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ABSTRACT. In this paper the well-known result that a definitizable operator
in a Krein space remains definitizable after a finite dimensional perturbation
is generalized to a class of self-adjoint operators in Krein spaces which locally
have the same spectral properties as definitizable operators. As an application
the spectral properties of direct sums of indefinite Sturm-Liouville operators
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INTRODUCTION

A self-adjoint operator A in a Krein space (K, [·, ·]) is called definitizable if
the resolvent set ρ(A) is nonempty and there exists a polynomial p such that
[p(A)x, x] > 0 for all x ∈ dom (p(A)). Spectral and perturbation theory of defini-
tizable operators is well developed and of great importance in many applications
(see e.g. [6], [7], [8], [14], [26], [30], [31], [32], [35]). It was shown by H. Langer in
[31], [32] (see also [19]) that a definitizable operator A has a spectral function and
with the help of this spectral function the real points of the spectrum σ(A) can
be classified in points of positive and negative type and a finite set of so-called
critical points. A fundamental paper on perturbations of definitizable operators
is [26] by P. Jonas and H. Langer where it is proved that a definitizable operator
remains definitizable after a finite dimensional perturbation in resolvent sense if
the perturbed operator is self-adjoint and has a nonempty resolvent set.
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The aim of this paper is to generalize this perturbation result to a class of
self-adjoint operators in Krein spaces which locally have the same spectral prop-
erties as definitizable operators. More precisely, let Ω be some domain in C sym-
metric with respect to the real line such that Ω∩R 6= ∅ and the intersections of Ω
with the upper and lower open half-planes are simply connected. A self-adjoint
operator A is said to be definitizable over Ω if every point µ ∈ Ω ∩R has an open
connected neighbourhood Iµ in R such that the spectral points in each compo-
nent of Iµ\{µ} are all of the same sign type, the nonreal spectrum of A in Ω\R
does not accumulate to Ω ∩R, consists of isolated points which are poles of the
resolvent of A and the resolvent is of finite order growth near to Ω ∩R (cf. [24]).
Perturbations of locally definitizable operators and stability properties of spectral
points of positive and negative type and so-called spectral points or intervals of
type π+ and type π− were investigated in e.g. [2], [4], [20], [21], [22], [34].

The main result of this note is Theorem 2.2 where we prove that a self-
adjoint operator, or more generally a self-adjoint relation, which is locally defini-
tizable over Ω remains locally definitizable over Ω after a finite dimensional per-
turbation in resolvent sense if the perturbed operator or relation is self-adjoint
and the unperturbed and perturbed operator or relation have a common point in
their resolvent sets belonging to Ω. For the special case of definitizable operators
this result coincides with Theorem 1 in [26] mentioned above. The methods used
in the proof of Theorem 2.2 differ from those applied in [26]. Our proof is based
on a variant of Theorem 2.4 in [4] (see Theorem 2.1) on the stability of intervals
of type π+ and type π− under compact perturbations and a recent result from
[1] on the spectral properties of the inverses of certain matrix-valued functions
associated to locally definitizable operators and relations.

We briefly describe the contents of this paper. In Section 1 we introduce
the spectral points of positive and negative type with the help of approxima-
tive eigensequences and we recall the definitions and connections between lo-
cally definitizable self-adjoint relations and locally definitizable functions from
[24] and [25]. In particular, Theorem 1.8 on the representation of a locally defini-
tizable function with the help of the resolvent of a locally definitizable self-adjoint
relation is an important tool in the proof of our main result (Theorem 2.2) which
is the focus of Section 2. In Section 3.1 we apply our perturbation result to the
self-adjoint extensions of symmetric operators or relations of finite defect. We
use the concept of boundary value spaces and associated Weyl functions for the
parametrization of the closed extensions of a symmetric relation and the descrip-
tion of their spectral properties (see e.g. [10], [11], [12], [13]). As an example we
consider in Section 3.2 the direct sum of a regular and a singular Sturm-Liouville
differential operator with the indefinite weight sgn x and we show in Section 3.3
that in such a general setting self-adjoint differential operators with an empty
resolvent set can appear.
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1. LOCALLY DEFINITIZABLE SELF-ADJOINT RELATIONS
AND LOCALLY DEFINITIZABLE FUNCTIONS

1.1. PRELIMINARIES. The linear space of bounded linear operators defined on
a Krein space K1 with values in a Krein space K2 is denoted by L(K1,K2). If
K := K1 = K2 we simply write L(K). We study linear relations from K1 to K2,
that is, linear subspaces of K1 ×K2. The set of all closed linear relations from K1
to K2 is denoted by C̃(K1,K2). If K = K1 = K2 we write C̃(K). Linear operators
from K1 into K2 are viewed as linear relations via their graphs. For the usual
definitions of the linear operations with relations, the inverse etc., we refer to
[15]. The sum and the direct sum of subspaces in K1 ×K2 will be denoted by
and

.
.

In the following let (K, [·, ·]) be a separable Krein space and let S be a closed
linear relation in K. The resolvent set ρ(S) of S is the set of all λ ∈ C such that
(S− λ)−1 ∈ L(K), the spectrum σ(S) of S is the complement of ρ(S) in C. The
extended spectrum σ̃(S) of S is defined by σ̃(S) = σ(S) if S ∈ L(K) and σ̃(S) =
σ(S) ∪ {∞} otherwise. We say that λ ∈ C is a point of regular type of S, λ ∈ r(S),
if (S− λ)−1 is a bounded operator. A point λ ∈ C is an eigenvalue of the relation
S if ker(S− λ) 6= {0}; we write λ ∈ σp(S). We say that λ ∈ C belongs to the
continuous spectrum σc(S) (the residual spectrum σr(S)) of S if ker(S− λ) = {0} and
ran (S − λ) is dense in K (respectively if ker(S − λ) = {0} and ran (S − λ) is not
dense in K). An eigenvalue λ ∈ C of a closed linear relation S is called normal
if the root manifold Lλ corresponding to λ is finite-dimensional and there is a
projection P with PK = Lλ such that

S = S ∩ (PK)2
.

S ∩ ((I − P)K)2

and λ ∈ ρ(S ∩ ((1− P)K)2). The set of normal eigenvalues of S will be denoted
by σp,norm(S).

We say that λ ∈ C belongs to the approximate point spectrum of S, denoted by
σap(S), if there exists a sequence

( xn
yn

)
∈ S, n = 1, 2, . . . , such that ‖xn‖ = 1 and

lim
n→∞

‖yn − λxn‖ = 0. The extended approximate point spectrum σ̃ap(S) of S is defined

by

σ̃ap(S) :=

{
σap(S) ∪ {∞} if 0 ∈ σap(S−1),
σap(S) if 0 6∈ σap(S−1).

Next we recall the definitions of the spectra of positive and negative type of
a closed linear relation (see e.g. [24], [34]).

DEFINITION 1.1. Let S be a closed linear relation in K. A point λ ∈ σap(S)
is said to be of positive type (negative type) with respect to S, if for every sequence( xn

yn

)
∈ S, n = 1, 2, . . . , with ‖xn‖ = 1, lim

n→∞
‖yn − λxn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0 (respectively lim sup
n→∞

[xn, xn] < 0).
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If ∞ ∈ σ̃ap(S), ∞ is said to be of positive type (negative type) with respect to S if for
every sequence

( xn
yn

)
∈ S, n = 1, 2, . . . , with lim

n→∞
‖xn‖ = 0, ‖yn‖ = 1 we have

lim inf
n→∞

[yn, yn] > 0 (respectively lim sup
n→∞

[yn, yn] < 0).

The set of all points of positive type (negative type) with respect to S will be
denoted by σ++(S) (respectively σ−−(S)).

Note, that ∞ ∈ σ̃ap(S) is of positive (negative) type with respect to S if and
only if 0 is of positive (respectively negative) type with respect to S−1.

Let S be a linear relation in K. The adjoint relation S+ ∈ C̃(K) is defined by

S+ :=
{(

h
h′

)
: [h, f ′] = [h′, f ] for all

(
f
f ′

)
∈ S

}
.

A linear relation A in K is said to be symmetric (self-adjoint) if A ⊂ A+ (re-
spectively A = A+). We remark that for a self-adjoint relation A the points of
positive and negative type introduced in Definition 1.1 belong to R. An open
subset ∆ of R is said to be of positive type (negative type) with respect to the self-
adjoint relation A if

∆∩ σ̃(A) ⊂ σ++(A) (respectively ∆∩ σ̃(A) ⊂ σ−−(A)).

An open subset ∆ of R is called of definite type with respect to A if ∆ is of positive
or negative type with respect to A.

1.2. LOCALLY DEFINITIZABLE SELF-ADJOINT RELATIONS. Let Ω be some domain
in C symmetric with respect to the real axis such that Ω ∩R 6= ∅ and the inter-
sections of Ω with the upper and lower open half-planes are simply connected.

Let A be a self-adjoint relation in the Krein space K such that σ(A) ∩ (Ω\R)
consists of isolated points which are poles of the resolvent of A, and no point of
Ω ∩R is an accumulation point of the nonreal spectrum of A in Ω. Let ∆ be an
open subset of Ω ∩R. We say that A belongs to the class S∞(∆), if for every finite
union ∆′ of open connected subsets, ∆′ ⊂ ∆, there exists m > 1, M > 0 and an
open neighbourhood U of ∆′ in C such that

(1.1) ‖(A− λ)−1‖ 6 M(1 + |λ|)2m−2 |Im λ|−m

holds for all λ ∈ U\R. The next definition can be found in e.g. [21].

DEFINITION 1.2. Let Ω be a domain as above and let A be a self-adjoint
relation in the Krein space K such that σ(A) ∩ (Ω\R) consists of isolated points
which are poles of the resolvent of A and no point of Ω ∩R is an accumulation
point of the nonreal spectrum of A in Ω. The relation A is said to be definitizable
over Ω, if A ∈ S∞(Ω ∩ R) and every point µ ∈ Ω ∩ R has an open connected
neighbourhood Iµ in R such that both components of Iµ\{µ} are of definite type
with respect to A.
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By Theorem 4.7 in [24] a self-adjoint relation A is definitizable over C if and
only if A is definitizable, that is, the resolvent set of A is nonempty and there exists
a real polynomial p such that

[p(A)x, x] > 0

holds for all x ∈ dom (p(A)). For a detailed study of definitizable self-adjoint op-
erators and relations we refer to the fundamental paper [32] of H. Langer and to
Sections 4 and 5 in [16]. The next theorem is a simple modification of Theorem 4.8
in [24].

THEOREM 1.3. Let A be a self-adjoint relation in K and let Ω be a domain as
above. A is definitizable over Ω if and only if for every domain Ω′ with the same prop-
erties as Ω, Ω′ ⊂ Ω, there exists a self-adjoint projection E in K such that A can be
decomposed in

A = (A ∩ (EK)2)
.

(A ∩ ((1− E)K)2)

and the following holds:
(i) A ∩ (EK)2 is a definitizable relation in the Krein space EK.

(ii) σ̃(A ∩ ((1− E)K)2) ∩Ω′ = ∅.

Let A = A+ be definitizable over Ω, let Ω′ be a domain with the same
properties as Ω, Ω′ ⊂ Ω, and let E be a self-adjoint projection with the properties
as in Theorem 1.3. If E′(·) is the spectral function of the definitizable self-adjoint
relation A ∩ (EK)2 in the Krein space EK, then the mapping

δ 7→ E′(δ)E =: EA(δ)

defined for all finite unions δ of connected subsets of Ω′ ∩ R the endpoints of
which belong to Ω′ ∩R and are of definite type with respect to A ∩ (EK)2, is the
spectral function of A on Ω′ ∩ R (see Section 3.4 and Remark 4.9 in [24]). With
the help of the local spectral function EA(·) the open subsets of definite type in
Ω′ ∩ R can be characterized in the following way. An open subset ∆ ⊂ Ω′ ∩ R
is of positive type (negative type) with respect to A if and only if for every finite
union δ of open connected subsets of ∆, δ ⊂ ∆, such that the boundary points of
δ in R are of definite type with respect to A, the spectral subspace (EA(δ)K, [·, ·])
(respectively (EA(δ)K,−[·, ·])) is a Hilbert space.

As a generalization of open subsets of positive and negative type we intro-
duce open subsets of type π+ and type π− in the next definition, see e.g. [21].

DEFINITION 1.4. Let Ω be a domain as in the beginning of this section and
let A be a self-adjoint relation in K which is definitizable over Ω. An open subset
∆ of Ω ∩R is said to be of type π+ (type π−) with respect to A if for every finite
union δ of open connected subsets of ∆, δ ⊂ ∆, such that the boundary points of δ

in R are of definite type with respect to A the spectral subspace (EA(δ)K, [·, ·]) is a
Pontryagin space with finite rank of negativity (respectively positivity). We shall
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say that A is of type π+ over Ω (type π− over Ω) if Ω∩R is of type π+ (respectively
type π−) with respect to A.

We remark that spectral points in open subsets of type π+ and type π− can
also be characterized with the help of approximative eigensequences (see [2]).

1.3. MATRIX-VALUED LOCALLY DEFINITIZABLE FUNCTIONS. Let Ω be a domain
as in the beginning of Section 1.2 and let τ be an L(Cn)-valued piecewise mero-
morphic function in Ω\R which is symmetric with respect to the real axis, that
is τ(λ) = τ(λ)∗ for all points λ of holomorphy of τ. If, in addition, no point of
Ω ∩ R is an accumulation point of nonreal poles of τ we write τ ∈ Mn×n(Ω).
The set of the points of holomorphy of τ in Ω\R and all points µ ∈ Ω ∩R such
that τ can be analytically continued to µ and the continuations from Ω ∩C+ and
Ω ∩C− coincide, is denoted by h(τ).

The following definition of open sets of positive and negative type with
respect to matrix functions and Definition 1.6 below of locally definitizable matrix
functions can be found in [25].

DEFINITION 1.5. Let τ ∈ Mn×n(Ω). An open subset ∆ ⊂ Ω ∩ R is said to
be of positive type with respect to τ if for every x ∈ Cn and every sequence (µk) of
points in Ω ∩C+ ∩ h(τ) which converges in C to a point of ∆ we have

lim inf
k→∞

Im (τ(µk)x, x) > 0.

An open subset ∆ ⊂ Ω ∩R is said to be of negative type with respect to τ if ∆ is of
positive type with respect to −τ. ∆ is said to be of definite type with respect to τ if
∆ is of positive or of negative type with respect to τ.

DEFINITION 1.6. A function τ ∈ Mn×n(Ω) is called definitizable in Ω if the
following holds:

(i) Every point µ ∈ Ω ∩R has an open connected neighbourhood Iµ in R such
that both components of Iµ\{µ} are of definite type with respect to τ.

(ii) For every finite union ∆ of open connected subsets in R, ∆ ⊂ Ω ∩R, there
exist m > 1, M > 0 and an open neighbourhood U of ∆ in C such that

‖τ(λ)‖ 6 M(1 + |λ|)2m |Im λ|−m

holds for all λ ∈ U\R.

If τ ∈ Mn×n(C) is definitizable in C there exists a scalar rational function g
symmetric with respect to the real line such that the poles of g belong to the set
h(τ) ∪ {∞} and gτ is the sum of a Nevanlinna function and a meromorphic func-
tion in C (cf. Theorem 4.7 in [24]). In this case we shall say that τ is a definitizable
function. For a comprehensive study of definitizable functions we refer to [23]. A
famous subclass of the definitizable functions are the generalized Nevanlinna func-
tions introduced and studied by M.G. Krein and H. Langer (see e.g. [29]). Recall
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that a function τ ∈ Mn×n(C) belongs to the class Nκ , κ = 0, 1, 2, . . . , if the kernel
Kτ ,

Kτ(λ, µ) :=
τ(λ)− τ(µ)

λ− µ
,

has κ negative squares. Note that the class N0 coincides with the class of Nevan-
linna functions.

In [25] it is proved that a function τ ∈ Mn×n(Ω) is definitizable in Ω if
and only if for every finite union ∆ of open connected subsets of R such that
∆ ⊂ Ω ∩R, τ can be written as the sum τ = τ0 + τ(0) of an L(Cn)-valued definiti-
zable function τ0 and an L(Cn)-valued function τ(0) which is locally holomorphic
on ∆.

Let τ ∈ Mn×n(Ω). We shall say that an open subset ∆ ⊂ Ω ∩R is of type π+
with respect to τ if for every open set δ which is the union of a finite number of
pairwise disjoint connected open subsets of ∆ such that δ ⊂ ∆, τ can be written
as the sum τ = τ0 + τ(0) of an L(Cn)-valued generalized Nevanlinna function τ0

and an L(Cn)-valued function τ(0) which is locally holomorphic on δ. We shall
say that an open subset ∆ ⊂ Ω∩R is of type π− with respect to τ if ∆ is of type π+
with respect to −τ.

The following theorem is a consequence of the considerations in Section 3.1
in [25] and Theorem 3.18 in [24]. It establishes a connection between self-adjoint
relations which are locally definitizable and L(Cn)-valued locally definitizable
functions. For the convenience of the reader we give a short proof.

THEOREM 1.7. Let Ω be a domain as above and let A be a self-adjoint relation in
the Krein spaceK which is definitizable over Ω. Let γ ∈ L(Cn,K) and S = S∗ ∈ L(Cn),
fix some point λ0 ∈ ρ(A) ∩Ω and define

τ(λ) := S + γ+((λ− Re λ0) + (λ− λ0)(λ− λ0)(A− λ)−1)γ

for all λ ∈ ρ(A) ∩Ω. Then the following holds:
(i) The function τ is definitizable in Ω.

(ii) An open subset ∆ of Ω ∩R which is of positive type (negative type) with respect
to A is of positive type (respectively negative type) with respect to τ.

(iii) An open subset ∆ of Ω ∩R which is of type π+ (type π−) with respect to A is of
type π+ (respectively type π−) with respect to τ.

Proof. In order to show assertions (i) and (ii) let µ ∈ Ω ∩ R and choose
an open connected neighbourhood Iµ of µ in R such that both components of
Iµ\{µ} are of definite type with respect to A. Assume e.g. that a component ∆+
of Iµ\{µ} is of positive type with respect to A. Let x ∈ Cn and let (λk) be a
sequence in Ω ∩C+ ∩ h(τ) which converges to some point in ∆+. Making use of
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Theorem 3.18 in [24] we obtain

lim inf
k→∞

Im (τ(λk)x, x)

= lim inf
k→∞

Im [((λk − Re λ0) + (λk − λ0)(λk − λ0)(A− λk)
−1)γ x, γ x] > 0

and this implies that ∆+ is of positive type with respect to τ. A similar reasoning
shows that a component ∆− of Iµ\{µ} which is of negative type with respect to A
is also of negative type with respect to τ. Therefore property (i) of Definition 1.6 is
fulfilled and assertion (ii) is proved. The growth properties of the resolvent of A
(see (1.1)) imply condition (ii) of Definition 1.6 and hence τ is locally definitizable
in Ω.

It remains to prove assertion (iii). Let δ be a finite union of open connected
subsets of ∆, δ ⊂ ∆, and choose a finite union δ1 of open connected subsets of ∆

such that δ ⊂ δ1, δ1 ⊂ ∆ and the boundary points of δ1 in R are of definite type
with respect to A. As A is of type π+ over ∆ the spectral subspace (EA(δ1), [·, ·])
is a Pontryagin space with finite rank of negativity. Therefore

τ0(λ) := S + γ+((λ− Re λ0) + (λ− λ0)(λ− λ0)(A− λ)−1)EA(δ1)γ

is a generalized Nevanlinna function and from σ̃(A ∩ ((1− EA(δ1))K2) ∩ δ = ∅
we obtain that

τ(0)(λ) := γ+((λ− Re λ0) + (λ− λ0)(λ− λ0)(A− λ)−1)(1− EA(δ1))γ

is holomorphic in a neighbourhood of δ. Hence ∆ is of type π+ with respect to τ.
A similar argument shows that an open subset ∆ ⊂ Ω ∩ R which is of type π−
with respect to A is also of type π− with respect to τ.

The next theorem states that a locally definitizable function can be repre-
sented with the help of the resolvent of a locally definitizable self-adjoint relation.
A proof can be found in [25].

THEOREM 1.8. Let τ be an L(Cn)-valued function definitizable in Ω (an L(Cn)-
valued local generalized Nevanlinna function in Ω) and let Ω′ be a domain with the same
properties as Ω such that Ω′ ⊂ Ω.

Then there exists a Krein space G, a self-adjoint relation T in G which is definiti-
zable over Ω′ (respectively of type π+ over Ω′) and a mapping γ ∈ L(Cn, G) with the
following properties:

(i) ρ(T) ∩Ω′ = h(τ) ∩Ω′.
(ii) For a fixed λ0 ∈ ρ(T) ∩Ω′ and all λ ∈ ρ(T) ∩Ω′ we have

τ(λ) = Re τ(λ0) + γ+((λ− Re λ0) + (λ− λ0)(λ− λ0)(T − λ)−1)γ.

(iii) For any finite union ∆ of open connected subsets of R, ∆ ⊂ Ω′ ∩ R, such that
the boundary points of ∆ are of definite type with respect to τ the spectral projection
ET(∆) is defined. If Ω′′ is a domain with the same properties as Ω, Ω′′ ⊂ Ω′, and
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ET(Ω′′\R) is the Riesz-Dunford projection corresponding to σ(T) ∩ Ω′′\R and if we
set E := ET(∆) + ET(Ω′′\R), then the following minimality condition is fulfilled:

EG = clsp {(1 + (λ− λ0)(T − λ)−1)Eγx : λ ∈ ρ(T) ∩Ω′, x ∈ Cn}.

(iv) Any finite union ∆ of open connected subsets of R, ∆ ⊂ Ω′ ∩R, is of positive type
(negative type, type π+, type π−) with respect to τ if and only if ∆ is of positive type
(respectively negative type, type π+, type π−) with respect to T.

If τ and T are as in Theorem 1.8 we shall say that T is an Ω′-minimal repre-
senting relation for τ.

2. FINITE RANK PERTURBATIONS OF LOCALLY DEFINITIZABLE
SELF-ADJOINT RELATIONS IN KREIN SPACES

In [26] P. Jonas and H. Langer proved that a self-adjoint definitizable op-
erator remains definitizable after a finite-dimensional perturbation in resolvent
sense if the perturbed operator is self-adjoint and the unperturbed and perturbed
operator have a common point in their resolvent sets. In this section we prove
that this holds also for locally definitizable operators and relations. The methods
we apply here differ from those used in the proof of Theorem 1 in [26], where a
definitizing polynomial for the perturbed operator was constructed. The essential
ingredients in the proof of Theorem 2.2 below are Theorem 2.5 in [1] which states
that the inverse of a matrix-valued locally definitizable function is also locally
definitizable, Theorem 1.8 on the representation of locally definitizable functions
and a variant of Theorem 2.4 in [4] on the stability of intervals of type π+ and
type π− under compact perturbations (see Theorem 2.1).

Let (K, [·, ·]) be a separable Krein space. The set of compact operators and
finite rank operators defined on K with values in K will be denoted by S∞ and
F , respectively. Let, as in Section 1.2, Ω be some domain in C symmetric with
respect to the real axis such that Ω ∩R 6= ∅ and the intersections of Ω with the
upper and lower open half-planes are simply connected.

The following theorem is a simple modification of Theorem 2.4 in [4] (see
also Theorem 29 in [2] and Theorem 5.1 in [34] for bounded operators).

THEOREM 2.1. Let A and B be self-adjoint relations in the Krein space K, let
ρ(A) ∩ ρ(B) ∩Ω 6= ∅ and assume that

(B− λ0)−1 − (A− λ0)−1 ∈ S∞.

holds for some λ0 ∈ ρ(A) ∩ ρ(B). Then A is definitizable over Ω, Ω ∩R is of type π+
(type π−) with respect to A and σ(A) ∩ (Ω\R) ⊂ σp,norm(A) if and only if B is
definitizable over Ω, Ω ∩R is of type π+ (respectively type π−) with respect to B and
σ(B) ∩ (Ω\R) ⊂ σp,norm(B).

The next theorem is the main result of this paper.
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THEOREM 2.2. Let A and B be self-adjoint relations in the Krein space K, let
ρ(A) ∩ ρ(B) ∩Ω 6= ∅ and assume that

(B− λ0)−1 − (A− λ0)−1 ∈ F

holds for some λ0 ∈ ρ(A) ∩ ρ(B). Then A is definitizable over Ω if and only if B is
definitizable over Ω.

Moreover, if A is definitizable over Ω and ∆ ⊂ Ω ∩ R is an open interval with
endpoint µ ∈ Ω ∩ R and ∆ is of positive type (negative type) with respect to A, then
there exists an open interval ∆′, ∆′ ⊂ ∆, with endpoint µ such that ∆′ is of positive type
(respectively negative type) with respect to B.

Proof. 1. Assume that A is a self-adjoint relation in K which is definitizable
over Ω. Let λ0 ∈ ρ(A)∩ ρ(B) and let e1, . . . , en, f1, . . . , fn be vectors in K such that

(2.1) (B− λ0)−1 − (A− λ0)−1 =
n

∑
i=1

[·, ei] fi.

It is no restriction to assume that the system { f1, . . . , fn} as well as the system
{e1, . . . , en} is linearly independent. For λ ∈ ρ(A) ∩ ρ(B) the assumption that λ0
belongs to ρ(A) ∩ ρ(B) implies that the vectors

(1 + (λ− λ0)(A− λ)−1) fi, i = 1, . . . , n,(2.2)

as well as the vectors (1 + (λ− λ0)(B− λ)−1)ei, i = 1, . . . , n, and

(2.3) (1 + (λ− λ0)(B− λ)−1)ei, i = 1, . . . , n,

are also linearly independent. From

(B− λ)−1 − (A− λ)−1(2.4)

=(1+(λ−λ0)(A−λ)−1)((B−λ0)−1−(A−λ0)−1)(1+(λ−λ0)(B−λ)−1)

we obtain that

(B− λ)−1 − (A− λ)−1 ∈ F

holds for every λ ∈ ρ(A) ∩ ρ(B). Hence it is no restriction to assume in the
following that λ0 ∈ ρ(A) ∩ ρ(B) belongs to Ω.

Since A is definitizable over Ω the set σ(A) ∩ (Ω\R) is discrete, consists of
poles of λ 7→ (A− λ)−1 and does not accumulate to points in Ω ∩R. Well known
perturbation results imply

(ρ(A) ∪ σp,norm(A)) ∩ (Ω\R) = (ρ(B) ∪ σp,norm(B)) ∩ (Ω\R),

see e.g. [17], and furthermore each point ν ∈ σ(A)\σp,norm(A) in Ω\R is also an
accumulation point of ρ(B).
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Inserting (2.1) in (2.4) and using the self-adjointness of A and B yields

(B− λ)−1 − (A− λ)−1

=
n

∑
i=1

[·, (1 + (λ− λ0)(B− λ)−1)ei](1 + (λ− λ0)(A− λ)−1) fi(2.5)

=
n

∑
i=1

[·, (1 + (λ− λ0)(A− λ)−1) fi](1 + (λ− λ0)(B− λ)−1)ei

for all λ ∈ ρ(A) ∩ ρ(B). Replacing λ and λ0 in (2.4) by λ and λ0, respectively, and
inserting the adjoint in (2.1) gives

(2.6) (B−λ)−1−(A−λ)−1=
n

∑
i=1

[·, (1+(λ−λ0)(A−λ)−1)ei](1+(λ−λ0)(B−λ)−1) fi

for all λ ∈ ρ(A) ∩ ρ(B). Define K′ as

(2.7) K′ :=clsp {(1 + (λ− λ0)(A− λ)−1) fi | i=1, . . . , n, λ∈ρ(A)∩ρ(B)∩Ω}.

By (2.6) we get

(2.8) K′ = clsp {(1 + (λ− λ0)(B− λ)−1) fi | i = 1, . . . , n, λ ∈ ρ(A) ∩ ρ(B) ∩Ω}.

If µ0 ∈ ρ(A) ∩ ρ(B) ∩ Ω, then (A − µ0)−1K′ ⊂ K′ and (A − µ0)−1K′[⊥] ⊂ K′[⊥].
For x ∈ K′[⊥] relation (2.7) implies

[x, (1 + (λ− λ0)(A− λ)−1) fi] = 0

for all λ ∈ ρ(A) ∩ ρ(B) ∩Ω and i = 1, . . . , n. Therefore (2.5) yields

(2.9) (A− λ)−1|K′[⊥] = (B− λ)−1|K′[⊥], λ ∈ ρ(A) ∩ ρ(B) ∩Ω.

2. In this part of the proof we show that there exists an invertible L(Cn)-
valued function α and mappings Γλ0 , Γ̃λ0 ∈ L(Cn,K) such that

−α(λ)−1 = Re(−α(λ0)−1) + Γ+
λ0

((λ− Re λ0) + (λ− λ0)(λ− λ0)(A− λ)−1)Γλ0 ,

α(λ) = Re α(λ0) + Γ̃+
λ0

((λ−Re λ0) + (λ− λ0)(λ− λ0)(B− λ)−1)Γ̃λ0 ,

holds for all λ ∈ ρ(A) ∩ ρ(B). Some of the following calculations can be found in
Proof of Theorem 5.1 in [28] and Proof of Proposition 2.1 in [36]. For the conve-
nience of the reader we present the details.

By (2.2) and (2.3) the vectors

(1 + (λ− λ0)(A− λ)−1) f j, j = 1, . . . , n, and

(1 + (λ− λ0)(B− λ)−1)ei, i = 1, . . . , n,

are linearly independent for every λ ∈ ρ(A) ∩ ρ(B). Hence for λ ∈ ρ(A) ∩ ρ(B)
there exists an invertible matrix

α(λ) = (αij(λ))n
i,j=1
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such that

(1 + (λ− λ0)(B− λ)−1)ei =
n

∑
j=1

αji(λ)(1 + (λ− λ0)(A− λ)−1) f j

holds for all i = 1, . . . , n. Let Γλ0 : Cn → K, (c1, . . . , cn)> 7→
n
∑

i=1
ci fi and define

Γλ := (1 + (λ− λ0)(A− λ)−1)Γλ0

for all λ ∈ ρ(A). Then Γ+
λ

: K → Cn is given by

x 7→

[x, (1 + (λ− λ0)(A− λ)−1) f1]
...

[x, (1 + (λ− λ0)(A− λ)−1) fn]


and we can rewrite (2.5) in the form

(2.10) (B− λ)−1 − (A− λ)−1 = Γλα(λ)Γ+
λ

.

Replacing λ by λ and taking adjoints in (2.10) we obtain Γλα(λ)Γ+
λ

= Γλα(λ)∗Γ+
λ

.
From (ran Γ+

λ
)⊥ = ker Γλ and the fact that Γλ and Γλ are injective we conclude

(2.11) α(λ) = α(λ)∗, λ ∈ ρ(A) ∩ ρ(B).

It is straightforward to check that the relation (µ− λ)((B− λ)−1 − (A− λ)−1)((B
−µ)−1 − (A− µ)−1)=(1+(λ−µ)(A−λ)−1)((B−µ)−1−(A−µ)−1)−((B−λ)−1−(A−
λ)−1)(1+(µ−λ)(A−µ)−1) holds for all λ, µ ∈ ρ(A)∩ ρ(B) (cf. Proof of Theorem 5.1
in [28]). Using (2.10) and Γλ = (1 + (λ− µ)(A− λ)−1)Γµ, λ, µ ∈ ρ(A), we find

(µ− λ)Γλα(λ)Γ+
λ

Γµα(µ)Γ+
µ = Γλα(µ)Γ+

µ − Γλα(λ)Γ+
µ .

From ker Γλ = ker Γµ = {0} we obtain (µ− λ)α(λ)Γ+
λ

Γµα(µ) = α(µ)− α(λ) and

(2.12) (µ− λ)Γ+
λ

Γµ = α(λ)−1 − α(µ)−1, λ, µ ∈ ρ(A) ∩ ρ(B).

In particular we have

(2.13) (Im λ0) Γ+
λ0

Γλ0 = Im (−α(λ0)−1).

It is easy to see that the function τ defined for all λ ∈ ρ(A) by

(2.14) λ 7→ τ(λ) := Γ+
λ0

((λ− Re λ0) + (λ− λ0)(λ− λ0)(A− λ)−1)Γλ0

fulfills

(2.15) τ(λ)− τ(µ) = (λ− µ)Γ+
λ

Γµ and τ(λ) = τ(λ)∗

for all λ, µ ∈ ρ(A). The relations (2.11), (2.12), (2.13), (2.14) and (2.15) imply that
the function

λ 7→ α(λ)−1 + τ(λ)
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is equal to the self-adjoint constant Re(α(λ0)−1) ∈ L(Cn). Therefore (2.10) can be
written in the form (B − λ)−1 = (A − λ)−1 + Γλ(Re(α(λ0)−1) − τ(λ))−1Γ+

λ
and

(2.13) and (2.14) imply

−α(λ)−1 = Re(−α(λ0)−1) + Γ+
λ0

((λ− Re λ0) + (λ− λ0)(λ− λ0)(A− λ)−1)Γλ0

= (−α(λ0)−1)∗ + (λ− λ0)Γ+
λ0

(1 + (λ− λ0)(A− λ)−1)Γλ0(2.16)

= (−α(λ0)−1)∗ + (λ− λ0)Γ+
λ0

(1 + (λ0 − λ)(A− λ0)−1)−1Γλ0 .

Making use in (2.13) it follows that

U := 1− (λ0 − λ0)Γλ0 α(λ0)∗Γ+
λ0
∈ L(K)

is unitary, i.e. U+ = U−1, and that UΓλ0 α(λ0) = Γλ0 α(λ0)∗ holds. With the help
in (2.10) and the relation (λ0 − λ0)Γλ0 α(λ0)∗Γ+

λ0
Γλ0 α(λ0)Γ+

λ0
= Γλ0 α(λ0)∗Γ+

λ0
−

Γλ0 α(λ0)Γ+
λ0

, which follows easily from (2.13), we obtain that U(1 + (λ0 − λ)(B−
λ0)−1) coincides with

1 + (λ0 − λ)(A− λ0)−1 − (λ0 − λ0)Γλ0 α(λ0)∗Γ+
λ0

(2.17)

− (λ0 − λ0)(λ0 − λ)Γλ0 α(λ0)∗Γ+
λ0

(A− λ0)−1+(λ0 − λ)Γλ0 α(λ0)∗Γ+
λ0

.

From Γ+
λ0

= Γ+
λ0

(1 + (λ0 − λ0)(A − λ0)−1) and (2.17) we get U(1 + (λ0 − λ)(B −
λ0)−1) = 1 + (λ0 − λ)(A − λ0)−1 + (λ0 − λ)Γλ0 α(λ0)∗Γ+

λ0
. In particular the right

hand side is a boundedly invertible operator with an everywhere defined inverse.
Now we can apply Lemma 3.1 in [33] to (2.16) and we obtain α(λ) = α(λ0)∗ +
(λ − λ0)α(λ0)∗Γ+

λ0
(1 + (λ0 − λ)(A − λ0)−1 + (λ0 − λ)Γλ0 α(λ0)∗Γ+

λ0
)−1Γλ0 α(λ0)∗.

Let Γ̃λ0 := Γλ0 α(λ0). Then we have

Γ̃λ0 = U−1Γλ0 α(λ0)∗ and (Im λ0) Γ̃+
λ0

Γ̃λ0 = Im α(λ0)

and therefore
α(λ) = α(λ0)∗ + (λ− λ0)Γ̃+

λ0
(1 + (λ0 − λ)(B− λ0)−1)−1Γ̃λ0

= α(λ0)∗ + (λ− λ0)Γ̃+
λ0

(1 + (λ− λ0)(B− λ)−1)Γ̃λ0

= Re α(λ0) + Γ̃+
λ0

((λ− Re λ0) + (λ− λ0)(λ− λ0)(B− λ)−1)Γ̃λ0 .

(2.18)

3. In this part of the proof we show that every point µ ∈ Ω ∩R has an open
connected neighbourhood Iµ in R such that both components of Iµ\{µ} are of
definite type with respect to B.

Let µ ∈ Ω∩R and assume e.g. that ∆+, ∆+ ⊂ Ω∩R, is an open interval with
endpoint µ such that ∆+ is of positive type with respect to A. From Theorem 1.7
we obtain that the function

−α(λ)−1 = Re(−α(λ0)−1) + Γ+
λ0

((λ− Re λ0) + (λ− λ0)(λ− λ0)(A− λ)−1)Γλ0

is definitizable in Ω and ∆+ is of positive type with respect to this function. By
Theorem 2.5 in [1] the function λ 7→ α(λ) is also definitizable in Ω and there
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exists a (in general smaller) smaller open interval ∆′+, ∆′+ ⊂ ∆+, with endpoint
µ, which is of positive type with respect to α.

Let Ω+ be a domain with the same properties as Ω such that Ω+ ⊂ Ω and
∆′+ = Ω+ ∩R. As A is definitizable over Ω+, ρ(A) ∩ ρ(B) ∩Ω+ is nonempty and
Ω+ ∩R is of positive type with respect to A we can apply Theorem 2.1. It follows
that B is definitizable over Ω+ and ∆′+ is of type π+ with respect to B. Let δ+ be
an open interval such that δ+ ⊂ ∆′+ and EB(δ+) is defined. Then (EA(δ+)K, [·, ·])
is a Hilbert space and (EB(δ+)K, [·, ·]) is a Pontryagin space with finite rank of
negativity.

In the following we will show that EB(δ+)K equipped with the indefinite
inner product [·, ·] is a Hilbert space. This will be done in four steps.

(i) Let Ω′ be a domain with the same properties as Ω such that Ω′ ⊂ Ω,
∆′+ ⊂ Ω′ ∩R and λ0 ∈ Ω′ holds. As the function α is definitizable in Ω and ∆′+
is of positive type with respect to α we obtain from Theorem 1.8 that there exists
a Krein space (G, [·, ·]G), a self-adjoint relation T in G definitizable over Ω′ and a
mapping Γ ∈ L(Cn, G) such that ρ(T) ∩Ω′ = h(α) ∩Ω′ and

(2.19) α(λ) = Re α(λ0) + Γ+((λ− Re λ0) + (λ− λ0)(λ− λ0)(T − λ)−1)Γ

holds for all λ ∈ ρ(T) ∩ Ω′. Note that by (2.18) the function α is holomorphic at
λ0 and therefore λ0 belongs to ρ(T). According to Theorem 1.8 we can assume
that T is chosen Ω′-minimal and that ∆′+ is of positive type with respect to T.
Then the spectral projection ET(δ+) of T corresponding to the open interval δ+
is defined, ET(δ+)G equipped with the inner product [·, ·]G is a Hilbert space and
the following minimality condition is fulfilled:

(2.20) ET(δ+)G=clsp{(1+(λ−λ0)(T−λ)−1)ET(δ+)Γx|λ ∈ ρ(T)∩Ω′, x∈Cn}.

From (2.18) and (2.19) we obtain

Γ̃+
λ0

Γ̃λ0 = Γ+Γ and Γ̃+
λ0

(B− λ)−1Γ̃λ0 = Γ+(T − λ)−1Γ

for all λ ∈ ρ(T) ∩ ρ(B) ∩Ω′. Therefore the relation V ⊂ G ×K defined by

V :=




l
∑

k=1
(1 + (λk − λ0)(T − λk)−1)Γxk

l
∑

k=1
(1 + (λk − λ0)(B− λk)−1)Γ̃λ0 xk

 :
λk ∈ ρ(T) ∩ ρ(B) ∩Ω′

xk ∈ Cn, k = 1, . . . , l


is linear and isometric and the same holds for its closure V ∈ C̃(G,K).

(ii) Now we show that V is reduced by ET(δ+)G × EB(δ+)K, i.e. we verify
that V can be written as

V ∩ (ET(δ+)G × EB(δ+)K)
.

V ∩ ((I − ET(δ+))G × (I − EB(δ+))K).

Let
( f

g
)
∈ V and choose a sequence

( fm
gm

)
∈ V such that

( fm
gm

)
→
( f

g
)

for m → ∞.
Let us assume first that the endpoints d1 and d2 of the bounded open interval
δ+ = (d1, d2) are no eigenvalues of T and B.
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We fix some η > 0 such that the rectangle

Q := {z ∈ C : d1 6 Re z 6 d2, −η 6 Im z 6 η}

has the property Q\R ⊂ ρ(T) ∩ ρ(B). Let the boundary C∞ of Q be oriented in
the mathematical positive sense and let the curves

Ck := C∞ ∩ {z ∈ C : |Im z| > k−1}, k > η−1,

be oriented as C∞.
As
( fm

gm

)
∈ V, m = 1, 2, . . . , we obtain

(
(T−λ)−1 fm

(B−λ)−1gm

)
∈ V for all λ ∈ ρ(T) ∩

ρ(B) ∩Ω′ and m = 1, 2, . . . . Therefore the elements−
1

2πi
∫
Ck

(T − λ)−1 dλ fm

− 1
2πi
∫
Ck

(B− λ)−1 dλ gm

 , m ∈ N, k > η−1,

belong to V. Since

ET(δ+) fm = lim
k→∞

− 1
2πi

∫
Ck

(T−λ)−1dλ fm, EB(δ+)gm = lim
k→∞

− 1
2πi

∫
Ck

(B−λ)−1dλgm

we conclude
(

ET(δ+) fm
EB(δ+)gm

)
∈ V and this implies(

ET(δ+) f
EB(δ+)g

)
∈ V and

(
(I − ET(δ+)) f
(I − EB(δ+))g

)
∈ V.

Thus V is reduced by ET(δ+)G × EB(δ+)K.
If d1 or d2 is an eigenvalue of T or B it follows from the strong σ-additivity

of the local spectral function and the case considered above that V is reduced by
ET(δ+)G × EB(δ+)K.

(iii) We prove that

Vδ+ := V ∩ (ET(δ+)G × EB(δ+)K)

is an operator and that (EB(δ+)K′, [·, ·]) (cf. (2.7) and (2.8)) is a Hilbert space.
The relation Vδ+ is isometric and by the definition of Γλ0 and Γ̃λ0 we have

ran Γ̃λ0 = ran Γλ0 = sp { fi : i = 1, . . . , n}. As the elements
l

∑
k=1

(1 + (λk − λ0)(T − λk)−1)ET(δ+)Γxk

l
∑

k=1
(1 + (λk − λ0)(B− λk)−1)EB(δ+)Γ̃λ0 xk

 ,

λk ∈ ρ(T) ∩ ρ(B) ∩ Ω′, xk ∈ Cn, k = 1, . . . , l, belong to Vδ+ we conclude from
(2.8) and (2.20) that dom Vδ+ and ran Vδ+ are dense in ET(δ+)G and EB(δ+)K′,
respectively. From the fact that (ET(δ+)G, [·, ·]G) is a Hilbert space we conclude
that ran Vδ+ and EB(δ+)K′ are nonnegative subspaces of the Pontryagin space
(EB(δ+)K, [·, ·]).
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Let us show that

L0 := {x ∈ EB(δ+)K′ : [x, x] = 0}

is trivial. As EB(δ+)K′ is nonnegative L0[⊥]EB(δ+)K′ and L0[⊥](I − EB(δ+))K′

holds, and therefore L0 ⊂ K′[⊥]. In view in (2.9)

(A− λ)−1|L0 = (B− λ)−1|L0

holds for all λ ∈ ρ(A) ∩ ρ(B) ∩ Ω. Hence for x0 ∈ L0 and δ+ = (d1, d2) we
conclude that

EA(δ+)x0 = lim
η↘0

lim
ε↘0

− 1
2πi

d2−η∫
d1+η

((A− (λ+iε))−1− (A− (λ−iε))−1)x0 dλ

and EB(δ+)x0 coincide. As EA(δ+)L0 = EB(δ+)L0 and (EA(δ+)K, [·, ·]) is a Hilbert
space for x ∈ EB(δ+)L0, x 6= 0, we find [x, x] 6= 0. As EB(δ+)L0 = L0 we conclude
L0 = {0}.

The fact L0 = {0} implies that the multivalued part

mul Vδ+ =
{

x ∈ EB(δ+)K :
(

0
x

)
∈ Vδ+

}
of Vδ+ is trivial. Hence Vδ+ is a densely defined closed isometric operator. We
claim that ran Vδ+ is closed. As in the proof of Theorem 6.2 in [18] one verifies that
Vδ+ is a bounded operator and therefore dom Vδ+ = ET(δ+)G holds. Moreover,
from L0 = {0} we also obtain that Vδ+ is injective and another application of

Theorem 6.2 in [18] shows that the closed isometric operator V −1
δ+ is bounded.

Thus dom V −1
δ+ = ran Vδ+ is closed.

As ran Vδ+ = EB(δ+)K′ is a closed positive subspace of the Pontryagin
space (EB(δ+)K, [·, ·]) we infer that EB(δ+)K′ is uniformly positive, i.e. EB(δ+)K′

equipped with the inner product [·, ·] is a Hilbert space.
(iv) Let H be the orthogonal complement of EB(δ+)K′ in the Pontryagin

space (EB(δ+)K, [·, ·]),

(2.21) EB(δ+)K = EB(δ+)K′[+̇]H.

H is a Pontryagin space with finite rank of negativity. From H[⊥]EB(δ+)K′ and
H[⊥](I − EB(δ+))K′ we obtain H ⊂ K′[⊥]. By (2.9) the resolvents of A and B
restricted to H coincide and by writing the projections EA(δ+) and EB(δ+) as
strong limits of the resolvent of A and B, respectively, we see that EA(δ+)H and
EB(δ+)H coincide. As above we obtain that H = EB(δ+)H is a Hilbert space and
from (2.21) we conclude that (EB(δ+)K, [·, ·]) is a Hilbert space.

As for any open interval δ+ in ∆′+, δ+ ⊂ ∆′+, such that EB(δ+) is defined
the spectral subspace (EB(δ+)K, [·, ·]) is a Hilbert space it follows that the open
interval ∆′+ is of positive type with respect to B. In fact, let ξ ∈ ∆′+ ∩ σ(B) and
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choose an open interval δ+ with ξ ∈ δ+ such that δ+ ⊂ ∆′+ and the boundary
points of δ+ are of positive type with respect to B. If

( xn
yn

)
∈ B is a sequence with

‖xn‖ = 1 and ‖yn − ξxn‖ → 0 for n → ∞ then

(B∩((I−EB(δ+))K)2−ξ)−1∈L((I−EB(δ+))K) and lim
n→∞

‖(I−EB(δ+))(yn−ξxn)‖=0

imply ‖(I − EB(δ+))xn‖ → 0 and ‖EB(δ+)xn‖ → 1 for n → ∞. As EB(δ+)K
equipped with the inner product [·, ·] is a Hilbert space we have

lim inf
n→∞

[xn, xn] = lim inf
n→∞

[EB(δ+)xn, EB(δ+)xn] > 0,

that is, ξ is of positive type with respect to B. Hence ∆′+ is of positive type with
respect to B.

Analogously one verifies that an open interval ∆− with endpoint µ ∈ Ω∩R
which is of negative type with respect to A contains an open interval ∆′− with
endpoint µ which is of negative type with respect to B. Therefore we have shown
that for every point µ ∈ Ω ∩R there exists an open connected neighbourhood Iµ

in R such that both components of Iµ\{µ} are of the same sign type with respect
to A and B.

4. In order to show that B is definitizable over Ω it remains to verify that B
belongs to S∞(Ω ∩R).

As α is a definitizable function in Ω and A is definitizable over Ω no point of
Ω ∩R is an accumulation point of nonreal poles of α and nonreal spectrum of A
in Ω\R. Hence by (2.10) the nonreal spectrum of B in Ω\R does not accumulate
to points in Ω ∩R. Relation (2.10) also implies that each point in σ(B) ∩ (Ω\R)
is an isolated pole of the resolvent of B. Now the growth properties of α (see
Definition 1.6) and the resolvent of A imply B ∈ S∞(Ω ∩ R). Therefore B is
definitizable over Ω and Theorem 2.2 is proved.

3. SELF-ADJOINT EXTENSIONS OF SYMMETRIC OPERATORS AND DIRECT SUMS OF
INDEFINITE STURM-LIOUVILLE OPERATORS

In this section we apply the perturbation results from the previous section
to self-adjoint extensions of symmetric operators and relations of finite defect. As
an example we consider direct sums of symmetric Sturm-Liouville operators with
the indefinite weight sgn x. Here the self-adjoint extensions are not definitizable
but turn out to be locally definitizable over C. First we recall some necessary def-
initions and the notion of boundary value spaces and associated Weyl functions
for symmetric operators and relations in Krein spaces, cf. e.g. [11].

3.1. SELF-ADJOINT EXTENSIONS OF SYMMETRIC OPERATORS AND RELATIONS OF

FINITE DEFECT. Let K be a separable Krein space, let J be a corresponding funda-
mental symmetry and let S ∈ C̃(K) be a closed symmetric relation in K. We say
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that S is of defect m ∈ N ∪ {∞}, if both deficiency indices

n±(JS) = dim ker((JS)∗ − λ), λ ∈ C±,

of the symmetric relation JS in the Hilbert space (K, [J·, ·]) are equal to m. With the
help of the von Neumann formulas for a closed symmetric relation in a Hilbert
space (see e.g. Section 2.3 in [13]) one can verify without difficulty that this is
equivalent to the fact that there exists a self-adjoint extension of S in K and that
each self-adjoint extension Ã of S in K satisfies dim(Ã/S) = m.

For the description of the self-adjoint extensions of closed symmetric rela-
tions we use the so-called boundary value spaces.

DEFINITION 3.1. Let S be a closed symmetric relation in the Krein space K.
We say that {G, Γ0, Γ1} is a boundary value space for S+ if (G, (·, ·)) is a Hilbert space
and there exist linear mappings Γ0, Γ1 : S+ → G such that Γ :=

( Γ0
Γ1

)
: S+ → G ×G

is surjective, and the relation

(3.1) [ f ′, g]− [ f , g′] = (Γ1 f̂ , Γ0 ĝ)− (Γ0 f̂ , Γ1 ĝ)

holds for all f̂ =
( f

f ′
)
, ĝ =

( g
g′
)
∈ S+.

If S is a closed symmetric relation in K and Ã ∈ C̃(K) is a self-adjoint exten-
sion of S with ρ(Ã) 6= ∅, then there exists a boundary value space {G, Γ0, Γ1} for
S+ such that Ã coincides with ker Γ0 (see [11]).

For basic facts on boundary value spaces and further references see e.g.
[10], [11], [12], [13]. We recall only a few important consequences. Let S be a
closed symmetric relation and assume that there exists a boundary value space
{G, Γ0, Γ1} for S+. Then

(3.2) A0 := ker Γ0 and A1 := ker Γ1

are self-adjoint extensions of A. The mapping Γ =
( Γ0

Γ1

)
induces, via

(3.3) AΘ := Γ−1Θ = { f̂ ∈ S+ : Γ f̂ ∈ Θ}, Θ ∈ C̃(G),

a bijective correspondence Θ 7→ AΘ between C̃(G) and the set of closed exten-
sions AΘ ⊂ S+ of S. In particular (3.3) gives a one-to-one correspondence be-
tween the closed symmetric (self-adjoint) extensions of S and the closed symmet-
ric (respectively self-adjoint) relations in G. If Θ is a closed operator in G, then the
corresponding extension AΘ of S is determined by

(3.4) AΘ = ker(Γ1 −ΘΓ0).

Let Nλ := ker(S+ − λ) = ran (S− λ)[⊥], λ ∈ r(S), be the defect subspace of
S and set

N̂λ :=
{(

f
λ f

)
: f ∈ Nλ

}
.
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Now we assume that the self-adjoint relation A0 in (3.2) has a nonempty resolvent
set. Then for λ ∈ ρ(A0) the adjoint S+ is the direct sum of A0 and N̂λ. Denote by
π1 the orthogonal projection onto the first component of K ×K. The functions

λ 7→ γ(λ) := π1(Γ0|N̂λ)−1 ∈ L(G,K), λ ∈ ρ(A0),

and

(3.5) λ 7→ M(λ) := Γ1(Γ0|N̂λ)−1 ∈ L(G), λ ∈ ρ(A0),

are holomorphic on ρ(A0) and are called the γ-field and Weyl function correspond-
ing to S and {G, Γ0, Γ1}. We remark that for a fixed λ0 ∈ ρ(A0) and all λ ∈ ρ(A0)
the Weyl function M can be written in the form

(3.6) M(λ)=Re M(λ0)+γ(λ0)+((λ−Re λ0)+(λ−λ0)(λ−λ0)(A0−λ)−1)γ(λ0).

With the help of the Weyl function the spectral properties of the closed extensions
of S can be described. If Θ ∈ C̃(G) and AΘ is the corresponding extension of S
via (3.3), then a point λ ∈ ρ(A0) belongs to ρ(AΘ) (σi(AΘ), i = p, c, r) if and
only if 0 belongs to ρ(Θ − M(λ)) (respectively σi(Θ − M(λ)), i = p, c, r) and the
well-known formula

(3.7) (AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)(Θ− M(λ))−1γ(λ)+

holds for all λ ∈ ρ(A0) ∩ ρ(AΘ) (see e.g. [11]).
In the special case that S is of defect one the self-adjoint extensions AΘ of S,

AΘ 6= ker Γ0, in K can be parametrized with the real numbers Θ ∈ R. Therefore,
in this case, all self-adjoint extensions of S have a nonempty resolvent set if the
(scalar) Weyl function M is not identically equal to a constant. If M(λ) = const.
for all λ ∈ ρ(A0), then there can exist one self-adjoint extension with an empty
resolvent set.

The following theorem is an immediate consequence of Theorem 2.1, Theo-
rem 2.2 and the fact that the difference of the resolvents of two self-adjoint exten-
sions of a symmetric relation of finite defect is a finite rank operator, see (3.7).

THEOREM 3.2. Let S be a closed symmetric relation in the Krein space K and
assume that the defect of S is finite. Then the following holds:

(i) If there exists a self-adjoint extension A of S in K which is definitizable over Ω,
then every self-adjoint extension Ã of S in K with ρ(Ã)∩Ω 6= ∅ is definitizable over Ω.

(ii) If A is a self-adjoint extension of S in K which is definitizable over Ω and ∆ ⊂
Ω ∩R is an open interval with endpoint µ ∈ Ω ∩R and ∆ is of positive type (negative
type) with respect to A, then for every self-adjoint extension Ã of A with ρ(Ã) ∩Ω 6= ∅
there exists an open interval ∆′, ∆′ ⊂ ∆, with endpoint µ such that ∆′ is of positive type
(respectively negative type) with respect to Ã.

(iii) If there exists a self-adjoint extension A of S in K which is of type π+ (type π−)
over Ω, then every self-adjoint extension Ã of S in K with ρ(Ã) ∩Ω 6= ∅ is of type π+
(respectively type π−) over Ω.
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3.2. DIRECT SUMS OF SECOND ORDER DIFFERENTIAL OPERATORS. In this sec-
tion we investigate the spectral properties of direct sums of regular and singular
Sturm-Liouville operators with the indefinite weight sgn x. The following nota-
tion will be useful. If (K, [·, ·]K) and (H, [·, ·]H) are Krein spaces, then the elements
of K × H will be written in the form {k, h}, k ∈ K, h ∈ H. The direct sum of a
linear operator S in K and a linear operator T in H will be denoted by S × T. If
S and T are symmetric in K and H, respectively, then S × T is symmetric in the
Krein space (K ×H, [·, ·]), where

[{k, h}, {k̃, h̃}] := [k, k̃]K + [h, h̃]H, k, k̃ ∈ K, h, h̃ ∈ H.
Let in the following (K, [·, ·]K) be the Krein space L2(R) equipped with the

inner product

[ f , g]K :=

∞∫
−∞

f (x)g(x) sgn x dx, f , g ∈ L2(R),

and let

(S f )(x) := −sgn x f ′′(x), dom S := { f ∈ W2,2(R) : f (0) = f ′(0) = 0}.

Then S is a densely defined closed symmetric operator in K of defect two and the
adjoint operator S+ is given by

(S+ f )(x) = −sgn x f ′′(x), dom S+ = W2,2(R−)×W2,2(R+),

where R+ := (0, ∞) and R− := (−∞, 0). A straightforward calculation shows
that {C2, Γ0, Γ1}, where

Γ0 f̂ :=
(

f (0+)− f (0−)
f ′(0+)− f ′(0−)

)
, f̂ =

(
f

S+ f

)
,(3.8)

Γ1 f̂ :=
1
2

(
f ′(0+) + f ′(0−)
− f (0+)− f (0−)

)
, f̂ =

(
f

S+ f

)
,(3.9)

is a boundary value space for S+ and the self-adjoint extension A0 = ker Γ0 is
the usual second order differential operator with the indefinite weight function
x 7→ sgn x on R.

Besides the Krein space K we consider the Krein space

H := (L2((a, b)), [·, ·]H), −∞ < a < 0 < b < ∞,

where [·, ·]H is defined by

[h, k]H := −
b∫

a

h(x)k(x) sgn x dx, h, k ∈ L2((a, b)).
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Let p−1, q ∈ L1((a, b)) be real functions and assume that p > 0 is fulfilled. We
consider the densely defined closed symmetric operator T,

(Th)(x) := sgn x(−(p(x)h′(x))′ + q(x)h(x)),

dom T :=
{

h ∈ L2((a, b))
∣∣∣∣ h, ph′ ∈ AC((a, b)), −(ph′)′ + qh ∈ L2((a, b))

h(a) = h(b) = h(0) = (ph′)(0) = 0

}
,

in H. Then T has defect two and the operator T+ is given by

(T+h)(x) = sgn x(−(p(x)h′(x))′ + q(x)h(x)),

dom T+ =
{

h ∈ L2((a, b))
∣∣∣∣ h, ph′ ∈ AC((a, 0))× AC((0, b)),
−(ph′)′ + qh ∈ L2((a, b)), h(a) = h(b) = 0

}
.

Here we choose {C2, Γ′0, Γ′1}, where

(3.10) Γ′0 ĥ :=
(

h(0−)
h(0+)

)
and Γ′1 ĥ :=

(
(ph′)(0−)
−(ph′)(0+)

)
, ĥ =

(
h

T+h

)
,

as a boundary value space for T+. We remark that the self-adjoint extension BΦ of

T in (H, [·, ·]H) corresponding to the self-adjoint relation Φ =
{(

(x,x)>

(y,−y)>

)
: x, y ∈

C
}

∈ C̃(C2) via (3.3) is the usual second order differential operator

sgn x
(
− d

dx
(

p d
dx
)

+ q
)

in L2((a, b)) with Dirichlet boundary conditions.

THEOREM 3.3. Let S and T be the symmetric differential operators in the Krein
spaces K and H from above and let {C2, Γ0, Γ1} and {C2, Γ′0, Γ′1} be the boundary value
spaces from (3.8)–(3.9) and (3.10), set A0 = ker Γ0 and B0 = ker Γ′0, and denote the
corresponding Weyl functions by M and τ, respectively. Then the following assertions
(i)–(iii) hold:

(i) All canonical self-adjoint extensions of S and T in the Krein spaces K and H,
respectively, are definitizable (over C).

(ii) The self-adjoint operator A0 × B0 in the Krein space K ×H is definitizable over
C\{∞} and σ(A0 × B0) coincides with R. The interval (0, ∞) is of type π+ and the
interval (−∞, 0) is of type π− with respect to A0 × B0.

(iii) If Θ̃ ∈ C̃(C4) is a self-adjoint relation such that 0 ∈ ρ(Θ̃ − M(λ) ⊕ τ(λ)) for
some λ ∈ C\R, then the self-adjoint differential operator

ÃΘ̃ = S+ × T+ � dom ÃΘ̃,

dom ÃΘ̃ =

{
{ f , h} ∈ K ×H

∣∣∣∣∣
(

(Γ0 f̂ , Γ′0 ĥ)>

(Γ1 f̂ , Γ′1 ĥ)>

)
∈ Θ̃,

f̂ = ( f
S+ f ),

ĥ = ( h
T+h )

}
,

in K ×H is definitizable over C\{∞} and the interval (0, ∞) ((−∞, 0)) is of type π+

(respectively type π−) with respect to ÃΘ̃.

Proof. (i) As S is a densely defined symmetric operator in (K, [·, ·]K) and A0
is a nonnegative self-adjoint operator with σ(A0) = R (see e.g. [9]) it follows from
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Proposition 1.1 in [8] that all self-adjoint extensions AΘ, Θ ∈ C̃(C2), of S in K are
definitizable (over C).

Denote by p1 (p2) and q1 (q2) the restrictions of the functions p and q onto
the interval (a, 0) (respectively (0, b)). Then the self-adjoint extension B0 = ker Γ′0
of T inH is a fundamentally reducible operator as it coincides with the direct sum
of the self-adjoint realizations of the regular Sturm-Liouville differential expres-
sions d

dx (p1
d

dx )− q1 and− d
dx (p2

d
dx ) + q2, in (L2((a, 0)), (·, ·)) and (L2((0, b)), (·, ·))

corresponding to Dirichlet boundary conditions. Hence σ(B0) is real and con-
sists only of eigenvalues (with one or two-dimensional eigenspaces) accumulat-
ing only to ∞ and −∞. Here the assumptions p1, p2 > 0 imply that there are only
finitely many eigenvalues belonging to

σ++(B0) ∩ (0, ∞) and σ−−(B0) ∩ (−∞, 0)

(cf. [27], [37]). Therefore the hermitian form [B0·, ·] defined on dom B0 has finitely
many positive squares and it follows again from Proposition 1.1 in [8] that all
self-adjoint extensions BΦ, Φ ∈ C̃(C2), are definitizable.

(ii) Since A0 and B0 are definitizable they belong to the class S∞(R) and
therefore A0 × B0 is also in the class S∞(R). From σ(A0) ∪ σ(B0) = R we obtain
σ(A0 × B0) = R. In order to see that A0 × B0 is definitizable over C\{∞} we
have to check that for every point µ ∈ R there exists an open interval Iµ ⊂ R,
µ ∈ Iµ, such that both components of Iµ\{µ} are of definite type with respect
to A0 × B0. This follows from the nonnegativity of A0, hence (0, ∞) ((−∞, 0)) is
of positive type (respectively negative type) with respect to A0, and the fact that
σ(B0) consists of eigenvalues accumulating only to ∞ and −∞.

Let δ be an open interval such that δ ⊂ (0, ∞) and the boundary points of
δ in R are no eigenvalues of B0. As the spectral subspace (EA0(δ)K, [·, ·]K) is a
Hilbert space and (EB0(δ)H, [·, ·]H) is a finite dimensional Pontryagin space we
conclude that (0, ∞) is of type π+ with respect to A0 × B0. A similar argument
shows that (−∞, 0) is of type π− with respect to A0 × B0.

(iii) It is easy to see that

Γ̃0{ f̂ , ĥ} :=

(
Γ0 f̂
Γ′0 ĥ

)
and Γ̃1{ f̂ , ĥ} :=

(
Γ1 f̂
Γ′1 ĥ

)
, f̂ =

(
f

S+ f

)
, ĥ =

(
h

T+h

)
,

defines a boundary value space {C4, Γ̃0, Γ̃1} for S+ × T+ with ker Γ̃0 = A0 × B0
and corresponding Weyl function

(3.11) λ 7→
(

M(λ) 0
0 τ(λ)

)
= M(λ)⊕ τ(λ) ∈ L(C4), λ ∈ ρ(A0 × B0).

Now assertion (iii) follows from Theorem 3.2.

Let S and T be the symmetric differential operators from above and let
{C2, Γ0, Γ1} and {C2, Γ′0, Γ′1} be the boundary value spaces from (3.8)–(3.9) and
(3.10). By (3.6) and Theorem 1.7 the Weyl functions M and τ corresponding to
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{C2, Γ0, Γ1} and {C2, Γ′0, Γ′1}, respectively, are definitizable functions (in C) (see
Section 1.3 and [23]) and the function (3.11) is definitizable in C. Here M can be
calculated explicitely and also the structure of τ is known.

Indeed, if +
√
· ( −√·) denotes the branch of

√
· defined in C with a cut along

[0, ∞) ((−∞, 0]) and fixed by Im
√

λ > 0 for λ 6∈ [0, ∞) and
√

λ > 0 for λ ∈ [0, ∞)
(respectively Re

√
λ > 0 for λ 6∈ (−∞, 0] and Im

√
λ > 0 for λ ∈ (−∞, 0]), then for

λ ∈ C\R the defect subspace Nλ = ker(S+ − λ) is spanned by the functions

fλ(x) :=

{
exp(i +√λx) x > 0,
0 x < 0,

and gλ(x) :=

{
0 x > 0,
exp(−

√
λx) x < 0.

Hence with f̂λ =
( fλ

λ fλ

)
and ĝλ =

( gλ
λgλ

)
we have Γ0 f̂λ =

( 1
i+√λ

)
, Γ1 f̂λ = 1

2
(

i+√λ
−1

)
,

Γ0 ĝλ =
( −1
−−√λ

)
and Γ1 ĝλ = 1

2
( −√λ
−1

)
, and therefore the Weyl function M corre-

sponding to the boundary value space {C2, Γ0, Γ1} is given by

M(λ) =
1

i +√λ− −√λ

(
−i +√λ−√λ 1

2 (i +√λ + −√λ)
1
2 (i +√λ + −√λ) −1

)
, λ ∈ C\R.

Similarly ker(T+ − λ), λ ∈ ρ(B0), is spanned by some functions hλ (kλ),
which vanish on the interval (0, b) (respectively (a, 0)). It is not difficult to see
that there exist scalar Nevanlinna functions N1 and N2, h(N1) ∩ h(N2) = ρ(B0),
such that the Weyl function τ corresponding to {C2, Γ′0, Γ′1} has the form

τ(λ) =
(

N1(λ) 0
0 −N2(λ)

)
, λ ∈ ρ(B0).

3.3. AN EXAMPLE FOR A SELF-ADJOINT EXTENSION ÃΘ̃ OF A DIRECT SUM OF

DIFFERENTIAL OPERATORS WITH σp(ÃΘ̃) = C. In the following we will give a
simple example of a direct sum S× T of two differential operators S and T where
a certain self-adjoint extension has an empty resolvent set.

In the Hilbert space K := (L2((α, β)), (·, ·)), −∞ < α < β < ∞, we consider
the symmetric second order differential operator

(S f )(x) := − f ′′(x),

dom S := { f ∈ L2((α, β)) : f ∈ W2,2((α, β)), f (α) = f ′(α) = f (β) = 0},

the adjoint operator S∗,

(S∗ f )(x)=− f ′′(x), dom S∗={ f ∈ L2((α, β)) : f ∈W2,2((α, β)), f (β)=0},

and we choose {C, Γ0, Γ1}, Γ0 f̂ := f (α), Γ1 f̂ := f ′(α), f̂ =
( f

S∗ f

)
, as a boundary

value space for S∗. Let ker(S∗ − λ) = sp { fλ}, λ ∈ C\R. Then the Weyl function
M corresponding to {C, Γ0, Γ1} is given by

M(λ) =
Γ1 f̂λ

Γ0 f̂λ

, f̂λ =
(

fλ

λ fλ

)
, λ ∈ C\R.



438 JUSSI BEHRNDT

We equip L2((α, β)) with the negative definite inner product [·, ·] defined
by [g, h] := −(g, h), g, h ∈ L2((α, β)), and denote the corresponding Krein space
by H. The differential operator (Th)(x) := −h′′(x), with dom T = dom S, is
symmetric in H and the adjoint operator is given by (T+h)(x) = −h′′(x), where
dom T+ = dom S∗. Here {C, Γ′0, Γ′1}, Γ′0 ĥ := h′(α), Γ′1 ĥ := h(α), ĥ =

( h
S+h

)
, is

a boundary value space for T+ and the corresponding Weyl function τ has the
form

τ(λ) =
Γ′1 f̂λ

Γ′0 f̂λ

=
Γ0 f̂λ

Γ1 f̂λ

=
1

M(λ)
, λ ∈ C\R.

As in the proof of Theorem 3.3(iii) we define the boundary value space
{C2, Γ̃0, Γ̃1} for S∗ × T+ by

Γ̃0{ f̂ , ĥ} :=

(
Γ0 f̂
Γ′0 ĥ

)
and Γ̃1{ f̂ , ĥ} :=

(
Γ1 f̂
Γ′1 ĥ

)
,

{ f̂ , ĥ} :=
{( f

S∗ f

)
,
( h

T+h

)}
. Note that the selfadjoint operator ker Γ̃0 is definiti-

zable over C\{∞}. Now the corresponding Weyl function M̃ is λ 7→ M̃(λ) =( M(λ) 0
0 1

M(λ)

)
, λ ∈ C\R. The self-adjoint extension ÃΘ̃, Θ̃ :=

(
0 1
1 0

)
∈ L(C2), of

S× T in the Krein space K ×H via (3.3)–(3.4) is given by

ÃΘ̃ = S∗ × T+ � dom ÃΘ̃,
dom ÃΘ̃ =

{
{ f , h} ∈ dom S∗ × dom T+ : f (α) = h(α), f ′(α) = h′(α)

}
,

(3.12)

and we have σp(ÃΘ̃) = C since the function λ 7→ det(M̃(λ) − Θ̃) is identically
equal to zero.

We note that it can also be checked directly that ÃΘ̃ in (3.12) is self-adjoint
and that σp(ÃΘ̃) = C holds.
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