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ABSTRACT. The Kreı̆n-von Neumann and the Friedrichs extensions of a non-
negative linear operator or relation (i.e., a multivalued operator) are character-
ized in terms of factorizations. These factorizations lead to a novel approach to
the transversality and equality of the Kreı̆n-von Neumann and the Friedrichs
extensions and to the notion of positive closability (the Kreı̆n-von Neumann
extension being an operator). Furthermore, all extremal extensions of the non-
negative operator or relation are characterized in terms of analogous factoriza-
tions. This approach for the general case of nonnegative linear relations in a
Hilbert space extends the applicability of such factorizations. In fact, the ex-
tension theory of densely and nondensely defined nonnegative relations or
operators fits in the same framework. In particular, all extremal extensions of
a bounded nonnegative operator are characterized.

KEYWORDS: Nonnegative relation, Friedrichs extension, Kreı̆n-von Neumann ex-
tension, disjointness, transversality, positive closability, extremal extension.

MSC (2000): Primary 47A06, 47A57, 47A63, 47B25; Secondary 47A07, 47B65.

INTRODUCTION

To illustrate the factorizations introduced in this paper consider the follow-
ing simple completion problem. Let H be a Hilbert space with the orthogonal
decomposition H = H1 ⊕ H2. Let S11 be a nonnegative bounded linear operator
in H1, let S21 be a bounded linear operator from H1 to H2, and let S12 = S∗21. The
usual form of the completion problem requires to determine all bounded linear
operators S22 in H2, such that

(0.1)
(

S11 S12
S21 ∗

)
becomes a nonnegative bounded linear operator in H, cf. [7], [13], [16], [28], [29],
[33], [35]. This completion problem has a solution if and only if ran S∗21 ⊂ ran S1/2

11 .
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To put this completion problem in a more general framework introduce the fol-
lowing linear relation

(0.2) V = { {h, k} ∈ H2 × ran S11 : S1/2
11 k = S∗21h },

as a subset of the Cartesian product H2 × ran S11. Clearly, V is linear and closed.
Furthermore, if {0, k} ∈ V then by definition k ∈ ker S11 ∩ ran S11 = {0}, which
means that V is the graph of a closed linear operator. The closed linear operator
V gives rise to the following ”solution” of (0.1):

(0.3)
(

S1/2
11
V∗

)(
S1/2

11 V
)

,

where the product is in the sense of linear relations. If dom V = H2 (i.e., ran S∗21 ⊂
ran S1/2

11 ), then S1/2
11 V = S12, S22 = V∗V, and (0.3) gives the smallest solution of

(0.1). If V is densely defined, then (0.3) still gives the smallest solution of (0.1),
but now S22 = V∗V is in general an unbounded operator. Moreover, if V is not
densely defined then S22 = V∗V is a nonnegative relation (i.e., a multivalued
operator), and still (0.3) provides a smallest solution in the sense of relations, cf.
[11], [16]. Furthermore, in the sense of relations, the completion problem (0.1) has
always the following nonnegative solution:

(0.4)
(

S1/2
11

O∗

)(
S1/2

11 O
)

,

where O is the trivial linear relation from H2 to ran S11 and its adjoint O∗ is given
by O∗ = ran S11 ×H2. In fact, in the sense of relations, (0.4) is the largest solution
of (0.1). All the other solutions of (0.1) are between these extreme solutions. In
particular, if R is an arbitrary restriction of the closed operator V in (0.2), then

(0.5)
(

S1/2
11
R∗

)(
S1/2

11 R∗∗
)

,

is between (0.3) and (0.4), and hence a solution to the completion problem (0.1).
For a proper interpretation of solutions to (0.1), introduce the operator S by

(0.6) S =
(

S11
S21

)
: H1 →

(
H1
H2

)
.

Clearly, S is a nonnegative bounded operator from H1 to H. The completion prob-
lem (0.1) can now be interpreted as an extension problem for S: the nonnegative
solutions to (0.3) correspond to the nonnegative selfadjoint relation extensions of
S. The factorizations of the extreme solutions of (0.1), i.e., of the extreme exten-
sions of S in (0.6), persist in the general extension theory of nonnegative relations.
It is the purpose of this paper to develop this approach of factorizations for the
general case of the extension theory of nonnegative operators and relations and
to study the consequences.

Let S be any nonnegative linear relation in a Hilbert space H. Then there are
two nonnegative selfadjoint extensions of S in H, namely the Kreı̆n-von Neumann
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extension SN and the Friedrichs extension SF, which are extreme in the sense
that all other nonnegative selfadjoint extensions of S lie between them: if H is a
nonnegative selfadjoint extension of S, then

(0.7) SN 6 H 6 SF,

where the inequalities are in the sense of the corresponding resolvent operators:

(0.8) (SF + a)−1 6 (H + a)−1 6 (SN + a)−1, a > 0,

or, equivalently, in the sense of the corresponding closed nonnegative sesquilin-
ear forms:

(0.9) tSN 6 tH 6 tSF .

When S is the nonnegative operator in (0.6) associated with the completion prob-
lem (0.1), then the Kreı̆n-von Neumann extension SN is given by (0.3) and the
Friedrichs extension SF is given by (0.4). The general theory of nonnegative self-
adjoint extensions of densely defined nonnegative operators is due to M.G. Kreı̆n
[23], cf. also [36], [37], [38]. T. Ando and K. Nishio [1] have considered operator
extensions in the case when S is a not necessarily densely defined operator. The
general case involving relations goes back to [9], see also [17] for the interpreta-
tion of (0.9) in this case. For a review of Kreı̆n’s work (in the context of relations),
see [16]. It will be shown in the present paper that the Kreı̆n-von Neumann ex-
tension SN in (0.7) has a factorization SN = J∗∗ J∗, where J is a linear relation from
an auxiliary space HS to H, and that the Friedrichs extension in (0.7) has a similar
factorization. Such factorizations go back to J. Stochel, Z. Sebestyén, and cowork-
ers (see [26], [27], [30], [31], [32]) for the case that S is a densely defined operator
or under a condition which guarantees that the Kreı̆n-von Neumann extension
SN is an operator. The factorizations of SN and SF in the general case provide a
novel approach to notions such as disjointness, transversality, and equality of SN
and SF; and to the notion of positive closability of S (SN being an operator). A
nonnegative selfadjoint extension H of S is called extremal when

(0.10) inf{ ( f ′ − h′, f − h) : {h, h′} ∈ S } = 0 for all { f , f ′} ∈ H.

This definition goes back at least to Y.M. Arlinskiı̆ and E.R. Tsekanovskiı̆ [5]. In
the densely defined case the factorization of the extremal extensions was studied
in [4]. In the present paper the extremal extensions are characterized by factor-
izations in the general case. In particular, the extremal extensions of S in (0.6) are
precisely the solutions of (0.1) given by (0.5). For another recent application of
these factorizations, see [18].

The contents of this paper are now briefly listed. Section 1 contains some
useful observations concerning linear relations and their adjoints in Cartesian
products of Hilbert spaces and the product of a relation and a unitary operator.
Moreover, Section 1 contains a simple treatment of the disjointness and transver-
sality of two selfadjoint extensions of a symmetric relation. In Section 2 some
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results concerning the Kreı̆n-von Neumann and the Friedrichs extensions are re-
called. Furthermore this section provides a simple treatment of the disjointness
and transversality for nonnegative selfadjoint extensions of a nonnegative rela-
tion. The generalization of the construction of the Kreı̆n-von Neumann extension
and the Friedrichs extensions in the sense of Sebestyén and Stochel can be found
in Section 3. Disjointness, transversality and equality of the Kreı̆n-von Neumann
and Friedrichs extensions from the point of view of factorizations are discussed
in Section 4. Also the question whether the Kreı̆n-von Neumann extension is a
(bounded) operator is discussed in this section. The treatment of extremal ex-
tensions and their factorizations can be found in Section 5. Finally the case of a
nonnegative bounded operator and its extremal extensions is treated in Section 6.
This provides the link with the completion problem discussed above.

1. PRELIMINARIES

This section contains some useful elementary observations concerning the
adjoint of a linear relation. The following notations will be used. For the Hilbert
spaces H and K the notation [H, K] stands for the bounded linear operators from
H to K; moreover [H] = [H, H]. Furthermore H ⊕ K stands for the orthogonal
sum of H and K, i.e., the Cartesian product H× K provided with the usual inner
product. The usual notations for linear relations are assumed throughout this
paper, cf. [17].

1.1. DOMAIN DESCRIPTIONS. For the convenience of the reader the following
general domain and range descriptions are recalled.

LEMMA 1.1. Let T be a linear relation from a Hilbert space H to a Hilbert space K.
Then:

(i) g ∈ dom T∗ if and only if g ∈ K and there exists a nonnegative number γg such
that

(1.1) |(h′, g)K| 6 γg‖h‖H for all {h, h′} ∈ T.

In this case the smallest γg satisfying (1.1) is γg = ‖g′‖H with {g, g′} ∈ T∗ and
g′ ∈ dom T.

(ii) g′ ∈ ran T∗ if and only if g′ ∈ K and there exists a nonnegative number γg′ such
that

(1.2) |(h, g′)H| 6 γg′‖h′‖K for all {h, h′} ∈ T.

In this case the smallest γg′ satisfying (1.2) is γg′ = ‖g‖K with {g, g′} ∈ T∗ and
g ∈ ran T.

The results in this lemma can be found in [14]; clearly the statements (i)
and (ii) are dual (by interchanging domain and range). In the setting of densely
defined operators such results go back at least to Y.L. Shmul’yan [34].
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1.2. ADJOINT OPERATIONS. The operations to be considered concern linear rela-
tions of a special form (containing a bounded operator component). Let H1, H2,
K1, and K2 be Hilbert spaces, and let X and Y be closed linear subspaces of H2.
Let A ∈ [H1, K1], B ∈ [K1, H1], and let C and D be linear relations from H1 to
K2 and from K2 to H1, respectively. Define the linear relation A from H1 ⊕ H2 to
K1 ⊕ K2 by

(1.3) A =
{{(

f
η

)
,
(

A f
f ′

)}
: f ∈ H1, η ∈ X, { f , f ′} ∈ C

}
,

and define the linear relation B from K1 ⊕ K2 to H1 ⊕H2 by

(1.4) B =
{{(

h
ϕ

)
,
(

Bh + ϕ′

ψ

)}
: h ∈ K1, ψ ∈ Y, {ϕ, ϕ′} ∈ D

}
.

LEMMA 1.2. Let the linear relations A and B be given by (1.3) and (1.4). Then
the adjoint A∗ is the linear relation from K1 ⊕ K2 to H1 ⊕H2 given by

(1.5) A∗ =
{{(

h
ϕ

)
,
(

A∗h + ϕ′

ψ

)}
: h ∈ K1, ψ ∈ H2 	X, {ϕ, ϕ′} ∈ C∗

}
,

and the double adjoint A∗∗ is the relation from H1 ⊕H2 to K1 ⊕ K2 given by

(1.6) A∗∗ =
{{(

f
η

)
,
(

A f
f ′

)}
: f ∈ H, η ∈ X, { f , f ′} ∈ C∗∗

}
.

Furthermore, the adjoint B∗ is the relation from H1 ⊕H2 to K1 ⊕ K2 given by

(1.7) B∗ =
{{(

f
η

)
,
(

B∗ f
f ′

)}
: f ∈ H1, η ∈ H2 	Y, { f , f ′} ∈ D∗

}
,

and the double adjoint B∗∗ is the relation from K1 ⊕ K2 to H1 ⊕H2 given by

(1.8) B∗∗ =
{{(

h
ϕ

)
,
(

Bh + ϕ′

ψ

)}
: h ∈ K1, ψ ∈ Y, {ϕ, ϕ′} ∈ D∗∗

}
.

As to the proof of Lemma 1.2: one only needs to apply the definition of the
adjoint of a linear relation to obtain (1.5) and (1.7). Clearly

mulA∗ = mul C∗ ⊕ (H2 	X), mulB∗ = {0} ⊕mul D∗.

Observe that the closures of the relations in (1.5) and (1.7) are given by (1.6) and
(1.8), respectively. In particular,

(1.9) mulA∗∗ = {0} ⊕mul C∗∗, mulB∗∗ = mul D∗∗ ⊕Y,

so that the linear relation A is closable if and only if the linear relation C is clos-
able, and the linear relation B is closable if and only if the linear relation D is
closable and Y = {0}.
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1.3. ADJOINTS OF PRODUCTS. Let T be a relation from H to R and let S be a
relation from D to H. Then TS is a relation from D to R and

(1.10) (TS)∗ ⊃ S∗T∗.

It is possible to give rather general statements concerning the equality. However,
for the purposes of the present paper only the following situation will be con-
sidered. Let A be a linear relation from the Hilbert space H to the Hilbert space
K. Let U be a unitary operator from the Hilbert space D onto H, and let V be a
unitary operator from K onto a Hilbert space R. Define the relation T from H to
R and the relation S from D to H, by

(1.11) T = VA, S = AU.

LEMMA 1.3. The adjoints of T and S in (1.11) are given by

(1.12) T∗ = A∗V∗, S∗ = U∗A∗,

and the double adjoints of T and S are given by

(1.13) T∗∗ = VA∗∗, S∗∗ = A∗∗U.

Proof. The inclusion A∗V∗ ⊂ T∗ is clear. To show the reverse inclusion, let
{ f , f ′} ∈ T∗. Then ( f ′, h) = ( f , h′) for all {h, h′} ∈ T = VA, or, in other words,

( f ′, h) = ( f , Vψ) for all {h, ψ} ∈ A.

For f ∈ dom T∗ ⊂ R there is a unique f0 ∈ K such that f = V f0. Hence

( f ′, h) = ( f0, ψ) for all {h, ψ} ∈ A,

which shows that { f0, f ′} ∈ A∗, while { f , f0} ∈ V−1 ⊂ V∗. This implies that
{ f , f ′} ∈ A∗V∗. Therefore the first identity in (1.12) holds.

The second identity in (1.12) is obtained from the first identity by applying
it to the inverse of S.

The identities (1.13) are special cases of (1.12).

In the context of relations the general inclusion result in (1.10) goes back
to R. Arens [2]. Results as in Lemma 1.3 exist in various degrees of generality,
cf. [19].

1.4. DISJOINTNESS AND TRANSVERSALITY. Let T be a linear relation in a Hilbert
space H. For λ ∈ C the “eigenspace” N̂λ(T) associated to T is defined by

N̂λ(T) = { { f , f ′} ∈ T : f ′ = λ f }.

If, in particular, T is closed, then also the eigenspace N̂λ(T) is closed for every
λ ∈ C. The following lemma can be seen as a motivation for this notion.

LEMMA 1.4. Let T be a linear relation in H, let H be a restriction of T with a
nonempty resolvent set, and assume that λ ∈ ρ(H). Then H is closed and

(1.14) T = H +̂ N̂λ(T),
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where +̂ stands for the componentwise sum in H×H.

Proof. Closedness of H is guaranteed by the assumption ρ(H) 6= ∅, since
(H − λ)−1 as a bounded everywhere defined operator is automatically closed.
Moreover, the inclusion H +̂ N̂λ(T) ⊂ T is clear. It remains to prove the reverse
inclusion. Assume that { f , f ′} ∈ T. Then { f , f ′ − λ f } ∈ T − λ, and, since λ ∈
ρ(H), there exists an element h ∈ H such that {h, f ′ − λ f } ∈ H − λ ⊂ T − λ. This
implies {h, f ′ − λ( f − h)} ∈ H and { f − h, 0} ∈ T − λ, so that

{ f , f ′} = {h, f ′ − λ( f − h)} +̂ { f − h, λ( f − h)} ∈ H +̂ N̂λ(T),

and (1.14) is proved.

Let A, B, S, and T be linear relations in a Hilbert space H such that

(1.15) S ⊂ A ⊂ T, S ⊂ B ⊂ T.

Then clearly S ⊂ A ∩ B and A +̂ B ⊂ T. The next lemma gives simple criteria to
check whether these inclusions are actually equalities.

LEMMA 1.5. Let the linear relations A, B, S, and T in H satisfy the inclusions
(1.15) and, moreover, assume that ρ(A) ∩ ρ(B) 6= ∅. Then:

(i) S = A ∩ B if and only if for some (equivalently for every) λ ∈ ρ(A) ∩ ρ(B),

(1.16) ran (S− λ) = ker ((B− λ)−1 − (A− λ)−1);

(ii) T = A +̂ B if and only if for some (equivalently for every) λ ∈ ρ(A) ∩ ρ(B),

(1.17) ker (T − λ) = ran ((B− λ)−1 − (A− λ)−1).

Proof. (i) It suffices to show that A ∩ B ⊂ S if and only if with λ ∈ ρ(A) ∩
ρ(B)

(1.18) ker ((B− λ)−1 − (A− λ)−1) ⊂ ran (S− λ).

Assume that (1.18) holds for some λ ∈ ρ(A) ∩ ρ(B). If {h, h′} ∈ A ∩ B, then
(A − λ)−1(h′ − λh) = h and (B − λ)−1(h′ − λh) = h, so that by (1.18) h′ − λh ∈
ran (S− λ), i.e., {h, h′} ∈ S. Hence A ∩ B ⊂ S.

Now assume that A ∩ B ⊂ S. Let ϕ ∈ ker ((B − λ)−1 − (A − λ)−1). Then
with ψ = (A − λ)−1 ϕ = (B − λ)−1 ϕ it follows that {ψ, ϕ + λψ} ∈ A ∩ B ⊂ S.
Consequently, ϕ ∈ ran (S − λ) and therefore (1.18) holds for every λ ∈ ρ(A) ∩
ρ(B).

(ii) It suffices to show that T ⊂ A +̂ B if and only if with λ ∈ ρ(A) ∩ ρ(B)

(1.19) ker (T − λ) ⊂ ran ((B− λ)−1 − (A− λ)−1).

Assume that (1.19) holds for some λ ∈ ρ(A) ∩ ρ(B). Then for each f ∈
ker (T − λ) there is h ∈ H such that f = β− α with α = (A− λ)−1h and β = (B−
λ)−1h. Then {α, h + λα} ∈ A, {β, h + λβ} ∈ B, and { f , λ f } = {β− α, λ(β− α)} ∈
A +̂ B. Therefore, N̂λ(T) ⊂ A +̂ B. Now (1.14) with H = A or H = B implies
that T ⊂ A +̂ B.
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Conversely, assume that T ⊂ A +̂ B. Let f ∈ ker (T − λ), then { f , λ f } ∈ T.
Hence there exist {α, α′} ∈ A and {β, β′} ∈ B such that

{ f , λ f } = {β, β′} − {α, α′},

which implies that

β′ − α′ = λ(β− α) or, equivalently, β′ − λβ = α′ − λα.

It follows from {α′ − λα, α} ∈ (A − λ)−1 and {β′ − λβ, β} ∈ (B − λ)−1, that
f = β− α = ((B− λ)−1 − (A− λ)−1)h with h = β′− λβ = α′− λα. Therefore, f ∈
ran ((B− λ)−1 − (A− λ)−1) and thus (1.19) holds for every λ ∈ ρ(A) ∩ ρ(B).

The closed extensions A and B of S are said to be disjoint (with respect to
S) if

S = A ∩ B,

or equivalently, if S is closed and

S∗ = clos (A∗ +̂ B∗).

Furthermore, if A and B are intermediate extensions of S, i.e. S ⊂ A ⊂ S∗ and
S ⊂ B ⊂ S∗, then A and B are said to be transversal (with respect to S) if

S = A ∩ B and S∗ = A +̂ B,

cf. [11]. It is clear that disjointness and transversality of A and B can be char-
acterized by the conditions (1.16) and (1.17) in Lemma 1.5. For this purpose the
following corollary is often sufficient.

COROLLARY 1.6. Let S be a symmetric relation in a Hilbert space H and let A
and B be selfadjoint extensions of S. Then:

(i) A and B are disjoint if and only if for some (equivalently for every) λ ∈ ρ(A) ∩
ρ(B),

ran (S− λ) = ker ((B− λ)−1 − (A− λ)−1);

(ii) A and B are transversal if and only if for some (equivalently for every) λ ∈ ρ(A)∩
ρ(B),

ker (S∗ − λ) = ran ((B− λ)−1 − (A− λ)−1).

Observe that if S is a symmetric relation in H, then H := S +̂ N̂λ(S∗) is a
restriction of S∗ and, moreover, if S is closed,

λ ∈ ρ(H), λ ∈ C \R.

Therefore, Lemma 1.4 shows that

S∗ = S +̂ N̂λ(S∗) +̂ N̂λ(S∗), λ ∈ C \R,

which is von Neumann’s decomposition for the adjoint of a closed symmetric rela-
tion.
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Originally, equivalent descriptions for disjointness and transversality have
been established by means of boundary triplets using parameters in Kreı̆n’s for-
mula, cf. [25] and [11]; for the case of sectorial linear relations, see also [3]. Dis-
jointness and transversality play a role in the construction of boundary triplets,
and more generally, of boundary relations, cf. [10].

2. THE KREĬN-VON NEUMANN AND THE FRIEDRICHS EXTENSIONS

This section contains general information concerning nonnegative selfad-
joint extensions of a nonnegative relation S. In particular, the Kreı̆n-von Neu-
mann and the Friedrichs extensions are introduced. Furthermore there is a sim-
ple treatment of the transversality of any nonnegative selfadjoint extension of S
and its Friedrichs extension.

2.1. SOME GENERAL REMARKS CONCERNING THE KREĬN-VON NEUMANN AND

THE FRIEDRICHS EXTENSIONS. A linear relation S in a Hilbert space H is said to
be semibounded from below if there exists a number a ∈ R such that ( f ′, f ) >
a( f , f ) for all { f , f ′} ∈ S. Note that in this case the relation S is automatically
symmetric and it has equal defect numbers. The largest number a ∈ R which
serves this purpose is called the lower bound m(S) of S. It is given by m(S) = 0
when S is purely multivalued and by

m(S) = inf{ ( f ′, f ) : { f , f ′} ∈ S, ‖ f ‖ = 1 }

otherwise. Clearly, the lower bound of clos S is equal to the lower bound of
S. When the lower bound is nonnegative the relation S is called nonnegative:
( f ′, f ) > 0, { f , f ′} ∈ S. The fact that

(λ f ′ + µg′, λ f + µg) > 0, { f , f ′}, {g, g′} ∈ S, λ, µ ∈ C,

leads to the Cauchy inequality for nonnegative relations:

(2.1) |( f ′, g)|2 6 ( f ′, f )(g′, g), { f , f ′}, {g, g′} ∈ S.

Let S be a nonnegative linear relation and define on dom t = dom S

(2.2) t[ f , g] = ( f ′, g), { f , f ′}, {g, g′} ∈ S.

Then (2.2) gives rise to a nonnegative form since

( f ′, g) = ( f , g′) = ( f ′′, g) > 0, { f , f ′}, { f , f ′′}, {g, g′} ∈ S.

In fact, the form t in (2.2) is closable, cf. [22]. The closure t of the form t in (2.2)
is nonnegative and induces a nonnegative selfadjoint relation SF which is the or-
thogonal sum of the selfadjoint operator induced by the form t in dom S (cf. [22])
and the multivalued part {0} × mul S∗ (cf. [11], [17]). The nonnegative selfad-
joint relation SF is an extension of S and has the same lower bound as S, cf. [8].
By construction mul SF = mul S∗, so that the Friedrichs extension is an operator if
and only if S is densely defined (and necessarily an operator). For a nonnegative
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relation S introduce the space dom [S] as the set of all f ∈ H for which there exists
a sequence ({ fn, f ′n}) ⊂ S such that

fn → f , ( f ′n − f ′m, fn − fm) → 0 m, n → ∞.

It can be shown that dom [S] = dom [SF] = dom S1/2
F , and that

(2.3) SF = { { f , f ′} ∈ S∗ : f ∈ dom [S] }.

Moreover, the Friedrichs extension is the only selfadjoint extension of S whose
domain is contained in dom [S].

If the relation S is nonnegative (selfadjoint), then likewise the formal inverse
S−1 of S is nonnegative (selfadjoint). Hence the selfadjoint relation

(2.4) SN = ((S−1)F)−1

is also a nonnegative selfadjoint extension of S; in fact it is the Kreı̆n-von Neu-
mann extension of S, cf. [23], [1], [9]. In particular, SN is the only selfadjoint ex-
tension of S whose range is contained in ran [S] := dom [S−1] and the following
description holds

SN = { { f , f ′} ∈ S∗ : f ′ ∈ ran [S] }.

Notice also that ker SN = ker S∗, and that f ′ ∈ ran [S] if and only if there exists a
sequence ({ fn, f ′n}) ⊂ S, such that

f ′n → f ′, ( f ′n − f ′m, fn − fm) → 0, m, n → ∞.

The Kreı̆n-von Neumann and the Friedrichs extensions are extreme nonnegative
selfadjoint extensions of S: if H is any nonnegative selfadjoint extension of S,
then (0.7) holds, where the inequalities are in the sense of resolvents (see (0.8))
or, equivalently, in the sense of the corresponding forms (see (0.9)), cf. [17]. The
following proposition is just a reformulation of the definition of the form domain
dom [S] and of the form range ran [S], respectively, used in the construction of SF
and SN.

PROPOSITION 2.1. Let S be a nonnegative relation in a Hilbert space H and let
{ f , f ′} ∈ S∗. Then:

(i) { f , f ′} ∈ SF if and only if

inf{‖ f − h‖2 + ( f ′ − h′, f − h) : {h, h′} ∈ S} = 0;

(ii) { f , f ′} ∈ SN if and only if

inf{‖ f ′ − h′‖2 + ( f ′ − h′, f − h) : {h, h′} ∈ S} = 0.

Sometimes the Kreı̆n-von Neumann and the Friedrichs extensions can be
given explicitly. If S is a nonnegative relation, then

(2.5) SN = S +̂ (ker S∗ × {0}),

if and only if

(2.6) ran S = ran S ∩ ran S∗,
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and likewise, in view of (2.4),

(2.7) SF = S +̂ ({0} ×mul S∗),

if and only if

(2.8) dom S = dom S ∩ dom S∗,

see [9], [21]. Observe that (2.6) is satisfied when ran S is closed, in which case (2.5)
is valid. In particular, if S is closed and m(S) > 0, or if S−1 is a closed bounded
operator, then (2.5) holds. Hence, if S is closed, then either m(SN) = 0 or S is
selfadjoint, in which case SN = S = SF, cf. [9].

A review of the above facts can be found in [16]; some further facts concern-
ing inequalities between nonnegative selfadjoint relations and the corresponding
forms can be found in [17], see also [6].

2.2. DISJOINTNESS AND TRANSVERSALITY. A concise treatment is given for the
disjointness and the transversality of some nonnegative selfadjoint extension and
the Friedrichs extension. The following observation is very useful.

LEMMA 2.2. Let A and B be nonnegative selfadjoint relations in a Hilbert space
H and let a > 0. If A 6 B, then

(2.9) dom A1/2 = ran ((A + a)−1 − (B + a)−1)1/2 + dom B1/2.

Proof. Since a > 0 it follows that −a is in the resolvent sets of A and B.
Hence R(a) = (A + a)−1 − (B + a)−1 ∈ [H]. It follows from the inequality A 6 B
that R(a) is nonnegative, cf. [9], [17]. Furthermore,

(A + a)−1 = R(a) + (B + a)−1 =
(

R(a)1/2 (B + a)−1/2
) ( R(a)1/2

(B + a)−1/2

)
,

which leads to

ran (A + a)−1/2 = ran R(a)1/2 + ran (B + a)−1/2,

cf. [12]. The last result coincides with the decomposition (2.9).

Recall that if R is a nonnegative bounded linear operator in a Hilbert space
H, then ran R = ran R1/2, and ran R is closed if and only if ran R1/2 is closed.

PROPOSITION 2.3. Let S be a nonnegative linear relation and let H be a nonneg-
ative selfadjoint extension of S. Then, for every a > 0,

(2.10) ran ((H + a)−1 − (SF + a)−1)1/2 = ker (S∗ + a) ∩ dom H1/2,

and, furthermore,

(2.11) dom H1/2 = (ker (S∗ + a) ∩ dom H1/2) + dom S1/2
F , direct sum.
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Proof. Recall that H 6 SF via Kreı̆n’s inequalities. Hence, Lemma 2.2 may
be applied with A = H and B = SF. Define R(a) = (H + a)−1 − (SF + a)−1, so
that clearly ran R(a) ⊂ ker (S∗ + a). It suffices to show that

ran R(a)1/2 = ker (S∗ + a) ∩ dom H1/2.

Clearly, it follows from (2.9) that ran R(a)1/2 ⊂ dom H1/2, since dom S1/2
F ⊂

dom H1/2, cf. [17]. Since ran R(a) ⊂ ker (S∗ + a), it follows that ran R(a)1/2 ⊂
ker (S∗ + a). Hence, the lefthand side is contained in the righthand side. Next
the reverse inclusion will be shown. Let f ∈ ker (S∗ + a) ∩ dom H1/2, then
f ∈ dom H1/2 implies that

f = h + k, h ∈ dom S1/2
F , k ∈ ran R(a)1/2,

cf. (2.9). Since k ∈ ker (S∗ + a), it follows that h ∈ ker (S∗ + a)∩ dom S1/2
F . Hence

h ∈ ker (SF + a) by (2.3), so that h = 0. Therefore f ∈ ran R(a)1/2, which com-
pletes the proof of (2.10).

The identity (2.11) follows now from Lemma 2.2. The sum is direct since
(2.3) implies ker (S∗ + a) ∩ dom S1/2

F = ker (SF + a) and, hence, this set is triv-
ial.

PROPOSITION 2.4. Let S be a nonnegative linear relation and let H be a nonneg-
ative selfadjoint extension of S. Then H and SF are transversal if and only if

(2.12) ker (S∗ + a) ⊂ dom H1/2, a > 0.

Furthermore, H = SF if and only if

(2.13) ker (S∗ + a) ∩ dom H1/2 = {0}, a > 0.

Proof. Assume that (2.12) is satisfied. Then it follows from (2.10) that

ran ((H + a)−1 − (SF + a)−1)1/2 = ker (S∗ + a).

But then also
ran ((H + a)−1 − (SF + a)−1) = ker (S∗ + a).

Hence by Corollary 1.6 H and SF are transversal. The converse statement is ob-
tained by retracing these steps. This proves the first assertion of the proposition.

Observe that H = SF if and only if dom H1/2 = dom S1/2
F , since SF is

the only selfadjoint extension of S whose domain is contained in dom [SF] =
dom S1/2

F . It follows from (2.11) that dom H1/2 = dom S1/2
F if and only if (2.13)

holds. This proves the last assertion of the proposition.

COROLLARY 2.5 ([24]). Let S be a nonnegative linear relation. Then SN and SF
are transversal if and only if

(2.14) dom S∗ ⊂ dom S1/2
N .
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Proof. Clearly, if (2.14) holds then SF and SN are transversal, by Proposi-
tion 2.4.

Conversely, if SN and SF are transversal, then ker (S∗ + a) ⊂ dom S1/2
N by

Proposition 2.4. If a > 0, then −a ∈ ρ(SN), and hence by (1.14)

S∗ = SN +̂ N̂−a(S∗).

In particular,

dom S∗ = dom SN + ker (S∗ + a),

and, since ker (S∗ + a) ⊂ dom S1/2
N , the inclusion (2.14) follows.

The linear manifold ker (S∗ + a)∩dom H1/2 in Proposition 2.3 is intimately
connected with the so-called Kac subclass of the class of Nevanlinna functions, cf.
[15], [20]. Observe that the decomposition in (2.11) is orthogonal when dom H1/2

is provided with the graph inner product relative to H1/2. In the context of non-
densely defined operators (or relations) this result goes back to [9]. Corollary 2.5
is due to M.M. Malamud [24], who gave a proof involving boundary triplets and
Kreı̆n’s formula; see also Proposition 4.4.

3. A FACTORIZATION OF THE KREĬN-VON NEUMANN AND THE FRIEDRICHS EXTENSIONS

Let S be a nonnegative linear relation in a Hilbert space H. It is not assumed
that S is closed or that its domain of definition dom S is dense in H. In this sec-
tion the fundamental factorizations of the Kreı̆n-von Neumann and the Friedrichs
extensions of S are established.

Provide the linear space ran S with a semi-inner product 〈·, ·〉 by

(3.1) 〈 f ′, g′〉 := ( f ′, g) = ( f , g′), { f , f ′}, {g, g′} ∈ S.

Note that if also { f0, f ′}, {g0, g′} ∈ S, then the symmetry of S implies that

(3.2) ( f ′, g) = ( f , g′) = ( f ′, g0) = ( f0, g′),

which shows that the inner product (3.1) is well defined. Define the linear space
R0 by

(3.3) R0 = { f ′ : ( f ′, f ) = 0 for some { f , f ′} ∈ S }.

Note that if ( f ′, f ) = 0 for { f , f ′} ∈ S, then also ( f ′, f0) = 0 when { f0, f ′} ∈ S,
cf. (3.2). In general, the space R0 is nontrivial. Clearly the definition implies that
mul S ⊂ R0 ⊂ ran S.

LEMMA 3.1. Let S be a nonnegative relation. Then

(3.4) R0 = ran S ∩mul S∗.
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Proof. Assume that f ′ ∈ ran S ∩ mul S∗. Then { f , f ′} ∈ S for some f ∈ H,
and {0, f ′} ∈ S∗. This implies that ( f ′, f ) = 0 and therefore f ′ ∈ R0.

Conversely, assume that f ′ ∈ R0. Then ( f ′, f ) = 0 for some { f , f ′} ∈ S.
Clearly with {g, g′} ∈ S the Cauchy-Schwarz inequality (2.1) gives

|( f ′, g)|2 6 ( f ′, f )(g′, g) = 0.

Hence ( f ′, g) = 0, so that f ′ ∈ (dom S)⊥ = mul S∗. This implies that f ′ ∈ ran S ∩
mul S∗.

The quotient space ran S/R0 equipped with the inner product

(3.5) 〈[ f ′], [g′]〉 := ( f ′, g) = ( f , g′), { f , f ′}, {g, g′} ∈ S,

where [ f ′], [g′] denote the equivalence classes containing f ′ and g′, is a pre-Hilbert
space.

DEFINITION 3.2. The Hilbert space completion of ran S/R0 is denoted by
HS; its inner product is again denoted by 〈·, ·〉. The linear relation Q from H to HS
is defined by

(3.6) Q = { { f , [ f ′]} : { f , f ′} ∈ S }.

The linear relation J from HS to H is defined by

(3.7) J = { {[ f ′], f ′} : { f , f ′} ∈ S }.

Note that dom Q = dom S and that mul Q = {0}, i.e., Q is (the graph of) an
operator. To see that mul Q = {0}, assume that f = 0 in (3.6). Then {0, f ′} ∈ S
and, by (3.3), clearly f ′ ∈ R0, which shows that [ f ′] = 0. Moreover, note that J
is multivalued with mul J = R0 and that ran J = ran S. The relation J is densely
defined in HS and therefore J∗ is an operator. The definitions (3.6) and (3.7) imply
that

(3.8) J ⊂ Q∗, Q ⊂ J∗,

as follows from (3.5). In particular, Q∗∗ = clos Q is a restriction of J∗, so that
Q∗∗, the closure of the operator Q, is also an operator. Recall that the product
relations J∗∗ J∗ and Q∗Q∗∗ are nonnegative and selfadjoint, cf. [17]. Since both J∗

and Q∗∗ are operators, the associated nonnegative forms are defined on dom J∗

and dom Q∗∗, respectively, cf. [17]. The next theorem extends Proposition 3.1 of
[4]; here S need not be densely defined and is even allowed to be a nonnegative
(not necessarily closed) relation.

THEOREM 3.3. Let S be a nonnegative relation in a Hilbert space H and let J and
Q be defined by (3.6) and (3.7). Then the Kreı̆n-von Neumann extension SN of S is given
by SN = J∗∗ J∗ and the corresponding closed form tN is given by

tN[ f , g] = 〈J∗ f , J∗g〉, f , g ∈ dom J∗ = dom S1/2
N .
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Furthermore, the Friedrichs extension SF of S is given by SF = Q∗Q∗∗ and the corre-
sponding closed form tF is given by

tF[ f , g] = 〈Q∗∗ f , Q∗∗g〉, f , g ∈ dom Q∗∗ = dom S1/2
F .

Proof. First consider the case of the Kreı̆n-von Neumann extension. Let
{ f , f ′} ∈ S. Since { f , [ f ′]} ∈ Q ⊂ J∗ and {[ f ′], f ′} ∈ J ⊂ J∗∗ it follows that
{ f , f ′} ∈ J∗∗ J∗, i.e. S ⊂ J∗∗ J∗. Hence the nonnegative selfadjoint relation J∗∗ J∗ is
an extension of S.

Now let { f , f ′} ∈ J∗∗ J∗. Then { f , J∗ f } ∈ J∗ and {J∗ f , f ′} ∈ J∗∗. The identity
J∗∗ = clos J implies the existence of a sequence ({[ f ′n], f ′n}) ⊂ J, where { fn, f ′n} ∈
S, such that

(3.9) [ f ′n] → J∗ f in HS, f ′n → f ′ in H.

It follows from {[ f ′n], f ′n} ∈ J and { f , J∗ f } ∈ J∗ that

(3.10) 〈[ f ′n], J∗ f 〉 = ( f ′n, f ).

Likewise, it follows from { f , J∗ f } ∈ J∗ and {J∗ f , f ′} ∈ J∗∗ that

(3.11) 〈J∗ f , J∗ f 〉 = ( f , f ′).

Finally note that { fn, f ′n} ∈ S ⊂ J∗∗ J∗ and { f , f ′} ∈ J∗∗ J∗ imply that

(3.12) ( f ′, fn) = ( f , f ′n).

This leads to the following identity

〈[ f ′n]− J∗ f , [ f ′n]− J∗ f 〉 = 〈[ f ′n], [ f ′n]〉 − 〈[ f ′n], J∗ f 〉 − 〈J∗ f , [ f ′n]〉+ 〈J∗ f , J∗ f 〉
= ( f ′n, fn)− ( f ′n, f )− ( f , f ′n) + ( f , f ′)

= ( f ′n, fn)− ( f ′n, f )− ( f ′, fn) + ( f ′, f ) = ( f ′ − f ′n, f − fn),

where (3.10), (3.11), and (3.12) have been used, respectively. Therefore (3.9) im-
plies that

f ′n → f ′ in H, ( f ′ − f ′n, f − fn) → 0.

Since { fn, f ′n} ∈ S, this shows that { f , g} ∈ SN, cf. Proposition 2.1. Hence, J∗∗ J∗ ⊂
SN, and since J∗∗ J∗ and SN are both selfadjoint, the identity J∗∗ J∗ = SN follows.
The statement concerning the associated form tN follows from Proposition 5.2
in [17].

Next consider the case of the Friedrichs extension. Let { f , f ′} ∈ S. Since
{ f , [ f ′]} ∈ Q ⊂ Q∗∗ and {[ f ′], f ′} ∈ J ⊂ Q∗ it follows that { f , f ′} ∈ Q∗Q∗∗, i.e.
S ⊂ Q∗Q∗∗. Thus the nonnegative selfadjoint relation Q∗Q∗∗ is an extension of S.

Now let { f , f ′} ∈ Q∗Q∗∗. Then { f , Q∗∗ f } ∈ Q∗∗ and {Q∗∗ f , f ′} ∈ Q∗. The
identity Q∗∗ = clos Q implies the existence of a sequence ({ fn, [ f ′n]}) ⊂ Q where
{ fn, f ′n} ∈ S, such that

(3.13) fn → f in H, [ f ′n] → Q∗∗ f in HS.
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It follows from {[ f ′n], f ′n} ∈ J ⊂ Q∗, and { f , Q∗∗ f } ∈ Q∗∗ that

(3.14) 〈[ f ′n], Q∗∗ f 〉 = ( f ′n, f ).

Likewise, it follows from { f , Q∗∗ f } ∈ Q∗∗ and {Q∗∗ f , f ′} ∈ Q∗ that

(3.15) 〈Q∗∗ f , Q∗∗ f 〉 = ( f , f ′).

Finally, note that { fn, f ′n} ∈ S ⊂ Q∗Q∗∗, and { f , f ′} ∈ Q∗Q∗∗ imply that

(3.16) ( f ′, fn) = ( f , f ′n).

This leads to the following identity

〈[ f ′n]−Q∗∗ f , [ f ′n]−Q∗∗ f 〉= 〈[ f ′n], [ f ′n]〉−〈[ f ′n], Q∗∗ f 〉−〈Q∗∗ f , [ f ′n]〉+〈Q∗∗ f , Q∗∗ f 〉
=( f ′n, fn)− ( f ′n, f )− ( f , f ′n) + ( f , f ′)

=( f ′n, fn)−( f ′n, f )−( f ′, fn)+( f ′, f )=( f ′ − f ′n, f − fn),

where (3.14), (3.15), and (3.16) have been used, respectively. Therefore (3.13) im-
plies that

fn → f in H, ( f ′ − f ′n, f − fn) → 0.
Since { fn, f ′n} ∈ S, this shows that { f , f ′} ∈ SF, cf. Proposition 2.1. Hence,
Q∗Q∗∗ ⊂ SF, and since Q∗Q∗∗ and SF are both selfadjoint, the identity Q∗Q∗∗ =
SF follows. Again the statement concerning the associated form tF follows from
Proposition 5.2 in [17].

The factorizations of the Kreı̆n-von Neumann and the Friedrichs extensions
in Theorem 3.3, in the case where these extensions are operators, go back to
Z. Sebestyén, J. Stochel, and coworkers, see [26], [27], [30], [31], [32]. The case
of densely defined nonnegative operators was treated in [4], where also the con-
nection with the corresponding closed nonnegative forms was given. The context
of nondensely defined operators and, more generally, of relations requires the in-
troduction of equivalence classes and the space R0 in order to define the relation
J. However, it is implicit in the construction that the adjoint J∗ is (the graph of)
an operator. This fact makes it possible to describe the forms associated with the
Kreı̆n-von Neumann and the Friedrichs extensions in terms of J∗ and its restric-
tion Q∗∗ ⊂ J∗.

4. SOME CONSEQUENCES OF THE FACTORIZATIONS

The factorizations of the Kreı̆n-von Neumann and the Friedrichs extensions
in Theorem 3.3 appear to be natural tools to study various questions concerning
nonnegative selfadjoint extensions of nonnegative operators or relations. In par-
ticular, in this section the disjointness, the transversality, and the equality of the
Kreı̆n-von Neumann and the Friedrichs extensions are characterized by means of
these factorizations. Also criteria for the Kreı̆n-von Neumann extension to be an
operator will be developed in terms of its factorization.
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4.1. SOME GENERAL OBSERVATIONS ABOUT FACTORIZATIONS. The intersection
of the Kreı̆n-von Neumann extension SN and the Friedrichs extension SF is a
closed nonnegative relation which extends S:

(4.1) S ⊂ SN ∩ SF.

Clearly, it follows from (4.1) that

(4.2) SN +̂ SF ⊂ clos (SN +̂ SF) ⊂ S∗.

It will be of interest to characterize the situation when there is equality instead of
inclusion in (4.1) and (4.2). Furthermore, the other extremal case, where the Kreı̆n-
von Neumann extension and the Friedrichs extension coincide, will be character-
ized.

LEMMA 4.1. Let S be a nonnegative relation in a Hilbert space H and let J and Q
be defined by (3.6) and (3.7). Then

(4.3) SN ∩ SF = J∗∗Q∗∗,

and, in particular,

(4.4) mul (SN ∩ SF) = mul J∗∗.

Proof. It follows from (3.8) that

Q ⊂ Q∗∗ ⊂ J∗, J ⊂ J∗∗ ⊂ Q∗,

and therefore Theorem 3.3 shows that

J∗∗Q∗∗ ⊂ Q∗Q∗∗ ∩ J∗∗ J∗ = SN ∩ SF.

Thus, J∗∗Q∗∗ ⊂ SN ∩ S f . To prove the reverse inclusion, let { f , f ′} ∈ SF ∩ SN.
This implies that { f , h} ∈ Q∗∗, {h, f ′} ∈ Q∗ for some h ∈ HS, and that { f , k} ∈ J∗,
{k, f ′} ∈ J∗∗ for some k ∈ HS. Observe that { f , h} ∈ Q∗∗ ⊂ J∗ and since J∗ is an
operator, one concludes that k = h. Hence, { f , f ′} ∈ J∗∗Q∗∗.

Since mul Q∗∗ = {0}, mul J∗∗Q∗∗ = mul J∗∗ and hence the equality (4.4)
follows immediately from (4.3).

Closely related to the closed linear relation J∗∗Q∗∗ in H is the relation Q∗ J∗,
also in H, which is not necessarily closed.

LEMMA 4.2. Let S be a nonnegative relation in a Hilbert space H and let J and Q
be defined by (3.6) and (3.7). Then

(4.5) SN +̂ SF ⊂ Q∗ J∗ ⊂ S∗,

and, in particular,

(4.6) S ⊂ (Q∗ J∗)∗ ⊂ SN ∩ SF.
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Proof. Recall that Q∗∗ ⊂ J∗ and J∗∗ ⊂ Q∗. Hence

SF = Q∗Q∗∗ ⊂ Q∗ J∗, SN = J∗∗ J∗ ⊂ Q∗ J∗,

so that SN +̂ SF ⊂ Q∗ J∗. Next it is shown that Q∗ J∗ ⊂ S∗. Assume that { f , f ′} ∈
Q∗ J∗, so that { f , ϕ} ∈ J∗ and {ϕ, f ′} ∈ Q∗ for some ϕ ∈ HS. By definition, for any
{h, h′} ∈ S one has

{[h′], h′} ∈ J, {h, [h′]} ∈ Q,
cf. (3.6) and (3.7). This leads to

( f , h′) = 〈ϕ, [h′]〉, ( f ′, h) = 〈ϕ, [h′]〉,

which implies ( f ′, h) = ( f , h′), and hence { f , f ′} ∈ S∗. This completes the proof
of (4.5). The inclusions in (4.6) follow by taking adjoints in (4.5).

4.2. DISJOINTNESS AND TRANSVERSALITY OF THE KREĬN-VON NEUMANN AND

THE FRIEDRICHS EXTENSIONS. The operator Q∗ J∗ plays an important role in the
description of the disjointness and transversality of SN and SF.

PROPOSITION 4.3. Let S be a nonnegative relation in a Hilbert space H and let J
and Q be defined by (3.6) and (3.7). Then the following statements are equivalent:

(i) SN and SF are disjoint;
(ii) S = J∗∗Q∗∗;

(iii) S = (Q∗ J∗)∗;
(iv) S is closed and S∗ = clos (Q∗ J∗).

Proof. The equivalence between (i) and (ii) is clear from Lemma 4.1. Fur-
thermore, the equivalence between (iii) and (iv) is obvious.

(i) ⇒ (iii) Since SN and SF are disjoint, so that SN ∩ SF = S, the statement
follows from (4.6).

(iii) ⇒ (ii) Assume that S = (Q∗ J∗)∗, then by (1.10) and by Lemma 4.1 it
follows that

S = (Q∗ J∗)∗ ⊃ J∗∗Q∗∗ = SN ∩ SF ⊃ S,
so that S is disjoint.

PROPOSITION 4.4. Let S be a nonnegative relation in a Hilbert space H and let J
and Q be defined by (3.6) and (3.7). Then the following statements are equivalent:

(i) SN and SF are transversal;
(ii) S∗ = Q∗ J∗;

(iii) dom S∗ ⊂ dom J∗;
(iv) ker (S∗ + a) ⊂ dom J∗ for some (and hence for all) a > 0.

Proof. (i) ⇒ (ii) Assume that SN and SF are transversal. Then it follows from
(4.5) that S∗ = Q∗ J∗, i.e., (ii) is valid.

(ii) ⇒ (iii) & (iii) ⇒ (iv) These implications are trivial.
(iv) ⇒ (i) Assume that ker (S∗ + a) ⊂ dom J∗. By Theorem 3.3 dom J∗ =

dom S1/2
N and the transversality of SN and SF follows from Proposition 2.4.
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4.3. EQUALITY OF THE KREĬN-VON NEUMANN AND THE FRIEDRICHS EXTEN-
SIONS. The factorizations can also be used to determine when the Kreı̆n-von
Neumann and the Friedrichs extensions coincide. In the present context one sim-
ple criterion is immediate.

PROPOSITION 4.5. Let S be a nonnegative relation in a Hilbert space H and let J
and Q be defined by (3.6) and (3.7). Then SN = SF if and only if J∗ = Q∗∗.

Proof. If J∗ = Q∗∗, then J∗∗ = Q∗, so that J∗∗ J∗ = Q∗Q∗∗, which is equiva-
lent to SF = SN by Theorem 3.3.

Conversely, assume that SN = SF, or equivalently, J∗∗ J∗ = Q∗Q∗∗. Then
dom J∗ = dom Q∗∗ and since Q∗∗ ⊂ J∗ and J∗ is an operator, one obtains that
J∗ = Q∗∗.

In order to obtain an analytical uniqueness criterion the following observa-
tion is useful.

PROPOSITION 4.6. Let S be a nonnegative relation in a Hilbert space H. Then

dom J∗ = { g ∈ H : |( f ′, g)|2 6 Cg( f ′, f ) for all { f , f ′} ∈ S and some Cg < ∞ }.

Proof. Recall that J is the relation from HS to H defined in (3.7). Apply the
description (1.1) in Lemma 1.1 to J to obtain a description of dom J∗: g ∈ dom J∗

if and only if g ∈ H and there exists a nonnegative number γg such that

(4.7) |( f ′, g)| 6 γg‖[ f ′]‖HS for all {[ f ′], f ′} ∈ J.

By (3.7) and (3.5) the estimate in (4.7) can be rewritten as

|( f ′, g)|2 6 γ2
g( f ′, f ) for all { f , f ′} ∈ S.

This gives the description of dom J∗.

The description of dom J∗ leads to the uniqueness criterion due to Kreı̆n [23].

THEOREM 4.7 (Kreı̆n’s uniqueness criterion). Let S be a nonnegative relation
in a Hilbert space H. Then SN = SF if and only if for some (and hence for all) a > 0

(4.8) sup
{ |( f , ϕ)|2

( f ′, f )
: { f , f ′} ∈ S

}
= ∞ for all ϕ ∈ ker (S∗ + a) \ {0}.

Proof. By Proposition 2.4 with H = SN, one has SN = SF if and only if

ker (S∗ + a) ∩ dom S1/2
N = {0}.

In other words SN = SF if and only if

ϕ ∈ ker (S∗ + a) \ {0} ⇒ ϕ 6∈ dom S1/2
N .

By Proposition 4.6 and Theorem 3.3 it follows that ϕ ∈ dom S1/2
N = dom J∗ if and

only if there is a nonnegative number Cϕ such that

|( f ′, ϕ)|2 6 Cϕ( f ′, f ) for all { f , f ′} ∈ S.
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Since ϕ ∈ ker (S∗ + a) it is clear that ( f ′, ϕ) = a( f , ϕ). Hence, ϕ ∈ dom S1/2
N if

and only if

|( f , ϕ)|2 6
Cϕ

a
( f ′, f ) for all { f , f ′} ∈ S,

and this leads to the description (4.8).

The description of the form domain dom tN = dom J∗ in Theorem 3.3 is
made explicit in Proposition 4.6. This description coincides with a result of Ando
and Nishio [1] for the class of positively closable operators. Kreı̆n’s uniqueness
criterion was originally stated for the case of densely defined operators; its for-
mulation for nonnegative relations can be found in [16].

4.4. POSITIVE CLOSABILITY. The Friedrichs extension SF is an operator if and
only if S is densely defined. In this case, each nonnegative selfadjoint extension
H of S is an operator. However, when S is not densely defined, there may be
nonnegative selfadjoint extensions of S which are operators, in which case S is
automatically an operator. In what follows, a relation in a Hilbert space H is
called closable if its closure in the Cartesian product H × H is (the graph of) an
operator. Of course, a closable relation is itself already an operator.

PROPOSITION 4.8. Let S be a nonnegative relation. Then

(4.9) mul SN = mul J∗∗ ⊂ ran S ∩mul S∗.

Furthermore, the following statements are equivalent:
(i) SN is an operator;

(ii) S has a nonnegative selfadjoint operator extension;
(iii) the relation J is closable;
(iv) SN ∩ SF is an operator.

In this case S is a nonnegative operator.

Proof. By Theorem 3.3 SN = J∗∗ J∗, which gives the identity in (4.9). For the
inclusion in (4.9), recall that J ⊂ Q∗ and dom Q = dom S, so that

mul J∗∗ ⊂ mul Q∗ = mul S∗.

Furthermore, observe that mul J∗∗ ⊂ ran J∗∗ ⊂ ran J and ran J = ran S, so that

mul J∗∗ ⊂ ran S.

Hence also the inclusion in (4.9) has been proved.
(i) ⇒ (ii) This is clear.
(ii) ⇒ (i) Let H be a nonnegative selfadjoint operator extension of S (so that

also S is an operator), then it follows from (0.7) that SN is an operator.
(i) ⇔ (iii) According to (4.9) SN is an operator if and only if mul J∗∗ is trivial.
(i) ⇔ (iv) This follows immediately from (4.4), which leads to mul (SN ∩

SF) = mul SN.
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COROLLARY 4.9. Let S be a nonnegative relation in H. Then

(4.10) mul SN = { f ′ ∈ H : { fn, f ′n} ∈ S, f ′n → f ′, ( f ′n, fn) → 0 }.

In particular, SN is an operator if and only if

(4.11) { fn, f ′n} ∈ S, lim
n→∞

( f ′n, fn) = 0, and lim
n→∞

f ′n = f ′ imply f ′ = 0.

Proof. By Proposition 4.8 one has mul SN = mul J∗∗ and hence the defini-
tions of HS and J, see (3.1), (3.3), (3.7), show that the multivalued part of the
closure J∗∗ of J is given by (4.10). Therefore, SN is an operator if and only if (4.11)
is satisfied. This completes the proof.

A nonnegative relation S is said to be positively closable if it satisfies the prop-
erty (4.11). In this case, S is automatically closable (as S ⊂ SN = S∗N) and thus an
operator. Hence the Kreı̆n-von Neumann extension SN is an operator if and only
if S is positively closable.

COROLLARY 4.10. Let S be a nonnegative relation in H. Then:
(i) if ran S is closed, then SN = S +̂ (ker S∗ × {0}) and mul SN = mul J;

(ii) if m(S) > 0, then mul SN = mul clos S.

Proof. (i) Since ran S is closed it follows from (2.6) that SN has the form (2.5).
By Proposition 4.8 and (3.4) one has

mul SN ⊂ ran S ∩mul S∗ = ran S ∩mul S∗ = mul J,

and, since mul J ⊂ mul SN, this gives mul SN = mul J.
(ii) The inclusion mul clos S ⊂ mul SN is clear. The converse follows from

(4.10) since ( f ′n, fn) > m(S)‖ fn‖2 for { fn, f ′n} ∈ S.

In other words, if ran S is closed, then S is positively closable if and only
if mul J = {0}, and if m(S) > 0, then S is positively closable if and only if S is
closable.

PROPOSITION 4.11. Let S be a nonnegative operator. Then:
(i) if SN and SF are disjoint, then SN is an operator;

(ii) if SN is an operator and if S satisfies the property (2.8), then SN and SF are disjoint.
In particular, if S is a nonnegative closed bounded operator, then SN is an operator if and
only if SN and SF are disjoint.

Proof. (i) Assume that SN ∩ SF = S. Let {0, ϕ} ∈ SN. Then clearly {0, ϕ} ∈
SF, so that {0, ϕ} ∈ SN ∩ SF ⊂ S. Therefore ϕ = 0, and SN is an operator.

(ii) Let S be a nonnegative operator which satisfies the property (2.8) and let
SN be an operator. Assume that { f , f ′} ∈ SN ∩ SF. Since { f , f ′} ∈ SF, it follows
from (2.7) that { f , f ′} ∈ S +̂ ({0} × mul S∗). Hence { f , f ′} = {h, Sh} +̂ {0, ϕ}
with h ∈ dom S and ϕ ∈ mul S∗. Therefore {0, ϕ} ∈ SN ∩ SF and since SN is an
operator, one concludes that ϕ = 0. Hence { f , f ′} = {h, Sh} ∈ S, which shows
SN ∩ SF ⊂ S.
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If S is a bounded closed nonnegative operator, then dom S is closed, so that
the condition (2.8) is satisfied.

Observe that the conditions in (ii) of Proposition 4.11 automatically imply
that S is closed. Furthermore, if SN is an operator and the condition (2.8) is not
satisfied, then SN and SF need not be disjoint: there are densely defined nonneg-
ative nonselfadjoint operators S for which SN and SF coincide, cf. Theorem 4.7.

Now the problem arises to determine, parallel to Proposition 4.8, the non-
negative linear relations S whose Kreı̆n-von Neumann extension SN is a bounded
operator.

PROPOSITION 4.12. Let S be a nonnegative relation. Then the following state-
ments are equivalent:

(i) SN belongs to [H];
(ii) S has at least one nonnegative selfadjoint extension in [H];

(iii) ‖ f ′‖2 6 M( f ′, f ) for all { f , f ′} ∈ S and for some M > 0;
(iv) J is a bounded operator.

In this case S is a nonnegative bounded operator.

Proof. (i) ⇒ (ii) This implication is clear.
(ii) ⇒ (iii) Let H be a nonnegative operator in [H] which extends S. Then

clearly ‖H1/2(H1/2 f )‖ 6 ‖H1/2‖ ‖H1/2 f ‖, so that

‖H f ‖2 6 ‖H‖ (H f , f ), f ∈ dom H.

Restricting f to dom S one gets the inequality in (iii) with M = ‖H‖.
(iii) ⇒ (iv) In view of (3.3) one has R0 = {0} and hence the relation J is

(the graph of) an operator. The boundedness of J is also a consequence of the
inequality.

(iv) ⇒ (i) Let J be a bounded operator. Then its closure J∗∗ is a bounded op-
erator with the same norm. Furthermore, since J is densely defined, the bounded
operator J∗∗ is defined everywhere. Hence SN = J∗∗ J∗ ∈ [H].

Furthermore the following proposition is parallel to Proposition 4.11.

PROPOSITION 4.13. Let S be a bounded nonnegative operator. Then SN ∈ [H] if
and only if SN and SF are transversal.

Proof. Since the operator S is bounded, it is closable, i.e., mul clos S = {0}.
Hence dom S∗ = (mul clos S)⊥ = H.

Assume that SN ∈ [H]. Then J is a bounded operator, densely defined, so
that J∗ is a bounded operator, cf. Proposition 4.12. Therefore dom S∗ = H =
dom J∗. Hence SN and SF are transversal by Proposition 4.4.

Conversely, assume that SN and SF are transversal. Hence H = dom S∗ ⊂
dom J∗, which implies that J∗ is a bounded operator. Therefore J is a bounded
operator, and hence SN ∈ [H].
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The notion of positive closability, introduced by Ando and Nishio [1] for
closed nonnegative operators, is inherent in the representation of the Kreı̆n-von
Neumann extension SN in Theorem 3.3. The connection between the identities
(4.10) and (4.11) was first noticed in [16]. The inequality in part (iii) of Proposi-
tion 4.12 guarantees that S is an operator. Hence it can be rewritten as ‖S f ‖2 6
M(S f , f ), f ∈ dom S, and in this form it goes back to Ando and Nishio [1]. As the
proof of Proposition 4.12 shows, this inequality implies that the mapping J from
HS to H is bounded with the norm ‖J‖ 6

√
M, cf. [19]. As to Propositions 4.11

and 4.13, see also the treatment in Derkach and Malamud [11].

5. A FACTORIZATION OF THE EXTREMAL EXTENSIONS OF NONNEGATIVE RELATIONS

In this section the characterization of the extremal extensions of an arbi-
trary nonnegative relation in terms of factorizations is established. This extends
the treatment for densely defined nonnegative operators in [4]. In Section 6 the
present results will be made explicit when the nonnegative symmetric relation is
actually a bounded nonnegative operator.

Let S be a nonnegative relation in H and let L be any subspace such that

(5.1) dom S ⊂ L ⊂ dom J∗ = dom S1/2
N .

Associate with L the restriction operator RL from H to HS by

(5.2) RL := J∗ � L = { { f , f ′} ∈ J∗ : f ∈ L }.

Since J∗ is a closed operator from H to HS, it is clear that RL is a closable operator.
The definition of RL and Theorem 3.3 lead to

〈RL f , RLg〉 = 〈J∗ f , J∗g〉 = tN[ f , g], f , g ∈ L.

Hence, RL is closed if and only if the restriction of the form tN[·, ·] to L is closed,
cf. [22]. Clearly, operators of the form RL induce nonnegative selfadjoint relations
R∗

LR∗∗
L and corresponding closed nonnegative forms tL defined by

tL[ f , g] = 〈R∗∗
L f , R∗∗

L g〉 f , g ∈ dom R∗∗
L .

Assume that the linear, not necessarily closed, subspaces L and M satisfy

dom S ⊂ L ⊂ M ⊂ dom S1/2
N .

Then the closed forms induced by L and M satisfy the inclusion tL ⊂ tM. In
particular, tL > tM which leads to the following monotonicity property (cf. [4],
[17]):

R∗
MR∗∗

M 6 R∗
LR∗∗

L .

The nonnegative selfadjoint extensions of S which are extremal can be char-
acterized in terms of nonnegative selfadjoint factorizations R∗

LR∗∗
L induced by the

operators RL in (5.2).
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THEOREM 5.1. Let S be a nonnegative linear relation in a Hilbert space H. Then
the following statements are equivalent:

(i) Ã = R∗
LR∗∗

L for some L such that dom S ⊂ L ⊂ dom S1/2
N ;

(ii) Ã is a nonnegative selfadjoint extremal extension of S;
(iii) Ã is a nonnegative selfadjoint extension of S whose associated closed form t̃ satis-

fies t̃ ⊂ tN.

Proof. (i) ⇒ (ii) Let { f , f ′} ∈ S. Since { f , [ f ′]} ∈ Q ⊂ J∗ � L = RL ⊂ R∗∗
L

and {[ f ′], f ′} ∈ J ⊂ J∗∗ ⊂ R∗
L, it follows that { f , f ′} ∈ R∗

LR∗∗
L , i.e., S ⊂ R∗

LR∗∗
L .

Hence, the nonnegative selfadjoint relation Ã = R∗
LR∗∗

L is an extension of S.
Let { f , f ′} ∈ Ã = R∗

LR∗∗
L . Then { f , J∗ f } ∈ R∗∗

L , and {J∗ f , f ′} ∈ R∗
L. There-

fore,

(5.3) ( f ′, f ) = 〈J∗ f , J∗ f 〉.

Let {h, h′} ∈ S. It follows from {J∗ f , f ′} ∈ R∗
L and {h, [h′]} ∈ Q ⊂ RL, that

(5.4) ( f ′, h) = 〈J∗ f , [h′]〉.

Furthermore, it follows from { f , J∗ f } ∈ J∗ and {[h′], h′} ∈ J, that

(5.5) (h′, f ) = 〈[h′], J∗ f 〉.

Finally, note that by definition,

(5.6) (h′, h) = 〈[h′], [h′]〉.

The identities (5.3)–(5.6) lead to

( f ′−h′, f−h)

=( f ′, f )−( f ′, h)−(h′, f )+(h′, h)

= 〈J∗ f , J∗ f 〉−〈J∗ f , [h′]〉−〈[h′], J∗ f 〉+〈[h′], [h′]〉=‖J∗ f−[h′]‖2
HS

.

(5.7)

The assumption { f , f ′} ∈ Ã = R∗
LR∗∗

L implies that f ∈ dom J∗, so that J∗ f ∈ HS.
By definition, HS is the completion of ran S/R0 with respect to the norm ‖ · ‖HS .
Therefore,

inf{‖J∗ f − [h′]‖HS : {h, h′} ∈ S} = 0,
so that (5.7) leads to

inf{ ( f ′ − h′, f − h) : {h, h′} ∈ S } = 0.

This shows that the nonnegative selfadjoint extension Ã = R∗
LR∗∗

L is extremal.
(ii) ⇒ (iii) Assume that Ã is a nonnegative selfadjoint extension of S and let

t̃ be the associated nonnegative closed form. Observe that the inequality SN 6 Ã
is equivalent to tN 6 t̃, in other words

(5.8) dom t̃ ⊂ dom tN, tN[ f , f ] 6 t̃[ f , f ], f ∈ dom t̃,

cf. Theorem 4.3 of [17]. Let { f , f ′} ∈ Ã and {h, h′} ∈ S. It follows from

dom Ã ⊂ dom Ã1/2 = dom t̃ ⊂ dom tN = dom J∗,
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that { f , J∗ f } ∈ J∗. Together with {[h′], h′} ∈ J this leads to

(5.9) (h′, f ) = 〈[h′], J∗ f 〉.

Furthermore, by definition (see (3.1))

(5.10) (h′, h) = 〈[h′], [h′]〉.

Finally, note that {h, h′}, { f , f ′} ∈ Ã imply that

(5.11) (h′, f ) = (h, f ′).

The identities (5.9)–(5.11) show that for all { f , f ′} ∈ Ã and {h, h′} ∈ S

(5.12) ( f ′ − h′, f − h)− ‖J∗ f − [h′]‖2
HS

= ( f ′, f )− 〈J∗ f , J∗ f 〉.

Now assume in addition that the nonnegative selfadjoint extension Ã of S
is extremal. Let { f , f ′} ∈ Ã and let ε > 0. By (0.10) there exists an element
{h, h′} ∈ S such that

(5.13) ( f ′ − h′, f − h) < ε.

Clearly { f − h, f ′ − h′} ∈ Ã and by (5.8) it follows that

(5.14) tN[ f − h, f − h] 6 t̃[ f − h, f − h] = ( f ′ − h′, f − h).

Recall that {h, h′} ∈ S implies that {h, [h′]} ∈ Q ⊂ J∗, so that according to Theo-
rem 3.3

(5.15) tN[ f − h, f − h] = 〈J∗( f − h), J∗( f − h)〉 = ‖J∗ f − [h′]‖2
HS

.

A combination of (5.13), (5.14), and (5.15) leads to

(5.16) 0 6 ( f ′ − h′, f − h)− ‖J∗ f − [h′]‖2
HS

< ε.

Now combine the inequality (5.16) with the identity (5.12) to obtain

0 6 ( f ′, f )− 〈J∗ f , J∗ f 〉 < ε,

where { f , f ′} ∈ Ã and ε > 0 is arbitrary. Hence

( f ′, f ) = 〈J∗ f , J∗ f 〉 = tN[ f , f ],

for all { f , f ′} ∈ Ã, and, by polarization,

( f ′, g) = tN[ f , g], { f , f ′}, {g, g′} ∈ Ã.

Therefore the restriction to dom Ã of the form t̃ is a restriction of the form tN.
Since the form tN is closed, the inclusion t̃ ⊂ tN holds too.

(iii) ⇒ (i) Assume that Ã is a nonnegative selfadjoint extension of S such
that the closed form t̃ associated to Ã satisfies the inclusion t̃ ⊂ tN. Define the
subspace L by L = dom t̃. Then L satisfies the relation (5.1). Let RL be the
operator given by (5.2). Then

t̃[ f , g] = tN[ f , g] = 〈J∗ �L f , J∗ �L g〉 = 〈RL f , RLg〉 = 〈R∗∗
L f , R∗∗

L g〉, f , g ∈ L,
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and thus the linear relation Ã coincides with R∗
LR∗∗

L , cf. [22], and Proposition 5.2
of [17].

COROLLARY 5.2. There is a one-to-one correspondence between the closed restric-
tions t̃ of tN with dom S ⊂ dom t̃, i.e.,

t̃[ f , g] = 〈RL f , RLg〉, f , g ∈ L = dom t̃,

and the extremal nonnegative selfadjoint extensions Ã of S, given by

Ã = R∗
LRL, L = dom Ã1/2.

Proof. Let t̃ be a closed restriction of the form tN with dom S ⊂ dom t̃ =: L.
Then

t̃[ f , g] = tN[ f , g] = 〈J∗ f , J∗g〉 = 〈RL f , RLg〉, f , g ∈ L,

and the closedness of the form t̃ implies that the operator RL is closed. Thus,
RL = R∗∗

L and by Theorem 5.1 Ã = R∗
LRL is an extremal extension of S with

L = dom Ã1/2.
The mapping t̃ → Ã is surjective, since if Ã is an extremal nonnegative

selfadjoint extension of S, then with L = dom Ã1/2 one has dom RL = L =
dom t̃ = dom R∗∗

L and R∗∗
L = RL. Moreover, Ã = R∗

LRL and t̃[ f , g] = 〈RL f , RLg〉
is closed since RL is closed.

To see that the mapping is injective, let t̃1 and t̃2 be closed restrictions of
tN such that dom S ⊂ dom t̃i, i = 1, 2, for which the corresponding selfadjoint
extensions coincide, i.e.,

R∗
L1

RL1 = R∗
L2

RL2 .

This implies that dom t̃1 = dom t̃2 and since t̃i ⊂ tN, i = 1, 2, the equality t̃1 = t̃2
follows.

The one-to-one correspondence in Corollary 5.2 is between the extremal
nonnegative selfadjoint extensions Ã of S and the closed restrictions t̃ of the form
tN to the subspaces L (= dom Ã1/2) which satisfy

dom S ⊂ L ⊂ dom S1/2
N

or, equivalently,

dom S1/2
F ⊂ L ⊂ dom S1/2

N ,

and which are closed subspaces in the form topology of tN. If, for instance, L is
any subspace satisfying

dom S ⊂ L ⊂ dom S1/2
F

and RL = J∗�L, then R∗
LR∗∗

L = SF, since RL has the same closure as Q =
J∗� dom S. In particular, the choice L = dom S1/2

F , RL = J∗� dom S1/2
F , gives

the closure of the operator Q.
The next result reflects some further similar facts, cf. Proposition 4.5 of [4].
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THEOREM 5.3. Let S be a nonnegative relation in a Hilbert space H, let Ã be a
nonnegative selfadjoint extension of S, and let L := dom Ã. Then:

(i) R∗
LR∗∗

L 6 Ã;
(ii) if H is an extremal nonnegative selfadjoint extension of S, such that

(5.17) R∗
LR∗∗

L 6 H 6 Ã,

then H = R∗
LR∗∗

L ;
(iii) R∗

LR∗∗
L = Ã if and only if Ã is an extremal nonnegative selfadjoint extension of S.

Proof. (i) Let ÃL = R∗
LR∗∗

L , let t̃L be the closed form corresponding to the
selfadjoint relation ÃL, and let t̃ be the closed form corresponding to Ã. Then
dom Ã = L ⊂ dom t̃L and the inequality SN 6 Ã leads to

(5.18) t̃L[ f , f ] = ‖R∗∗
L f ‖2

HS
= tN[ f , f ] 6 t̃[ f , f ], f ∈ dom Ã.

Therefore ÃL 6 Ã by Theorem 4.3 of [17].
(ii) Let H be an extremal extension of S such that (5.17) holds and let t̃H

be the closed form associated to H. Then dom Ã ⊂ dom t̃H and according to
Theorem 5.1 one has t̃H ⊂ tN. Therefore (5.18) gives

t̃L[ f , g] = t̃H [ f , g], f , g ∈ dom Ã.

Since L = dom Ã is a core for both t̃L and t̃H , the equality R∗
LR∗∗

L = H follows.
(iii) Let Ã be an extremal extension of S. Then (i) and (ii) with H = Ã imply

that R∗
LR∗∗

L = Ã. The converse statement is clear by Theorem 5.1.

In the context of closed sectorial relations the equivalence (ii) ⇔ (iii) in The-
orem 5.1 goes back to Arlinskiı̆ [3]. The factorization of the extremal extensions
of S in Theorem 5.1 leads to an explicit representation of the closed forms associ-
ated with the extremal extensions of S along the lines of the densely defined case
in [4].

6. THE CASE OF BOUNDED NONNEGATIVE OPERATORS

The constructions and the results in Section 3 and Section 5 can be made
more explicit if the underlying nonnegative relation S is a bounded operator. In
particular, this leads to an interpretation of the completion problem (0.1) as an
extension problem as announced in the introduction.

6.1. SOME GENERAL REMARKS. Let S be a closed bounded nonnegative operator
in the Hilbert space H. Decompose the Hilbert space H as H = H1 ⊕ H2, where
dom S = H1. Then the operator S has the block decomposition

(6.1) S =
(

S11

S21

)
: H1 →

(
H1
H2

)
,
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where S11 ∈ [H1] is nonnegative and S21 ∈ [H1, H2]. By Lemma 1.2 the adjoint of
S in H is the closed linear relation given by

(6.2) S∗ =
{{(

h1
h2

)
,
(

S11h1 + S∗21h2
β

)}
: h1 ∈ H1, h2, β ∈ H2

}
,

and, in particular, it follows from (6.2) that

mul S∗ = {0} ⊕H2.

The results from the earlier sections will be completely described in terms of
the operators S11 and S21. Since the operator S is nonnegative, it follows from
Lemma 3.1 that the space R0 in (3.3) is given by

R0 = S(ker S11) = {0} ⊕ ran (S21 � ker S11).

The linear operator Q from H to HS in (3.6) is given by

(6.3) Q =
{{(

h1
0

)
,
[(

S11h1
S21h1

)]}
: h1 ∈ H1

}
,

and the linear relation J from HS to H in (3.7) is given by

(6.4) J =
{{[(

S11h1
S21h1

)]
,
(

S11h1
S21h1

)}
: h1 ∈ H1

}
,

so that mul J = R0 = {0} ⊕ ran (S21 � ker S11). Introduce the linear spaces

M0 := ran S1/2
11 , M := ran S1/2

11 = ran S11,

so that M is a closed subspace of H1 (with the original topology). Define the linear
relation T0 from M to HS by

T0 =
{{

S1/2
11 h1,

[(
S11h1
S21h1

)]}
: h1 ∈ H1

}
,

so that

‖S1/2
11 h1‖ =

∥∥∥∥[(S11h1
S21h1

)]∥∥∥∥
HS

, h1 ∈ H1,

where the norm in the righthand side is induced by the inner product (3.5). Thus,
the relation T0 is isometric from M0 onto ran S/R0; and, in fact, T0 is an operator.
Hence, the closure T of T0 is a closed isometric operator from the Hilbert space
M onto the Hilbert space HS. Define the linear operator Q1 from H to M by

(6.5) Q1 =
{{(

h1
0

)
, S1/2

11 h1

}
: h1 ∈ H1

}
,

so that Q1 is not densely defined in H; in fact, dom Q1 = H1. Define the linear
relation J1 from M to H by

(6.6) J1 =
{{

S1/2
11 h1,

(
S11h1
S21h1

)}
: h1 ∈ H1

}
,



A FACTORIZATION APPROACH FOR NONNEGATIVE OPERATORS AND RELATIONS 379

so that mul J1 = {0} ⊕ ran (S21 � ker S11). Comparison of the definitions (6.3)
and (6.5) shows that the linear operators Q1 and Q are connected by

Q1 = T∗Q,

and comparison of the definitions (6.4) and (6.6) shows that the linear relations J1
and J are connected by

J1 = JT.

The adjoints of Q and J have to be taken in terms of the Hilbert spaces HS and H.
However, the relations Q1 and J1 are in the original Hilbert space and, hence, so
are their adjoints.

LEMMA 6.1. The operator Q1 in (6.5) is a closed operator, so that Q∗∗
1 = Q1. The

adjoint Q∗
1 of Q1 is given by

(6.7) Q∗
1 =

{{
g1,
(

S1/2
11 g1
g2

)}
: g1 ∈ M, g2 ∈ H2

}
,

and mul Q∗
1 = H2.

Proof. Apply Lemma 1.2 to (1.4) with K1 = H1, K2 = H2, H1 = M, Y ⊂
H2 = ∅, D = {0, 0}, and B = S1/2

11 . Then clearly D∗ = M×H2 and (1.7) leads to
(6.7).

Define the linear relation W from M to H2 as follows

W = { {S1/2
11 g, S21g} : g ∈ H1 },

so that W is densely defined and {0} ⊕ mul W = R0. The adjoint V = W∗ is a
closed operator from H2 to M given by

V = { {h, k} : S1/2
11 k = S∗21h }.

The definition of M shows directly that

(6.8) dom V = { h : S∗21h ∈ ran S1/2
11 },

and S1/2
11 Vh = S∗21h, h ∈ dom V. In fact, the operator V is given by

V = S(−1/2)
11 S∗21,

where S(−1/2)
11 is the pseudo-inverse of S1/2

11 defined as the operator that assigns to
an element in ran S1/2

11 its uniquely defined original in H1 	 ker S11 = ran S11 =
M. Observe that

(6.9) S1/2
11 V = S∗21� dom V.

The identity V∗ = W∗∗ shows that W is closable if and only if V is densely de-
fined. It is clear from (6.6) that J1 can be rewritten in the form

(6.10) J1 =
{{

h1,
(

S1/2
11 h1
k1

)}
: {h1, k1} ∈ W

}
.
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LEMMA 6.2. Let the relation J1 from M to H be defined by (6.6). Then J∗1 is an
operator from H to M given by

(6.11) J∗1 =
{{(

g1
g2

)
, S1/2

11 g1 + Vg2,
}

: g1 ∈ H1, g2 ∈ dom V
}

.

Its adjoint relation J∗∗1 from M to H is given by

(6.12) J∗∗1 =
{{

α,
(

S1/2
11 α
β

)}
: {α, β} ∈ V∗

}
,

and mul J∗∗1 = mul V∗.

Proof. Apply Lemma 1.2 with X ⊂ H2 = ∅ and H = H1 to obtain (6.11) from
(6.10). In fact, (6.12) is a direct consequence of (6.10). The description of mul J∗∗1
is a consequence of (6.12), see also (1.9).

With the above identification of the spaces HS and M under the isometry T,
it is possible to translate the results involving Q and J in terms of Q1 and J1. It
will be helpful to use the following notations

Q1 =
(

S1/2
11 O

)
, Q∗

1 =
(

S1/2
11

O∗

)
,

where O stands for the trivial linear relation from H2 to M, so that O∗ = M×H2,
and

J∗1 =
(

S1/2
11 V

)
, J∗∗1 =

(
S1/2

11
V∗

)
.

6.2. THE KREĬN-VON NEUMANN AND THE FRIEDRICHS EXTENSIONS. The fol-
lowing result is a straightforward translation of Theorem 3.3.

THEOREM 6.3. Let S in (6.1) be a closed bounded nonnegative operator in H1⊕H2
with dom S = H1. Then the Kreı̆n-von Neumann extension SN of S is given by

(6.13) SN =
(

S1/2
11
V∗

)(
S1/2

11 V
)

,

and the corresponding closed form tN is given by

(6.14) tN

[(
h1
h2

)]
= ‖S1/2

11 h1 + Vh2‖2, h1 ∈ H1, h2 ∈ dom V.

Furthermore, the Friedrichs extension SF of S is given by

(6.15) SF =
(

S1/2
11

O∗

)(
S1/2

11 O
)

,

and the corresponding closed form tF is given by

(6.16) tF

[(
h1
0

)]
= ‖S1/2

11 h1‖2, h1 ∈ H1.



A FACTORIZATION APPROACH FOR NONNEGATIVE OPERATORS AND RELATIONS 381

Proof. First consider the Kreı̆n-von Neumann extension. Lemma 1.3 and
(6.6) lead to

(6.17) J∗1 = T∗ J∗, J∗∗1 = J∗∗T.

By multiplying the relations in (6.17) it follows that

J∗∗1 J∗1 = J∗∗TT∗ J∗ = J∗∗ J∗,

and hence J∗∗1 J∗1 = J∗∗ J∗ = SN by Theorem 3.3. Hence (6.14) is clear, see Proposi-
tion 5.2 in [17].

Now consider the Friedrichs extension. Lemma 1.3 and (6.5) lead to

(6.18) Q∗
1 = Q∗T, Q∗∗

1 = T∗Q∗∗.

By multiplying the relations in (6.18) one obtains

Q∗
1Q∗∗

1 = Q∗TT∗Q∗∗ = Q∗Q∗∗,

and hence Q∗
1Q∗∗

1 = Q∗Q∗∗ = SF by Theorem 3.3. Hence (6.16) is clear, see Propo-
sition 5.2 in [17].

The factorizations in (6.13) and (6.15) may be rewritten more explicitly. It
follows from (6.13) that

SN =
{{(

h1
h2

)
,
(

S11h1 + S1/2
11 Vh2

β

)}
:

h1 ∈ H1, h2 ∈ dom V, {S1/2
11 h1 + Vh2, β} ∈ V∗

}
.

(6.19)

Observe that according to (6.9) one has S1/2
11 V ⊂ S∗21, which shows that the right-

hand side of (6.19) is indeed a restriction of the righthand side of (6.2). Further-
more, note that it also follows from (6.9) that {S1/2

11 h1, S21h1} ∈ V∗. Hence SN may
be also written as

SN =
(

S11 S12
S21 V∗V

)
.

It follows from (6.15) that

SF =
{{(

h1
0

)
,
(

S11h1
ϕ

)}
: h1 ∈ H1, ϕ ∈ H2

}
.

As a consequence of (6.13) one obtains that

mul SN = {0} ⊕mul V∗.

Hence the following corollary is straightforward.

COROLLARY 6.4. Let S in (6.1) be a bounded nonnegative operator in H1 ⊕ H2
with dom S = H1. Then the following conditions are equivalent:

(i) SN is an operator;
(ii) W is a closable operator from M to H2;

(iii) V is a densely defined operator from H2 to M.
Furthermore, the following conditions are equivalent:



382 SEPPO HASSI, ADRIAN SANDOVICI, HENK DE SNOO, AND HENRIK WINKLER

(iv) SN ∈ [H];
(v) W ∈ [M, H2];

(vi) V ∈ [H2, M].

The conditions (i), (ii), and (iii) are equivalent to SN and SF being disjoint,
cf. Proposition in 4.11. The conditions (iv), (v), and (vi) are equivalent to SN and
SF being transversal, cf. Proposition in 4.13.

COROLLARY 6.5. Let S in (6.1) be a bounded nonnegative operator in H. Then
the following statements are equivalent:

(i) SF = SN, i.e. S has a unique nonnegative selfadjoint extension;
(ii) dom V = {0};

(iii) ran S1/2
11 ∩ ran S∗21 = {0} and ker S∗21 = {0}.

Proof. (i) ⇔ (ii) Comparing (6.14) and (6.16) in Theorem 6.3 it is clear that
SN = SF if and only if dom V = {0}.

(ii) ⇔ (iii) This follows from (6.8).

The equivalence of the items (i), (ii), and (iii) in Corollary 6.4 can be found
in [16] under the technical condition that ker S11 = {0}. Items (iv), (v), and (vi)
in Corollary 6.4 go back to [1]. The condition (vi) is equivalent to the condition
ran S∗21 ⊂ ran S1/2

11 .

6.3. EXTREMAL EXTENSIONS. In order to consider the extremal extensions of S,
let L2 be any (not necessarily closed) subspace of H2 such that L2 ⊂ dom V, let
RL be the operator from H to HS given by

(6.20) RL = J∗�H1 ⊕ L2,

and let R1L be the operator from H to M, defined by

(6.21) R1L =
{{(

g1
g2

)
, S1/2

11 g1 + Vg2,
}

: g1 ∈ H1, g2 ∈ L2

}
.

Comparison of the definitions (6.20) and (6.21) shows that the linear operators
R1L and RL are connected by R1L = T∗RL, so that

(6.22) R∗
1LR∗∗

1L = R∗
LR∗∗

L .

The following notation turns out to be useful: the restriction V�L2 will be de-
noted by VL2 .

LEMMA 6.6. Let the operator R1L from H to M be defined by (6.21). Then the
relation R∗

1L from M to H is given by

(6.23) R∗
1L =

{{
α,
(

S1/2
11 α
β

)}
: {α, β} ∈ V∗

L2

}
,
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and the operator R∗∗
1L from H to M is given by

(6.24) R∗∗
1L =

{{(
g1
g2

)
, S1/2

11 g1 + V∗∗
L2

g2,
}

: g1 ∈ H1, g2 ∈ dom V∗∗
L2

}
.

Proof. Again the statements in (6.23) and (6.24) are obtained from Lem-
ma 1.2. Observe that V∗∗

L2
is an operator as a restriction of the closed operator

V. The identity (6.24) follows also directly from (6.21).

Now, taking into account (6.22) and Lemma 6.6, a characterization of all
nonnegative extremal extensions of S can be easily obtained via Theorem 5.1. It
will be helpful to use the following notation:

R∗
1L =

(
S1/2

11
V∗

L2

)
, R∗∗

1L =
(

S1/2
11 V∗∗

L2

)
.

PROPOSITION 6.7. Let S in (6.1) be a bounded nonnegative operator in H = H1 ⊕
H2 with dom S = H1 and let Ã be a nonnegative selfadjoint extension of S. Then the
following statements are equivalent:

(i) Ã is an extremal extension of S;
(ii) Ã is of the following form, with a subspace L2 of H2, L2 ⊂ dom V:

Ã =

(
S1/2

11
V∗

L2

)(
S1/2

11 V∗∗
L2

)
,

(iii) the closed form t̃ associated to Ã is given by

(6.25) t̃

[(
h1
h2

)]
= ‖S1/2

11 h1 + V∗∗
L2

h2‖2, h1 ∈ H1, h2 ∈ dom V∗∗
L2

,

with a subspace L2 of H2, L2 ⊂ dom V.
Furthermore, (6.25) establishes a one-to-one correspondence between the extremal non-
negative selfadjoint extensions Ã of S and the closed restrictions VL2 of V, or equiva-
lently, those subspaces L2 ⊂ dom V for which the restriction VL2 is a closed operator.

Proof. The equivalence of the statements (i)–(iii) follows immediately from
Theorem 5.1 and Lemma 6.6. As to the last statement observe, that t̃ in (6.25) is
closed if and only if the block operator

(
S1/2

11 VL2

)
is closed. Since here S1/2

11
is a closed bounded operator, this block operator is closed precisely when VL2 is
closed.

Again, the factorization in Proposition 6.7 may be rewritten explicitly. The
form of S∗ in (6.2) leads to the following representation:

Ã =

{{(
h1
h2

)
,

(
S11h1 + S1/2

11 V∗∗
L2

h2

β

)}
:

h1 ∈ H1, h2 ∈ dom V∗∗
L2

, {S1/2
11 h1 + V∗∗

L2
h2, β} ∈ V∗

L2

}
.
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It is an immediate consequence of (6.9) that {S1/2
11 h1, S21h1} ∈ V∗

L2
. Therefore also

{V∗∗
L2

h2, β− S21h1} ∈ V∗
L2

. Hence Ã may also be rewritten as

Ã =
(

S11 S∗21
S21 V∗

L2
V∗∗

L2

)
.

Note that mul V∗
L2

V∗∗
L2

= mul V∗
L2

= H2 	 (clos L2).

REMARK 6.8. Clearly, Proposition 6.7 implies that an extremal extension Ã
of the bounded nonnegative operator S is an operator if and only if

dom VL2 = dom V∗∗
L2

= H2.

Now assume that Ã ∈ [H] is a nonnegative extremal extension of S. Then, in
particular, SN ∈ [H] by Proposition 4.12. Furthermore, dom V∗∗

L2
= H2 and, since

V∗∗
L2

is a closed restriction of the closed operator V, the equality V∗∗
L2

= V follows,
so that Ã = SN. Hence, if SN ∈ [H], then SN is the only nonnegative extremal
selfadjoint extension of S which belongs to [H].
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