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ABSTRACT. In this paper, we study defect operators and Fredholmness for
Toeplitz pairs with inner symbols on both the Hardy spaces H2(D) and H2(D2).
The defect operator theory is closely related to function theory on the unit disk
and the bidisk. Fredholmness of Toeplitz pairs on H2(D2) with rational inner
symbols is completely characterized. We also establish an index formula for a
general isometric pair.
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INTRODUCTION

Given a tuple of commuting operators T = (T1, . . . , Tn), acting on a Hilbert
space H, using Douglas-Paulsen’s Hilbert module language [5], we endow H
with a C[z1, . . . , zn]-module structure by

p · x = p(T1, . . . , Tn)x, p ∈ C[z1, . . . , zn], x ∈ H.

In this paper, we will mainly be concerned with isometric Hilbert modules on the
polynomial ring C[z1, . . . , zn]. Say a Hilbert module H to be isometric if the canon-
ical operators T1, . . . , Tn acting on H are all isometries. A standard example is the
Hardy module H2(Dn), where Dn is the unit polydisk and the module action is
multiplications by coordinate functions. Of course, all submodules of the Hardy
module H2(Dn) are isometric. To investigate Hardy submodules of H2(D2), Yang
has developed some general techniques, see [8], [14], [17], [15], [18], [19], [16], [13]
and references therein.

We organize the present paper as follows. In Section 1, we give some basic
properties of defect operators of isometric pairs. In particular, we establish an index
formula for a general isometric pair in this section. This formula is as follows: if
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an isometric pair T = (T1, T2) is Fredholm, then its Fredholm index reads as
follows:

Ind T = dim ∆
(−1)
T − dim ∆

(1)
T ,

where ∆
(µ)
T denotes the eigenspace of the defect operator ∆T corresponding to

the eigenvalue µ. Using a general theory for isometric pairs developed in Sec-
tion 1, we study compactness of the defect operators of Toeplitz pairs with inner
symbols on both the Hardy spaces H2(D) and H2(D2) in Section 2. In the case
of H2(D), compactness of defect operators is closely related to Hankel operator
theory, and in the case of H2(D2), compactness of defect operators appears only
in the trivial case.

A result, due to Theorem 5.2.5(b) of [10], shows that an inner function η in
A(D2) must be rational, and it has the form η = p

q with Z(q) ∩ D2
= ∅. For a

pair ( p1
q1

, p2
q2

) of inner functions with Z(qi) ∩ D2
= ∅ for i = 1, 2, it is proved in

Section 3 that the pair (T p1
q1

, T p2
q2

) on H2(D2) is Fredholm if and only if

Z(p1) ∩ Z(p2) ∩ ∂D2 = ∅.

1. DEFECT OPERATOR FOR ISOMETRIC PAIRS

In papers [7], [8], Guo and Yang studied defect operators of Hardy submod-
ules over the polydisk. Recently, some interested results are obtained by Yang in
[18], [19].

For a submodule M of H2(Dd), let Rzi denote the restriction of the multipli-
cation operator Mzi to M for i = 1, . . . , d. Then R = (Rz1 , . . . , Rzd ) is an isometric
tuple acting on M. The defect operator ∆M of the submodule M is defined by

∆M = ∑
(0,...,0)6α6(1,...,1)

(−1)|α|RαR∗α,

where Rα = Rα1
z1 · · · Rαd

zd for a multi-index α = (α1, . . . , αd) of nonnegative inte-
gers. As is shown in [7], [8], [18], [19], this operator carries the key information
of the Hardy submodule. Motivated by this observation, as done for Hardy sub-
modules, we define the defect operator ∆T for an isometric tuple T = (T1, . . . , Td)
acting on H as:

∆T = ∑
(0,...,0)6α6(1,...,1)

(−1)|α|TαT∗α.

In this paper, we are mainly concerned with isometric pairs T = (T1, T2) acting
on H; then by the definition,

∆T = I − T1T∗1 − T2T∗2 + T1T2T∗1 T∗2 ,

and hence as done by Yang for Hardy submodules over the bidisk [18]

∆T = [T∗1 , T1][T∗2 , T2] + T1[T∗1 , T2]T∗2 ,(1.1)
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where [T∗1 , T2] = T∗1 T2 − T2T∗1 . Since ∆T is selfadjoint, this means

∆T = [T∗2 , T2][T∗1 , T1] + T2[T∗1 , T2]
∗T∗1 ,

and it follows that

∆2
T = [T∗1 , T1][T∗2 , T2][T∗1 , T1] + T1[T∗1 , T2][T∗1 , T2]∗T∗1 .

Notice that T1, T2 are isometries, and

[T∗1 , T1][T∗2 , T2][T∗1 , T1] = ([T∗1 , T1][T∗2 , T2])([T∗1 , T1][T∗2 , T2])∗

and

T1[T∗1 , T2][T∗1 , T2]∗T∗1 = (T1[T∗1 , T2])(T1[T∗1 , T2])∗.

We therefore have the following.

PROPOSITION 1.1. For any isometric pair T = (T1, T2) on H,
(i) ∆T is finite rank if and only if both [T∗1 , T1][T∗2 , T2] and [T∗1 , T2] are finite rank.

(ii) ∆T is compact if and only if [T∗1 , T1][T∗2 , T2] and [T∗1 , T2] are both compact.

Let T = (T1, T2) be a commuting operator pair on H; the Koszul complex
associated with T [11] is defined by

0 → H
d1→ H ⊕ H

d2→ H → 0,

where the boundary operators d1, d2 are given by

d1(ξ) = (−T2ξ, T1ξ), d2(ξ1, ξ2) = T1ξ1 + T2ξ2, for ξ, ξ1, ξ2 ∈ H.

Obviously, d2d1 = 0. The pair (T1, T2) is called Fredholm [4] if

H0 = ker(d1), H1 =
ker(d2)
Ran(d1)

, H2 =
H

Ran(d2)
,

are all of finite dimension, and in this case, the Fredholm index of T is defined by

Ind T = −dimH0 + dimH1 − dimH2.

To establish the Fredholm index of an isometric pair, we need some preliminaries.
For an isometric pair T = (T1, T2) on H, it is easy to see

−1 6 ∆T 6 1.

Given −1 6 µ 6 1, write ∆
(µ)
T for ker (µI − ∆H). Then we have the following

proposition.

PROPOSITION 1.2. For an isometric pair T = (T1, T2) on H,
(i) ∆

(1)
T = ker T∗1 ∩ ker T∗2 = H 	 (T1H + T2H).

(ii) ∆
(−1)
T = T1(H 	 T2H) ∩ T2(H 	 T1H).
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Proof. (i) ker T∗1 ∩ ker T∗2 ⊆ ∆
(1)
T is obvious. And now we begin to check the

other direction. For ξ ∈ ∆
(1)
T ,

0 = (I −∆T)ξ = T1T∗1 ξ + T2(I − T1T∗1 )T∗2 ξ = T2T∗2 ξ + T1(I − T2T∗2 )T∗1 ξ.

Since (I − T1T∗1 ) and (I − T2T∗2 ) are both projections, it implies that

0 = 〈(I −∆T)ξ, ξ〉 = ‖T∗1 ξ‖2 + ‖(I − T1T∗1 )T∗2 ξ‖2 = ‖T∗2 ξ‖2 + ‖(I − T2T∗2 )T∗1 ξ‖2.

Thus ξ ∈ ker T∗1 ∩ ker T∗2 .
(ii) Since (I − T1T∗1 ) and (I − T2T∗2 ) are both projections, we have

T1(H 	 T2H) ∩ T2(H 	 T1H) = Ran(T1(I − T2T∗2 )) ∩ Ran(T2(I − T1T∗1 ))

= Ran(T1(I − T2T∗2 )T∗1 ) ∩ Ran(T2(I − T1T∗1 )T∗2 ).

Since T1(I − T2T∗2 )T∗1 and T2(I − T1T∗1 )T∗2 are projections, for ξ ∈ ∆
(−1)
T we have

−‖ξ‖2 = 〈−ξ, ξ〉 = 〈∆Tξ, ξ〉 = ‖(I − T1T∗1 )ξ‖2 − ‖T2(I − T1T∗1 )T∗2 ξ‖2

= ‖(I − T2T∗2 )ξ‖2 − ‖T1(I − T2T∗2 )T∗1 ξ‖2.

Since ‖T2(I − T1T∗1 )T∗2 ξ‖ 6 ‖ξ‖ and ‖T1(I − T2T∗2 )T∗1 ξ‖ 6 ‖ξ‖, we have ‖ξ‖ =
‖T1(I − T2T∗2 )T∗1 ξ‖ = ‖T2(I − T1T∗1 )T∗2 ξ‖. And then

ξ = T1(I − T2T∗2 )T∗1 ξ = T2(I − T1T∗1 )T∗2 ξ.

Thus ξ ∈ Ran(T1(I − T2T∗2 )T∗1 ) ∩ Ran(T2(I − T1T∗1 )T∗2 ).
On the other hand, ∀ξ ∈ Ran(T1(1− T2T∗2 )) ∩ Ran(T2(I − T1T∗1 )), there ex-

ists η ∈ H such that ξ = T1(I− T2T∗2 )η, i.e. T1η = ξ + T1T2T∗2 η. Since ξ ∈ Ran(T2),
T1η ∈ Ran(T2), and hence T1η = T2T∗2 T1η. It follows that

∆Tξ = (I − T1T∗1 − T2T∗2 + T1T2T∗1 T∗2 )ξ = −T2T∗2 T1(I − T2T∗2 )η

= −T1η + T1T2T∗2 η = −ξ.

This means that Ran(T1(1− T2T∗2 )) ∩ Ran(T2(I − T1T∗1 )) ⊆ ∆
(−1)
T .

THEOREM 1.3. Given an isometric pair T = (T1, T2) on H,
(i) if the defect operator ∆T is compact, then T = (T1, T2) is Fredholm;

(ii) if T = (T1, T2) is Fredholm, then the Fredholm index is given by

Ind T = dim ∆
(−1)
T − dim ∆

(1)
T .

Proof. (i) By Curto [4], T is Fredholm if and only if T̂ is Fredholm, where

T̂ =
(

T1 T2
−T∗2 T∗1

)
,

and in this case the Fredholm index Ind T = Ind T̂. Hence it is enough to prove
that T̂ is Fredholm. Since T is a pair of isometries, a simple computation gives
that

T̂∗T̂ =
(

I + T2T∗2 [T∗1 , T2]
[T∗1 , T2]

∗ I + T1T∗1

)
,
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and

(1.2) T̂T̂∗ =
(

T1T∗1 + T2T∗2 0
0 2

)
.

From the fact that I + T1T2T∗1 T∗2 is invertible, and ∆T is compact, we see that

T1T∗1 + T2T∗2 = I + T1T2T∗1 T∗2 −∆T

is Fredholm. Moreover, by Proposition 1.1(ii), [T∗1 , T2] is compact. This implies
that both T̂∗T̂ and T̂T̂∗ are Fredholm, and hence T̂ is Fredholm.

(ii) Now assume that T = (T1, T2) is Fredholm, and notice that T1, T2 are
isometries. We have

ker T̂∗=
{

(ξ1, ξ2) :
(

T∗1 −T2
T∗2 T1

) (
ξ1
ξ2

)
= 0

}
={(ξ1, ξ2) : T∗1 ξ1−T2ξ2 =0, T∗2 ξ1+T1ξ2 =0}={(ξ1, 0) : ξ1∈ker T∗1 ∩ker T∗2 }.

Proposition 1.2 implies ker T̂∗ = {(ξ1, 0) : ξ1 ∈ ∆
(1)
T }. Below, we claim that

dim ker T̂ = dim ∆
(−1)
T . In fact,

ker T̂ =
{

(ξ1, ξ2) :
(

T1 T2
−T∗2 T∗1

) (
ξ1
ξ2

)
= 0

}
= {(ξ1, ξ2) : T1ξ1 + T2ξ2 = 0,−T∗2 ξ1 + T∗1 ξ2 = 0}
= {(ξ1, ξ2) : T1ξ1 + T2ξ2 = 0, T∗2 ξ1 = 0, T∗1 ξ2 = 0}.

Since T1 ⊕ T2 : H ⊕ H → H ⊕ H is an isometry, this means that ker T̂ and T1 ⊕
T2(ker T̂) have the same dimension. Notice that

T1 ⊕ T2(ker T̂) = {(T1ξ1, T2ξ2) : T1ξ1 + T2ξ2 = 0, T∗2 ξ1 = 0, T∗1 ξ2 = 0}
= {(T1ξ1,−T1ξ1) : ξ1 ∈ H} ∩ {(T2ξ2,−T2ξ2) : ξ2 ∈ H}

∩ {(T1ξ1, T2ξ2) : T∗1 ξ2 = 0, T∗2 ξ1 = 0}
= {( f ,− f ) : f ∈ T1(ker T∗2 ) ∩ T2(ker T∗1 )}.

By Proposition 1.2, we have

dim ker T̂ = dim{( f ,− f ) : f ∈ ∆
(−1)
T } = dim ∆

(−1)
T ,

the claim follows. Hence,

Ind T = dim ker T̂ − dim ker T̂∗ = dim ∆
(−1)
T − dim ∆

(1)
T .

REMARK 1.4. For an isometric pair T = (T1, T2) on H, from the proof of
Theorem 1.3(ii), we see:

(i) H0 = 0;
(ii) dimH1 = dim ker T̂ = dim ∆

(−1)
T = dim [T1(H 	 T2H) ∩ T2(H 	 T1H)];

(iii) dimH2 = dim ker T̂∗ = dim ∆
(1)
T = dim H 	 (T1H + T2H).

Thus, the isometric pair T = (T1, T2) is Fredholm if and only if both T1(H 	
T2H) ∩ T2(H 	 T1H) and H

T1 H+T2 H are of finite dimension.



256 KUNYU GUO AND PENGHUI WANG

The following proposition shows that if T1 and T∗2 are essentially commuta-
tive, then the converse of Theorem 1.3(i) is also true.

PROPOSITION 1.5. Given an isometric pair T = (T1, T2) on H satisfying that
T1T∗2 − T∗2 T1 is compact, if T = (T1, T2) is Fredholm, then ∆T is compact.

Proof. If T = (T1, T2) is Fredholm, then T̂ is Fredholm, and hence by (1.2),
T1T∗1 + T2T∗2 is Fredholm. By the equality

(T1T∗1 + T2T∗2 )∆T = T2[T1, T∗2 ]T∗1 + T1[T1, T∗2 ]∗T∗2 ,

the defect operator ∆T is compact.

The following is an example showing that the converse of Theorem 1.3(i) is
not true in general.

EXAMPLE 1.6. For the isometric pair S = (Tz1 , Tηa ) on the Hardy space
H2(D2), where ηa(z) = z1−a

1−az1
, 0 < |a| < 1, Theorem 3.2 in Section 3 shows that

S = (Tz1 , Tηa ) is Fredholm. However, the defect operator ∆ associated with S is
not compact. The defect operator ∆ of S is given by

∆ = I − Tz1 T∗z1
− Tηa T∗ηa + Tz1 Tηa T∗z1

T∗ηa .

For λ = (λ1, λ2) ∈ D2, let Kλ denote the reproducing kernel of H2(D2) at λ, and
kλ = Kλ

‖Kλ‖
be the normalized reproducing kernel at λ. It is easy to verify that

kλ
w→ 0 as λ → ∂D2. Considering the equality

〈∆kλ, kλ〉 = (1− |λ1|2)
(

1−
∣∣∣ λ1 − a
1− aλ1

∣∣∣2)
,

and taking λ1 = 0, then the above = 1 − |a|2 6= 0. This shows that ∆ is not
compact.

2. DEFECT OPERATORS ON THE HARDY SPACES

In this section, we will see that properties of defect operators on the Hardy
spaces are closely related to function theory on the Hardy spaces. For n > 1, let
P be the orthogonal projection from L2(Tn) onto H2(Dn). The Toeplitz operator
Tf : H2(Dn) → H2(Dn) with symbol f ∈ L∞(Tn) is defined by Tf (h) = P( f h)
for all h ∈ H2(Dn). The Hankel operator H f : H2(Dn) → L2(Tn)	 H2(Dn) with
symbol f is defined as H f h = (I − P)( f h) for all h ∈ H2(Dn). For f , g ∈ L∞(Tn),
Toeplitz and Hankel operators are connected by the following formula

Tf g − Tf Tg = H∗
f Hg.

Given two inner functions η1 and η2 on Dn, then T = (Tη1 , Tη2) is an isometric
pair on the Hardy space H2(Dn). The defect operator ∆T on H2(Dn) associated



DEFECT OPERATORS AND ISOMETRIC FREDHOLM PAIRS 257

with T is defined by

∆T = I − Tη1 T∗η1
− Tη2 T∗η2

+ Tη1η2 T∗η1η2
.

For λ ∈ Dn, let Kλ denote the reproducing kernel of H2(Dn) at λ, and kλ = Kλ
‖Kλ‖

be the normalized reproducing kernel at λ. Considering the equality

〈∆Tkλ, kλ〉 = (1− |η1(λ)|2)(1− |η2(λ)|2),

one sees that ∆T = 0 only if either η1 or η2 is a constant.
Below, we consider defect operators on the Hardy space H2(D).

THEOREM 2.1. Given two inner functions η1 and η2 on D, and let ∆T be the defect
operator on H2(D) defined by the isometric pair T = (Tη1 , Tη2). Then

(i) ∆T is of finite rank if and only if either η1 or η2 is a finite Blaschke product.
(ii) ∆T is compact if and only if H∞[η1] ∩ H∞[η2] ⊆ H∞ + C(T), where H∞[ f ]

denotes the closed subalgebra of L∞ generated by H∞ and f .

Proof. (i) Suppose first that η1 or η2 is a finite Blaschcke product. Without
loss of generality, assume η1(z) = B(z) is a finite Blaschke product. Then I −
Tη1 T∗η1

is finite rank. Since

∆T = I − Tη1 T∗η1
− Tη2(I − Tη1 T∗η1

)T∗η2
,

this shows that ∆T is of finite rank. Conversely, if ∆T is of finite rank, then by
Proposition 1.1, the operator

[T∗η1
, Tη2 ] = Tη1

Tη2 − Tη2 Tη1
= H∗

η2
Hη1

has finite rank. By Theorem 4 of [1], either Hη1
or Hη2

is of finite rank. We may
assume that Hη1

is of finite rank. By Beurling theorem [2], it is easy to prove that
η1 is a finite Blaschke product.

(ii) Suppose that ∆T is compact. Then Proposition 1.1 implies that

[T∗η1
, Tη2 ] = H∗

η2
Hη1

is compact. By Theorem 1 of [12], we have

H∞[η1] ∩ H∞[η2] ⊆ H∞ + C(T).

Conversely, if H∞[η1] ∩ H∞[η2] ⊆ H∞ + C(T), then by Theorem 1 of [1],

[T∗η1
, Tη2 ] = H∗

η2
Hη1

is compact. Applying Lemma 1 of [1] shows that Hη2
H∗

η1
is compact, and hence

Hη1
H∗

η2
is compact. This implies that

[T∗η1
, Tη1 ][T

∗
η2

, Tη2 ] = H∗
η1

Hη1
H∗

η2
Hη2

,

is compact. Applying Proposition 1.1 shows that ∆T is compact.

Now, we consider defect operators on the Hardy space H2(D2) over the
bidisk.
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THEOREM 2.2. Consider two inner functions η1 and η2 on D2, and let ∆T be the
defect operator on H2(D2) defined by the isometric pair T = (Tη1 , Tη2). If ∆T 6= 0, then
the following statements are equivalent:

(i) ∆T is compact.
(ii) ∆T is finite rank.

(iii) ∆T is a finite rank projection.
(iv) There exist finite Blaschke products B1(z) and B2(w) such that η1 = B1(z),

η2 = B2(w) or η1 = B2(w), η2 = B1(z).

Proof. (iii)⇒(ii) and (ii)⇒(i) are obvious.
(iv)⇒(iii). Without loss of generality, assume that η1 = B1(z) and η2 =

B2(w). Since TzT∗w = T∗wTz, this implies

Tη1 T∗η2
= T∗η2

Tη1 .

Using (1.1), we have

∆T = I − Tη1 T∗η1
− Tη2 T∗η2

+ Tη1η2 T∗η1η2
= [T∗η1

, Tη1 ][T
∗
η2

, Tη2 ].

It is easy to see that ∆T is a projection. By Proposition 1.2(i), we have

Ran(∆T) = ∆
(1)
T = ker T∗η1

∩ ker T∗η2
= H2(D2)	 [B1(z)H2(D2) + B2(w)H2(D2)].

By Lemma 2.2.9 of [3], the above equality implies that ∆T has finite rank, and it
follows that ∆T is a finite rank projection.

(i)⇒(iv). At first, we will prove that both η1 and η2 are functions of one
variable. To show this, it is easy to see that the normalized reproducing kernel
{kλ} converge weakly to 0 as λ → ∂D2. Since ∆T is compact, this means

(2.1) lim
λ→∂D2

〈∆Tkλ, kλ〉 = lim
λ→∂D2

(1− |η1(λ)|2)(1− |η2(λ)|2) = 0.

Now, take λ1 = 0, then for all ζ ∈ T,

lim
w→ζ

(1− |η1(0, w)|2)(1− |η2(0, w)|2) = 0.

Set

S1 = {ζ : ζ ∈ T, lim
w→ζ

|η1(0, w)| = 1}, S2 = {ζ : ζ ∈ T, lim
w→ζ

|η2(0, w)| = 1}.

Then m(S1 ∪ S2) = 1, here m = dθ
2π . Now, we may assume m(S1) > 0. Write η1 as

η1(z, w) =
∞

∑
j=0

zj f j(w),

where f j∈H2(D). This expansion implies that f j(w)=
∫
T

η1(z, w)zjdm(z), and hence

(2.2) | f j(w)| 6
∫
T

|η1(z, w)zj|dm(z) 6 1.
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Set

S =
⋂

j

{ζ : ζ ∈ T, f j has nontangential limit at ζ}.

Then m(S) = 1, and hence m(S1 ∩ S) > 0. For any ζ ∈ S1 ∩ S, using the estimate
(2.2) and Lebesgue Dominated Convergence theorem,

η1(z, ζ) = lim
w→ζ

( ∞

∑
j=0

zj f j(w)
)

=
∞

∑
j=0

zj f j(ζ)

is analytic in D. Since ζ ∈ S1, we have |η1(0, ζ)| = 1. The maximum modulus
theorem implies that η1(z, ζ) is a constant of modulo 1. So f j(ζ) = 0 for j =
1, 2, . . .. This shows that f j vanishes on S1 ∩ S for j = 1, 2, . . . . Since m(S1 ∩ S) >

0, this ensures f j = 0 for j = 1, 2, . . . . So, η1(z, w) = f0(w). Since ∆T 6= 0,
|η1(z, 0)| = | f0(0)| < 1. Let λ2 be 0 in the formula (2.1), for any ζ ∈ T, we have

lim
λ1→ζ

(1− |η2(λ1, 0)|) = 0.

The same discussions give η2(z, w) = g(z).
Without loss of generality, we assume that η1(z, w) = ϕ(z) and η2(z, w) =

ψ(w). We will show that both ϕ and ψ are finite Blaschke products. By the for-
mula (2.1),

lim
(λ1, λ2)→∂D2

(1− |ϕ(λ1)|2)(1− |ψ(λ2)|2) = 0.

The above implies that

lim
λ1→T

|ϕ(λ1)| = 1, lim
λ2→T

|ψ(λ2)| = 1.

From the above equalities, it is not difficult to prove that both ϕ and ψ are contin-
uous inner functions on D, and hence they are finite Blaschke products.

Let both η(z) and ζ(w) be nontrivial inner functions. Considering the iso-
metric pair T = (Tη(z), Tζ(w)) on H2(D2), the next theorem shows that T is Fred-
holm only if both η and ζ are finite Blaschke products. In Section 3, we will
consider Fredholmness of Toeplitz pairs with rational inner symbols.

THEOREM 2.3. Let η(z), ζ(w) be nontrivial inner functions on D, then the pair
(Tη(z), Tζ(w)), acting on H2(D2), is Fredholm if and only if they are all finite Blaschke
products.

Proof. The “if" part comes from Theorem 1.3 and Theorem 2.2. Now let us
see the “only if" part. It is easy to verify that η(z)H2(D2) + ζ(w)H2(D2) is closed.
Hence by Remark 1.4, ηH2(D2) + ζH2(D2) is of finite codimension. Suppose η is
not a finite Blaschke product. Consider Mη as an operator on H2(D), and then
ker M∗

η is of infinite dimension. Let {en(z)}∞
n=1 be an orthogonal basis for ker M∗

η .
Since ζ is nontrivial, this means that ker Mζ

∗ is not zero, where Mζ is viewed as
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an operator on H2(D). Let e0(w) ∈ ker M∗
ζ and e0(w) 6= 0. Then {en(z)e0(w)}∞

n=1

is an orthogonal set in H2(D2). Moreover, for nonnegative integers i, j we have

〈en(z)e0(w), η(z)ziwj〉 = 〈en(z), η(z)zi〉〈e0(w), wj〉 = 〈M∗
ηen, zi〉〈e0(w), wj〉 = 0,

and

〈en(z)e0(w), ζ(w)ziwj〉 = 〈en(z), zi〉〈e0(w), ζ(w)wj〉 = 〈en(z), zi〉〈M∗
ζ e0, wj〉 = 0.

The above reasoning shows en(z)e0(w)⊥(ηH2(D2) + ζH2(D2)) for n = 1, 2, . . .,
and hence ηH2(D2) + ζH2(D2) is infinite codimensional. This contradiction says
that η(z) is a finite Blaschke product. The same reasoning shows that ζ(w) is a
finite Blaschke product.

3. TOEPLITZ PAIRS ON THE HARDY SPACE H2(D2)

For an inner function ϕ on the unit disk D, the Toeplitz operator Tϕ on the
Hardy space H2(D) is Fredholm if and only if ϕ is a finite Blaschke product.

Motivated by this result, we naturally have the following question.

Question. Can one completely characterize the Fredholmness for Toeplitz tuples
with inner symbols on the Hardy space H2(Dn) for n > 1 ?

In this section, we will give a complete characterization for the Fredholm-
ness of Toeplitz pairs on H2(D2) with inner symbols in the bidisk algebra A(D2).
At first, we mention the following lemma which comes from [10]. This lemma
describes inner functions in the polydisk algebra A(Dn).

LEMMA 3.1. Let f be an inner function on Dn, and f ∈ A(Dn). Then f = p
q for

some polynomials p, q, and q has no zero on Dn
.

The following is the main result in this section.

THEOREM 3.2. Let η1 = p1
q1

, η2 = p2
q2

be two inner functions in A(D2). Then the
Toeplitz pair T = (Tη1 , Tη2) on H2(D2) is Fredholm if and only if

Z(p1) ∩ Z(p2) ∩ ∂D2 = ∅,

and in this case, the Fredholm index of the Toeplitz pair is given by

Ind (Tη1 , Tη2) = − dim H2(D2)
[η1H2(D2) + η2H2(D2)]

.

Before proving this theorem, let us see two examples.

EXAMPLE 3.3. Let ϕi(z), ψi(w) be finite Blaschke products for i = 1, 2, and

ϕi(z, w) =
ni

∏
j=1

z− aij

1− aijz
, ψi(z, w) =

mi

∏
j=1

w− bij

1− bijw
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where aij, bij ∈ D. So by Theorem 3.2, (Tϕ1ψ1 , Tϕ2ψ2) is Fredholm if and only if

{a1j}
n1
j=1 ∩ {a2j}

n2
j=1 = ∅, {b1j}

m1
j=1 ∩ {b2j}

m2
j=1 = ∅.

When the above conditions are satisfied, the Fredholm index of the pair is

Ind(Tϕ1ψ1 , Tϕ2ψ2) = −n1n2m1m2.

EXAMPLE 3.4. Let ϕ(z, w)= z− 1
2

1− 1
2 z

, ψ(z, w)= zw− 1
2

1− 1
2 zw

, then

Z(z− 1
2
) ∩ Z(zw− 1

2
) = {(1

2
, 1)} ∈ ∂D2.

Theorem 3.2 implies (T z− 1
2

1− 1
2 z

, T zw− 1
2

1− 1
2 zw

) is not Fredholm.

The proof of Theorem 3.2 comes from the next Theorem 3.5 whose proof is
long. We will place the proof of Theorem 3.5 to the later part of this section.

THEOREM 3.5. Let p1, p2 ∈ C[z, w], and r = GCD(p1, p2). Set p = rp̃1 and
p2 = rp̃2, then p1H2(D2) + p2H2(D2) is closed if and only if

Z(r) ∩T2 = ∅, and Z( p̃1) ∩ Z( p̃2) ∩ ∂D2 = ∅.

Proof of Theorem 3.2. Suppose first Z(p1) ∩ Z(p2) ∩ ∂D2 = ∅. Combining
Lemma 3.1 and Theorem 3.5 implies that η1H2(D2) + η2H2(D2) = p1H2(D2) +
p2H2(D2) is closed. Let r = GCD(p1, p2), and p1 = r p̃1, p2 = r p̃2. Since Z(r) ∩
∂D2 = ∅, this implies that Z(r) ∩D2

= ∅. Therefore, we have

p1H2(D2) + p2H2(D2) = p̃1H2(D2) + p̃2H2(D2).

Since GCD( p̃1, p̃2) = 1, p̃1C[z, w] + p̃2C[z, w] is a finite codimensional ideal by
[14], and hence by Theorem 2.2.3 of [3],

p̃1H2(D2) + p̃2H2(D2) = p̃1C[z, w] + p̃2C[z, w]

is of finite codimension. Thus H2 is finite dimensional. Since (Tη1 , Tη2) is an
isometric pair, let us consider

∆(−1) = Tη1 [H
2(D2)	 Tη2 H2(D2)]

⋂
Tη2 [H

2(D2)	 Tη1 H2(D2)]

= [η1H2(D2)	 η1η2H2(D2)]
⋂

[η2H2(D2)	 η2η1H2(D2)]

= [η1H2(D2) ∩ η2H2(D2)]	 η1η2H2(D2)

= [p1H2(D2) ∩ p2H2(D2)]	 p1 p2H2(D2).

Below, we claim p1H2(D2) ∩ p2H2(D2) = p1 p2H2(D2). Clearly, p1H2(D2)
∩p2H2(D2) ⊇ p1 p2H2(D2). It is enough to show

p1H2(D2) ∩ p2H2(D2) ⊆ p1 p2H2(D2).
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For f ∈ p1H2(D2) ∩ p2H2(D2), there are g and h in H2(D2) such that f = p1g =
p2h, and hence h

p1
= g

p2
on D2 \ Z(p1) ∪ Z(p2). Set

φ =
h
p1

=
g
p2

.

Then φ can be analytically extended to D2 \ Z(p1) ∩ Z(p2). Since

Z(p1) ∩ Z(p2) ∩ ∂D2 = ∅,

this means that Z(p1) ∩ Z(p2) ∩D2 is a finite set, and hence φ can be analytically
extended to D2 by Hartogs’ theorem. Furthermore, we have φ ∈ H2(D2). The
reasoning is as follows: since the set Z(p1) ∩ Z(p2) ∩ D2 is finite, there exists
0 < s < 1 and ε > 0 such that |p1(rξ)|2 + |p1(rξ)|2 > ε for all ξ ∈ T2 if r > s.
Therefore, if r > s, we have

|φ(rξ)|2 =
|h(rξ)|2

|p1(rξ)|2
=
|g(rξ)|2

|p2(rξ)|2
=

|h(rξ)|2+|g(rξ)|2

|p1(rξ)|2+|p2(rξ)|2
<
|h(rξ)|2+|g(rξ)|2

ε
, ξ∈T2.

The above reasoning insures φ ∈ H2(D2), and it follows that h = p1φ, g = p2φ

and f = p1 p2φ. This says f ∈ p1 p2H2(D2), and hence

p1H2(D2) ∩ p2H2(D2) = p1 p2H2(D2).

We conclude ∆(−1) = 0. By Remark 1.4(ii), we see H1 = 0. For an isometric
pair, H0 = 0 is obvious. So, (Tη1 , Tη2) is Fredholm. Conversely, suppose that
(Tη1 , Tη2) is Fredholm. By (1.2), Tη1 T∗η1

+ Tη2 T∗η2
is Fredholm, and hence there

exists a positive invertible operator X and a compact operator K such that

Tη1 T∗η1
+ Tη2 T∗η2

= X + K.

This gives

‖T∗η1
kλ‖2 + ‖T∗η2

kλ‖2 = |η1(λ)|2 + |η2(λ)|2 = 〈Xkλ, kλ〉+ 〈Kkλ, kλ〉.

Considering that X is positive and invertible, and K is compact, and noticing that
kλ

w→ 0 as λ → ∂D2, there exists a positive constant c such that∣∣∣ p1(ξ)
q1(ξ)

∣∣∣2
+

∣∣∣ p2(ξ)
q2(ξ)

∣∣∣2
> c

for all ξ ∈ ∂D2. This gives

Z(p1) ∩ Z(p2) ∩ ∂D2 = ∅.

If T = (Tη1 , Tη2) is Fredholm, from the above reasoning, both H0 and H1 are 0,
and hence we have

Ind(Tη1 , Tη2) = −dimH2 = −codim(η1H2(D2) + η2H2(D2)).
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Now we come back to the proof of Theorem 3.5. Since the polynomial
ring C[z, w] is Noetherian, each ideal I is finitely generated, that is, there exist
finitely many p1, . . . , pl in I such that I = p1C[z, w] + · · ·+ plC[z, w]. Such a tu-
ple {p1, . . . , pl} is called a set of generators of I. Below, we will use I H2(D2) to
denote p1H2(D2) + · · · + pl H2(D2). It is easy to see that this expression is inde-
pendent on the choice of sets of generators of I.

The following lemma is used to prove the sufficiency of Theorem 3.5.

LEMMA 3.6. Let M be a finite codimensional submodule of H2(D2). Set Q =
M ∩C[z, w], then M = QH2(D2).

Proof. One may give the proof of Lemma 3.6 by using Putinar’s method
as in [9]. Here, we present a proof to the reader by induction on card(Z(M)),
the cardinality of Z(M). Since M is of finite codimension, by Theorem 2.2.3 of [3],
Q = M∩C[z, w] is an ideal of C[z, w] with the same codimension as M, M = [Q],
and Z(M) = Z(Q) ⊂ D2 is a finite set, where [Q] denotes QH2(D2).

First assume card(Z(M)) = 1 and Z(M) = {0}. Then as done in Lem-
ma 2.5.1 of [3], there is a finite dimensional space R of polynomials such that

H2(D2) = M ⊕ R.

Let s = max{deg(q) : q ∈ R}, where deg(q) is homogeneous degree of polyno-
mial q. Since R is finite dimensional, s < ∞. Let Ms = zs+1H2(D2) + ws+1H2(D2),
then Ms⊥R and hence Ms ⊆ M. Clearly, Ms is closed and finite codimensional
with the codimension (s + 1)2. Moreover, M⊥

s is a polynomial space. So M 	
Ms ⊆ M⊥

s is also a finite dimensional space of polynomials. Let {e1, . . . , et} be a
base for M 	 Ms. We have

M = Ms + (M 	 Ms) = zs+1H2(D2) + ws+1H2(D2) + e1H2(D2) + · · ·+ etH2(D2).

Let {p1, . . . , pl} be a set of generators of Q. Then we have

Q = M ∩C[z, w] = p1C[z, w] + · · ·+ plC[z, w]

⊇ zs+1C[z, w] + ws+1C[z, w] + e1C[z, w] + · · ·+ etC[z, w].

This implies {zs+1, ws+1, e1, . . . , et} ⊆ Q, and hence

M = zs+1H2(D2) + ws+1H2(D2) + e1H2(D2) + · · ·+ etH2(D2)

⊆ p1H2(D2) + · · ·+ pl H
2(D2) ⊆ M.

It follows that

M = p1H2(D2) + · · ·+ pl H
2(D2) = QH2(D2).

Now assume Z(M) = {λ = (λ1, λ2)}. Set

M(λ) = M ◦ ϕλ = { f ◦ ϕλ : ∀ f ∈ M}
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where ϕλ(z, w) = ( z+λ1
1+λ1z

, w+λ2
1+λ2w

). It is not difficult to see that M(λ) is a submod-
ule with the same codimension as M. Noticing Z(M(λ)) = {0}, and letting

Q(λ) = M(λ) ∩C[z, w] = r1C[z, w] + · · ·+ rkC[z, w],

the above reasoning implies that

M(λ) = r1H2(D2) + · · ·+ rk H2(D2).

For a polynomial r(z, w) = ∑ aijziwj,

r ◦ ϕλ = ∑ aij
(z + λ1)i(w + λ2)j

(1 + λ1z)i(1 + λ2w)j
=

r̃
(1 + λ1z)m(1 + λ2w)d

,

where m, d are enough large such that r̃ is a polynomial. Since both 1
(1+λ1z)m and

1
(1+λ2w)d are invertible in H∞, we have

M = M(λ) ◦ ϕλ = r1 ◦ ϕλH2(D2) + · · ·+ rk ◦ ϕλH2(D2)

= r̃1H2(D2) + · · ·+ r̃k H2(D2) = QH2(D2).

Now assume that the lemma is true for card(Z(M)) 6 k. We will prove it is
true in the case card(Z(M)) = k + 1.

Let Z(M) = {λ1, . . . , λk, λk+1}. By Corollary 2.2.6(2) of [3], M can be de-
composed as

M = M1 ∩ M2

such that Z(M1) = {λ1, . . . , λk} and Z(M2) = {λk+1}.
By the assumption,

M1 = Q1H2(D2) and M2 = Q2H2(D2),

where

Q1 = M1 ∩C[z, w] and Q2 = M2 ∩C[z, w].

Let {gi}s
i=1 be a set of generators of Q1, and {qj}t

j=1 a set of generators of Q2. Set

Q = M ∩C[z, w]. Then clearly, Q1Q2 ⊆ Q. It is enough to prove M ⊆ QH2(D2).
For f ∈ M, since M ⊆ M1 = Q1H2(D2), f ∈ Q1H2(D2), and hence f has the

form f =
s
∑

i=1
gihi where hi ∈ H2(D2). Since Q2 is a finite codimensional ideal of

C[z, w], C[z, w] = Q2+̇R for some finite dimensional subspace R of polynomials.
Thus, H2(D2) = C[z, w] = Q2 + R = Q2H2(D2) + R. Therefore, each hi can be

expressed as hi =
t

∑
j=1

qj fij + ri, here fij ∈ H2(D2) and ri ∈ R. So, we have

f =
s

∑
i=1

gi

( t

∑
j=1

qj fij + ri

)
= ∑

i,j
giqj fij +

s

∑
i=1

giri.
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Because both f and ∑
i,j

giqj fij are in M, the polynomial
s
∑

i=1
giri is in M, and hence it

is in Q. Since all giqj are in Q, the above reasoning gives M ⊆ Q H2(D2). Clearly,
Q H2(D2) ⊆ M. So, we have M = QH2(D2).

The proof of the sufficiency of Theorem 3.5. Let r = GCD(p1, p2), and set p1 =
rp̃1, p2 = rp̃2. Since Z(r) ∩ T2 = ∅, r is bounded below on T2, and hence
p1H2(D2) + p2H2(D2) is closed if and only if p̃1H2(D2) + p̃2H2(D2) is closed.
Hence we may assume GCD(p1, p2) = 1. By [14], I = p1C[z, w] + p2C[z, w] is a
finite codimensional ideal, and hence Z(I) = Z(p1) ∩ Z(p2) is a finite set. Write
Z(I) = Λ1 ∪Λ2, where Λ1 ⊂ D2 and Λ2 ⊂ C2\D2

. Then I can be decomposed as
I = I1 ∩ I2 such that Z(I1) = Λ1 and Z(I2) = Λ2. Using the characteristic space
theory for polynomials ([3], Chapter 2), we have

I = I1 ∩ I2 = I1 I2.

Noticing that Z(I2) ∩D2
= ∅, this gives I2H2(D2) = H2(D2), and hence

[I] = [I1 I2] = [I1].

Since Z(I1) ⊂ D2, by Theorem 2.2.8 of [3], [I1] ∩ C[z, w] = I1. Because [I1] is of
finite codimension, by Lemma 3.6, [I1] = I1H2(D2). Let {ri}s

i=1 and {qj}t
j=1 be

sets of generators of I1 and I2, respectively. Then we have

[I1] = I1H2(D2) = r1H2(D2) + · · ·+ rsH2(D2) =
s

∑
i=1

ri I2H2(D2)

= ∑
i,j

riqj H2(D2) = I1 I2H2(D2) = IH2(D2) = p1H2(D2) + p2H2(D2).

Thus p1H2(D2) + p2H2(D2) is closed.

The proof of the necessity of Theorem 3.5. We prove the necessity by two steps.
Step 1. Z(r) ∩T2 = ∅.

Set r = GCD(p1, p2), and p1 = rp̃1, p2 = rp̃2. Since GCD( p̃1, p̃2) = 1, by
[Ya1], I = p̃1C[z, w] + p̃2C[z, w] is a finite codimensional ideal. So C[z, w] = I+̇R
where R is a finite dimensional space of polynomials, and hence H2(D2)= [I]+R.

Since M = p1H2(D2) + p2H2(D2) is closed, we have

M= r( p̃1H2(D2)+ p̃2H2(D2))⊇ r( p̃1H2(D2)+ p̃2H2(D2))

⊇ r( p̃1H2(D2)+ p̃2H2(D2))= M.

Thus,

rH2(D2) = r[I] + rR = r( p̃1H2(D2) + p̃2H2(D2)) + rR = M + rR.

Since R is a finite dimensional space, and M is closed, we see that rH2(D2) is
closed. Therefore, the multiplication operator Mr : H2(D2) → H2(D2) is injec-
tive, and it has the closed range. This implies that there is a positive constant C
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such that
‖r f ‖2 > C‖ f ‖2, ∀ f ∈ H2(D2).

So, ‖r kλ‖2 > C. Noticing that ‖r kλ‖2 =
∫
T2
|r(ξ)|2Pλ(ξ)dm2, where Pλ(ξ) is the

Poisson kernel at λ, this means that

lim
λ→ς

‖r kλ‖2 = |r(ς)|2, ∀ς ∈ T2,

and hence |r(ς)|2 > C for all ς ∈ T2.

Step 2. Z( p̃1) ∩ Z( p̃2) ∩ ∂D2 = ∅.

To prove this, we need the following lemma.

LEMMA 3.7. Given p1, p2 ∈ C[z, w], p1H2(D2) + p2H2(D2) is closed if and
only if the operator Mp1 M∗

p1
+ Mp2 M∗

p2
has the closed range, and in this case

Ran(Mp1 M∗
p1

+ Mp2 M∗
p2

) = p1H2(D2) + p2H2(D2).

Proof. On the one hand, if Ran(Mp1 M∗
p1

+ Mp2 M∗
p2

) is closed, then

Ran(Mp1 M∗
p1

+Mp2 M∗
p2

)= H2(D2)	 ker(Mp1 M∗
p1

+ Mp2 M∗
p2

)

= H2(D2)	(ker M∗
p1
∩ker M∗

p2
)= p1H2(D2)+p2H2(D2).

Since Ran(Mp1 M∗
p1

+ Mp2 M∗
p2

) ⊆ p1H2(D2) + p2H2(D2), the above reasoning

yields p1H2(D2) + p2H2(D2) = p1H2(D2) + p2H2(D2), and hence p1H2(D2) +
p2H2(D2) is closed.

On the other hand, if p1H2(D2) + p2H2(D2) is closed, we define an operator
T : H2(D2)⊕ H2(D2) → H2(D2) by

T(h1, h2) = p1h1 + p2h2, ∀ h1, h2 ∈ H2(D2).

It is easy to check that T∗h = (M∗
p1

h, M∗
p2

h), ∀ h ∈ H2(D2). Considering the in-

vertible operator T̃ : H2(D2) ⊕ H2(D2)
ker T → Ran(T) induced by T, it is easy to see

that for any f ∈ Ran(T), T̃T̃∗ f = TT∗ f = (Mp1 M∗
p1

+ Mp2 M∗
p2

) f . This means that

p1H2(D2) + p2H2(D2) = Ran(T) = Ran(T̃) = Ran(T̃T̃∗) = Ran(TT∗)

⊆ Ran(Mp1 M∗
p1

+ Mp2 M∗
p2

) ⊆ p1H2(D2) + p2H2(D2).

Hence,
Ran(Mp1 M∗

p1
+ Mp2 M∗

p2
) = p1H2(D2) + p2H2(D2)

is closed.

Step 2. By Step 1, r is bounded below on T2, hence p1H2(D2) + p2H2(D2) is
closed if and only if p̃1H2(D2) + p̃2H2(D2) is closed. So we can assume that
GCD(p1, p2) = 1. Set M = p1H2(D2) + p2H2(D2). Since GCD(p1, p2) = 1, by [14]
we know that M is of finite codimension. Using Lemma 3.7, Mp1 M∗

p1
+ Mp2 M∗

p2
has closed range, and the codimension of the range is finite. This implies that
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Mp1 M∗
p1

+ Mp2 M∗
p2

is Fredholm. From this fact, there exists a positive invertible
operator X and a compact operator K such that

Mp1 M∗
p1

+ Mp2 M∗
p2

= X + K.

Since the normalized reproducing kernel kλ is convergent weakly to 0 as λ →
∂D2, for any ξ ∈ ∂D2 we have

|p1(ξ)|2 + |p2(ξ)|2 = lim
λ→ξ

〈(Mp1 M∗
p1

+ Mp2 M∗
p2

)kλ, kλ〉

= lim
λ→ξ

〈Xkλ, kλ〉+ lim
λ→ξ

〈K kλ, kλ〉 >
1

‖X− 1
2 ‖

.

This insures that Z(p1) ∩ Z(p2) ∩ ∂D2 = ∅.

REMARK 2. Let p1 and p2 be polynomials on C2, then the same reasoning
as the above shows that the pair (Tp1 , Tp2) on H2(D2) is Fredholm if and only if

Z(p1) ∩ Z(p2) ∩ ∂D2 = ∅,

and in this case,

Ind (Tp1 , Tp2) = − dim H2(D2)
[p1H2(D2) + p2H2(D2)]

.
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