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ABSTRACT. Let Aθ be the rotation C∗-algebra generated by unitaries U, V sat-
isfying VU = e2πiθUV and let ρ denote the hexic transform on Aθ defined by
ρ(U) = V, ρ(V) = e−πiθU−1V. (It is the canonical order six automorphism of
Aθ .) It is shown that ten canonical classes in K0(Aθ oρ Z6) ∼= Z10 yield a basis.
The Connes-Chern character K0(Aθ oρ Z6) → Hev(Aθ oρ Z6)∗ is shown to be
injective for each θ, and its range is determined.
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1. INTRODUCTION

For 0 < θ < 1 let Aθ denote the rotation C∗-algebra generated by unitaries
U, V satisfying VU = λUV, where λ := e2πiθ . Denote by ρ the order six automor-
phism of Aθ defined by

ρ(U) = V, ρ(V) = e−πiθU−1V.

We shall call it the hexic transform in accordance with our papers [3] and [15].
Throughout the paper, we shall denote the associated crossed product by Hθ :=
Aθ oρ Z6, where Z6 = Z/6Z, and call it the hexic C∗-algebra. It is the universal
C∗-algebra generated by unitaries U, V, W enjoying the commutation relations

(1.1) VU = λUV, WUW−1 = V, WVW−1 = λ−1/2U−1V, W6 = I.

We shall also use Aθ to denote its canonical smooth dense ∗-subalgebra un-
der the canonical toral action, and by Hθ the dense ∗-subalgebra of elements of

the form
5
∑

j=0
ajW j where aj are smooth elements in Aθ , and W is the canonical or-

der six unitary of the crossed product implementing ρ; so, ρ(a) = WaW−1. (This
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identification is justified since both the C∗-algebra and its smooth ∗-subalgebra
have the same K-theory, since the dense ∗-subalgebras are closed under the holo-
morphic functional calculus, and since it will be clear from the context which
algebra is intended.)

In [3], we constructed ten canonical modules over Hθ and showed (using
theta functions) that they give rise to independent positive classes in K0(Hθ)
for each θ (rational or irrational). (These modules are listed in Table 1 below.)
This was done by examination of the Connes-Chern character ch : K0(Hθ) →
Hev(Hθ)∗ where Hev(Hθ) is Connes’ even periodic cyclic cohomology group and
Hev(Hθ)∗ is its vector space dual ([5], III). (We prefer to view the codomain of ch
as above instead of the usual cyclic homology group so as to readily use Connes’
canonical pairing between K0 and cyclic cohomology.) From ch a group homo-
morphism T : K0(Hθ) → R10 can be defined by taking the Connes-Chern charac-
ter ch(x) of each element x in K0(Hθ) and restricting it to a certain 10-dimensional
subspace of Hev(Hθ) spanned by the unbounded traces on the (smooth) algebra
Hθ (as in [14]) and by Connes’ canonical cyclic 2-cocycle (as in [4] or III.2.β of [5]).
In [3] we showed that T is injective when θ is rational. This suggests, presumably,
that the subspace in question is all of Hev(Hθ) and that ch will in fact turn out to
be, after tensoring with the complex plane, an isomorphism. (In view of this, we
shall also refer to T as the Connes-Chern character.)

The main result of the present paper is to show that the ten canonical classes
form a basis for K0(Hθ) when θ is a special type of rational number (Proposi-
tion 5.1). This result allows us to prove that the range of T on K0(Hθ) is equal
to its range on the span of the ten classes. Combined with a recent result of Pol-
ishchuk [10] that K0(Hθ) ∼= Z10 for all θ (which incidently used the independence
of the ten classes [3]), this culminates with the following.

THEOREM 1.1. For each θ > 0 the following holds:
(i) The ten canonical modules form a basis for K0(Hθ).

(ii) The Connes-Chern character ch : K0(Hθ) → Hev(Hθ)∗ is injective.
(iii) The range of T : K0(Hθ) → R10 is the integral span of the rows in Table 1.

Note that a basis for K0(Hθ) is not given in [10], so our result gives a precise
isomorphism. We comment briefly at the end that K1(Hθ) = 0 for a dense Gδ set
of θ’s, which in fact holds for all θ as shown in [6].

It is a well-known theorem of Bratteli and Kishimoto [2] (and independently
in [13]) that the crossed product Aθ o Z2 (under the flip) is approximately finite
dimensional for any irrational θ. In [16] it is shown that this holds for the Fourier
transform for a dense Gδ set of irrational θ. In quite recent work of Echterhoff,
Lück, Phillips, and the author [6] the AF result is shown to be true for the Fourier,
hexic, and cubic transforms (for all irrational θ).

It is of historical interest to know that Hattori [9] and Stallings [12] have
obtained (back in 1965) the trace of a finitely generated projective module. These
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are some of the earliest attempts to pair elements of K theory of non-commutative
algebras with trace-like functionals.

We shall write e(t) := e2πit, and δn
k is 1 if k|n and 0 otherwise. We have

q−1
∑

j=0
e(nj/q) = qδn

q . Throughout, we shall assume that 0 < θ < 1. Since λ = e(θ),

we shall also write λt = e(tθ). Denote by δk,` the usual δ-function (1 if and only if
k = ` and 0 otherwise).

2. K-CLASSES AND THEIR CONNES-CHERN CHARACTER

When considering the case that θ is rational, we shall tacitly assume through-
out that θ = p

q where p < q are positive relatively prime integers.

TEN K0-CLASSES. As in [3], one has the following nine projections in Hθ :

1, pj =
1
6

5

∑
i=0

ωijWi, qk =
1
3

2

∑
i=0

ω2ikλi/6 (UW2)i, r =
1
2
(I + UW3),

where j = 0, . . . , 4, k = 0, 1 and λ1/6UW2 is a unitary of order 3, UW3 of order 2,
and ω := e(1/6) = 1

2 (1 + i
√

3) (a primitive 6th root of 1).
One further has the hexic module M6 over Hθ (0 < θ < 1) which we con-

structed in [3] from the Heisenberg Aθ-module (see [4]) by equipping it with
an action of W represented by a suitable scaling of the hexic transform on the
Schwartz space S(R) (see [15] for how the hexic transform was obtained). The

algebra Hθ has the canonical (bounded) trace τ given by τ
( 5

∑
j=0

ajW j
)

= τ(a0) for

aj ∈ Aθ , where τ(a0) is the canonical trace of a0 in Aθ (relative to the unitaries
U, V). (It is unique in the irrational case.) In [3] it was shown that one has the
following unbounded traces on Hθ (the smooth ∗-subalgebra) given by:

T10(UmVnW5) = λ(m2+n2)/2, T30(UmVnW3) = λ−mn/2 δm
2 δn

2 ,

T20(UmVnW4) = λ(m−n)2/6 δm−n
3 , T31(UmVnW3) = λ−mn/2,

T21(UmVnW4) = λ(m−n)2/6,

where at generic elements UmVnWk for different k they vanish.
Observe that T3j are self-adjoint trace functionals, but that T10 and T2k are

not. However, one can look at the real and imaginary parts of the latter. Let

φ0 = 1
2 (T10 + T∗10), φ′0 = − i

2 (T10 − T∗10)

be the real and imaginary parts of T10, respectively, and

φ1 = 1
2 (T20 + T∗20), φ′1 =− i

2 (T20 − T∗20), φ2 = 1
2 (T21 + T∗21), φ′2 =− i

2 (T21 − T∗21)

be those of T20 and T21 (where T∗(x) := T(x∗)).
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The remaining invariant we need is Connes’ canonical cyclic 2-cocycle on
the rotation algebra Aθ :

ϕ(x0, x1, x2) =
1

2πi
τ(x0[δ1(x1)δ2(x2)− δ2(x1)δ1(x2)])

(see III.2.β of [5]) where δj, j = 1, 2, are the canonical derivations of Aθ under
the canonical action of the 2-torus T2 (relative to U, V). The Chern character in-
variant that ϕ induces is the group homomorphism c1 : K0(Aθ) → Z given by
the cup product c1[E] := (ϕ#Trn)(E, E, E) for E any smooth projection in Mn(Aθ).
In Section 4 of [3] this invariant was extended to Hθ by taking the composition
C := c1 ◦ Ψ∗ : K0(Hθ) → Z where Ψ : Hθ → M6(Aθ) is the canonical injec-
tion given by Ψ(a) = [ρ−i(ai−j)]5i,j=0 for a = ∑

j
ajW j ∈ Hθ , where i − j is re-

duced mod 6 and where aj ∈ Aθ . (To clarify Ψ∗, if E is a projection in some
matrix algebra over Hθ , then Ψ(E) is a projection in some matrix algebra over
M6(Aθ), hence in a matrix algebra over Aθ , and thus gives a class in K0(Aθ)
— e.g. Ψ∗[1] = 6[1]K0(Aθ).) For example (and we shall need this later), if eθ

is a smooth Powers-Rieffel projection in Aθ with trace θ (0 < θ < 1 rational
or irrational) then, viewing eθ as an element of Hθ via the canonical inclusion
Aθ ↪→ Hθ , one has C[eθ ] = −6. In fact, since c1[eθ ] = −1, [ρ(eθ)] = [eθ ] in K0(Aθ),
and Ψ(eθ) = diag(eθ , ρ5(eθ), ρ4(eθ), ρ3(eθ), ρ2(eθ), ρ(eθ)), one has Ψ∗[eθ ]K0(Hθ) =
6[eθ ]K0(Aθ), where Ψ∗ : K0(Hθ) → K0(Aθ) is the induced map.

Consider the Connes-Chern character ch : K0(Hθ) → HCev(Hθ)∗ where
HCev(Hθ)∗ is the complex vector space dual of the even periodic cyclic cohomol-
ogy group ([5], III.1.α). From this, one defines the map T : K0(Hθ) → R10 by the
pairing

T(x) = 〈(τ; φ0, φ′0; φ1, φ′1, φ2, φ′2; T30, T31; C), ch(x)〉
= (τ(x); φ0(x), φ′0(x); φ1(x), φ′1(x), φ2(x), φ′2(x); T30(x), T31(x); C(x)).

All computations below will be done in terms of this map (as was done in [3]), so
there is some justification for calling T the Connes-Chern character, since there is
evidence that after tensoring with C, one eventually has an isomorphism K0(Hθ)
⊗C → HCev(Hθ)∗ between vector spaces of dimension nine. The evidence for
this comes from the fact proved in [3] (Corollary 3.2) that for irrational θ one has
HC0(Hθ) ∼= C9 and has as basis {τ, φ0, φ′0, φ1, φ′1, φ2, φ′2, T30, T31}. These, together
with the class associated to Connes’ cyclic 2-cocycle would presumably constitute
a basis for HCev(Hθ), which the authors suspect is HC0(Hθ)⊕ HC2(Hθ) modulo
identifications given by the periodicity operator after tensoring with the complex
plane over the ring HC∗(C). This further suggests that the Hochschild dimension
of Hθ is two, as Connes showed to be the case for the rotation algebra. (Of course,
for rational θ, the group HC0(Hθ) is infinite dimensional, but one would still
expect that the periodic cohomology group HCev(Hθ) to be finite dimensional —
in fact, nine-dimensional.)
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For the identity element and the Powers-Rieffel projection one clearly has

T(1) = (1; 0, 0; 0, 0, 0, 0; 0, 0; 0), T(eθ) = (θ; 0, 0; 0, 0, 0, 0; 0, 0; −6).

The main result of [3] is the following data of Connes-Chern character values for
the above nine modules for any θ. In this table we write ω = e(1/6) = 1

2 (1 + i
√

3).

Table 1. Character table for the hexic transform
K0-class τ C6 φ0 φ′0 φ1 φ′1 φ2 φ′2 T30 T31
[1] 1 0 0 0 0 0 0 0 0 0
[p0] 1

6 0 1
6 0 1

6 0 1
6 0 1

6
1
6

[p1] 1
6 0 1

12 −
√

3
12 − 1

12 −
√

3
12 − 1

12 −
√

3
12 − 1

6 − 1
6

[p2] 1
6 0 − 1

12 −
√

3
12 − 1

12

√
3

12 − 1
12

√
3

12
1
6

1
6

[p3] 1
6 0 − 1

6 0 1
6 0 1

6 0 − 1
6 − 1

6

[p4] 1
6 0 − 1

12

√
3

12 − 1
12 −

√
3

12 − 1
12 −

√
3

12
1
6

1
6

[q0] 1
3 0 0 0 0 1

3 0 0 0 0
[q1] 1

3 0 0 0 0 0 − 1
6 −

√
3

6 0 0
[r] 1

2 0 0 0 0 0 0 0 0 1
2

[M6] θ
6 −1 1

12

√
3

12
1

12

√
3

36
1
4

√
3

12
1

12
1
3

This table yields the following.

THEOREM 2.1 ([3], Theorem 1.1). For any θ > 0, the ten classes [1], [p0], [p1],
[p2], [p3], [p4], [q0], [q1], [r], [M6] are independent in K0(Hθ). When θ is rational, the
map T is injective on K0(Hθ), and hence so is the Connes-Chern character ch : K0(Hθ)→
HCev(Hθ)∗.

NOTATION 2.2. We shall denote by Rθ the subgroup of K0(Hθ) generated
by the ten classes listed in Table 1.

Consider the element of K0(Hp/q) defined by (for relatively prime integers
p, q)

κp,q = p[1] + q([p0]− 4[p1]− 3[p2]− 2[p3]− [p4] + 2[q0]− 2[q1] + 3[r]− 6[M6]).

(Here, pj, qj, r, and M6 are evaluated at θ = p
q .) It is easy to check that

T(κp,q) = (0; 0, 0; 0, 0, 0, 0; 0, 0; 6q) from Table 1. Since we have T(p[1] − q[eθ ]) =
(0; 0, 0; 0, 0, 0, 0; 0, 0; 6q) = T(κp,q), the injectivity of T (in the rational case, The-
orem 2.1) gives the equality p[1] − q[eθ ] = κp,q in K0(Hθ). In fact, in the same
manner one easily checks that the Powers-Rieffel projection eθ is related to the
nine modules as follows for rational θ

[eθ ] = −[p0] + 4[p1] + 3[p2] + 2[p3] + [p4]− 2[q0] + 2[q1]− 3[r] + 6[M6]

in K0(Hθ) (the right side evaluated at θ). This shows that [eθ ] ∈ Rθ for rational θ.
Define the reduced character T′ : K0(Hθ) → R9 to be the degree zero part of

the Connes-Chern character T, namely, T′ = (τ(x); φ0, φ′0; φ1, φ′1, φ2, φ′2; T30, T31).
Note that κp,q is in Ker(T′). Two key steps in the proofs below is to show that in
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fact κp,q generates Ker(T′) (Corollary 4.3) and that the range of T′ on K0(Hθ) is
equal to its range on Rθ for θ in a special dense set of rationals P described below
(Proposition 4.1). These steps lead one to the equality K0(Hp/q) = Rp/q, from
which it follows that the ten classes form a basis for K0(Hp/q).

2.1. REALIZATION OF Ap/q AS A DIMENSION-DROP ALGEBRA. Begin with the
following realization of the rational rotation algebra as the subalgebra of C([0, 1]×
[0, 1], Mq) given in [1], p. 64, by

Ap/q = { f ∈ C([0, 1]× [0, 1], Mq) : f (x, 1) = α1( f (x, 0)), f (1, y) = α2( f (0, y))}

where Mq := Mq(C) is generated by the unitaries

U0 =


1 0 · · · 0
0 λ · · · 0
...

...
. . . 0

0 0 · · · λq−1

 , V0 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


satisfying V0U0 = λU0V0, where λ = e(p/q), and α1, α2 are the automorphisms
of Mq given by α1(U0) = U0, α1(V0) = wV0 and α2(U0) = wU0, α2(V0) = V0,
where w = e(1/q). With this realization, the canonical generators U, V of Ap/q
are given by the functions U(x, y) = e(x/q)U0, V(x, y) = e(y/q)V0 and the hexic
automorphism is given by

ρ( f )(x, y) = η0( f (y, y− x − pq/2))

where η0 ∈ Aut(Mq) is given by η0(U0) = V0, η0(V0) = λ−(1/2)(1−q)U−1
0 V0 where

q = 0 if q is even, and 1 otherwise. In fact, with W0 being the unitary

W0 =
1
√q

[λi(i+q)/2−ij]

where i, j = 0, 1, . . . , q − 1, one checks that η0(x) = W∗
0 xW0 (see Sections 2 and 3

of [8]). Indeed, one checks the commutation relations

U0W0 = W0V0, V0W0 = λ−(1/2)(1−q) W0U−1
0 V0.

Consider the following self-adjoint q× q unitary matrix

Γ0 =


1 0 0 · · · 0
0 0 0 · · · 1
...

...
... ···

...
0 0 1 · · · 0
0 1 0 · · · 0

 .



NON COMMUTATIVE SPHERES 447

It gives rise to the flip automorphism: U0Γ0 = Γ0U−1
0 , V0Γ0 = Γ0V−1

0 . The auto-
morphisms α1, α2 are given by αi(x) = W∗

i xWi, i = 1, 2 where

W1 = U−p′
0 =


1 0 · · · 0
0 w · · · 0
...

...
. . . 0

0 0 · · · wq−1

 , W2 = V−p′′
0 =

[
0 Ip′′

Iq−p′′ 0

]

and In is the n× n identity matrix, and p′, p′′ are the unique integers in [1, q− 1]
such that pp′ ≡ −1 mod q and pp′′ ≡ 1 mod q. One has

W1W0 = W0W−1
2 , W2W0 = wp′′/2W0W2W1.

If q is even (which is all we will need for our purposes) then one can check that

W3
0 =

G(p, 2q)
2√q

Γ0, W2
0 =

G(p, 2q)
2√q

Z0,

where (Z0)ij = 1√q λ−(j2/2)−ij for i, j = 0, . . . , q − 1, and G(·, ·) is the classical

Gaussian sum (to be recalled below). One can therefore show that W6
0 = iI for

p
q ∈ P, where P is a special dense set of rationals defined below.

Given positive relatively prime integers p, q, let p′, p′′ be the integers given
above, and write pp′ = −1 + qp̃, pp′′ = 1 + qq̃ for some integers p̃ and q̃. One
easily checks that p = p̃ + q̃ and q = p′ + p′′. In the present paper we shall be
interested in the following dense set of rational numbers in (0, 1)

P :=
{2d+1k + 1

22d−1 : k = 3, 6, . . . , 2d−2 − 1, k ≡ 0 mod 3, d > 3
}

.

For such rationals, p = 2d+1k + 1, q = 22d−1, and one can verify directly that

p′ = 2d+1k− 1, p′′ = 2d(2d−1 − 2k) + 1, p̃ = 8k2, q̃ = 8k(2d−2 − k) + 1.

2.2. GAUSSIAN SUMS. Recall the classical quadratic Gauss sum is given by

G(p, q) =
q−1

∑
j=0

λj2

where p, q are relatively prime positive integers and λ = e(p/q) = e2πip/q. It
is known that for odd p and q = 4d the Gaussian sum takes the simpler form
G(p, 4d) = 2d(1 + ip). So for p

q ∈ P one has G(p, 2q) =
√

2q(1 + i), since in this

case p is 1 mod 4, and W3
0 = 1+i√

2
Γ0 and hence W6

0 = iI.

LEMMA 2.3. Let q = 22d−1 where d is a positive integer, let p be an odd positive
integer with p < q, and λ = e(p/q). Then

q−1

∑
k=0

λ(1/2)k2+ak =
√

q
1 + ip
√

2
λ−(1/2)a2

,
q−1

∑
k=0

λ(3/2)k2+ak =
√

q
1− ip
√

2
λ(1/2)a2((2q−1)/3),
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for any integer a (here, 2q−1
3 is a positive integer).

Proof. Note that since q is even, the functions λ(1/2)k2
and λ(3/2)k2+ak have

period q (so the sums are invariant under integer translations). Let r = 4d−1
3

(positive integer). Then 1 = 2q− 3r. Letting µ = e(3p/2q) = λ3/2, we have

q−1

∑
k=0

λ(3/2)k2+ak =
q−1

∑
k=0

λ(3/2)k2+a(2q−3r)k =
q−1

∑
k=0

λ(3/2)k2−3ark =
q−1

∑
k=0

µk2−2ark

=
1
2

2q−1

∑
k=0

µk2−2ark =
1
2

µ−a2r2
2q−1

∑
k=0

µ(k−ar)2
=

1
2

µ−a2r2
2q−1

∑
k=0

µk2

=
1
2

λ−(3/2)a2r2
G(3p, 2q).

Now as q = 22d−1, G(3p, 2q) = 2d(1 − ip) and λ−(3r/2)a2r = λ(1/6)a2(4d−1), the
second sum follows. To get the first sum, one has (by suitable substitution)

2d(1 + ip) = G(p, 2q)=
2q−1

∑
k=0

(λ1/2)k2
=

q−1

∑
k=0

λ(1/2)k2
+

2q−1

∑
k=q

λ(1/2)k2
=2

q−1

∑
k=0

λ(1/2)k2
.

The case for general a (in the first sum in the lemma) follows from the case a = 0,
by translation invariance.

LEMMA 2.4. For relatively prime p, q with q=22d−1 (d a positive integer), we have:

Tr(Um
0 Vn

0 W0) =
1− ip
√

2
λ(1/2)(m2+n2),

Tr(Um
0 Vn

0 W2
0 ) = ipλ(1/6)(m−n)2

ω−2p(m−n)2
,

Tr(Um
0 Vn

0 W3
0 ) =

√
2(1 + ip)λ−(1/2)mnδm

2 δn
2 .

Proof. Since Vn
0 =

[
O Iq−n
In O

]
one decomposes W0 into the following block form

W0 =
[

n× (q− n) n× n
(q− n)× (q− n) (q− n)× n

]
= 1√q

[
∗ X
Y ∗

]
,

where X = [λ(1/2)i2−i(j+q−n)]i,j=0,...,n−1 with relevant diagonal entries

X =



1 ∗ ∗ . . .
∗ λ−(1/2)−(q−n) ∗

∗ ∗
. . .

... ∗ λ−(1/2)j2−j(q−n)

. . .
λ−(1/2)(n−1)2−(n−1)(q−n)


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where j = 0, 1, . . . , n− 1, and Y = [λ(1/2)(i+n)2−(i+n)j] with diagonals

Y =



λ(1/2)n2 ∗ ∗ . . .
∗ λ(1/2)(n2−1) ∗

∗ ∗
. . .

... λ(1/2)(n2−j2)

. . .
λ(1/2)(n2−(q−n−1)2)


.

We then have

√
qUm

0 Vn
0 W0 = Um

0

[
O Iq−n
In O

] [
∗ X
Y ∗

]
= Um

0

[
Y ∗
∗ X

]
and since

Um
0 = diag(1, λm, . . . , λm(q−n−1), λm(q−n), . . . , λm(q−1))

we obtain

√
q Tr(Um

0 Vn
0 W0) =

q−n−1

∑
j=0

λmj · λ(1/2)(n2−j2) +
n−1

∑
j=0

λm(q−n+j) · λ−(1/2)j2−j(q−n).

Making the substitution k = j + n in the first sum gives

q−1

∑
k=n

λm(k−n)λ(1/2)(n2−(k−n)2) =
q−1

∑
k=n

λm(k−n)λ−(1/2)k(k−2n),

and using λq = 1 allows to write the second sum as
n−1
∑

j=0
λm(j−n)λ−(1/2)j(j−2n). It

follows, using Lemma 2.3, that

√
qTr(Um

0 Vn
0 W0)=λ−mn

q−1

∑
k=0

λ−(1/2)k2+(m+n)k=λ−mnλ(1/2)(m+n)2
q−1

∑
k=0

λ−(1/2)(k−(m+n))2

= λ(1/2)(m2+n2)
q−1

∑
k=0

λ−(1/2)k2
= λ(1/2)(m2+n2)2d−1(1− ip).

Using the relation W2
0 = 1+ip

√
2

Z0, one gets Tr(Um
0 Vn

0 W2
0 ) = 1+ip

√
2

Tr(Um
0 Vn

0 Z0). As
with W0, we decompose Z0 into the block form

Z0 =
[

n× (q− n) n× n
(q− n)× (q− n) (q− n)× n

]
= 1√q

[
∗ X′

Y′ ∗

]
,
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where X′ = [λ−(1/2)(j+q−n)2−i(j+q−n)] with relevant diagonal entries

X′=



λ−(1/2)(q−n)2 ∗ ∗ . . .
∗ ∗ ∗

∗ ∗
. . .

... ∗ λ−(1/2)(i+q−n)2−i(i+q−n)

. . .
λ−(1/2)(q−1)2−(n−1)(q−n)


and Y′ = [λ−(1/2)(i+n)2−(i+n)j] with relevant diagonal entries

Y′ =



1 ∗ . . .

∗
. . .

... λ−(1/2)j(3j+2n)

. . .
λ−(1/2)(q−n−1)(3q−n−3)


.

We then have

Um
0 Vn

0 Z0 = 1√q Um
0

[
Y′ ∗
∗ X′

]
hence

√
qTr(Um

0 Vn
0 Z0) =

q−n−1

∑
j=0

λmjλ−(3/2)j2−nj +
n−1

∑
j=0

λm(q−n+j)λ−(1/2)(j+q−n)2−j(j+q−n).

Making the substitution k = j + n in the first sum gives
q−1

∑
k=n

λm(k−n)λ−(3/2)(k−n)2−n(k−n) =
q−1

∑
k=n

λm(k−n)λ−(3/2)k2+2nk−(1/2)n2
,

and λ(1/2)q2
= 1 allows us to write the second sum as

n−1

∑
j=0

λm(j−n)λ−(1/2)(j−n)2−j(j−n) =
n−1

∑
j=0

λm(j−n)λ−(3/2)j2+2nj−(1/2)n2
.

Using Lemma 2.3 again one has

√
qTr(Um

0 Vn
0 Z0) = λ−mn−(1/2)n2

q−1

∑
k=0

λ−(3/2)k2+(m+2n)k

=
√q(1 + ip)

√
2

λ−mn−(1/2)n2
λ−(1/6)(m+2n)2(2q−1)

and so Tr(Um
0 Vn

0 W2
0 ) = ipλ(1/6)(m−n)2

ω−2p(m−n)2
. (Recall ω = e(1/6).) From [14],

and recalling that q is even and p is odd, we had Tr(Um
0 Vn

0 Γ0) = 2λ−(1/2)mnδn
2 δm

2 .
Since W3

0 = 1+ip
√

2
Γ0, we have Tr(Um

0 Vn
0 W3

0 ) =
√

2(1 + ip)λ−(1/2)mnδn
2 δm

2 .
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2.3. CONNES-CHERN’ CHARACTER ON Aθ (FOR RATIONAL θ). Realizing Aθ as
Mq-valued functions on the unit square as above, where θ = p

q , the canonical
trace is given by

τ(F) =
1
q

1∫
0

1∫
0

Trq(F(x, y)) dxdy

for F ∈ Aθ , where Trq is the usual trace on Mq(C). Also, the canonical derivations
of Aθ are given by δ1 = q ∂

∂x , δ2 = q ∂
∂y . They are defined by

δ1(UmVn) = 2πimUmVn, δ2(UmVn) = 2πinUmVn.

Connes’ canonical cyclic 2-cocycle is given by (see III.2.β of [5]):

ϕq(F0, F1, F2) =
1

2πi
τ(F0[δ1(F1)δ2(F2)− δ2(F1)δ1(F2)])

=
q

2πi

1∫
0

1∫
0

Trq

(
F0

[∂F1

∂x
∂F2

∂y
− ∂F1

∂y
∂F2

∂x

])
dxdy

where Fj ∈ Aθ (are smooth elements). The extension of ϕq to Mn(Aθ) is given by
the cup product

(ϕq#Trn)(F0 ⊗ a0, F1 ⊗ a1, F2 ⊗ a2) = ϕq(F0, F1, F2) · Trn(a0a1a2)

where Fj ∈ Aθ and aj ∈ Mn(C). The Chern character invariant of Connes c1 :
K0(Aθ) → Z is then given by c1[Q] = 〈[Q], ϕq〉 = (ϕq#Trn)(Q, Q, Q), where Q
is a projection in Mn(Aθ). For 0 < θ < 1 the Powers-Rieffel projection eθ has
c1(eθ) = ϕq(eθ , eθ , eθ) = −1 (as was shown by Connes). For θ = 1, one can show
that c1 of the Bott projection is ±1, depending on the choices made for it (as in
Section 5 of [14]).

3. UNBOUNDED TRACES AND SINGULAR SPHERE REALIZATION

In [8] it is proved that the crossed product C∗-algebra Hθ , for rational θ = p
q

(with (p, q) = 1), is isomorphic to a subalgebra of C(S2, M6q) of continuous func-
tions on the 2-sphere S2 with values in M6q that commute with certain projections
at three points (normally referred to as “singularities"). Let Q denote the quadri-
lateral shown below in Figures 1 and 2.
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As in [8], the 2-sphere S2 shall be envisaged as Q with the appropriate edges
identified (as shown). For our purposes, we shall view this subalgebra as the set
of all functions that commute with certain finite-order unitaries at the singular
points.

First, it is easy to check that by the universality of the crossed product Hθ ,
there is a unique C∗-injection Hθ → M6(Aθ) such that

f 7→ Tf :=



f 0 0 0 0 0
0 ρ( f ) 0 0 0 0
0 0 ρ2( f ) 0 0 0
0 0 0 ρ3( f ) 0 0
0 0 0 0 ρ4( f ) 0
0 0 0 0 0 ρ5( f )

 ,

W 7→ Z :=



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 ,

where f ∈ Aθ (understood by the realization mentioned in Section 2). (The “1" in
the matrix entries here is the identity of Aθ which is Iq, the identity q by q matrix.)
Now consider the 6× 6 unitary matrix E = 1√

6
[ω−ij], where i, j = 0, 1, . . . , 5 and

ω = e(1/6). One has

(ETf E∗)ij =
1
6

5

∑
k,`=0

ω−ikδk,`ρk( f )ω j` =
1
6

f j−i

where fr =
5
∑

k=0
ωrkρk( f ) (and j − i is reduced mod 6). Further, it is easy to check

that

EZE∗ = D := diag(1, ω, ω2, ω3, ω4, ω5).
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Therefore, composing the above injection with the automorphism E∗(·)E (which
is just a change of coordinates), one obtains the injection γ : Hθ→M6(Aθ) given by

γ( f ) =
1
6



f0 f1 f2 f3 f4 f5
f5 f0 f1 f2 f3 f4
f4 f5 f0 f1 f2 f3
f3 f4 f5 f0 f1 f2
f2 f3 f4 f5 f0 f1
f1 f2 f3 f4 f5 f0

 , γ(W) = Iq ⊗ D.

Note that fr is in the eigenspace Aρ
θ(ω−r) := {g ∈ Aθ : ρ(g) = ω−rg}. Fix g in

this eigenspace. Then

(3.1) ω−rg(x, y) = η0(g(y, y− x))

for all x, y ∈ R. Along the left edge of Q one gets ω−rg(0, y) = η0(g(y, y)) for
0 6 y 6 1

2 . Evaluation of (3.1) at (z, 1 − z), for 1
3 6 z 6 1

2 , one gets (upon
reapplying (3.1) and using the fact that η2

0 = ζ0 as q is even):

ω−rg(z, 1− z) = η0(g(1− z, 1− 2z)) = ωrη2
0(g(1− 2z,−z))

= ωrζ0α−1
1 α1(g(1− 2z,−z)) = ωrζ0α−1

1 (g(1− 2z, 1− z)).

Thus, g(z, 1− z) = ω2rζ0α−1
1 (g(1− 2z, 1− z)). This gives

Aρ
θ(ω−r)

=
{

g ∈ C(Q, Mq) :
g(0, y) = ωrη0(g(y, y)), 0 6 y 6 1

2 ,
g(z, 1− z) = ω2rζ0α−1

1 (g(1− 2z, 1− z)), 1
3 6 z 6 1

2

}
.

For r = 0 this is the realization obtained in Section 4.4 of [8]. This shows that Hθ

is isomorphic to the C∗-algebra

Tθ :=
{

F ∈ C(Q, Mq ⊗ M6) :

F(0, y) = (η0 ⊗AdD−1)(F(y, y)), 0 6 y 6 1
2 ,

F(z, 1− z) = (ζ0α−1
1 ⊗AdD−2)(F(1− 2z, 1− z)), 1

3 6 z 6 1
2

}
,

where AdC(·) = C(·)C∗. As has been done before (in the Fourier case [14]) and
still carries through in our case, there is an isomorphism β : Tθ → Sθ where

Sθ :=

F ∈ C(S2, Mq ⊗ M6) :

F(s0) ↔ W0 ⊗ D
F(s1) ↔ Up′

0 Γ0 ⊗ D3

F(s2) ↔ Up′
0 W2

0 ⊗ D2


where s0 = (0, 0), s1 = (0, 1/2), s2 = (1/3, 2/3) are the singular points and insert-

ing W1 = U−p′
0 . (Here, “A ↔ B" means AB = BA.) For g ∈ Tθ one defines β(g) to

be the continuous function on Q such that

β(g)(s) := (Rs ⊗ Ds) · g(s) · (Rs ⊗ Ds)−1
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for s ∈ Q− {s0, s1, s2}, where s 7→ Rs and s 7→ Ds are unitary-valued maps on Q,
with respective values in Mq and M6, that are continuous on Q − {s0, s1, s2} and
have edge-limits as indicated in Figures 1 and 2. (See [8].) The mapping Ds can be
chosen to be diagonal-valued (since the edge limits are all diagonal), a fact used
below. These maps have jump discontinuities at the singular points, but they are
carefully chosen so that β(g)(s) is well-defined, continuous on Q, and has the
same values on the corresponding edges, so that it extends to a continuous func-
tion on S2. Composing β with the isomorphism Hθ → Tθ described above one
obtains the isomorphism βγ : Hθ → Sθ that gives the singular sphere realization
of the crossed product (in the case θ is rational).

It is easy to see that the canonical (normalized) trace on Sθ , which arises
from that of Aθ given in Section 2, is given by

(3.2) τ(F) =
1
q

∫∫
Q

Tr6q(F(x, y)) dxdy.

Consider the following trace functionals

τ0k(F) = Tr(F(s0) (W0 ⊗ D)k), k = 0, 1, 2, 3, 4, 5;

τ1k(F) = Tr(F(s1) (Up′
0 Γ0 ⊗ D3)k), k = 0, 1;

τ2k(F) = Tr(F(s2) (Up′
0 W2

0 ⊗ D2)k), k = 0, 1, 2.

(These are in fact tracial maps on Sθ .) To simplify, denote the underlying unitaries
in each case by wj ⊗ Dj, j = 0, 1, 2, so that all these traces can all be written as

τjk(F) = Tr(F(sj)(wj ⊗ Dj)
k).

Let Y := {s0, s1, s2}. Fixing f ∈ Aθ and expanding γ( f ) as

γ( f ) =
1
6

(
f0 ⊗ I6 +

3

∑
j=1

f j ⊗ (matrices with zero diagonal)
)

one has, for s in Q−Y,

β(γ( f ))(s)=(Rs ⊗ Ds) · γ( f )(s) · (Rs ⊗ Ds)−1

=
1
6
(Rs f0(s)R∗

s )⊗ I6+
1
6

5

∑
j=1

(Rs f j(s)R∗
s )⊗(matrices with zero diagonal)

and since β(γ(W)) = β(Iq ⊗ D) = Iq ⊗ D (viewed as a constant function on Q)
and Dj are all diagonal, then using the same idea as in [14] one gets

τ0k(β(γ( f )γ(Wr))) = δr+k
6 Tr( f0(0, 0)Wk

0 ), k = 0, . . . , 5.

(Note: Tr(Dn) = 6δn
6 .) Similarly, for the other two singularities one gets

τ1k(β(γ( f ) γ(Wr))) = δr+3k
6 Tr( f0(0, 1/2)(Up′

0 Γ0)k), k = 0, 1;

τ2k(β(γ( f ) γ(Wr))) = δr+2k
6 Tr( f0(1/3, 2/3) (Up′

0 W2
0 )k), k = 0, 1, 2.
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There is no confusion in denoting by U, V, W the unitaries in Sθ corresponding to
the original unitaries U, V, W in Bθ under the isomorphism βγ. With f = UmVn

these yield

τ0k(UmVnWr) = δr+k
6 Tr( f0(0, 0)Wk

0 ), k = 0, . . . , 5;

τ1k(UmVnWr) = δr+3k
6 Tr( f0(0, 1/2)(Up′

0 Γ0)k), k = 0, 1;

τ2k(UmVnWr) = δr+2k
6 Tr( f0(1/3, 2/3)(Up′

0 W2
0 )k), k = 0, 1, 2.

We are now ready to relate the traces {τjk} with the original traces {Tjk}.

PROPOSITION 3.1. With p
q ∈ P, one has

τ01 =3
√

2(1− i)T10, τ02 = 6i[(1 + ω)T20 −ωT21],

τ03 =6
√

2(1 + i)T30, τ11 =4(T31 − T30), τ21 =3iωλ(p′)2/6[(ω − 2)T20 −ωT21].

Proof. We shall make free use of the results obtained in Lemma 2.4. We take
f = UmVn so that

f0 =
5

∑
j=0

ρj(UmVn)

= UmVn + U−mV−n + λ−n2/2−mn(U−nVm+n + UnV−(m+n))

+ λ−m2/2−mn(U−(m+n)Vm + Um+nV−m)

or

f0(x, y) = e((mx + ny)/q)Um
0 Vn

0 + e(−(mx + ny)/q)U−m
0 V−n

0

+λ−n2/2−mn(e(((m+n)y−nx)/q)U−n
0 Vm+n

0 +e((nx−(m+n)y)/q)Un
0 V−(m+n)

0 )

+λ−m2/2−mn(e((my−(m+n)x)/q)U−(m+n)
0 Vm

0 +e(((m+n)x−my)/q)Um+n
0 V−m

0 ).

For τ01 one takes r = 5 and obtains

τ01(UmVnW5)

= Tr( f0(0, 0)W0)

=2Tr(Um
0 Vn

0 W0)+2λ−n2/2−mnTr(U−n
0 Vm+n

0 W0)+2λ−m2/2−mnTr(Um+n
0 V−m

0 W0)

=
2(1−i)√

2
(λ(m2+n2)/2+λ−n2/2−mnλ(n2+(m+n)2)/2+λ−m2/2−mnλ((m+n)2+m2)/2)

= 3
√

2(1− i)λ(m2+n2)/2 = 3
√

2(1− i)T10(UmVnW5).

For τ02 one takes r = 4 and obtains (recalling that p ≡ 1 mod 3)

τ02(UmVnW4) = Tr( f0(0, 0)W2
0 )

= 2Tr(Um
0 Vn

0 W2
0 )+2λ−n2/2−mnTr(U−n

0 Vm+n
0 W2

0 )+2λ−m2/2−mnTr(Um+n
0 V−m

0 W2
0 )
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= 2iω−2p(m−n)2
λ(m−n)2/6 + 2iω−2p(m+2n)2

λ−n2/2−mnλ(m+2n)2/6

+ 2iω−2p(2m+n)2
λ−m2/2−mnλ(2m+n)2/6

= 6iω−2p(m−n)2
λ(m−n)2/6 = 6i[(1 + ω)T20(UmVnW4)−ωT21(UmVnW4)].

For τ03 one takes r = 3 and obtains

τ03(UmVnW3)

= Tr( f0(0, 0)W3
0 )

= 2Tr(Um
0 Vn

0 W3
0 )+2λ−n2/2−mnTr(U−n

0 Vm+n
0 W3

0 )+2λ−m2/2−mnTr(Um+n
0 V−m

0 W3
0 )

=2
√

2(1+i)(λ−mn/2δm
2 δn

2+λ−n2/2−mnλ(m+n)n/2δn
2 δm+n

2 +λ−m2/2−mnλ(m+n)m/2δm+n
2 δn

2 )

= 6
√

2(1 + i)T30(UmVnW3).

For τ11 one observes that pp′ ≡ −1 mod 2q which allows us to write e(α/2q) =
λ−αp′/2, where α is a linear combination of m and n. One then takes r = 3 and
obtains

τ11(UmVnW3) = Tr( f0(0, (1/2))Up′
0 Γ0) =

√
2

(1 + i)
Tr( f0(0, (1/2))Up′

0 W3
0 )

=
√

2
(1 + i)

[e(n/2q)Tr(Um
0 Vn

0 Up′
0 W3

0 ) + e(−n/2q)Tr(U−m
0 V−n

0 Up′
0 W3

0 )

+λ−n2/2−mn(e((m+n)/2q)Tr(U−n
0 Vm+n

0 Up′
0 W3

0 )

+e(−(m+n)/2q)Tr(Un
0 V−(m+n)

0 Up′
0 W3

0 ))

+λ−m2/2−mn(e(m/2q)Tr(U−(m+n)
0 Vm

0 Up′
0 W3

0 )+e(−m/2q)Tr(Um+n
0 V−m

0 Up′
0 W3

0 ))]

=
√

2
(1 + i)

[λnp′/2Tr(Um+p′
0 Vn

0 W3
0 ) + λ−np′/2Tr(U−m+p′

0 V−n
0 W3

0 )

+λ−n2/2−mn(λ(m+n)p′/2Tr(U−n+p′
0 Vm+n

0 W3
0 )+λ−(m+n)p′/2Tr(Un+p′

0 V−(m+n)
0 W3

0 ))

+ λ−m2/2−mn(λmp′/2Tr(U−(m+n)+p′
0 Vm

0 W3
0 ) + λ−mp′/2Tr(Um+n+p′

0 V−m
0 W3

0 ))]

= 2λnp′/2λ−(m+p′)n/2δ
m+p′
2 δn

2 + 2λ−np′/2λ(−m+p′)n/2δ
−m+p′
2 δn

2

+ 2λ−n2/2−mn[λ(m+n)p′/2λ−(−n+p′)(m+n)/2δ
−n+p′
2 δm+n

2

+ λ−(m+n)p′/2λ(n+p′)(m+n)/2δ
n+p′
2 δm+n

2 ]

+2λ−m2/2−mn[λmp′/2λ(m+n−p′)m/2δ
−(m+n)+p′
2 δm

2 +λ−mp′/2λ(m+n+p′)m/2δ
m+n+p′
2 δm

2 ]

= 2λ−mn/2(2δm−1
2 δn

2 + 2δn−1
2 δm+n

2 + 2δm+n−1
2 δm

2 )

= 4λ−mn/2(1− δm
2 δn

2 ) = 4(T31(UmVnW3)− T30(UmVnW3)).

Finally, for τ21 we observe that pp′≡−1 mod 6q which allows us to write e(α/3q)
= λ−αp′/3, where again α is a linear combination of m and n. One takes r = 4 and
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obtains

τ21(UmVnW4) = Tr( f0(1/3, 2/3)(Up′
0 W2

0 ))

= e((m + 2n)/3q)λnp′Tr(Um+p′
0 Vn

0 W2
0 )

+ e(−(m + 2n)/3q)λ−np′Tr(U−m+p′
0 V−n

0 W2
0 )

+ λ−n2/2−mne((2m + n)/3q)λ(m+n)p′Tr(U−n+p′
0 Vm+n

0 W2
0 )

+ λ−n2/2−mne(−(2m + n)/3q)λ−(m+n)p′Tr(Un+p′
0 V−(m+n)

0 W2
0 )

+ λ−m2/2−mne((m− n)/3q)λmp′Tr(U−(m+n)+p′
0 Vm

0 W2
0 )

+ λ−m2/2−mne((n−m)/3q)λ−mp′Tr(Um+n+p′
0 V−m

0 W2
0 )

=
iλp′2/6λ(m−n)2/6

ω2pp′2 ω2p(m−n)2
[ω2pp′(m−n)λ−(m+2n)p′/3λ3np′/3λ(m−n)p′/3

+ ω2pp′(n−m)λ(m+2n)p′/3λ−3np′/3λ(n−m)p′/3

+ ω4pp′(m+2n)λ−(2m+n)p′/3λ3(m+n)p′/3λ−(m+2n)p′/3

+ ω2pp′(m+2n)λ(2m+n)p′/3λ−3(m+n)p′/3λ(m+2n)p′/3

+ ω4pp′(2m+n)λ−(m−n)p′/3λ3mp′/3λ−(2m+n)p′/3

+ ω2pp′(2m+n)λ(m−n)p′/3λ−3mp′/3λ(2m+n)p′/3]

= iλp′2/6ω−2ω4(m−n)2
λ(m−n)2/6

· [ω4(m−n) + ω2(m−n) + ω2(m+2n) + ω4(m+2n) + ω2(2m+n) + ω4(2m+n)]

= −3iλp′2/6ωω4(m−n)2
λ(m−n)2/6(ω4(m−n) + ω2(m−n))

= 3iλp′2/6ω[(ω − 2)T20(UmVnW4)−ωT21(UmVnW4)],

since ω4k2
(ω4k + ω2k) = (2−ω)δk

3 + ω. This completes the proof.

4. AN AUXILIARY BASIS FOR K0(Hp/q)

As a step toward showing that the ten modules generate K0(Hθ) (for ratio-
nal θ), we consider in this section an auxiliary basis for K0(Hθ) that arises natu-
rally from the realization of Hθ as a sphere with singularities, as obtained in the
previous section. This will enable one to show that the range of the reduced char-
acter T′ on K0(Hθ) (as defined in Section 2) is equal to its range on Rθ . To do this,
we shall assume that θ is in the dense set of rationals P, as defined in Section 2.

Let θ = p
q be any rational in (0, 1). Let F0 be a rank one subprojection of

the spectral projection of ω−1/4W0 (which has order six) corresponding to the
eigenvalue 1 (corresponding to the singularity s0 = (0, 0)). Similarly, let F1 be
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such a projection for Up′
0 Γ0, and F2 for i−1/3λ−(1/6)(p′′)2

Up′
0 W2

0 . These are all pro-
jections in Mq(C), and we think of them as being associated with the singular
points s0, s1, s2, respectively (cf. definition of Sθ in Section 3). Thus, by definition,
one has

W0F0 = ω1/4F0, Up′
0 Γ0F1 = F1, Up′

0 W2
0 F2 = i1/3λ(1/6)(p′′)2

F2.

Now consider the rank one projection ej
k := Fj ⊗ Ek for j = 0, 1, 2 and k =

1, 2, 3, 4, 5, 6, where Ek ∈ M6(C) is the diagonal matrix that has 1 at the k-th diag-
onal entry and zeros elsewhere. It will be convenient to introduce the following
notation. If e, f , g are matrix projections of equal rank, we denote by [e, f , g] a
smooth projection-valued function on S2 such that

[e, f , g](s0) = e, [e, f , g](s1) = f , [e, f , g](s2) = g.

(Such a function clearly exists since the projections have equal rank.) So [e, f , g]
defines a projection in Sθ , and hence a unique positive class in K0(Sθ). Now
consider the following nine projections in Sθ :

[e0
1, e1

1, e2
1], [e0

4, e1
4, e2

4], [e0
1, e1

2, e2
2], [e0

2, e1
2, e2

2], [e0
5, e1

5, e2
5],(4.1)

[e0
1, e1

2, e2
3], [e0

3, e1
3, e2

3], [e0
6, e1

6, e2
6], [e0

1, e1
3, e2

3].

We claim that these projections, together with one other class in the kernel of T′,
which is κp,q, form a basis for K0(Sθ) ∼= K0(Hθ).

Since W0 ⊗D−1 has order six, let nk be the dimension of its eigenspace corre-
sponding to the eigenvalue ωk, k = 1, . . . , 6. (So, ∑

k
nk = 6q.) Similarly, let k, 6q− k

be the spectral dimensions of Γ0W1⊗D3 (which has order 2), and m1, m2, m3 those
of W2

0 W1 ⊗ D−2 (which has order 3). The commutant of W0 ⊗ D−1 in Mq ⊗ M6

is isomorphic to
6⊕

k=1
Mnk . For Γ0W1 ⊗ D3 the commutant algebra is isomorphic to

Mk ⊕ M6q−k, and for W2
0 W1 ⊗ D−2 it is

3⊕
k=1

Mmj . (Although these dimensions are

known from [8] and [1], their exact values will not be needed here.) Identifying
each commutant in this way with its corresponding matrix algebra direct sum,
one has the surjective map obtained by evaluations

E : Sθ −→ F :=
( 6⊕

k=1

Mnk

)
⊕

( 3⊕
j=1

Mmj

)
⊕ (Mk ⊕ M6q−k)

E(F) = (F(s0); F(s2); F(s1))(4.2)

where F(s1) ∈ Mk ⊕ M6q−k. Letting J denote the kernel of E , one has the short
exact sequence

(4.3) 0 −−−−→ J
j

−−−−→ Sθ
E−−−−→ F −−−−→ 0
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where j : J ↪→ Sθ is inclusion. Under the induced map

E∗ : K0(Sθ) → K0(F) ∼= Z6 ⊕Z3 ⊕Z2,

one gets (since Fj has rank one)

[e0
1, e1

1, e2
1] 7→ (1, 0, 0, 0, 0, 0); (1, 0, 0); (1, 0)

[e0
2, e1

2, e2
2] 7→ (0, 1, 0, 0, 0, 0); (0, 1, 0); (0, 1)

[e0
3, e1

3, e2
3] 7→ (0, 0, 1, 0, 0, 0); (0, 0, 1); (1, 0)

[e0
4, e1

4, e2
4] 7→ (0, 0, 0, 1, 0, 0); (1, 0, 0); (0, 1)

[e0
5, e1

5, e2
5] 7→ (0, 0, 0, 0, 1, 0); (0, 1, 0); (1, 0)(4.4)

[e0
6, e1

6, e2
6] 7→ (0, 0, 0, 0, 0, 1); (0, 0, 1); (0, 1)

[e0
1, e1

2, e2
2] 7→ (1, 0, 0, 0, 0, 0); (0, 1, 0); (0, 1)

[e0
1, e1

2, e2
3] 7→ (1, 0, 0, 0, 0, 0); (0, 1, 0); (1, 0)

[e0
1, e1

3, e2
3] 7→ (1, 0, 0, 0, 0, 0); (0, 0, 1); (1, 0).

Since J is the ideal of all functions S2 → M6q vanishing at the three singular points
sj, it is isomorphic to R0 ⊗ M6q where

(4.5) R0 := { f ∈ C(S2, C) : f (s0) = f (s1) = f (s2) = 0}.

Hence K0(J) ∼= K0(R0) ∼= Z and K1(J) ∼= K1(R0) ∼= Z2. Now consider the follow-
ing part of the six-term exact K-theory sequence associated with (4.3)

(4.6) Z∼=K0(J)
j∗−−−−→ K0(Sθ)

E∗−−−−→ K0(F)=Z11 δ0−−−−→ K1(J)∼=Z2 −−−−→ 0

where δ0, the connecting homomorphism, is surjective (as K1(Sθ) = 0, by Theo-
rems 3 and 4 of [7]). Since K0(Sθ) ∼= Z10, and since the nine elements in Z11 given
by the right sides of (4.4) together with

(4.7) (0, 0, 0, 0, 0, 0); (0, 0, 0); (0, 1) and (1, 0, 0, 0, 0, 0); (0, 0, 0); (0, 0)

constitute an 11× 11 matrix whose determinant is ±1, it follows that E∗(K0(Sθ))
is spanned by the images of the nine projections in (4.1). These, together with
the image under j∗ of a generator ξ of K0(J), constitute a basis for K0(Sθ). The
remaining basis element j∗(ξ) will be shown to be ±κp,q (see Corollary 4.4).

REMARK 4.1. By showing that δ0 maps the two K0-elements correspond-
ing to (4.7) are mapped onto generators of K1(J) one obtains another proof that
K0(Sp/q) ∼= Z10 and K1(Sp/q) = 0.

Now let us calculate the traces T10, T20, T21, T30, T31 on these nine projections.
In view of Proposition 3.1 (with θ = p/q ∈ P), for k = 1, . . . , 6 one has (with “∗”
denoting any value)

3
√

2(1− i)T10[e0
k , e1

∗, e2
∗] = τ01[e0

k , e1
∗, e2

∗] = Tr(e0
k(W0 ⊗ D)) = Tr(F0W0) Tr(EkD)
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since W0F0 = ω1/4F0, Tr(F0W0) = ω1/4, and Tr(EkD) = ωk−1, one gets

T10[e0
k , e1

∗, e2
∗] =

(1 + i)
6
√

2
ω1/4ωk−1 =

1
6

ωk

(k = 1, . . . , 6). This gives the values for T10 in Table 2. Similar calculations for the
other traces yields the following equalities and the remaining values in the table,

T21[e0
k , e1

∗, e2
∗] = −1

6
ω2k, T30[e0

k , e1
∗, e2

∗] =
1
12

(−1)k−1,

T31[e0
k , e1

` , e2
∗] =

1
12

(−1)k−1 +
1
4
(−1)`−1, T20[e0

k , e1
∗, e2

m] = −1
9

ω2(m−1) − 1
18

ω2k,

ωT21[e0
k , e1

∗, e2
m] = (1 + ω)T20[e0

k , e1
∗, e2

m] +
i
6

ω1/2ω2(k−1).

(To facilitate the computations, one uses the equalities 1 + ω = i
√

3ω−1, iω1/2 =
ω2, ω2 = ω − 1.)

Table 2. Values of T′ for p/q ∈ P
K0-class τ φ0 φ′0 φ1 φ′1 φ2 φ′2 T30 T31

[e0
1, e1

1, e2
1]

1
6q

1
12

√
3

12
1
12

√
3

36
1
4

√
3

12
1

12
1
3

[e0
2, e1

2, e2
2]

1
6q − 1

12

√
3

12 − 1
12

√
3

36 − 1
4

√
3

12 − 1
12 − 1

3

[e0
3, e1

3, e2
3]

1
6q − 1

6 0 0 −
√

3
18 0 −

√
3

6
1

12
1
3

[e0
4, e1

4, e2
4]

1
6q − 1

12 −
√

3
12

1
12

√
3

36
1
4

√
3

12 − 1
12 − 1

3

[e0
5, e1

5, e2
5]

1
6q

1
12 −

√
3

12 − 1
12

√
3

36 − 1
4

√
3

12
1

12
1
3

[e0
6, e1

6, e2
6]

1
6q

1
6 0 0 −

√
3

18 0 −
√

3
6 − 1

12 − 1
3

[e0
1, e1

2, e2
2]

1
6q

1
12

√
3

12 − 1
12 −

√
3

36 − 1
12

√
3

12
1

12 − 1
6

[e0
1, e1

2, e2
3]

1
6q

1
12

√
3

12
1
12 −

√
3

12
1

12 −
√

3
12

1
12 − 1

6

[e0
1, e1

3, e2
3]

1
6q

1
12

√
3

12
1
12 −

√
3

12
1

12 −
√

3
12

1
12

1
3

(The canonical trace values are immediate from the expression for τ in (3.2).)
One is now in a position to check that each row of Table 2 is in the Z-span

of the rows of Table 1, and vice versa (a simple computer program can be used
to verify this quickly). (Recall that in Table 1, φk, φ′k are the real and imaginary
components of Tij.) In checking this, however, it is helpful to use the fact that p

q is

in P, that 1 + 22k+1 and 22k − 1 are divisible by 3, and that q− 2 is divisible by 6.
We have therefore proved the following.

PROPOSITION 4.2. For any θ ∈ P, one has T′(K0(Hθ)) = T′(Rθ).

By the same proof as in [14] (Section 5) one obtains, almost mutatis mutan-
dis, the following result.

PROPOSITION 4.3. For any positive rational θ = p
q < 1, the class κp,q ∈ K0(Sθ)

is the image of a generator of K0(J) ∼= Z under the canonical map j∗ : K0(J) → K0(Sθ).
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Combining this with what we have just shown one obtains:

COROLLARY 4.4. For θ ∈ P, one has Ker(T′) = Zj∗(ξ) = Zκp,q.

5. CONCLUSIONS

PROPOSITION 5.1. For θ ∈ P, the classes [1], [p0], [p1], [p2], [p3], [p4], [q0], [q1],
[r], [M6] form a basis for the group K0(Hθ) = Z10.

Proof. In view of Theorem 2.1, these classes are already independent (for
each θ), so it is enough to show that they generate. Pick any x in K0(Sθ). From
Proposition 4.2 (since θ ∈ P) one has T′(x) = T′(y) for some y ∈ Rθ . Therefore,
by the Corollary 4.4, x − y = mκp,q for some integer m (where θ = p

q ). Since κp,q

is already in Rθ , the result follows.

Using the exact same techniques of [14] one obtains the following result.

THEOREM 5.2. (Range of the Connes-Chern character.) For any 0 < θ < 1
one has the range of the Connes-Chern character: T(K0(Hθ)) = T(Rθ), where Rθ is
the subgroup of K0(Hθ) generated by the ten classes in Table 1. More specifically, the
range is spanned by the rows in Table 1.

THEOREM 5.3. For each θ > 0 the ten canonical classes form a basis for the group
K0(Hθ) = Z10.

Proof. We use the result of Polishchuk [10] that K0(Hθ) ∼= Z10. Since T is
injective on Rθ , whose rank is equal to the rank of K0(Hθ), it follows that T is
injective on all of K0(Hθ). Now the result follows from Theorem 5.2 since the ten
classes are already known to be independent by Theorem 2.1.

The result for K1 can be obtained at this point for a dense Gδ set of θ’s using
essentially the same Baire category argument used in Theorem 7.2-B of [14]. One
gets

THEOREM 5.4. There is a dense Gδ set of parameters θ in (0, 1) (containing the
rationals) for which K1(Hθ) = 0.

Of course, this result will follow from [6] for all θ since it is shown there that
Hθ is an AF-algebra.
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