A is nilpotent if and only if σC(A) = {0} by the
more general consequence

(3.9) max
λ∈σC (A)

|λ| = max
λ∈σC (A∗)

|λ| = lim
j→∞

‖Aj‖1/j

of Theorem 3.16 corresponding to the classical Beurling-Gelfand formula. Hence
conditions, for instance, on the power boundedness ofA should be formulated in
terms of the cosolvent operator of A. To give an example, if A is star-commuting,
i.e., it satisfies A∗A = AA∗, then the norm of A equals (3.9).
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COROLLARY 3.17. Assume λ ∈ σC(A) ∩ σ(ψ(A)). Then the order of the pole λ
is the same for the cosolvent operator of A and the resolvent operator of ψ(A).

Proof. Let p be the minimal polynomial of AI and take again the smallest
degree monic polynomial s such that the product ps has real coefficients. Then
0 = p(AI)(s(A)) = ps(A) and therefore ps(ψ(A)) = 0, so that the degree of the
minimal polynomial of ψ(A) is bounded by the degree of ps. By this construction,
the order of each zero λj of the polynomial ps is the maximum of the order of the
zeros λj and λj of p.

Define G = G + G#τ : Cn → C2n with G = 1√
2

[
I
0

]
and G# = 1√

2

[
0
I

]
.

Let R(λ, ψ(A)) denote the resolvent operator of the matrix ψ(A). Then we have
C(λ,A) = 2G∗R(λ, ψ(A))G for λ outside σ(ψ(A)) so that the poles of C(λ,A)
are not of higher order than the poles of R(λ, ψ(A)). Hence ps is the minimal
polynomial of ψ(A).

In view of Theorems 3.13 and 3.16, those invertible S ∈ Mn that minimize
deg(SAS−1) are of interest. In fact, then for B = SAS−1 we have BI : P(B) →
P(B) of the least complexity that still determines σ(ψ(A)). For instance, if we
obtain a C-linear B, then dim P(B) = deg(B) 6 n.

Since at every point λ outside σC(A) the cosolvent operator belongs to P(A),
it can be regarded as a simpler object than the resolvent operator of A. Still,
knowing the cosolvent operator yields the resolvent operator as follows.

PROPOSITION 3.18. Let A ∈ Mn and λ, µ, ζ ∈ C. If M = C(ζ,A)− C(µ,A)
is invertible and λ 6∈ σ(A), then

(λI −A)−1 = (Mλ− ζM+ (µ− ζ)C(µ,A))−1M.

Proof. We have M(λI − A) = Mλ − ζM + (µ − ζ)C(µ,A) by using the
identity (3.4). Multiplying this with the inverses yields the claim.

As a special case of the above equality we obtain “a cosolvent identity”
λC(λ,A)− µC(µ,A) = (C(λ,A)− C(µ,A))A.

Aside from polynomials in A and its resolvent and cosolvent operator, let
us now consider more elaborate functions of A. The exponential of A ∈ Mn is a
natural next candidate being defined by the power series

(3.10) eA =
∞

∑
k=0

1
k!
Ak.

If A and B commute, then we have eA+B = eAeB .

EXAMPLE 3.19. For a circlet α + βτ with α ∈ R the parts commute and we
obtain

(3.11) eα+βτ = eα
(

cos(i|β|)− iβ
|β|

sin(i|β|)τ
)

.
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In the self-adjoint case this can be used as follows.

PROPOSITION 3.20. Let A ∈ Mn be self-adjoint. Then eA = UeDU ∗ with a
unitary U and a diagonal D = D + D#τ having D ∈ Rn×n.

Proof. There exists a unitary U such that U ∗AU = D with a diagonal D hav-
ing D ∈ Rn×n [9]. (For an algorithm to find U , see [10].) Since all the coefficients
in the expansion of the exponential (3.10) are real, we have eA = UeDU ∗.

With convergent power series functions of A can be defined analogously.
For more generality and by using the identity C(λ,A) = R(λ, AI)(I) we set the
following definition. Observe that the differential appears on the left to empha-
size the fact that in Mn the scalar multiplication is performed from the left.

DEFINITION 3.21. Let A ∈ Mn. For f analytic in a domain Ω containing
σC(A), set

f (A) =
1

2πi

∫
Γ

dζ f (ζ)C(ζ,A),

where Γ is a smooth contour surrounding σC(A) in Ω.

Alternatively, we could use f (A) = f (AI)(I) to define the element f (A) ∈
Mn. Because span{I, f (A), f 2(A), . . .} ⊂ P(A) holds, the degree of f (A) is at
most the degree of A.

THEOREM 3.22. Let A ∈ Mn. If p is a polynomial with real coefficients, then

σC(p(A)) = p(σC(A)).

Proof. Since σC(A) = σ(AI), we have p(σC(A)) = p(σ(AI)) = σ(p(AI)).
Hence it remains to prove that σ(p(AI)) = σC(p(A)).

Since p has real coefficients, with B = p(A) there holds B = p(A). If
span{I, p(A), p2(A), p3(A), . . . } = P(A), then p(AI) = p(A)I = BI . Hence
λ is a proper value of B if and only if it is an eigenvalue of p(AI). Therefore
σ(p(AI)) = σC(p(A)).

If we have span{I, p(A), p2(A), p3(A), . . . } ⊂ P(A), then σ(p(A)I) = σ(BI)
⊂ σ(p(AI)). However, since I is a cyclic vector for AI , we have σ(p(AI)) ⊂
σ(p(A)I). Therefore σ(p(AI)) = σC(p(A)).

For instance, if A is invertible, then we can find a polynomial p with real
coefficients such that A−1 = p(A).

With this theorem we introduce a decomposition of A that in the C-linear
case would separate, generically, the Jordan block structure of the operator. To
this end, take a proper value λj ∈ σC(A) and form the respective pair {λj, λj}.
Naturally, if λj is real, then the pair reduces to a point. For each such pair (or a real
point) choose the monic polynomial lj of the least degree that attains the value
one both at λj and at λj, and is zero elsewhere on σ(ψ(A)). Hence qj(z) = zlj(z)
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has real coefficients. If k is the number of such polynomials, then we have

(3.12) A =
k

∑
j=1

Aj with Aj =
1

2πi

∫
Γ

dζ qj(ζ)C(ζ,A).

By the construction we have σC(Aj) ⊂ {λj, λj, 0} such that k 6 2n. If there are no
real proper values, then k 6 n.

EXAMPLE 3.23. Observe how the decomposition (3.12) splits a circlet α + βτ
with two separate real proper values. For instance, with α = 1 + 3i and β = 5 we
have σC(A) = {−3, 5} and α + βτ = A1 +A2 = 3

8 (−4 + 3i + 5τ) + 5
8 (4 + 3i + 5τ).

Otherwise a circlet is not split.

With lj defined above we obtain an idempotent R-linear operator Pj =
1

2πi
∫
Γ

dζ lj(ζ)C(ζ,A) satisfying P2
j = Pj and APj = PjA.

A particular class of R-linear operators is obtained as follows. If f (A) =
p(A) for some polynomial p with real coefficients, then f (A) is representable by a
real polynomial. This is of interest since we obviously have σC( f (A)) = p(σC(A)).
For instance, there holds σC(eA) = eσC (A). Furthermore, if f (A) is representable
by a real polynomial, then it can also be represented with a right polynomial.

EXAMPLE 3.24. For the exponential we have eA =
∞
∑

k=0

1
k!A

k =
∞
∑

k=0
Ak 1

k! and

therefore eA can also be represented with a right polynomial in A. The degree of
the right polynomial needed is at most deg(A∗).

For A having sufficiently small norm, the logarithm log(I + A) yields an-
other important example of a function of A that is representable by a real poly-
nomial.

4. LOCAL ASPECTS AND REPRESENTATION BY POLYNOMIALS

We end this paper by making some very preliminary observations on ap-
plying functions of R-linear operators to vectors.

In spite of the many similarities with the C-linear theory, Kaplansky’s theo-
rem does not hold in the R-linear case. To see this, consider the following exam-
ple.

EXAMPLE 4.1. For a simple example that is readily generalized, consider
A =

[
1 0
0 2

]
τ on C2. For any b ∈ C2 the vectors b, Ab and A2b are linearly depen-

dent while q(z) = z4 − 5z2 + 4 is the minimal polynomial of A.

This type of local aspects have a number of intriguing consequences. For
one thing, repeatedly applying A ∈ Mn to a vector is not a valid approach to
find the minimal polynomial of A. For the matrix case, see [6].
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To apply an analytic function f ofA to a vector b ∈ Cn, the respective Krylov
subspace defined as

(4.1) K(A; b) = span {b,Ab,A2b,A3b, . . .}

is of importance by the fact that f (A)b is representable by a polynomial in A
applied to b. Its dimension is bounded from above by left-rank(A) + 1, which
should be contrasted with Proposition 3.2.

For an illustration, since for any invertible A we have A−1 = p(A) for some
polynomial p, the iterates (4.1) are of use in solving R-linear systems of equa-
tions with iterative methods, i.e., the solution to Ax = b can be represented as
x = q(A)b for a polynomial q. In practice approximations only with low degree
polynomials can be constructed; see [3].

For the proper values of A it is of interest to compute the monic polynomial
p of the least degree satisfying p(A)b = 0. Unlike in the C-linear case, it is not
clear how the zeros of p are related to σC(A). This remains as an open problem.

For one more familiar example, consider applying the exponential function.

EXAMPLE 4.2. The exponential of A defined by the power series (3.10) can

be given as eAt =
deg(A)

∑
k=0

βk(t)Ak with some functions βk for k = 0, 1, . . . , deg(A).

Applying this to a vector b∈Cn changes dramatically the coefficients in the repre-

sentation of the least degree because eAtb =
dim(K(A;b))−1

∑
k=0

βk(b; t)Akb. This is a more

compressed way of representing eφ(A)t [
Reb
Imb

]
since generically dim(K(A; b)) =

1
2 dim(K(φ(A);

[
Reb
Imb

]
)). An interesting problem, though beyond the scope of this

paper, is that of computing the functions βk(b; ·).

By considering the right polynomials in A, we set the respective R-linear
manifold of Cn that consists of the vectors representable as

(4.2)
k

∑
j=0

Ajcjb with c0, c1, . . . , ck ∈ C.

All those functions f ofA that are representable by a real polynomial allow f (A)b
to be written alternatively in the form (4.2).

CONCLUSIONS

The eigenvalues and the proper values are two natural spectral sets associ-
ated with an R-linear operator A. In their complement the resolvent and cosol-
vent operators are defined, respectively. The proper values of A, given by the
zeros of its minimal polynomial, also determine the spectrum of the real matrix
representation of A. This interpreted conversely, the eigenvalues of real matri-
ces can be found with the proper values. Analytic functions of A can be defined
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with the cosolvent operator. An application of this leads to a decomposition of
R-linear operators.
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