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ABSTRACT. In the theory of wavelets, in the study of subshifts, in the analysis
of Julia sets of rational maps of a complex variable, and, more generally, in
the study of dynamical systems, we are faced with the problem of building a
unitary operator from a mapping r in a compact metric space X. The space X
may be a torus, or the state space of subshift dynamical systems, or a Julia set.

While our motivation derives from some wavelet problems, we have in
mind other applications as well; and the issues involving covariant operator
systems may be of independent interest.
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1. INTRODUCTION

In this paper, we aim at combining and using ideas from one area of math-
ematics (operator theory and traditional analysis) in a different area (martingale
theory from probability). We have in mind applications to both wavelets and
symbolic dynamics. So our paper is interdisciplinary: results in one area often
benefit the other. In fact, the benefits go both ways.

Our construction is based on a closer examination of an eigenvalue problem
for a transition operator, also called a Perron-Frobenius-Ruelle operator.

Under suitable conditions on the given filter functions, our construction
takes place in the Hilbert space L2(Rd). In a variety of examples, for example
for frequency localized wavelets, more general filter functions are called for. This
then entails basis constructions in Hilbert spaces of L2-martingales. These mar-
tingale Hilbert spaces consist of L2-functions on certain projective limit spaces X∞
built on a given mapping r : X → X which is onto, and finite-to-one. We study
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function theory on X∞ in a suitable general framework, as suggested by appli-
cations; and we develop our theory in the context of Hilbert space and operator
theory.

We hope that these perhaps unexpected links between more traditional and
narrowly defined fields will inspire further research. Since we wish to reach sev-
eral audiences, we have included here a few more details than is perhaps stan-
dard in more specialized papers. The general question we address already has
a number of incarnations in the literature, but they have so far not been unified.
Here are two such examples which capture the essence of our focus. (a) Extension
of non-invertible endomorphisms in one space X to automorphisms in a bigger
space naturally containing X. (b) Some non-invertible operator S (contractive or
isometric) in a fixed Hilbert space H is given. It is assumed that S is contrac-
tive and that it satisfies a certain covariance condition specified by a system of
operators in H. The question is then to extend S to a unitary operator U in a big-
ger Hilbert space which naturally contains H, such that U satisfies a covariance
condition arising by dilation from the initially given system on H.

The dilation idea in operator theory is fundamental; i.e., the idea of extend-
ing (or dilating) an operator system on a fixed Hilbert space H0 to a bigger ambi-
ent Hilbert space H in such a way as to get orthogonality relations in the dilated
space H; see for example [35] and Remark 3.3 below. In an operator algebraic
framework such an extension is of course encoded by Stinespring’s theorem [39].
Our present setting is motivated by this, but goes beyond it in a number of ways,
as we show in Sections 5–8 below.

Our basic viewpoint may be understood from the example of wavelets: A
crucial strength of wavelet bases is their algorithmic and computational features.
What this means in terms of the two Hilbert spaces are three things: First we must
have a concrete function representation of the dilated space H; and secondly we
aim for recursive and matrix based algorithms, much like the familiar case of
Gram-Schmidt algorithms which lets us compute orthonormal bases, or frames
(see e.g., [5]) in the dilated space H. Thirdly, we reverse the traditional point of
view. Hence, the dilation idea is turned around: Starting with H, we wish to
select a subspace H0 which is computationally much more feasible. This idea is
motivated by image processing where such a selected subspace H0 corresponds
to a chosen resolution, and where "resolution" is to be understood in the sense of
optics; see e.g., [25] and [27]. The selection of subspace H0 is made in such a way
as to yield recursive algorithms to be used in computation of orthonormal bases,
or frames in H, but starting with data from H0.

Examples of (a) occur in thermodynamics, such as it is presented in its rig-
orous form by David Ruelle in [36] and [37]. Both (a) and (b) are present in the
approach to wavelets that goes under the name multiresolution analysis (MRA)
[14]. In this case, we can take X to be R/Z, or equivalently the circle, or the unit-
interval [0, 1), and the extension of X can be taken to be the real line R (see [14]),
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or it may be a suitable solenoid over X; see, e.g., [11] and [10]. In this case, the en-
domorphism in X is multiplication by 2 modulo the integers Z, and the extension
to R is simply x → 2x. The more traditional settings for (b) are scattering theory
[29] or the theory of extensions, or unitary dilations of operators in Hilbert space,
as presented for example in [28], [9], and in the references given there.

Specifically, we study the problem of inducing operators on Hilbert space
from non-invertible transformations on compact metric spaces. The operators, or
representations must satisfy relations which mirror properties of the given point
transformations.

While our setup allows a rather general formulation in the context of C∗-
algebras, we will emphasize the case of induction from an abelian C∗-algebra.
Hence, we will stress the special case when X is a given compact metric space,
and r : X → X is a finite-to-one mapping of X onto X. Several of our results are
in the measurable category; and in particular we are not assuming continuity of
r, or any contractivity properties.

1.1. WAVELETS. Our results will apply to wavelets. In the theory of multireso-
lution wavelets, the problem is to construct a special basis in the Hilbert space
L2(Rd) from a set of numbers an, n ∈ Zd.

The starting point is the scaling identity

(1.1) ϕ(t) = N1/2 ∑
n∈Zd

an ϕ(At− n), (t ∈ Rd),

where A is a d by d matrix over Z, with eigenvalues |λ| > 1, and N = |detA|, and
where ϕ is a function in L2(Rd).

The first problem is to determine when (1.1) has a solution in L2(Rd), and
to establish how these solutions (scaling functions) depend on the coefficients an.

When the Fourier transform is applied, we get the equivalent formulation,

(1.2) ϕ̂(x) = N−1/2m0(Atr−1x)ϕ̂(Atr−1x),

where ϕ̂ denotes the Fourier transform,

ϕ̂(x) =
∫
Rd

e−i2πx·t ϕ(t) dt

and where now m0 is a function on the torus

Td = {z = (z1, . . . , zd) ∈ Cd : |zj| = 1, 1 6 j 6 d} = Rd/Zd,

i.e.,
m0(z) = ∑

n∈Zd

anzn = ∑
n∈Zd

ane−i2πn·x.

The duality between the compact group Td and the lattice Zd is given by

〈 z | n 〉 = zn = zn1
1 · · · z

nd
d , (z = (z1, . . . , zd), n = (n1, . . . , nd)).
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In this case, matrix multiplication x 7→ Ax on Rd passes to the quotient Rd/Zd,
and we get an N-to-one mapping x 7→ Ax mod Zd, which we denote by rA.

The function m0 is called a low pass filter, and it is chosen such that the
operator S = Sm0 given by

(S f )(z) = m0(z) f (Az)

is an isometry on H0 = L2(Td, Haar measure). Moreover, L∞(Td) acts as multi-
plication operators on H0. If g ∈ L∞(T)

(M(g) f )(z) = g(z) f (z)

and

(1.3) SM(g) = M(g(A·))S.

A main problem is the extension of this covariance relation (1.3) to a bigger Hilbert
space H0 → Hext, S → Sext, such that Sext is unitary in Hext. We now sketch briefly
this extension in some concrete cases of interest.

In Section 5, we construct a sequence of measures ω0, ω1, . . . on Td such that
L2(Td, ω0) ' H0, and such that there are natural isometric embeddings

(1.4) L2(Td, ωn) ↪→ L2(Td, ωn+1), f 7→ f ◦ rA.

The limit in (1.4) defines a martingale Hilbert space H in such a way that the norm
of the L2-martingale f is

‖ f ‖2 = lim
n→∞

‖Pn f ‖2
L2(Td ,ωn).

We also state a pointwise a.e. convergence result (Section 6). If Ψ : L2(Td, ωn) →
L2(Rd) is defined by

Ψ : fn 7→ fn(A−nx)ϕ̂(x),

then Ψ is an isometry of L2(Td, ωn) into L2(Rd).
Specifically

(1.5)
∫
Td

| fn|2 dωn =
∫
Rd

| fn(A−nx)ϕ̂(x)|2 dx.

As a result we have induced a system

(rA, Td) → (Sm0 , L2(Td)) → (UA, L2(Rd)),

where

(1.6) (UAξ)(x) = N1/2 f (Ax), ( f ∈ L2(Rd))

UA unitary; the system is determined by the given filter function m0. It can be
checked (see details in Section 6) that Ψ is an isometry, and that

UA M(g) = M(g(A·))UA

holds on L2(Rd). Moreover Ψ maps onto L2(Rd) if the function m0 doesn’t vanish
on a subset of positive measure.
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In the case of wavelets, we ask for a wavelet basis in L2(Rd) which is consis-
tent with a suitable resolution subspace in L2(Rd). Whether the basis is orthonor-
mal, or just a Parseval frame, it may be constructed from a system of subband
filters mi, say with N frequency bands. These filters mi may be realized as func-
tions on X = Td = Rd/Zd, the d-torus. Typically the scaling operation is specified
by a given expansive integral d by d matrix A.

Let N := |detA|. Pass A to the quotient X = Rd/Zd, and we get a mapping r
of X onto X such that #r−1(x) = N for all x in X, and the N branches of the inverse
are strictly contractive in X = Rd/Zd if the eigenvalues of A satisfy |λ| > 1.

The subband filters mi are defined in terms of this map, rA, and the problem
is now to realize the wavelet data in the Hilbert space L2(Rd) in such a way that
r = rA : X → X induces the unitary scaling operator f 7→ N1/2 f (Ax) in L2(Rd),
see (1.6).

1.2. EXAMPLES (JULIA SETS, SUBSHIFTS). In this paper we will show that this
extension from spaces X, with a finite-to-one mapping r : X → X, to operator
systems may be done quite generally, to apply to the case when X is a Julia set
for a fixed rational function of a complex variable, i.e., r(z) = p1(z)

p2(z) , with p1, p2

polynomials, z ∈ C and N = max(deg p1, deg p2). Then r : X(r) → X(r) is N-to-1
except at the singular points of r. Here X(r) denotes the Julia set of r. It also
applies to shift invariant spaces X(A) when A is a 0-1 matrix, and

X(A) =
{

(xi) ∈∏
N
{1, . . . , N} : A(xi, xi+1) = 1

}
and

rA(x1, x2, . . .) = (x2, x3, . . .)

is the familiar subshift. Note that rA : X(A) → X(A) is onto if and only if every
column in A contains at least one entry 1.

1.3. MARTINGALES. Part of the motivation for our paper derives from the papers
by Richard Gundy [23], [24], [22], [21]. The second named author also acknowl-
edges enlightening discussions with R. Gundy. The fundamental idea in these
papers by Gundy et al is that multiresolutions should be understood as martin-
gales in the sense of Doob [15],[16],[17] and Neveu [34]. And moreover that this
is a natural viewpoint.

One substantial advantage of this viewpoint is that we are then able to han-
dle the construction of wavelets from subband filters that are only assumed mea-
surable, i.e., filters that fail to satisfy the regularity conditions that are tradition-
ally imposed in wavelet analysis.

A second advantage is that the martingale approach applies to a number
of wavelet-like constructions completely outside the traditional scope of wave-
let analysis in the Hilbert space L2(Rd). But more importantly, the martingale
tools apply even when the operation of scaling doesn’t take place in Rd at all,
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but rather in a compact Julia set from complex dynamics; or the scaling opera-
tion may be one of the shift in the subshift dynamics that is understood from that
thermodynamical formalism of David Ruelle [36].

1.4. THE GENERAL THEORY. In each of the examples, we are faced with a given
space X, and a finite-to-one mapping r : X → X. The space X is equipped with a
suitable family of measures µh, and the L∞-functions on X act by multiplication
on the corresponding L2-spaces, L2(X, µh). It is easy to see that there are L2-
isometries which intertwine the multiplication operators M(g) and M(g ◦ r), as g
ranges over L∞(X). We have

(1.7)

L2(X, µh)
S−→ L2(X, µh)��

↓
��
↓

Hext
U−→ Hext

where the vertical maps are given by inclusions. Specifically,

(1.8) SM(g) = M(g ◦ r)S, and UM(g)U−1 = M(g ◦ r).

But for spectral theoretic calculations, we need to have representations of
M(g) and M(g ◦ r) unitarily equivalent. That is true in traditional wavelet appli-
cations, but the unitary operator U in (1.8) is not acting on L2(X, µh). Rather, the
unitary U is acting by matrix scaling on a different Hilbert space, namely
L2(Rd, Lebesgue measure),

UA f (t) = | det A|1/2 f (At), (t ∈ Rd, f ∈ L2(Rd).

In the other applications, Julia set, and shift-spaces, we aim for a similar
construction. But in these other cases, it is not at all clear what the Hilbert space
corresponding to L2(Rd), and the corresponding unitary matrix scaling operator,
should be.

We provide two answers to this question, one at an abstract level, and a sec-
ond one which is a concrete function representation; Sections 4 and 5. At the ab-
stract level, we show that the construction may be accomplished in Hilbert spaces
which serve as unitary dilations of the initial structure, see (1.7). In the concrete,
we show that the extended Hilbert spaces may be taken as Hilbert spaces of L2-
martingales on X. In fact, we present these as Hilbert spaces of L2-functions built
from a projective limit

X r← X r← X ← · · · ← X∞.
This is analogous to the distinction between an abstract spectral theorem on the
one hand, and a concrete spectral representation, on the other. To know details
about multiplicities, and multiplicity functions (Section 4), we need the latter.

Our concrete version of the dilation Hilbert space Hext from (1.7) is then

Hext ' L2(X∞, µ̂h)

for a suitable measure µ̂h on X∞.
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2. FUNCTIONS AND MEASURES ON X

Consider
(•) X a compact metric space;
(•) B = B(X) a Borel sigma-algebra of subsets of X;
(•) r : X → X an onto, measurable map such that #r−1(x) < ∞ for all x ∈ X;
(•) W : X → [0, ∞);
(•) µ a positive Borel measure on X.

2.1. TRANSFORMATIONS OF FUNCTIONS AND MEASURES. (•) Let g ∈ L∞(X).
Then the following is the multiplication operator on L∞(X) or on L2(X, µ):

(2.1) M(g) f = g f .

(•) Composition:

(2.2) S0 f = f ◦ r, or (S0 f )(x) = f (r(x)), (x ∈ X).

(•) If m0 ∈ L∞(X), we set

Sm0 = M(m0)S0,

or equivalently

(2.3) (Sm0 f )(x) = m0(x) f (r(x)), (x ∈ X, f ∈ L∞(X)).

(•) r−1(E) := {x ∈ X : r(x) ∈ E} for E ∈ B(X). Then

µ ◦ r−1(E) = µ(r−1(E)), (E ∈ B(X)).

2.2. PROPERTIES OF MEASURES µ ON X. DEFINITIONS. (i) Invariance:

(2.4) µ ◦ r−1 = µ.

(ii) Strong invariance:

(2.5)
∫
X

f (x) dµ =
∫
X

1
#r−1(x) ∑

r(y)=x
f (y) dµ, ( f ∈ L∞(X)).

(iii) For W : X → [0, ∞), we have

(2.6) (RW f )(x) = ∑
r(y)=x

W(y) f (y).

If m0 ∈ L∞(X, µ) is complex valued, we use the notation Rm0 := RW where
W(x) = |m0(x)|2/#r−1(r(x)).

(a) A function h : X → [0, ∞) is said to be an eigenfunction for RW if

(2.7) RW h = h.

(b) A Borel measure ν on X is said to be a left-eigenfunction for RW if

(2.8) νRW = ν,
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or equivalently ∫
X

RW f dν =
∫
X

f dν, for all f ∈ L∞(X).

LEMMA 2.1. (i) For measures µ on X we have the implication (2.5) ⇒ (2.4), but
not conversely.

(ii) If W is given and if ν and h satisfy (2.8) and (2.7) respectively, then the following
satisfies (2.4):

(2.9) dµ := h dν.

(iii) If µ satisfies (2.5), and m0 ∈ L∞(X), then Sm0 is an isometry in L2(X, h dµ) if
and only if

Rm0 h = h.

Proof. (i) Suppose µ satisfies (2.5). Let f ∈ L∞(X). Then∫
X

f ◦ r dµ =
∫
X

1
#r−1(x) ∑

r(y)=x
f (r(y)) dµ(x) =

∫
X

f dµ.

(ii) Let W, ν and h be as in the statement of part (ii) of the lemma. Then∫
X

f ◦ r dµ =
∫
X

f ◦ r h dν =
∫
X

RW( f ◦ r h) dν =
∫
X

f RW h dν =
∫
X

f h dν =
∫
X

f dµ,

which is the desired conclusion (2.4). It follows in particular that (2.5) is strictly
stronger than (2.4).

(iii) For f ∈ L∞(X), we have

‖Sm0 f ‖2
L2(X,h dµ) =

∫
X

|m0(x) f (rx)|2h(x) dµ

=
∫
X

| f (x)|2 1
#r−1(x) ∑

r(y)=x
|m0(y)|2h(y) dµ(x)

=
∫
X

| f (x)|2Rm0 h(x) dµ(x) =
∫
X

| f |2h dµ = ‖ f ‖2
L2(X,h dµ)

if and only if Rm0 h = h and (iii) follows.

We will use standard facts from measure theory: for example, we may iden-
tify positive Borel measures on X with positive linear functionals on C(X) via

Λω( f ) =
∫
X

f dω.

In fact, we will identify Λω and ω. For two measures µ and ν on X, we will use
the notation µ ≺ ν to denote absolute continuity. For example µ ≺ ν holds in
(2.9).
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2.3. EXAMPLES. We illustrate the definitions:

EXAMPLE 2.2. Let X = [0, 1] = R/Z. Fix N ∈ Z+, N > 1. Let

r(x) = Nx mod 1.

Invariance:

(2.10)

1∫
0

f (Nx) dµ(x) =

1∫
0

f (x) dµ(x), ( f ∈ L∞(R/Z)).

Strong invariance:

(2.11)
1
N

1∫
0

N−1

∑
k=0

f (
x + k

N
) dµ(x) =

1∫
0

f (x) dµ(x).

The Lebesgue measure µ = λ is the unique probability measure on [0, 1] =
R/Z which satisfies (2.11).

Examples of measures µ on R/Z which satisfy (2.10) but not (2.11) are
(•) µ = δ0, the Dirac mass at x = 0;
(•) µ = µC, the Cantor middle-third measure on [0, 1] (see [19]), i.e., µC is

determined by
(-) 1

2
∫ (

f ( x
3 ) + f ( x+2

3 )
)

dµC(x) =
∫

f (x) dµC(x),
(-) µC([0, 1]) = 1,
(-) µC is supported on the middle-third Cantor set.

EXAMPLE 2.3. Let X = [0, 1) = R/Z, λ the Lebesgue measure, XC the
middle-third Cantor set, µC the Cantor measure. Then r : X → X, r(x) = 3x
mod 1, rC = rXC : XC → XC.

Consider the following properties for a Borel probability measure µ on R:

(2.12)
∫

f dµ =
1
3

∫ (
f (

x
3
) + f (

x + 1
3

) + f (
x + 2

3
)
)

dµ(x);

(2.13)
∫

f dµ =
1
2

∫ (
f (

x
3
) + f (

x + 2
3

)
)

dµ(x).

Then (2.12) has a unique solution µ = λ. Moreover (2.13) has a unique solution,
µ = µC, and µC is supported on the Cantor set XC.

Let R/Z = [0, 1). Then #r−1(x) = 3 for all x ∈ [0, 1). If x = x1
3 + x2

32 + · · · ,
xi ∈ {0, 1, 2}, is the representation of x in base 3, then r(x) ∼ (x2, x3, . . .), and
r−1(x) = {(0, x1, x2, . . .), (1, x1, x2, . . .), (2, x1, x2, . . .)}.

On the Cantor set #r−1
C (x) = 2 for all x ∈ XC. If x = x1

3 + x2
32 + · · · , xi ∈ {0, 2}

is the usual representation of XC in base 3, then

rC(x) = (x2, x3, . . .) and XC '∏
N
{0, 2}.
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In the representation ∏
N

Z3 of X = [0, 1), µ = λ is the product (Bernoulli)

measure with weights ( 1
3 , 1

3 , 1
3 ).

In the representation ∏
N
{0, 2} of XC, µC is the product (Bernoulli) measure

with weights ( 1
2 , 1

2 ).

EXAMPLE 2.4. Let N ∈ Z+, N > 2 and let A = (aij)N
i,j=1 be an N by N matrix

with all aij ∈ {0, 1}. Set

X(A) :=
{

(xi) ∈∏
N
{1, . . . , N} : A(xi, xi+1) = 1

}
and let r = rA be the restriction of the shift to X(A), i.e.,

rA(x1, x2, . . .) = (x2, x3, . . .), (x = (x1, x2, . . .) ∈ X(A)).

LEMMA 2.5. Let A be as above. Then

#r−1
A (x) = #{y ∈ {1, . . . , N} : A(y, x1) = 1}.

It follows that rA : X(A) → X(A) is onto if and only if A is irreducible, i.e., if
and only if for all j ∈ ZN , there exists an i ∈ ZN such that A(i, j) = 1. Suppose in
addition that A is aperiodic, i.e., there exists p ∈ Z+ such that Ap > 0 on ZN ×ZN .
We have the following lemma:

LEMMA 2.6 (D. Ruelle, [36], [6]). Let A be irreducible and aperiodic and let φ ∈
C(X(A)) be given. Assume that φ is a Lipschitz function.

(i) Set
(Rφ f )(x) = ∑

rA(y)=x
eφ(y) f (y), for f ∈ C(X(A)).

Then there exist λ0 > 0,

λ0 = sup{|λ| : λ ∈ spec(Rφ)},

h ∈ C(X(A)) strictly positive and ν a Borel measure on X(A) such that

Rφh = λ0h, νRφ = λ0ν,

and ν(h) = 1. The data is unique.
(ii) In particular, setting

(R0 f )(x) =
1

#r−1
A (x)

∑
rA(y)=x

f (y),

we may take λ0 = 1, h = 1 and ν =: µA, where µA is a probability measure on X(A)
satisfying the strong invariance property∫

X(A)

f dµA =
∫

X(A)

1
#r−1

A (x)
∑

rA(y)=x
f (y) dµA(x), ( f ∈ L∞(X(A)).
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3. POSITIVE DEFINITE FUNCTIONS AND DILATIONS

We now recall a result relating operator systems to positive definite func-
tions. The idea dates back to Kolmogorov, but has been used recently in for ex-
ample [20] and [18] (see also [2]).

DEFINITION 3.1. A map K : X × X → C is called positive definite if, for any
x1, . . . , xn ∈ X and any ξ1, . . . , ξn ∈ C,

n

∑
i,j=1

K(xi, xj)ξ iξ j > 0.

THEOREM 3.2 (Kolmogorov-Aronszajn). Let K : X × X → C be positive defi-
nite. Then there exist a Hilbert space and a map v : X → H such that

span{v(x) : x ∈ X} = H, and 〈 v(x) | v(y) 〉 = K(x, y), (x, y ∈ X).

Moreover H and v are unique up to isomorphism.

Proof. We sketch the idea of the proof. Take H to be the completion of the
space

{ f : X → C : f has finite support}
with respect to the scalar product

〈 f | g 〉 = ∑
x,y∈X

f (x)K(x, y)g(y).

Then define v(x) := δx.

REMARK 3.3. Theorem 3.2 has a long history in operator theory. The version
above is purely geometric, but as noted, for example in [35] and [8], it is possible
to take the Hilbert space H in the theorem of the form L2(Ω, B, µ) where (Ω, B, µ)
is a probability space; i.e., B is a sigma-algebra on some measure space Ω, µ a
measure defined on B, µ(Ω) = 1. In that case, v(x, ·) is a stochastic process.
As is well known, it is even possible to make this choice such that the process is
Gaussian. Examples of this include Brownian motion, and fractional Brownian
motion, see also [31], [1], [25]; and [32] for a more operator theoretic approach.

For the purpose of the present discussion, it will be enough to know the
Hilbert space H abstractly, but in the main part of our paper (Sections 5–8), the
particular function representation will be of significance. To see this, take for
example the case of the more familiar wavelet construction from Example 1.1
above. In the present framework, the space X is then the d-torus Td, while the
ambient dilation Hilbert space H is L2(Rd). Since wavelet bases must be realized
in the ambient Hilbert space, it is significant to have much more detail than is
encoded in the purely geometric data of Theorem 3.2. Even when comparing
with the function theoretic version of [35], the wavelet example illustrates that it
is significant to go beyond probability spaces.
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One of our aims is to offer a framework for more general wavelet bases, in-
cluding state spaces in symbolic dynamics and Julia sets (such as [12].) A main
reason for the usefulness of wavelet bases is their computational features. As is
well known [38], there are many function theoretic orthonormal bases (ONB), or
Parseval frames in analysis where the basis coefficients do not lend themselves to
practical algorithmic schemes. If for example we are in L2(Rd), then the compu-
tation of each basis coefficients typically involves a separate integration over Rd;
not at all a computationally attractive proposition.

What our present approach does is that it selects a subspace of the ambi-
ent Hilbert space which is computationally much more feasible. As stressed in
[5] and [27], such a selection corresponds to a choice of resolution, a notion from
optics; and one dictated in turn by applications. In the present setup, the chosen
resolution corresponds to an initial space, which in this context may be encoded
by X from Theorem 3.2 above. As we will see later, there are ways to do this
such that the computation of basis coefficients becomes algorithmic. We will talk
about wavelet bases in this much more general context, even though wavelets are
traditionally considered only in L2(Rd). With good choices, we find that compu-
tation of the corresponding basis coefficients may be carried with a certain recur-
sive algorithm involving only matrix iteration; much like in the familiar case of
Gram-Schmidt algorithms.

THEOREM 3.4. Let K be a positive definite map on a set X. Let s : X → X be a
map that is compatible with K in the sense that

(3.1) K(s(x), s(y)) = K(x, y), (x, y ∈ X).

Then there exist a Hilbert space H, a map v : X → H and a unitary operator U on H
such that

〈 v(x) | v(y) 〉 = K(x, y), (x, y ∈ X);(3.2)

span{U−n(v(x)) : x ∈ X, n > 0} = H;(3.3)

Uv(x) = v(s(x)), (x ∈ X).(3.4)

Moreover, this is unique up to an intertwining isomorphism.

Proof. Let X̃ := X ×Z. Define K̃ : X̃ × X̃ → C by

K̃((x, n), (y, m)) = K(sn+M(x), sm+M(y)), (x, y ∈ X, n, m ∈ Z),

where M > max{−m,−n}.
The compatibility condition (3.1) implies that the definition does not de-

pend on the choice of M. We check that K̃ is positive definite. Take (xi, ni) ∈ X̃
and ξi ∈ C. Then, for M big enough we have:

∑
i,j

K̃((xi, ni), (xj, nj))ξ iξ j = ∑
i,j

K(sM+ni (xi), sM+nj (xj))ξ iξ j > 0.
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Using now the Kolmogorov construction (see Theorem 3.2), there exists a Hilbert
space H and a map ṽ : X̃ → H such that

〈 ṽ(x, n) | ṽ(y, m) 〉 = K̃((x, n), (y, m)), ((x, m), (y, n) ∈ X̃);

span{ṽ(x, m) : (x, m) ∈ X̃} = H.

Define v by
v(x) = ṽ(x, 0), (x ∈ X).

Then (3.2) is satisfied. Define

Uṽ(x, n) = ṽ(x, n + 1), ((xn) ∈ X̃).

U is well defined and an isometry because, for M sufficiently big,

〈 ṽ(x, n + 1) | ṽ(y, m + 1) 〉 = K(sM+n+1(x), sM+m+1(y))

= K(sM+n(x), sM+m(y)) = 〈 ṽ(x, n) | ṽ(y, m) 〉.

U has dense range so U is unitary. Also (3.3) is immediate (we need only n > 0
because Un(v(x)) = v(sn(x)), for n > 0, will follow form (3.4)).

For (3.4) we compute

〈Uv(x) | ṽ(y, n) 〉 = K̃((x, 1), (y, n)) = K(sM+1(x), sM+n(y))

= K(sM(s(x)), sM+n(y)) = 〈 v(s(x)) | ṽ(y, n) 〉.

For uniqueness, if H′, v′, U′ satisfy the same conditions, then the formula
W(Unv(x)) = U′nv′(x) defines an intertwining isomorphism.

THEOREM 3.5. Let A be a unital C∗-algebra, α an endomorphism on A, µ a state
on A and, m0 ∈ A, such that

(3.5) µ(m∗0α( f )m0) = µ( f ), ( f ∈ A).

Then there exist a Hilbert space H, a representation π of A on H, U a unitary on H, and
a vector ϕ ∈ A, with the following properties:

Uπ( f )U∗ = π(α( f )), ( f ∈ A);(3.6)

〈 ϕ | π( f )ϕ 〉 = µ( f ), ( f ∈ A);(3.7)

Uϕ = π(α(1)m0)ϕ;(3.8)

span{U−nπ( f )ϕ : n > 0, f ∈ A} = H.(3.9)

Moreover, this is unique up to an intertwining isomorphism.
We call (H, U, π, ϕ) the covariant system associated to µ and m0.

Proof. Define K and s by

K(x, y) = µ(x∗y), s(x) = α(x)m0, (x, y ∈ A).

K is positive definite and compatible with s so, with Theorem 3.4, there exists
a Hilbert space H, a map v from A to H, and a unitary U with the mentioned
properties.
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Define ϕ = v(1), then

π( f )(U−nv(x)) = U−nv(αn( f )x), ( f , x ∈ A, n > 0).

Some straightforward computations show that π is a well defined representation
of A that satisfies all requirements.

COROLLARY 3.6. Let X be a measure space, r : X → X a measurable, onto map
and µ a probability measure on X such that

(3.10)
∫
X

f dµ =
∫
X

1
#r−1(x) ∑

r(y)=x
f (y) dµ(x).

Let h ∈ L1(X), h > 0 such that

1
#r−1(x) ∑

r(y)=x
|m0(y)|2h(y) = h(x), (x ∈ X).

Then there exist (uniquely up to isomorphisms) a Hilbert space H, a unitary U, a repre-
sentation π of L∞(X) and a vector ϕ ∈ H such that:

Uπ( f )U−1 = π( f ◦ r), ( f ∈ L∞(X));

〈 ϕ | π( f )ϕ 〉 =
∫
X

f h dµ, ( f ∈ L∞(X));

Uϕ = π(m0)ϕ;

span{U−nπ( f )ϕ : n > 0, f ∈ L∞(X)} = H.

We call (H, U, π, ϕ) the covariant system associated to m0 and h.

Proof. Take µ( f ) =
∫
X

f h dµ, α( f ) = f ◦ r; and use Theorem 3.5.

We regard Theorem 3.5 as a dilation result. In this context we have a second
closely related result:

THEOREM 3.7. (i) Let H be a Hilbert space, S an isometry on H. Then there exist
a Hilbert space Ĥ containing H and a unitary Ŝ on Ĥ such that:

Ŝ|H = S,(3.11) ⋃
n>0

Ŝ−n H = Ĥ.(3.12)

Moreover these are unique up to an intertwining isomorphism.
(ii) If A is a C∗-algebra, α is an endomorphism on A and π is a representation of A

on H such that

(3.13) Sπ(g) = π(α(g))S, (g ∈ A);
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then there exists a unique representation π̂ on Ĥ such that:

π̂(g)|H = π(g), (g ∈ A);(3.14)

Ŝπ̂(g) = π̂(α(g))Ŝ, (g ∈ A).(3.15)

Proof. (i) Consider the set of symbols

Hsym :=
{

∑
j∈Z

Sjξ j : ξ j ∈ H, ξ j = 0 except for finiteley many j’s
}

.

Define the scalar product

(3.16)
〈

∑
i∈Z

Siξi

∣∣∣ ∑
j∈Z

Sjηj

〉
= ∑

i,j∈Z
〈 Si+mξi | Sj+mηj 〉,

where m is chosen sufficiently large, such that i + m, j + m > 0 for all i, j ∈ Z with
ξi 6= 0, ηj 6= 0.

Since S is an isometry this definition does not depend on the choice of m.
We denote the completion of Hsym with this scalar product by Ĥ. H can be iso-
metrically identified with a subspace of Ĥ by

ξ 7→ ∑
i∈Z

Siξi, where ξi =
{ 0 if i 6= 0,

ξ if i = 0.

Define

Ŝ
(

∑
i∈Z

Siξi

)
= ∑

i∈Z
Si+1ξi.

In the definition of Ĥ, we use (3.16) as an inner product, and we set

Ĥ =
(
Hsym/

{
∑

j
Sjξ j : ∑

i,j
〈 Si+mξi | Sj+mξ j 〉 = 0

})∧
where ∧ stands for completion.

Since ξ = S−1(Sξ) inHsym, for ξ ∈ H, we get natural isometric embeddings
as follows, see (3.12),

H ⊂ Ŝ−1H ⊂ Ŝ−2H ⊂ · · · ⊂ Ŝ−nH ⊂ Ŝ−n−1H ⊂ · · · .

It can be checked that Ĥ and Ŝ satisfy the requirements.
(ii) We know that the spaces

{Ŝ−nξ : n > 0, ξ ∈ H}

span a dense subspace of Ĥ. Define

π̂(g)(Ŝ−nξ) = Ŝ−nπ(αn(g))ξ, (g ∈ A, n > 0, ξ ∈ H).
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We check only that π̂(g) is a well defined, bounded operator, the rest of our claims
follow from some elementary computations. Take m large:∥∥∥π̂(g)

(
∑

i
Ŝ−ni ξi

)∥∥∥2
=

∥∥∥ ∑
i

Ŝ−ni π(αni (g))ξi

∥∥∥2
=

∥∥∥ ∑
i

Ŝm−ni π(αni (g))ξi

∥∥∥2

=
∥∥∥ ∑

i
π(αm(g))Ŝm−ni ξi

∥∥∥2
6 ‖g‖2

∥∥∥ ∑
i

Ŝ−ni ξi

∥∥∥2
.

EXAMPLE 3.8. This example is from [3], and it illustrates the conclusions in
Theorem 3.7.

Consider
1. H = l2(N0).
2. S(c0, c1, . . .) = (c1, c2, . . .), the unilateral shift.
3. δk(j) = δk,j = Kronecker delta, for k, j ∈ N0.
4. π(gk)δj := exp(i2πk2−j)δj, j ∈ N0, k ∈ Z[ 1

2 ].
When Theorem 3.7 is applied we get:

1’. The dilation Hilbert space Ĥ is l2(Z).
2’. Ŝ is the bilateral shift on l2(Z) i.e., Ŝδj = δj−1 for j ∈ Z.
3’. Same as in 3. but for k, j ∈ Z.
4’. The operator π̂(gk) is given by the same formula 4., but for j ∈ Z.

The commutation relation (3.15) now takes the form

Ŝπ̂(gk) = π̂(g2−1k)Ŝ on l2(Z), for k ∈ Z[
1
2
];(3.17)

Ŝ−n H = span{δ−n, δ−n+1, δ−n+2, . . .} ⊂ Ĥ.(3.18)

3.1. OPERATOR VALUED FILTERS. In this subsection we study the multiplicity
configurations of the representations π from above. Our first result shows that
the two functions m0, and h in Section 2.1 may be operator valued. The explicit
multiplicity functions are then calculated in the next section.

COROLLARY 3.9. Let X, r, and µ be as in Corollary 3.6. Let I be a finite or count-
able set. Suppose H : X → B(l2(I)) has the property that H(x) > 0 for almost ev-
ery x ∈ X, and Hij ∈ L1(X) for all i, j ∈ I. Let M0 : X → B(l2(I)) such that
x 7→ ‖M0(x)‖ is essentially bounded. Assume in addition that

(3.19)
1

#r−1(x) ∑
r(y)=x

M∗0(y)H(y)M0(y) = H(x), for a.e. x ∈ X.

Then there exist a Hilbert space K̂, a unitary operator Û on K̂, a representation π̂ of
L∞(X) on K̂, and a family of vectors (ϕi) ∈ K̂, such that:

Ûπ̂(g)Û−1 = π̂(g ◦ r), (g ∈ L∞(X));

Ûϕi = ∑
j∈I

π̂((M0)ji)ϕj, (i ∈ I);
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〈 ϕi | π̂( f )ϕj 〉 =
∫
X

f Hij dµ, (i, j ∈ I, f ∈ L∞(X));

span{π̂( f )ϕi : n > 0, f ∈ L∞(X), i ∈ I} = K̂.

These are unique up to an intertwining unitary isomorphism. (All functions are assumed
weakly measurable in the sense that x 7→ 〈 ξ | F(x)η 〉 is measurable for all ξ, η ∈ l2(I).)

Proof. Consider the Hilbert space

K :=
{

f : X → CI : f is measurable,
∫
X

〈 f (x) | H(x) f (x) 〉dµ(x) < ∞
}

.

Define S on K by

(S f )(x) = M0(x)( f (r(x))), (x ∈ X, f ∈ K).

We check that S is an isometry. For f , g ∈ K:

〈 Sg | S f 〉 =
∫
X

〈M0(x)g(r(x)) | H(x)M0(x) f (r(x)) 〉dµ(x)

=
∫
X

〈 g(r(x)) | M0(x)∗H(x)M0(x) f (r(x)) 〉dµ(x)

=
∫
X

1
#r−1(x) ∑

r(y)=x
〈 g(x) | M0(y)∗H(y)M0(y) f (x) 〉dµ(x)

=
∫
X

〈 g(x) | H(x) f (x) 〉dµ(x) = 〈 g | f 〉,

where we used (3.19) in the last step. The converse implication holds as well, i.e.,
if S is an isometry then (3.19) is satisfied. Define now

(π(g) f )(x) = g(x) f (x), (x ∈ X, g ∈ L∞(X), f ∈ K).

π defines a representation of L∞(X) on K. Moreover, the covariance relation is
satisfied:

Sπ(g) = π(g ◦ r)S.

Then we use Theorem 3.7 to obtain a Hilbert space K̂ containing K, a unitary
Û := Ŝ on K̂, and a representation π̂ on K̂ that dilate S and π.

Define ϕi ∈ K ⊂ K̂,

ϕi(x) := δi, for all x ∈ X, (i ∈ I).

We have that

〈 ϕi | π̂( f )ϕj 〉 =
∫
X

〈 δi | H(x)( f (x)δj) 〉dµ(x) =
∫
X

f (x)Hij(x) dµ(x),
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(Ûϕi)(x) = (Sϕi)(x) = M0(x)δi = ((M0)ji(x))j∈I =
(

∑
j∈I

π̂((M0)ji)ϕj

)
(x).

Also it is clear that

span{π̂( f )ϕi : f ∈ L∞(X), i ∈ I} = K.

These relations, together with Theorem 3.7, prove our assertions.

4. MULTIPLICITY THEORY

One of the tools from operator theory which has been especially useful in
the analysis of wavelets is multiplicity theory for abelian C∗-algebras A.

We first recall a few well known facts, see e.g., [33]. By Gelfand’s theo-
rem, every abelian C∗-algebra with unit is C(X) for a compact Hausdorff space
X; and every representation of A is the orthogonal sum of cyclic representations.
While the cardinality of the set of cyclic components in this decomposition is an
invariant, the explicit determination of the cyclic components is problematic, as
the construction depends on Zorn’s lemma. So for this reason, it is desirable to
turn the abstract spectral theorem for representations into a concrete one. In the
concrete spectral representation, C(X) is represented as an algebra of multiplica-
tion operators on a suitable L2-space; as opposed to merely an abstract Hilbert
space. When we further restrict attention to normal representations of A, we will
be working with the algebra L∞(X) defined relative to the Borel sigma-algebra of
subsets in X.

With this, we are able to compute a concrete spectral representation, and
thereby to strengthen the conclusion from Theorem 3.7.

Our L2-space which carries the representation may be realized concretely
when the additional structure from Section 2.1 is introduced, i.e., is added to the
assumptions in Theorem 3.7. Hence, we will work with the given finite-to-one
mapping r : X → X, and the measure µ from before. Recall from Section 2 that µ
is assumed strongly r-invariant.

Theorem 3.7 provides an abstract unitary dilation of a given covariant sys-
tem involving a representation π and a fixed isometry S on a Hilbert space H.
In the present section, we specialize the representation π in Theorem 3.7 to the
algebra A = L∞(X), and α : A → A, is α(g) := g ◦ r. While our conclusion
from Theorem 3.7 still offers a unitary dilation U in an abstract Hilbert space Ĥ,
we are now able to show that Ĥ has a concrete spectral representation. Since Ĥ
is the closure of an ascending union of resolution subspaces defined from U, the
question arises as to how the multiplicities of the restricted representations of the
resolution subspaces in Ĥ are related to one-another.

The answer to this is known in the case of wavelets, see e.g., [4]. In this sec-
tion we show that there is a version of the Baggett et al multiplicity formula in the
much more general setting of Theorem 3.7. In particular, we get the multiplicity
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formula in the applications where X is a Julia set, or a state space of sub-shift dy-
namical system. As we noted in Section 2 above, each of these examples carries a
natural mapping r, and a strongly r-invariant measure µ.

Consider X a measure space, r : X → X an onto, measurable map such that
#r−1(x) < ∞ for all x ∈ X. Let µ be a measure on X such that

(4.1)
∫
X

f dµ =
∫
X

1
#r−1(x) ∑

r(y)=x
f (y) dµ(x), ( f ∈ L∞(X)).

Suppose now that H is a Hilbert space with an isometry S on it and with a
normal representation π of L∞(X) on H that satisfies the covariance relation

(4.2) Sπ(g) = π(g ◦ r)S, (g ∈ L∞(X)).

Theorem 3.7 shows that there exists a Hilbert space Ĥ containing H, a uni-
tary Ŝ on Ĥ and a representation π̂ of L∞(X) on Ĥ such that:

(Vn := Ŝ−n(H))n form an increasing sequence of subspaces with dense union,

and Ŝ|H = S, π̂|H = π, Ŝπ̂(g) = π̂(g ◦ r)Ŝ.

THEOREM 4.1. (i) V1 = Ŝ−1(H) is invariant for the representation π̂. The mul-
tiplicity functions of the representation π̂ on V1, and on V0 = H, are related by

(4.3) mV1(x) = ∑
r(y)=x

mV0(y), (x ∈ X).

(ii) If W0 := V1 	V0 = Ŝ−1H 	 H, then

(4.4) mV0(x) + mW0(x) = ∑
r(y)=x

mV0(y), (x ∈ X).

Proof. Note that Ŝ maps V1 to V0, and the covariance relation implies that
the representation π̂ on V1 is isomorphic to the representation πr : g 7→ π(g ◦ r)
on V0. Therefore we have to compute the multiplicity of the latter, which we
denote by mr

V0
.

By the spectral theorem there exists a unitary isomorphism J : H(= V0) →
L2(X, mV0 , µ), where, for a multiplicity function m : X → {0, 1, . . . , ∞}, we use the
notation:

L2(X, m, µ) :=
{

f : X →
⋃

x∈X

Cm(x) : f (x) ∈ Cm(x),
∫
X

‖ f (x)‖2 dµ(x) < ∞
}

.

In addition J intertwines π with the representation of L∞(X) by multiplication
operators, i.e.,

(Jπ(g)J−1( f ))(x) = g(x) f (x) (g ∈ L∞(X), f ∈ L2(X, mV0 , µ), x ∈ X).

REMARK 4.2. Here we are identifying H with L2(X, mV0 , µ) via the spec-
tral representation. We recall the details of this representation H 3 f 7→ f̃ ∈
L2(X, mV0 , µ).
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Recall that any normal representation π ∈ Rep(L∞(X), H) is the orthogonal
sum

(4.5) H = ∑
k∈C

⊕[π(L∞(X))k],

where the set C of vectors k ∈ H is chosen such that:
(•) ‖k‖ = 1,

(4.6) 〈 k | π(g)k 〉 =
∫
X

g(x)vk(x)2 dµ(x), for all k ∈ C;

(•) 〈 k′ | π(g)k 〉 = 0, g ∈ L∞(X), k, k′ ∈ C, k 6= k′; orthogonality.
The formula (4.5) is obtained by a use of Zorn’s lemma. Here, v2

k is the
Radon-Nikodym derivative of 〈 k | π(·)k 〉 with respect to µ, and we use that π is
assumed normal.

For f ∈ H, set

f = ∑
k∈C

⊕π(gk)k, gk ∈ L∞(X) and f̃ = ∑
k∈C

⊕gkvk ∈ L2
µ(X, l2(C)).

Then W f = f̃ is the desired spectral transform, i.e.,

W is unitary, Wπ(g) = M(g)W, and ‖ f̃ (x)‖2 = ∑
k∈C
|gk(x)vk(x)|2.

Indeed, we have∫
X

‖ f̃ (x)‖2 dµ(x) =
∫
X

∑
k∈C
|gk(x)|2vk(x)2 dµ(x) = ∑

k∈C

∫
X

|gk|2v2
k dµ

= ∑
k∈C
〈 k | π(|gk|2)k 〉= ∑

k∈C
‖π(gk)k‖2 =

∥∥∥ ∑
k∈C

⊕π(gk)k
∥∥∥2

H
=‖ f ‖2

H .

It follows in particular that the multiplicity function m(x) = mH(x) is

m(x) = #{k ∈ C : vk(x) 6= 0}.

Setting
Xi := {x ∈ X : m(x) > i}, (i > 1),

we see that

H '∑ ⊕L2(Xi, µ) ' L2(X, m, µ),

and the isomorphism intertwines π(g) with multiplication operators.

Returning to the proof of the theorem, we have to find the similar form for
the representation πr. Let

(4.7) m̃(x) := ∑
r(y)=x

mV0(y), (x ∈ X).
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Define the following unitary isomorphism:

L : L2(X, mV0 , µ) → L2(X, m̃, µ), (Lξ)(x) =
1√

#r−1(x)
(ξ(y))r(y)=x.

(Note that the dimensions of the vectors match because of (4.7)). This operator L
is unitary. For ξ ∈ L2(X, mV0 , µ), we have

‖Lξ‖2
L2(X,mV0 ,µ) =

∫
X

‖Lξ(x)‖2 dµ(x) =
∫
X

1
#r−1(x) ∑

r(y)=x
‖ξ(y)‖2 dµ(x)

=
∫
X

‖ξ(x)‖2 dµ(x).

And L intertwines the representations. Indeed, for g ∈ L∞(X),

L(g ◦ r ξ)(x) = (g(r(y))ξ(y))r(y)=x = g(x)L(ξ)(x).

Therefore, the multiplicity of the representation πr : g 7→ π(g ◦ r) on V0 is m̃, and
this proves (i).

(ii) follows from (i).

Conclusions. By definition, if k ∈ C,

〈 k | π(g)k 〉 =
∫
X

g(x)vk(x)2 dµ(x), and

〈 k | πr(g)k 〉 =
∫
X

g(r(x))vk(x)2 dµ(x) =
∫
X

g(x)
1

#r−1(x) ∑
r(y)=x

vk(x)2 dµ(x);

and so

mr(x) = #
{

k ∈ C : ∑
r(y)=x

vk(y)2 > 0
}

= ∑
r(y)=x

#{k ∈ C : vk(y)2 > 0}= ∑
r(y)=x

m(y).

Let Cm(x) := {k ∈ C : vk(x) 6= 0}. Then we showed that

Cm(x) =
⋃

y∈X,r(y)=x

Cm(y)

and that Cm(y) ∩ Cm(y′) = ∅ when y 6= y′ and r(y) = r(y′) = x. Setting H(x) =
l2(Cm(x)), we have

H(x) = l2(Cm(x)) = ∑
r(y)=x

⊕l2(Cm(y)) = ∑
r(y)=x

⊕H(y).

REMARK 4.3. There are many representations (π, U, Ĥ) for which

Uπ(g)U−1 = π(g ◦ r), (g ∈ C(X)),
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holds; but for which the spectral measures of π are not absolutely continuous;
i.e., the measure

g 7→ 〈 ĥ | π(g)ĥ 〉 =
∫
X

g(x) dµĥ(x)

is singular with respect to the Julia-measure µ for some ĥ ∈ Ĥ. But for the pur-
pose of wavelet analysis, it is necessary to restrict our attention to normal repre-
sentations π.

5. PROJECTIVE LIMITS

We work in either the category of measure spaces or topological spaces.

DEFINITION 5.1. Let r : X → X be onto, and assume that #r−1(x) < ∞ for
all x ∈ X. We define the projective limit of the system:

(5.1) X r← X r← X r← · · · ← X∞

as
X∞ := {x̂ = (x0, x1, . . .) : r(xn+1) = xn, for all n > 0}.

Let θn : X∞ → X be the projection onto the n-th component:

θn(x0, x1, . . .) = xn, ((x0, x1, . . .) ∈ X∞).

Taking inverse images of sets in X through these projections, we obtain a sigma
algebra on X∞, or a topology on X∞. We have an induced mapping r̂ : X∞ → X∞
defined by

(5.2) r̂(x̂) = (r(x0), x0, x1, . . .), and with inverse r̂−1(x̂) = (x1, x2, . . .).

so r̂ is an automorphism, i.e., r̂ ◦ r̂−1 = idX∞ and r̂−1 ◦ r̂ = idX∞ .
Note that

θn ◦ r̂ = r ◦ θn = θn−1;

-

Q
Q

Q
Q

Q
Q

Q
QQs ?

X∞ X

X

θn

θn−1
r

-

Q
Q

Q
Q

Q
Q

Q
QQs ?

X∞ X∞

X

r̂

θn−1
θn

-

??
-

X∞ X∞

X X.

r̂

θn

r

θn

Consider a probability measure µ on X that satisfies

(5.3)
∫
X

f dµ =
∫
X

1
#r−1(x) ∑

r(y)=x
f (y) dµ(x).
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It is known that such measures µ on X exist for a general class of systems
r : X → X. The measure µ is said to be strongly r-invariant. We have already
discussed some examples in Section 2 above.

If X = X(A) is the state space of a sub-shift, we saw that µ = µA may be
constructed as an application of Ruelle’s theorem (see Lemma 2.6). If X = Julia(r)
is the Julia set of some rational mapping, then it is also known [7], [30] that a
strongly r-invariant measure µ on X = Julia(r) exists.

For m0 ∈ L∞(X), define

(5.4) (Rξ)(x) =
1

#r−1(x) ∑
r(y)=x

|m0(y)|2ξ(y), (ξ ∈ L1(X)).

The next two theorems (Theorem 5.3–5.4) are key to our dilation theory. The
dilations which we construct take place at three levels as follows:

(•) Dynamical systems:

(X, r, µ) endomorphism → (X∞, r̂, µ̂), automorphism.

(•) Hilbert spaces:

L2(X, h dµ) → (Rm0 h = h) → L2(X∞, µ̂).

(•) Operators:

Sm0 isometry → U unitary (if m0 is non-singular);

M(g) multiplication operator → M∞(g).

DEFINITION 5.2. A function m0 on a measure space is called singular if m0 =
0 on a set of positive measure.

In general, the operators Sm0 on H0 = L2(X, h dµ), and U on L2(X∞, µ̂), may
be given only by abstract Hilbert space axioms; but in our martingale representa-
tion, we get the following two concrete formulas:

(Sm0 ξ)(x) = m0(x)ξ(r(x)), (x ∈ X, ξ ∈ H0);

(U f )(x̂) = m0(x0) f (r̂(x̂)), (x̂ ∈ X∞, f ∈ L2(X∞, µ̂)).

THEOREM 5.3. If h ∈ L1(X), h > 0 and Rh = h, then there exists a unique
measure µ̂ on X∞ such that

µ̂ ◦ θ−1
n = ωn, (n > 0),

where

(5.5) ωn( f ) =
∫
X

Rn( f h) dµ, ( f ∈ L∞(X)).

Proof. It is enough to check that the measures ωn and ωn+1 are compatible,
i.e., we have to check if

ωn+1( f ◦ r) = ωn( f ), ( f ∈ L∞(X)).
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But
Rn+1( f ◦ r h) = Rn(R( f ◦ r h)) = Rn( f Rh) = Rn( f h).

Note that we can identify functions on X with functions on X∞ by

f (x0, x1, . . .) = f (x0), ( f : X → C).

THEOREM 5.4.

(5.6)
d(µ̂ ◦ r̂−1)

dµ̂
= |m0|2.

Proof. Equation (5.6) can be rewritten as∫
X∞

|m0|2 f ◦ r̂ dµ̂ =
∫

X∞

f dµ̂, ( f ∈ L∞(µ̂)).

By the uniqueness of µ̂, it is enough to check that∫
X∞

|m0|2(x0)( f ◦ θn) ◦ r̂(x̂) dµ̂(x̂) = ωn( f ), ( f ∈ L∞(X)),

or, equivalently (since θn r̂ = rθn and x0 = rn(xn)):

(5.7) ωn(|m0|2 ◦ rn f ◦ r) = ωn( f ).

We can compute:∫
X

Rn(|m0|2 ◦ rn f ◦ r h) dµ =
∫
X

|m0|2Rn( f ◦ r h) dµ =
∫
X

|m0|2Rn−1( f Rh) dµ

=
∫
X

|m0|2Rn−1( f h) dµ =
∫
X

R(Rn−1( f h)) dµ,

and we used (5.3) for the last equality. This proves (5.7) and the theorem.

THEOREM 5.5. Suppose m0 is non-singular, i.e., it does not vanish on a set of
positive measure. Define U on L2(X∞, µ̂) by:

U f = m0 f ◦ r̂, ( f ∈ L2(X∞, µ̂)),

π(g) f = g f , (g ∈ L∞(X), f ∈ L2(X∞, µ̂)),

ϕ = 1.

Then (L2(X∞, µ̂), U, π, ϕ) is the covariant system associated to m0 and h as in Corol-
lary 3.6. Moreover, if Mg f = g f for g ∈ L∞(X∞, µ̂) and f ∈ L2(X∞, µ̂), then

UMgU−1 = Mg◦r̂.

Proof. Theorem 5.4 shows that U is isometric. Since m0 is non-singular, the
same theorem can be used to deduce that

U∗ f =
1

m0 ◦ r̂−1 f ◦ r̂−1
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is a well defined inverse for U.
The covariance relation follows by a direct computation. Also we obtain

U−nπ(g)Un f = g ◦ r̂−n f , (g ∈ L∞(X), f ∈ L2(X∞, µ̂)),

which shows that ϕ is cyclic.
The other requirements of Corollary 3.6 are easily obtained by computa-

tion.

REMARK 5.6. When m0 is singular U is just an isometry (not onto). How-
ever, we still have many of the relations: the covariance relation becomes

Uπ( f ) = π( f ◦ r)U, ( f ∈ L∞(X)),

the scaling equation remains true,

(5.8) Uϕ = π(m0)ϕ,

and the correlation function of ϕ is h:

〈 ϕ | π( f )ϕ 〉 =
∫
X

f h dµ, ( f ∈ L∞(X)).

We further note that equation (5.8) is an abstract version of the scaling identity
from wavelet theory. In Section 1 we recalled the scaling equation in its two
equivalent forms, the additive version (1.1), and its multiplicative version (1.2).
The two versions are equivalent via the Fourier transform.

6. MARTINGALES

We give now a different representation of the construction of the covariant
system associated to m0 and h given in Theorem 5.5.

Let
Hn := { f ∈ L2(X∞, µ̂) : f = ξ ◦ θn, ξ ∈ L2(X, ωn)}.

Then Hn form an increasing sequence of closed subspaces which have dense
union.

We can identify the functions in Hn with functions in L2(X, ωn), by

in(ξ) = ξ ◦ θn, (ξ ∈ L2(X, ωn)).

The definition of µ̂ makes in an isomorphism between Hn and L2(X, ωn).
Define

H :=
{

(ξ0, ξ1, . . .) : ξn ∈ L2(X, ωn), R(ξn+1h) = ξnh, sup
n

∫
X

Rn(|ξn|2h) dµ < ∞
}

,

with the scalar product

〈 (ξ0, ξ1, . . .) | (η0, η1, . . .) 〉 = lim
n→∞

∫
X

Rn(ξnηnh) dµ.
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THEOREM 6.1. The map Φ : L2(X∞, µ̂) → H defined by

Φ( f ) = (i−1
n (Pn f ))n>0,

where Pn is the projection onto Hn, is an isomorphism. Then:

ΦUΦ−1(ξn)n>0 = (m0 ◦ rn ξn+1)n>0, Φπ(g)Φ−1(ξn)n>0 = (g ◦ rn ξn)n>0,

Φϕ = (1, 1, . . .).

Proof. Let ξn := i−1
n (Pn f ). We check that R(ξn+1h) = ξnh. For this it is

enough to see that the projection of ξn+1 ◦ θn+1 onto Hn is
( R(ξn+1h)

h
)
◦ θn. We

compute the scalar products with g ◦ θn ∈ Hn:

〈 ξn+1 ◦ θn+1 | g ◦ θn 〉 =
∫

X∞

ξn+1 ◦ θn+1g ◦ r ◦ θn+1 dµ̂ =
∫
X

Rn+1(ξn+1g ◦ rh) dµ

=
∫
X

Rn
(

g
R(ξn+1h)

h
h
)

dµ =
〈 R(ξn+1h)

h
◦ θn

∣∣∣ g ◦ θn

〉
.

Since the union of (Hn) is dense, Pn f converges to f . As each in is isometric,

〈 f | g 〉 = lim
n→∞
〈 Pn f | Png 〉 = lim

n→∞
〈Φ( f )n | Φ(g)n 〉L2(X,ωn) = 〈Φ( f ) | Φ(g) 〉.

Now we check that Φ is onto. Take (ξn)n>0 ∈ H. Then define

fn := ξn ◦ θn = i−1
n (ξn).

The previous computation shows that

Pn fn+1 = fn.

Also
sup

n
‖ fn‖2 = sup

n

∫
X

Rn(|ξn|2h) dµ < ∞.

But then, by a standard Hilbert space argument, fn is a Cauchy sequence which
converges to some

f = lim
n→∞

fn = f0 +
∞

∑
k=0

( fk+1 − fk) ∈ L2(X∞, µ)

with Pn f = fn for all n > 0, and we conclude that Φ( f ) = (ξn)n>0.
The form of ΦUΦ−1 and Φπ(g)Φ−1 can be obtained from the next lemma

(using the fact that PnU f = UPn+1).

LEMMA 6.2. The following diagram is commutative, where α(ξ) = ξ ◦ r:

L2(X, ωn) α−→ L2(X, ωn+1)

↓ in ↓ in+1

Hn ↪−→ Hn+1

.
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If ξ ◦ θn+k ∈ Hn+k, then

Pn(ξ ◦ θn+k) =
Rk(ξh)

h
◦ θn;(6.1)

U∗ f = χ{m0◦r̂−1 6=0}
1

m0 ◦ r̂−1 f ◦ r̂−1, ( f ∈ L2(X∞, µ̂));(6.2)

UPn+1U∗ = Pn, (n > 0).(6.3)

Proof. For ξ ∈ L2(X, ωn), ξ ◦ θn = ξ ◦ r ◦ θn+1 = in+1(α(ξ)), thus the diagram
commutes.

We have to check that, for all η ∈ L2(X, ωn) we have

〈 ξ ◦ θn+k | η ◦ θn 〉 =
〈 Rk(ξh)

h
◦ θn

∣∣∣ η ◦ θn

〉
.

But

〈 ξ ◦ θn+k | η ◦ θn 〉 =
∫
X

Rn+k(ξη ◦ rk h) dµ =
∫
X

Rn
( Rk(ξh)

h
ηh

)
dµ

=
〈 Rk(ξh)

h
◦ θn

∣∣∣ η ◦ θn

〉
.

Equation (6.2) can be proved by a direct computation.
Since (Hn) are dense in L2(X∞, µ̂), we can check (6.3) on Hn+k. Take ξ ◦

θn+k ∈ Hn+k, then

UPn+1U∗(ξ ◦ θn+k) = UPn+1

(
χ{m0◦r̂−1 6=0}

1
m0 ◦ r̂−1 ξ ◦ θn+k ◦ r̂−1

)
= UPn+1

((
χ{m0◦r̂−1 6=0} ◦ rn+k+1 1

m0 ◦ rn+k ξ
)
◦ θn+k+1

)
= U

(( Rk
(

χ{m0◦r̂−1 6=0} ◦ rn+k+1 1
m0◦rn+k ξh

)
h

)
◦ θn+1

)
= U

((
χ{m0◦r̂−1 6=0} ◦ rn+1 1

m0 ◦ rn
Rk(ξh)

h

)
◦ θn+1

)
= m0χ{m0◦r̂−1 6=0} ◦ r

1
m0

Rk(ξh)
h

◦ θn = Pn(ξ ◦ θn+k).

As a consequence of Lemma 6.2 we also have:

PROPOSITION 6.3. The identification of functions in L2(X, ωn) with martingales
is given by

(6.4) Φ(in(ξ))=
( Rn(ξh)

h
, . . . ,

R(ξh)
h

, ξ, ξ ◦ r, ξ ◦ r2, . . .
)

, (ξ∈L2(X, ωn), n>0).

The condition that m0 be non-singular is essential if one wants U to be uni-
tary. We illustrate this by an example.
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EXAMPLE 6.4 (Shannon’s wavelet). Let R/Z ' [− 1
2 , 1

2 ). By this we mean
that functions on [− 1

2 , 1
2 ) are viewed also as functions on R via periodic extension,

i.e., f (x + n) = f (x) if x ∈ [− 1
2 , 1

2 ) and n ∈ Z.
Set

m0(x) =
√

2χ[− 1
4 , 1

4 )(x).

Then

(6.5) ϕ̂(x) =
∞

∏
k=1

1√
2

m0(
x
2k ) = χ[− 1

4 , 1
4 )(

x
2
) = χ[− 1

2 , 1
2 )(x),

and

ϕ(t) =
sin πt

πt
.

For functions in L1(R/Z), the Ruelle operator Rm0 is

(Rm0 f )(x) = χ[− 1
4 , 1

4 )(
x
2
) f (

x
2
) + χ[− 1

4 , 1
4 )(

x + 1
2

) f (
x + 1

2
) = χ[− 1

4 , 1
4 )(

x
2
) f (

x
2
)

= χ[− 1
2 , 1

2 )(x) f (
x
2
) = f (

x
2
), for x ∈ [−1

2
,

1
2
).

Hence Rm01 = 1. Note from (6.5) that ϕ̂(x + n) = 0 if n ∈ Z \ {0}.
Let ξ ∈ L2(R/Z). Then we get

∫
X∞

|ξ ◦ θn|2 dµ̂ =
∫
X

|ξ|2 dωn =

1/2∫
−1/2

Rn(|ξ|2)(x) dx

=

1/2∫
−1/2

|ξ(2−nx)|2 dx = 2n
1/2n+1∫
−1/2n+1

|ξ(x)|2 dx.

But then L2(X, ωn) = L2([− 1
2n+1 , 1

2n+1 ), 2n dx) and we see that the map

α : L2(X, ωn) → L2(X, ωn+1), α(ξ) = ξ(2·)

is an isometry (Lemma 6.2) which is also surjective with inverse ξ 7→ ξ( x
2 ).

With Lemma 6.2, we get that the inclusion of Hn in Hn+1 is in fact an identity,
therefore

L2(X∞, µ̂) = H0 = L2([−1
2

,
1
2
), dx).

When m0 is non-singular, then Theorem 5.5 shows us that the covariant sys-
tem (L2(X∞, µ̂), U, π, ϕ) has U unitary so, by uniqueness, it is isomorphic to the
one constructed via the Kolmogorov theorem in Corollary 3.6, which we denote
by (H̃, Ũ, π̃, ϕ̃).

The next theorem shows that even when m0 is singular, the covariant system
(L2(X∞, µ̂), U, π, ϕ) can be embedded in the (H̃, Ũ, π̃, ϕ̃).
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THEOREM 6.5. There exists a unique isometry Ψ : L2(X∞, µ̂) → H̃ such that

Ψ(ξ ◦ θn) = Ũ−nπ̃(ξ)Ũn ϕ̃, (ξ ∈ L∞(X, µ)).

Ψ intertwines the two systems, i.e.,

ΨU = ŨΨ, Ψπ(g) = π̃(g)Ψ, for g ∈ L∞(X, µ), Ψϕ = ϕ̃.

Proof. Let jn : Hn → H̃ be defined on a dense subspace by

jn(ξ ◦ θn) = Ũ−nπ̃(ξ)Ũn ϕ̃, (ξ ∈ L∞(X, µ)).

Then jn is a well defined isometry because

‖ξ ◦ θn‖2
L2(µ̂) =

∫
X

Rn(|ξ|2h) dµ =
∫
X

|m(n)
0 |

2|ξ|2 dµ = ‖Ũ−nπ̃(ξ)Ũn ϕ̃‖2,

where
m(n)

0 := m0 ·m0 ◦ r ◦ · · · ◦m0 ◦ rn−1.

Also note that

jn+1(ξ ◦ θn) = jn(ξ ◦ r ◦ θn+1) = Ũ−n−1π̃(ξ ◦ r)Ũn+1 ϕ̃ = Ũ−nπ̃(ξ)Ũn ϕ̃,

so we can construct Ψ on L2(X∞, µ̂) such that it agrees with jn on Hn.
Next, we check the intertwining properties; it is enough to verify them

on Hn:

ŨΨ(ξ ◦ θn) = ŨŨ−nπ̃(ξ)Ũn ϕ̃ = Ũ−n+1π̃(ξ ◦ r)Ũn−1Ũ ϕ̃

= Ũ−n+1π̃(ξ)Ũn−1π̃(m0)ϕ̃,

ΨU(ξ ◦ θn) = Ψ(m0ξ ◦ θn ◦ r̂) = Ψ((m0 ◦ rn−1ξ) ◦ θn−1)

= Ũ−n+1π̃(m0 ◦ rn−1ξ)Ũn−1 ϕ̃ = Ũ−n+1π̃(ξ)Ũn−1π̃(m0)ϕ̃.

The other intertwining relations can be checked by some similar computations.

6.1. CONDITIONAL EXPECTATIONS. We can consider the σ-algebras

Bn := θ−1
n (B),

B being the σ-algebra of Borel subsets in X. Note that θ−1
n (E) = θ−1

n+1(r−1(E)). If
follows that

B0 ⊂ B1 ⊂ · · · ⊂ Bn ⊂ Bn+1 ⊂ · · · .

We set B∞ =
⋃

n>0
Bn which is a sigma-algebra on X∞.

The functions on X∞ which are Bn measurable are the functions which de-
pend only on x0, . . . , xn. Hn consists of function in L2(X∞, Bn, µ̂). Also we can re-
gard L∞(X∞, Bn, µ̂) as an increasing sequence of subalgebras of L∞(X∞, µ̂). The
map

in : L∞(X, ωn) → L∞(X∞, Bn, µ̂)

is an isomorphism.
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An application of the Radon-Nikodym theorem shows that there exists a
unique conditional expectation En : L1(X∞, µ̂) → L1(X∞, Bn, µ̂) determined by the
relation

(6.6)
∫

X∞

En( f )g dµ̂ =
∫

X∞

f g dµ̂, (g ∈ L∞(X∞, Bn, µ̂)).

We enumerate the properties of these conditional expectations.

PROPOSITION 6.6. We have:

En( f g) = f En(g), ( f ∈ L∞(X∞, Bn, µ̂), g ∈ L1(X∞, µ̂));(6.7)

En( f ) > 0, if f > 0;(6.8)

EmEn = EnEm = En, if m > n;(6.9) ∫
X∞

En( f ) dµ̂ =
∫

X∞

f dµ̂;(6.10)

En( f ) = Pn( f ), if f ∈ L2(X∞, µ̂).(6.11)

DEFINITION 6.7. A sequence ( fn)n>0 of measurable functions on X∞ is said
to be a martingale if

En fn+1 = fn, (n > 0),

where En is a family of conditional expectations as in Proposition 6.6.

PROPOSITION 6.8. If ξ ∈ L1(X, ωn+k) then

(6.12) En(ξ ◦ θn+k) =
Rk(ξh)

h
◦ θn.

Proof. If ξ ∈ L2(X, ωn), the formula follows from Lemma 6.2. The rest fol-
lows by approximation.

Proposition 6.8 offers a direct link between the operator powers Rk and the
conditional expectations En. It shows in particular how our martingale construc-
tion depends on the Ruelle operator R. For a sequence (ξn)n>0 of measurable
functions on X, (ξn ◦ θn)n>0 is a martingale if and only if

R(ξn+1h) = ξnh, (n > 0).

A direct application of Doob’s theorem (Theorem IV-1-2, in [34]) gives the
following:

PROPOSITION 6.9. If ξn ∈ L1(X, ωn) is a sequence of functions with the property
that

R(ξn+1h) = ξnh, (n > 0),

then the sequence ξn ◦ θn converges µ̂-almost everywhere.

Then Proposition IV-2-3 from [34], translates into
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PROPOSITION 6.10. Suppose ξn ∈ L1(X, ωn) is a sequence with the property
that

R(ξn+1h) = ξnh, (n > 0).

The following conditions are equivalent:
(i) The sequence ξn ◦ θn converges in L1(X∞, µ̂).

(ii) sup
n

∫
X

Rn(|ξ|h) dµ < ∞ and the a.e. limit ξ∞ = lim
n

ξn ◦ θn satisfies ξn ◦ θn =

En(ξ∞).
(iii) There exists a function ξ ∈ L1(X∞, µ̂) such that ξn ◦ θn = En(ξ) for all n.
(iv) The sequence ξn ◦ θn satisfies the uniform integrability condition:

sup
n

∫
X

Rn(χ{|ξn |>a}ξnh) dµ ↓ 0 as a ↑ ∞.

If one of the conditions is satisfied, the martingale (ξn)n is called regular.

Convergence in Lp is given by Proposition IV-2-7 in [34]:

PROPOSITION 6.11. Let p > 1. Every martingale (ξn)n with ξn ∈ Lp(X, ωn)
and

sup
n
‖ξn‖p < ∞

is regular, and ξn ◦ θn converges in Lp(X∞, µ̂) to ξ∞.

We have seen that functions f on X∞ may be identified with sequences (ξn)
of functions on X. When r : X → X is given, the induced mappings

(6.13) r̂ : X∞ → X∞, and r̂−1 : X∞ → X∞

yield transformations of functions on X∞ as follows f 7→ f ◦ r̂ and f 7→ f ◦ r̂−1.
The 1-1 correspondence

(6.14) f function on X∞ ↔ ξ0, ξ1, . . . functions on X

is determined uniquely by

(6.15) En( f ) = ξn ◦ θn, n = 0, 1, . . . .

When f and h are given, then the functions (ξn) in (6.14) must satisfy

(6.16) R(ξn+1h) = ξnh, (n > 0).

PROPOSITION 6.12. Assume m0 is non-singular. If f is a function on X∞ and
f ↔ (ξn) as in (6.14) then

f ◦ r̂ ↔ ξn+1,(6.17)

f ◦ r̂−1 ↔ ξn−1.(6.18)
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Specifically we have

En( f ◦ r̂) = ξn+1 ◦ θn,(6.19)

En( f ◦ r̂−1) = ξn−1 ◦ θn =
( R(ξnh)

h

)
◦ θn.(6.20)

Or equivalently

f ◦ r̂ ↔ (ξ1, ξ2, . . .),(6.21)

f ◦ r̂−1 ↔
( R(ξ0h)

h
, ξ0, ξ1, . . .

)
.(6.22)

Proof. Theorem 5.4 is used in both parts of the proof below. We have for
g : X → C,∫
X∞

En( f ◦ r̂) g ◦ θn dµ̂ =
∫

X∞

f ◦ r̂ g ◦ θn+1 ◦ r̂ dµ̂ =
∫

X∞

1
|m0|2 ◦ r̂−1 f g ◦ θn+1 dµ̂

=
∫

X∞

En+1( f )
( 1
|m0|2 ◦ rn g

)
◦ θn+1 dµ̂

=
∫

X∞

ξn+1 ◦ θn ◦ r̂−1
( 1
|m0|2 ◦ rn g

)
◦ θn ◦ r̂−1 dµ̂

=
∫

X∞

|m0|2ξn+1 ◦ θn
1
|m0|2

g ◦ θn dµ̂ =
∫

X∞

ξn+1 ◦ θn g ◦ θn dµ̂.

Thus En( f ◦ r̂) = ξn+1 ◦ θn. Then

∫
X∞

En( f ◦ r̂−1)gn ◦ θn dµ̂ =
∫

X∞

f ◦ r̂−1 gn ◦ θn−1 ◦ r̂−1 dµ̂ =
∫

X∞

|m0|2 f gn ◦ θn−1 dµ̂

=
∫

X∞

En−1( f )(|m0|2 ◦ rn−1 g) ◦ θn−1 dµ̂

=
∫

X∞

ξn−1 ◦ θn ◦ r̂(|m0|2 ◦ rn−1 g) ◦ θn ◦ r̂ dµ̂

=
∫

X∞

1
|m0|2 ◦ r̂−1 ξn−1 ◦ θn |m0|2 ◦ r̂−1 g ◦ θn dµ̂

=
∫

X∞

ξn−1 ◦ θn g ◦ θn dµ̂

and this implies (6.20).
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7. INTERTWINING OPERATORS AND COCYCLES

In the paper [13], Dai and Larson showed that the familiar orthogonal wave-
let systems have an attractive representation theoretic formulation. This formula-
tion brings out the geometric properties of wavelet analysis especially nicely, and
it led to the discovery of wavelet sets, i.e., singly generated wavelets in L2(Rd), i.e.,
ψ ∈ L2(Rd) such that ψ̂ = χE for some E ⊂ Rd, and

{|detA|j/2ψ(Aj · −k) : j ∈ Z, k ∈ Zd}

is an orthonormal basis.
The case when the initial resolution subspace for some wavelet construction

is singly generated, the wavelet functions should be thought of as wandering vec-
tors. If the scaling operation is realized as a unitary operator U in the Hilbert space
H := L2(Rd), then the notion of wandering refers to vectors, or subspaces, which
are mapped into orthogonal vectors (respectively, subspaces) under powers of U.
Since this approach yields wavelet bases derived directly from the initial data,
i.e., from the wandering vectors, U, and the integral translations, the question of
intertwining operators is a natural one. The initial data defines a representation ρ.

An operator in H which intertwines ρ with itself is said to be in the commu-
tant of ρ; and Dai and Larson gave a formula for the commutant. They showed
that the operators in the commutant are defined in a natural way from a class
of invariant bounded measurable functions, called wavelet multipliers. This and
other related results can be shown to generalize to the case of operators which
intertwine two wavelet representations ρ and ρ′.

Since our present martingale construction is a generalization of the tradi-
tional wavelet resolutions, see [27], it is natural to ask for theorems which gener-
alize the known theorems about wavelet functions. We prove in this section such
a theorem, Theorem 7.2. The applications of this are manifold, and include the
projective systems defined from Julia sets, and from the state space of a subshift
in symbolic dynamics.

Our formula for the commutant in this general context of projective systems
is shown to be related to the Perron-Frobenius-Ruelle operator in Corollary 7.3.
This result implies in particular that the commutant is abelian; and it makes pre-
cise the way in which the representation ρ itself decomposes as a direct integral
over the commutant.

Our proof of this corollary depends again on Doob’s martingale conver-
gence theorem, see (7.11) below, Section 6 above, and Chapter 2.7 of [27].

DEFINITION 7.1. If m0 ∈ L∞(X) and h ∈ L1(X), we call (m0, h) a Perron-
Ruelle-Frobenius pair if

Rm0 h = h.

THEOREM 7.2. Let (m0, h) and (m′0, h′) be two Perron-Ruelle-Frobenius pairs
with m0, m′0 non-singular, and let (L2(X∞, µ̂), U, π, ϕ), (L2(X∞, µ̂′), U′, π′, ϕ′) be the
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associated covariant systems. Let X∞ = Xa
∞ ∪ Xs

∞ be the Jordan decomposition of µ̂′

with respect to µ̂, Xa
∞ ∩ Xs

∞ = ∅, with µ̂(Xs
∞) = 0 and µ̂′|Xa

∞ ≺ µ̂, and denote by

∆ :=
d µ̂′|Xa

∞

dµ̂
.

Then there is a 1-1 correspondence between each two of the following sets of data:
(i) Operators A : L2(X∞, µ̂) → L2(X∞, µ̂′) that intertwine the covariant system,

i.e.,

(7.1) U′A = AU, and π′(g)A = π(g)A, for g ∈ L∞(X).

(ii) B∞-measurable functions f : X→C such that f |Xs
∞ =0, f ∆1/2 is µ̂-bounded and

(7.2) m0 f = m′0 f ◦ r̂, µ̂′-a.e.

(iii) Measurable functions h0 : X → C such that

(7.3) |h0|2 6 chh′ µ-a.e.,

for some finite constant c > 0, with

(7.4)
1

#r−1(x) ∑
r(y)=x

m′0(y)m0(y)h0(y) = h0(x), for µ-a.e. x ∈ X.

From (i) to (ii) the correspondence is given by

(7.5) Aξ = f ξ, (ξ ∈ L2(X∞, µ̂)).

From (ii) to (iii), the correspondence is given by

(7.6) h0 = Eµ̂′

0 ( f )h′ = Eµ̂
0 ( f ∆)h.

From (i) to (iii) the correspondence is given by

(7.7) 〈 ϕ′ | Aπ(g)ϕ 〉 =
∫
X

gh0 dµ, (g ∈ L∞(X)).

Proof. Take A as in (i). Then for all g ∈ L∞(X) and any n > 0 we have that

A(g ◦ r̂−n) = A(U−nπ(g)Un)(1) = (U′−nπ′(g)U′n)(A(1)) = g ◦ r̂−n · (A(1)).

Denote by f := A(1) ∈ L2(X∞, µ̂′).
Since any B∞-measurable, bounded function ξ : X∞ → C can be pointwise

µ̂- and µ̂′- approximated by functions of the form g ◦ r̂−n, we get that

A(ξ) = f ξ.

We have also that ∫
X∞

| f |2|ξ|2 dµ̂′ 6 ‖A‖2
∫

X∞

|ξ|2 dµ̂

so ∫
Xa

∞

| f |2|ξ|2∆ dµ̂ +
∫

Xs
∞

| f |2|ξ|2 dµ̂′ 6 ‖A‖2
∫

X∞

|ξ|2 dµ̂.
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Taking ξ = χXs
∞ we obtain that f = 0 µ̂′-a.e. on Xs

∞; so we may take f = 0 on Xs
∞.

Then we get also that | f ∆1/2| 6 ‖A‖ µ̂-a.e.
Then, again by approximation we obtain that

Aξ = f ξ, for ξ ∈ L2(X∞, µ̂).

We have in addition the fact that U′A = AU, and this implies (7.2).
Conversely, the previous calculations show that any operator defined by

(7.5) with f as in (ii), will be a bounded operator which intertwines the covariant
systems.

Now take A as in (i) and consider the linear functional

g ∈ L∞(X) 7→ 〈 ϕ′ | Aπ(g)ϕ 〉.

This defines a measure on X which is absolutely continuous with respect to µ.
Let h0 be its Radon-Nikodym derivative. We have∫

X

gh0 dµ = 〈 ϕ′ | Aπ(g)ϕ 〉 = 〈U′ϕ′ | U′Aπ(g)ϕ 〉

= 〈π′(m′0)ϕ′ | Aπ(g ◦ r)π(m0)ϕ 〉 =
∫
X

m′0m0g ◦ r h0 dµ

=
∫
X

g
1

#r−1(x) ∑
r(y)=x

m′0(y)m0(y)h0(y) dµ(x).

Thus 1
#r−1(x) ∑

r(y)=x
m′0(y)m0(y)h0(y) = h0(x) µ-a.e.

Next we check that |h0|2 6 ‖A‖2hh′ µ-a.e. By the Schwarz inequality, we
have for all f , g ∈ L∞(X),

|〈π′( f )ϕ′ | Aπ(g)ϕ 〉|2 6 ‖A‖2‖π′( f )ϕ′‖2‖π(g)ϕ‖2,

which translates into

(7.8)
∣∣∣ ∫

X

f gh0 dµ
∣∣∣2

6 ‖A‖2
∫
X

|g|2h′ dµ

∫
X

| f |2h dµ.

If µ has some atoms then just take f and g to be the characteristic function of that
atoms and this proves the inequality (7.3) for such points. The part of µ that does
not have atoms is measure theoretically isomorphic to the unit interval with the
Lebesgue measure. Then take x to be a Lebesgue differentiability point for h0, h
and h′. Take f = g = 1

µ(I) χI for some small interval centered at x. Letting I shrink
to x and using Lebesgue’s differentiability theorem, (7.8) implies (7.3).

For the converse, from (iii) to (i), let h0 as in (iii), and define for n > 0 the
sesquilinear form, Bn on H′n × Hn (see Section 4): for f , g ∈ L∞(X),

Bn(U′−nπ′( f )ϕ′, U−nπ(g)ϕ) :=
∫
X

f gh0 dµ.
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An application of the Schwarz inequality and (7.3), shows that

|Bn(ξ, η)|2 6 c‖ξ‖2‖η‖2, (ξ ∈ H′n, η ∈ Hn).

The inclusion of Hn in Hn+1 is given by

U−nπ( f )ϕ 7→ U−n−1π( f ◦ r m0)ϕ.

The forms Bn are compatible with these inclusion in the sense that

Bn+1(U′−n−1π′( f ◦ rm′0)ϕ′, U−n−1π(g ◦ rm0)ϕ)

=
∫
X

f ◦ rm′0g ◦ rm0h0 dµ =
∫
X

f gh0 = Bn(U′−nπ′( f )ϕ′, U−nπ(g)ϕ).

(We used (7.4) for the third equality.) Therefore the system (Bn)n extends to a
sesquilinear map B on H′ × H such that its restriction to H′n × Hn is Bn, and B
is bounded (H = L2(X∞, µ̂), H′ = L2(X∞, µ̂′)).) Then there exists a bounded
operator A : H → H′ such that

〈 ξ | Aη 〉 = B(ξ, η), (ξ ∈ H, η ∈ H′).

We have to check that A is intertwining. But

〈U′−nπ′( f )ϕ′ | AUU−nπ(g)ϕ 〉 = B(U′−nπ′( f )ϕ′, U−nπ(g ◦ r m0)ϕ)

=
∫
X

f g ◦ r m0h0 dµ

= B(U′−n−1π′( f )ϕ′, U−n−1π(g ◦ r m0)ϕ)

= 〈U′−n−1π′( f )ϕ′ | AU−n−1π(g ◦ r m0)ϕ 〉
= 〈U′−nπ′( f )ϕ′ | U′AU−nπ(g)ϕ 〉.

〈U′−nπ′( f )ϕ′ | Aπ(k)U−nπ(g)ϕ 〉 = B(U′−nπ′( f )ϕ′, U−nπ(k ◦ rn g)ϕ)

=
∫
X

f k ◦ rn gh0 dµ

= B(U′−nπ′(k ◦ rn f )ϕ′, U−nπ(g)ϕ)

= 〈U′−nπ′(k ◦ rn f )ϕ′ | AU−nπ(g)ϕ 〉

= 〈π′(k)U′−nπ′( f )ϕ′ | AU−nπ(g)ϕ 〉
= 〈U′−nπ′( f )ϕ′ | π′(k)AU−nπ(g)ϕ 〉.

This shows that A is intertwining.
From (ii) to (iii), take f as in (ii). Then define the operator A as in (7.5).

Using the previous correspondences we have that A is intertwining and there
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exists h0 as in (iii), satisfying (7.7). We rewrite this in terms of f , and we have for
all g ∈ L∞(X):∫

X

Eµ̂′

0 ( f )gh′ dµ =
∫

X∞

f g dµ̂′ = 〈 ϕ′ | Aπ(g)ϕ 〉 =
∫
X

gh0 dµ.

Also we have the next which proves (7.6):∫
X∞

f g dµ̂′ =
∫

Xa
∞

f g∆ dµ̂ =
∫
X

Eµ̂
0 ( f ∆)gh dµ.

COROLLARY 7.3. Let (m0, h) be a Perron-Ruelle-Frobenius pair with m0 non-
singular.

(i) For each operator A on L2(X∞, µ̂) which commutes with U and π, there exists a
cocycle f , i.e., a bounded measurable function f : X∞ → C with f = f ◦ r̂, µ̂-a.e., such
that

(7.9) A = M f ,

and, conversely each cocycle defines an operator in the commutant.
(ii) For each measurable harmonic function h0 : X → C, i.e., Rm0 h0 = h0, with

|h0|2 6 ch2 for some c > 0, there exists a unique cocycle f such that

(7.10) h0 = E0( f )h,

and conversely, for each cocycle the function h0 defined by (7.10) is harmonic.
(iii) The correspondence h0 → f in (ii) is given by

(7.11) f = lim
n→∞

h0

h
◦ θn

where the limit is pointwise µ̂-a.e., and in Lp(X∞, µ̂) for all 1 6 p < ∞.

Proof. (i) and (ii) are direct consequences of Theorem 7.2. For (iii), we have
that f ∈ L∞(X∞, µ̂) ⊂ Lp(X∞, µ̂). Using Proposition 6.12, we have that, since
f = f ◦ r̂, if En( f ) = ξn ◦ θn, then ξn = ξn+1, for all n > 0. But from (7.10), we
know that ξ0 = h0

h , so

En( f ) =
h0

h
◦ θn.

(iii) follows now from Propositions 6.9, 6.10 and 6.11.

8. ITERATED FUNCTION SYSTEMS

In Section 6 we constructed our extension systems using martingales, and
Doob’s convergence theorem. We showed that our family of martingale Hilbert
spaces may be realized as L2(X∞, µ̂), where both X∞, and the associated mea-
sures µ̂ on X∞ are projective limits constructed directly from the following given
data. Our construction starts with the following four: (1) a compact metric space
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X, (2) a given mapping r : X → X, (3) a strongly invariant measure µ on X,
and (4) a function W on X which prescribes transition probabilities. From this,
we construct our extension systems. In this section, we take a closer look at the
measure µ̂. We show that µ̂ is in fact an average over an indexed family of mea-
sures Px, x in X. Now Px is constructed as a measure on a certain space of paths.
The subscript x refers to the starting point of the paths, and Px is defined on a
sigma-algebra of subsets of path-space. (The reader is referred to [27] for addi-
tional details.) These are paths of a random walk, and the random walk is closely
connected to the mathematics of the projective limit construction in Section 4. But
the individual measures Px carry more information than the averaged version µ
from Section 4. As we show below, the construction of solutions to the canonical
scaling identities in wavelet theory, and in dynamics, depend on the path space
measures Px. Our solutions will be infinite products, and the pointwise conver-
gence of these infinite products depends directly on the analytic properties of the
Px’s.

Let X be a metric space and r : X → X an N to 1 map. Denote by τk : X → X,
k ∈ {1, . . . , N}, the branches of r, i.e., r(τk(x)) = x for x ∈ X, the sets τk(X) are
disjoint and they cover X.

Let µ be a measure on X with the property

(8.1) µ =
1
N

N

∑
k=1

µ ◦ τ−1
k .

This can be rewritten as

(8.2)
∫
X

f (x) dµ(x) =
1
N

N

∑
k=1

∫
X

f (τk(x)) dµ(x),

which is equivalent also to the strong invariance property.
Let W, h > 0 be two functions on X such that

(8.3)
N

∑
k=1

W(τk(x))h(τk(x)) = h(x), (x ∈ X).

Denote by

Ω := ΩN := ∏
N
{1, . . . , N}.

Also we denote by

W(n)(x) := W(x)W(r(x)) · · ·W(rn−1(x)), (x ∈ X).

PROPOSITION 8.1. For every x ∈ X there exists a positive Radon measure Px on
Ω such that, if f is a bounded measurable function on Ω which depends only on the first
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n coordinates ω1, . . . , ωn, then

(8.4)
∫
Ω

f (ω) dPx(ω)

= ∑
ω1,...,ωn

W(n)(τωn τωn−1 · · · τω1(x))h(τωn τωn−1 · · · τω1(x)) f (ω1, . . . , ωn).

Proof. We check that Px is well defined on functions which depend only
on a finite number of coordinates. For this, take f measurable and bounded,
depending only on ω1, . . . , ωn; and consider it as function which depends on the
first n + 1 coordinates. We have to check that the two formulas given by (8.4)
yield the same result.

Consistency: As a function of the first n + 1 coordinates, we have:∫
X

f (ω) dPx(ω)= ∑
ω1,...,ωn+1

W(n+1)(τωn+1 · · · τω1(x))h(τωn+1 · · · τω1(x)) f (ω1, . . . , ωn+1)

= ∑
ω1,...,ωn

f (ω1, . . . , ωn)W(n)(τωn · · · τω1(x))

· ∑
ωn+1

W(τωn+1 · · · τω1(x))h(τωn+1 · · · τω1(x))

= ∑
ω1,...,ωn

W(n)(τωn · · · τω1(x)) f (ω1, . . . , ωn)h(τωn · · · τω1(x)),

so Px is well defined. Using the Stone-Weierstrass and Riesz theorems, we obtain
the desired measure.

Consider now the space X ×Ω. On this space we have the shift S:

(8.5) S(x, ω1 · · ·ωn · · · )=(r(x), ωxω1· · ·ωn· · ·), (x∈X, (ω1· · ·ωn· · ·) ∈ Ω),

where ωx is defined by x ∈ τωx (X). The inverse of the shift is given by the
formula:

(8.6) S−1(x, ω1· · ·ωn· · ·)=(τω1(x), ω2· · ·ωn· · ·), (x∈X, (ω1· · ·ωn· · ·)∈Ω).

PROPOSITION 8.2. Define the map Ψ : X∞ → X ×Ω by

Ψ(x0, x1, . . .) = (x0, ω1, ω2, . . .), where xn = τωn (xn−1), (n > 1).

Then Ψ is a measurable bijection with inverse

Ψ−1(x, ω1, ω2, . . .)=(x, τω1(x), τω2 τω1(x), . . .), and

Ψ ◦ r̂ ◦Ψ−1 = S.(8.7)

Also

(8.8)
∫

X∞

f dµ̂ =
∫
X

∫
Ω

f ◦Ψ−1(x, ω) dPx(ω) dµ(x), ( f ∈ L1(X∞, µ̂)).
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Proof. We know that r(xn) = xn−1 therefore xn = τωn (xn−1) for some ωn ∈
{1, . . . , N}. This correspondence defines Ψ and it is clear that the map is 1-1 and
onto and the inverse has the given formula. A computation proves (8.7).

To check (8.8), it is enough to verify the conditions of Theorem 5.3. Take
ξ ∈ L∞(X), then ξ ◦ θn ◦ Ψ−1 depends only on x and ω1, . . . , ωn so we have the
next which proves (8.8):∫

X

∫
Ω

f ◦ θn ◦Ψ−1(x, ω) dPx(ω) dµ(x)

=
∫
X

∑
ω1,...,ωn

W(n)(τωn τωn−1 · · · τω1(x)) · h(τωn τωn−1 · · · τω1(x))( f θnΨ−1)(x, ω) dµ(x)

=
∫
X

Rn( f h)(x) dµ(x) =
∫

X∞

f ◦ θn dµ̂.
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