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ABSTRACT. Let T be a Toeplitz operator on the Hardy space H2 on the unit
circle, and let the symbol of T be of the form ϕ

ψ , where ϕ is inner function, ψ is
a finite Blaschke product, and deg ψ 6 deg ϕ. D.N. Clark proved that such T
is similar to an isometry. In this paper, we find this isometry.
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1. INTRODUCTION

Let T = {z ∈ C : |z| = 1} be the unit circle, D = {z ∈ C : |z| < 1} the
unit disk, m the normalized Lebesgue measure on T. Let L2 = L2(T, m) be the
Lebesgue space, H2 = H2(T) the Hardy space, and P+ the orthogonal projection
from L2 onto H2. The Toeplitz operator TΦ with the symbol Φ, Φ ∈ L∞(T, m),
acts on H2 by the formula TΦh = P+Φh, h ∈ H2. For some classes of symbols
Φ there exist results on TΦ concerning their spectral theory. One of the first such
results is a concrete spectral representation of selfadjoint Toeplitz operators TΦ,
that is, for real-valued symbols Φ, see [13]. Further, it was proved in [12] that TΦ

with Φ = f
f
, where f , 1

f ∈ H∞, is similar to a unitary operator, and a concrete

spectral representation of this unitary operator was given in [5], [6] for a large
subclass of such symbols. There exist many results of the similarity of TΦ with
smooth symbols Φ to some simpler operators.

For example, in [16], [3], [2] it is proved that TΦ is similar to the direct sum
of a normal operator and analytic and antianalytic Toeplitz operators (that is,
operators of the form Tf and Tf , where f ∈ H∞) for some subclass of the class of
smooth symbols Φ. In [17], [18] it is proved that TΦ is similar to the operator of
multiplication by the independent variable on a specially constructed functional
space for some subclass of the class of smooth symbols Φ, and in [19] a linearly
similar model for some class of operators is constructed and its application to the
similarity of Toeplitz operators with smooth symbols is given.
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On the other hand, in [5] it is proved that if Φ has the form

(1.1) Φ =
ω f

f
,

where ω is inner, f , 1
f ∈ H∞, then TΦ is similar to an isometry. Any isometry is

equal to U ⊕ S, where U is unitary and S is a unilateral shift, and if TΦ with Φ
from (1.1) is similar to U⊕ S, then U is absolutely continuous and the multiplicity
of S is equal to the degree of ω. But nothing more about U is known in the general
case.

In this paper we consider the Toeplitz operator TΦ with Φ = ϕ
ψ , where ψ is

a finite Blaschke product, deg ψ = N < ∞, and ϕ is an inner function, deg ϕ > N
(the degree of an inner function ϕ is the number of Blaschke factors, if ϕ is a
finite Blaschke product, and ∞ in any other case). It is easy to see (Lemma 2.1
below) that such Φ can be represented in the form (1.1), therefore TΦ is similar
to an isometry U ⊕ S, where the multiplicity of a unilateral shift S is equal to
deg ϕ − N. In this paper, we find the unitary summand U. But no intertwining
operator that gives the similarity of TΦ and an isometry U ⊕ S is constructed.

If deg ϕ < ∞, then TΦ (with a little additional assumption on the symbol Φ)
is a particular case of Toeplitz operator regarded in [3], [1]. The investigation of
TΦ with Φ = ϕ

ψ , where ϕ is inner and ψ is a Blaschke factor (N = 1), was begun
in [4]. In this paper, we follow [1], [4] where it is appropriated.

The main results of the paper are the following theorems.

THEOREM 1.1. Suppose ψ is a finite Blaschke product, deg ψ = N < ∞, ϕ is
inner, N 6 deg ϕ 6 ∞, ϕ and ψ are relatively prime, and Φ = ϕ

ψ . Let TΦ : H2 → H2

be the Toeplitz operator with symbol Φ. We put In = {λ ∈ T : Φ− λ has at least n
zeros in D}, and σn = T \ In, n = 1, . . . , N. Then TΦ is similar to U ⊕ S, where S is a
unilateral shift of multiplicity deg ϕ− N and U is the operator of multiplication by the

independent variable in the space
N⊕

n=1
L2(σn, m).

THEOREM 1.2. Suppose ψ is a finite Blaschke product, deg ψ = N < ∞, ϕ is
inner, N 6 deg ϕ 6 ∞, ϕ and ψ are relatively prime, and Φ = ϕ

ψ . Then Φ has a

meromorphic continuation to D given by the formula Φ(z) = ϕ(z)
ψ(z) , z ∈ D. We put

ΩΦ = {z ∈ D : |Φ(z)| > 1}. Further, let TΦ : H2 → H2 be the Toeplitz operator with
symbol Φ. Then TΦ is similar to a unilateral shift if and only if m(∂ΩΦ ∩T) = 0.

The paper is organized as follows. In Section 2 we introduce the notation
and collect simple facts concerning operators similar to isometries and functions
Φ of the form Φ = ϕ

ψ , where ϕ is inner and ψ is a finite Blaschke product. Also,
in this section we deduce Theorem 1.2 from Theorem 1.1 and properties of Φ. In
Section 3 we give a description of the subspace K such that the restriction TΦ|K
is similar to a unitary summand U and construct a transformation Z from K to
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N−1⊕
n=0

L1, which intertwines (TΦ|K)−1 with the multiplication by ζ in
N−1⊕
n=0

L1, where

ζ is the independent variable. In the next section, we use this transformation Z
to prove Theorem 1.1. Section 5 contains some examples and remarks, which
illustrate Theorems 1.1 and 1.2 and show the difficulties that arise in the present
approach to the subject.

2. PRELIMINARIES

LEMMA 2.1. Suppose ϕ is an inner function, ψ is a finite Blaschke product, deg ψ

= N < ∞, and N 6 deg ϕ 6 ∞. Then Φ = ϕ
ψ can be represented in the form (1.1) with

deg ω = deg ϕ− N.

Proof. We take a number a ∈ D such that Ba = ϕ−a
1−aϕ is a Blaschke product

(cf. Theorem II.6.4 in [10]), then we have deg Ba = deg ϕ > N, therefore Ba = Bψ1,
where B, ψ1 are Blaschke products, deg ψ1 = N, and deg B = deg ϕ − N. Let
{δi}N

i=1 and {γi}N
i=1 be zeros of ψ and ψ1, respectively, counted with multiplicities.

We put f1(z) =
N
∏
i=1

1−γiz
1−δiz

, z ∈ T. We have ψ
ψ1

= f
f 1

on T and ϕ
Ba

= 1−aϕ
1−aϕ on T.

Thus, Φ = ϕ
ψ = ϕ

Ba

ψ1
ψ B has the form (1.1) with f = (1− aϕ) f1 and ω = B.

COROLLARY 2.2. If ϕ, ψ and Φ are as in Lemma 2.1, then TΦ is similar to U ⊕
S, where U is a unitary absolutely continuous operator, S is a unilateral shift, and the
multiplicity of S is deg ϕ− N.

Proof. First, we note the following evident fact. Let T be a completely non-
unitary contraction similar to an isometry. Then this isometry is equal to U ⊕ S,
where U is an absolutely continuous unitary operator, S is a unilateral shift, and
the multiplicity of S is equal to dim ker T∗. Any Toeplitz operator that is a contrac-
tion is a completely nonunitary contraction [11]. Let ω be inner and f , 1

f ∈ H∞,
then Tf / f is similar to a unitary operator [5], [12], and, in particular, is invertible.
Therefore T∗

ω f / f
= Tω f / f = TωTf / f and dim ker T∗

ω f / f
= dim ker Tω = deg ω.

The corollary is a consequence of this facts.

LEMMA 2.3 ([4]). Let T be an operator on a Hilbert space H, and let T be similar
to an isometry U ⊕ S, where U is a unitary operator and S is a unilateral shift. We
put K =

⋂
λ∈D

(T − λI)H. Then K =
⋂

λ∈Λ
(T − λI)H for any Λ ⊂ D such that Λ has

a cluster point in D. Moreover, the restriction T|K of the operator T on its invariant
subspace K is similar to U.

LEMMA 2.4 (see [5]). Let T be an operator on a Hilbert space K, which is similar
to an absolutely continuous unitary operator U. Then
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(i) for k, ` ∈ K the function Fk,`(λ) = ((T−λ)−1k, `), λ ∈ Ĉ \T, has the following
representation, where fk,` ∈ L1(T, m):

Fk,`(λ) =
1

2πi

∫
T

fk,`(ζ)dζ

ζ − λ
, λ ∈ Ĉ \T.

(ii) for a fixed vector ` ∈ K the mapping k→ fk,`,K → L1(T, m) is a linear bounded
transformation.

Proof. Denote by H the space in which U acts. By assumption, there exists
a linear bounded invertible transformation X : K → H such that XT = UX. For
any k, ` ∈ K there exist x, y ∈ H such that k = X−1x, ` = X∗y, and we have ((T−
λ)−1k, `) = ((T − λ)−1X−1x, X∗y) = (X(T − λ)−1X−1x, y) = ((U − λ)−1x, y).
Therefore in the conclusion of the Lemma k, ` and T can be replaced by x, y
and U. Now the result follows from the spectral representation of an absolutely
continuous operator U.

LEMMA 2.5. Suppose ϕ is an inner function, ψ is a finite Blaschke product, and
ϕ and ψ are relatively prime. We put Λ = {λ ∈ D : the inner factor of ϕ − λψ is a
Blaschke product with simple zeros}. Then the logarithmic capacity of D \Λ is zero.

Proof. We define the set Λ1 in the same way as the set Λ, but without the
assumption of simplicity of zeros. The proof of the fact that the logarithmic ca-
pacity of D \Λ1 is zero is almost the same as the proof of the Frostman’s theorem,
see Theorem II.6.4 in [10]. The set {λ ∈ Λ1 : ϕ− λψ has a multiple zero} is no
more than countable, and the result follows.

LEMMA 2.6. Suppose ϕ is an inner function, ψ is a finite Blaschke product, ϕ and
ψ are relatively prime, and deg ψ = N. Then for any λ ∈ C, |λ| > 1, the equation
ϕ− λψ = 0 has exactly N zeros in D (counted with multiplicities).

This lemma is a consequence of the Rouché theorem.
In the following theorem we collect properties of Φ that are needed to prove

Theorem 1.2.

THEOREM 2.7 ([8]). Suppose ψ is a finite Blaschke product, deg ψ = N < ∞,
ϕ is inner, N 6 deg ϕ 6 ∞, ϕ and ψ are relatively prime, and Φ = ϕ

ψ . Then Φ has

meromorphic continuation to D given by the formula Φ(z) = ϕ(z)
ψ(z) , z ∈ D. We put

ΩΦ = {z ∈ D : |Φ(z)| > 1} and IN = {λ ∈ T : Φ− λ has N zeros in D}. Then Φ
has angular boundary value at every point of ∂ΩΦ ∩T. We define Φ on ∂ΩΦ ∩T by its
angular boundary values. Then Φ is continuous on clos ΩΦ, IN = T \Φ(∂ΩΦ ∩ T),
and m(Φ(∂ΩΦ ∩T)) = 0 if and only if m(∂ΩΦ ∩T) = 0.

Proof of Theorem 1.2. By Theorem 1.1, TΦ is similar to a unilateral shift if and
only if m(σN) = 0, where σN = T \ IN . By Theorem 2.7, σN = Φ(∂ΩΦ ∩ T), and
m(Φ(∂ΩΦ ∩T)) = 0 if and only if m(∂ΩΦ ∩T) = 0.
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NOTATION. In the remaining part of the paper, we will use the following
notation. N is a natural number, ψ is a finite Blaschke product, deg ψ = N < ∞,

ψ(z) =
N
∏
i=1

z−δi
1−δiz

, α(z) =
N
∏
i=1

(z − δi), β(z) =
N
∏
i=1

(1− δiz), z ∈ D, {δi}N
i=1 ⊂ D.

Further, ϕ is an inner function, N 6 deg ϕ 6 ∞, ϕ and ψ are relatively prime, Φ =
ϕ
ψ is a function meromorphic in D, and Φ ∈ L∞(T, m), TΦ is the Toeplitz operator

on H2 with symbol Φ, K =
⋂

λ∈D
(TΦ − λI)H2, T = TΦ|K. By Corollary 2.2, TΦ is

similar to an isometry, we denote by U the unitary summand of this isometry. By
Lemma 2.3 we have that T is similar to U.

3. THE SUBSPACE K

In this section we give a description of the subspace K =
⋂

λ∈D
(TΦ − λI)H2.

By Lemma 2.3 the restriction T = TΦ|K is similar to the unitary summand U of
the isometry to which TΦ is similar. Then we construct a linear bounded trans-

formation Z : K →
N−1⊕
n=0

L1, such that ker Z = {0} and Z intertwines T−1 and the

multiplication by ζ in
N−1⊕
n=0

L1, where ζ is the independent variable. We shall use

this transformation Z to find U in the next section.

LEMMA 3.1. Let Fn : Ĉ \ T → C, n = 0, . . . , N − 1, be analytic functions such

that
N−1
∑

n=0
(Fn ◦ Φ)(z)zn = 0 for all z ∈ D such that |Φ(z)| 6= 1. Then Fn ≡ 0, n =

0, . . . , N − 1.

Proof. Let λ ∈ Ĉ \ clos D be such that Φ− λ has N simple zeros z1, . . . , zN in

D. We have
N−1
∑

n=0
Fn(λ)zn

j = 0, j = 1, . . . , N, therefore Fn(λ) = 0, n = 0, . . . , N − 1.

Since the set of points λ ∈ Ĉ \ clos D such that Φ − λ has N simple zeros in D
is dense in Ĉ \ clos D and Fn are analytic, we conclude that Fn ≡ 0 in Ĉ \ clos D,
n = 0, . . . , N − 1. Further, let λ ∈ Λ, where Λ is the set defined in Lemma 2.5.
Then Φ−λ has infinite number of simple zeros. Taking N different zeros of Φ−λ
and acting as above we obtain that Fn ≡ 0 in D, n = 0, . . . , N − 1.

LEMMA 3.2 (see [4]). Let k ∈ H2, and let λ ∈ C. Then k ∈ (TΦ − λ)H2 if and
only if there exists kλ ∈ H2 such that pλ,k = αk − β(ϕ− λψ)kλ is a polynomial and
deg pλ,k 6 N − 1. If these conditions are fulfilled, then k = (TΦ − λ)kλ.

Proof. The "only if" part. We have k = (TΦ−λ)kλ = P+(ϕψ−λ)kλ for some
kλ ∈ H2, therefore (ϕψ− λ)kλ = k + zhλ for some hλ ∈ H2, and (ϕ− λψ)kλ =
ψk + ψzhλ. We see that ψzhλ ∈ H2 ∩ψzH2 = H2	ψH2 and it is well-known that
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H2 	 ψH2 = 1
βPN−1, where PN−1 is the set of polynomials of degree no more

that N− 1. Therefore ψzhλ = − 1
β pλ,k, where pλ,k ∈ PN−1, and the result follows.

To prove the "if" part the same reasons must be used in the inverse order.

THEOREM 3.3. Let k be a function in D. The following are equivalent:
(i) k ∈ K;

(ii) k ∈ H2 and there exist vanishing at infinity functions Fn analytic on Ĉ \ T and
such that the next equality holds for all z ∈ D such that |Φ(z)| 6= 1:

(3.1) (αk)(z) =
N−1

∑
n=0

(Fn ◦Φ)(z)zn.

Moreover, if k ∈ K and Fn are defined by k in (3.1), then

(3.2) Fn(λ) = (αk− β(ϕ− λψ)(T − λ)−1k, zn), λ /∈ T,

and Fn has the following representation, where fn ∈ L1(T, m), n = 0, . . . , N − 1:

(3.3) Fn(λ) =
1

2πi

∫
T

fn(ζ)dζ

ζ − λ
, λ ∈ C \T.

REMARK. By Lemma 3.1 we have that Fn are defined by k in the only pos-
sible way.

Proof. Let k ∈ K. Then, since T − λ is invertible for any λ ∈ C \ T, by
Lemma 3.2 we have pλ,k = αk− β(ϕ− λψ)(T− λ)−1k. We put Fn(λ) = (pλ,k, zn).
Then (3.2) is fulfilled and Fn are analytic functions on C\T. The equality lim

λ→∞
Fn(λ)

= 0 easily follows from the representation pλ,k = (αT− βϕ)(T− λ)−1k. Now, let

z ∈ D, let λ = Φ(z), and let λ /∈ T. Then (αk)(z) =
N−1
∑

n=0
Fn(λ)zn + β(z)(ϕ −

λψ)(z)((T − λ)−1k)(z), but Φ = ϕ
ψ , therefore (ϕ− λψ)(z) = 0 and (3.1) follows.

The representation (3.3) is a consequence of (3.2), the fact that T is similar to U
and the part (i) of Lemma 2.4.

Now let k ∈ H2, and let k has a representation (3.1). We take λ ∈ Λ, where

Λ is the set from Lemma 2.5, and we put pλ,k(z) =
N−1
∑

n=0
Fn(λ)zn. We shall show

that k ∈ (TΦ − λ)H2, and by Lemma 3.2 it is sufficient to show that

(3.4)
αk− pλ,k

β(ϕ− λψ)
∈ H2.

Let ϕ− λψ = ωλgλ be the inner-outer factorization of ϕ− λψ, where ωλ is inner,
gλ is outer. Since |λ| < 1 and ϕ, ψ are inner, we have 1

gλ
∈ H∞, and, evidently,

1
β ∈ H∞. Therefore (3.4) can be rewritten as αk− pλ,k ∈ ωλ H2. By assumption on
λ, the function ωλ is a Blaschke product with simple zeros, therefore αk− pλ,k ∈
ωλH2 if and only if (αk)(z) = pλ,k(z) for any zero z of ωλ. But z is a zero of ωλ
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if and only if Φ(z) = λ, and the equality (αk)(z) = pλ,k(z) is a consequence of
(3.1). Thus, we proved that k ∈ (TΦ − λ)H2 for any λ ∈ Λ. By Lemma 2.5, the set
Λ has a cluster point in D, and by Lemma 2.3,

⋂
λ∈Λ

(TΦ − λI)H2 = K.

In Theorem 3.4 below we shall introduce and study the spaces E(K) for
compact sets K, which turn out to be spectral subspaces of T. We shall see it in the
next section. In Corollary 3.5 below we shall introduce and study the mapping
Z. We shall use this mapping in the next section. It is convenient to formulate
properties of E(K) and Z separately, but to prove them together.

THEOREM 3.4. Let K ⊂ T be a compact set. We put E(K) = {k ∈ K : the
functions Fn defined by k in (3.1) have analytic continuation to C \ K for all n =
0, . . . , N − 1}. Then E(K) is an invariant subspace of T and σ(T|E(K)) ⊂ K. More-

over, let λ0 ∈ C \ K, let k ∈ E(K), and let Gn(λ) = Fn(λ)−Fn(λ0)
λ−λ0

, where λ ∈ C \ K,
n = 0, . . . , N − 1. Then the equality (3.1) holds with k replaced by (T|E(K) − λ0)−1k
and Fn replaced by Gn.

COROLLARY 3.5. The mapping

Z : K →
N−1⊕
n=0

L1(T, m), Zk = { fn}N−1
n=0 ,

where fn are defined by k in (3.2) and (3.3), is a linear bounded transformation, ker Z =
{0}, and ZT−1 = VZ. Here

V :
N−1⊕
n=0

L1(T, m)→
N−1⊕
n=0

L1(T, m)

is an operator defined by the next formula, where { fn}N−1
n=0 ∈

N−1⊕
n=0

L1(T, m), ζ ∈ T:

(V{ fn}N−1
n=0 )(ζ) = {ζ fn(ζ)}N−1

n=0 .

Proof of Theorem 3.4 and Corollary 3.5. The boundedness and injectivity of Z
is a consequence of Theorem 3.3 and the part (ii) of Lemma 2.4. Now, we shall
prove Theorem 3.4. First, the linearity of E(K) follows from (3.2). Further, let
{k j}∞

j=1 ⊂ E(K), and let k j →j k, where k ∈ K. We need to check that k ∈
E(K). We put Zk j = { fnj}N−1

n=0 and Zk = { fn}N−1
n=0 , by already proved part of

Corollary 3.5 we have

(3.5) fnj →
L1(T)
j fn, n = 0, . . . , N − 1.

By the assumption, the functions Fnj, defined by fnj as in (3.3), are analytic on
C\K. Therefore fnj =0 a.e. on T\K, and the same is true for fn by the convergence
(3.5). Now, from (3.3) we conclude that k∈E(K). We proved that E(K) is a closed
set.
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Further, let λ0 /∈ K, let k ∈ E(K), and let Gn be defined as above. We put

p(z) =
N−1
∑

n=0
Fn(λ0)zn, z ∈ D, and

(3.6) h =
αk− p

ϕ− λ0ψ
=

1
ψ

αk− p
Φ− λ0

.

From (3.6) we conclude that h is analytic on D \Φ−1(λ0) and that

(3.7) (ψh)(z) =
N−1

∑
n=0

(Gn ◦Φ)(z)zn

for all z ∈ D such that Φ(z) /∈ K ∪ {λ0}. But the right part of (3.7) is analytic
on a neighbourhood of any point z such that Φ(z) = λ0. Thus, h is analytic on a
neighbourhood of Φ−1(λ0), and we have that h is analytic on D.

Now we shall prove that h ∈ H2. Let D(λ0) be a closed disk centered at
λ0 and such that Fn are analytic on D(λ0), n = 0, . . . , N − 1. Let z ∈ D and

Φ(z) = λ. If λ ∈ D(λ0), we use (3.7) to obtain that |(ψh)(z)| 6
N−1
∑

n=0
|Gn(λ)| |z|n 6

sup{|Gn(w)|, w ∈ D(λ0), n = 0, . . . , N − 1}. If λ /∈ D(λ0), we use (3.6) to obtain
that |(ψh)(z)| 6 |(αk)(z)|+‖p‖∞

|λ−λ0|
6 |(αk)(z)|+‖p‖∞

ε , where ε is the radius of D(λ0).

Now it is easy to see that h ∈ H2.
We put k0 = h

β , from (3.7) and (3.1) we conclude that k0 ∈ K, and from (3.7)
we have k0 ∈ E(K). By Lemma 3.2 and by (3.6) we have (TΦ − λ0)k0 = k.

Thus, for arbitrary k ∈ E(K) there exists k0 ∈ E(K) such that (TΦ − λ0)k0 =
k, that is, (T − λ0)E(K) ⊃ E(K) for λ0 /∈ K. In particular, (T − λ)E(K) ⊃ E(K)
for all λ ∈ C \ clos D, in the other words, E(K) ⊃ (T − λ)−1E(K), therefore
TE(K) ⊂ E(K). Now, (T− λ0)E(K) ⊂ E(K), and we have (T− λ0)E(K) = E(K).
Since ker(T − λ0) = {0}, we conclude that T|E(K) − λ0 is invertible.

Finally, the intertwining property of Z is a consequence of Theorem 3.4
(where K = T).

4. PROOF OF THEOREM 1.1

In this section we shall find the unitary summand U of the isometry to
which TΦ is similar. Since U is absolutely continuous, it is sufficient to find a local
spectral multiplicity function nU of U. To do it, we shall use the transformation
Z, which was defined in Corollary 3.5, and the similarity of T = TΦ|K and U. We

can consider U as the operator of multiplication by ζ in the space
∞⊕

n=1
L2(τn, m),

where τn are measurable subsets of T such that T ⊃ τ1 ⊃ · · · ⊃ τn ⊃ τn+1 ⊃ · · · .
Then nU(ζ) = max{n : ζ ∈ τn} for a.e. ζ ∈ T. Let X :

∞⊕
n=1

L2(τn, m) → K be a
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transformation which gives the similarity of T and U. Then the transformation

ZX :
∞⊕

n=1

L2(τn, m)→
N−1⊕
n=0

L1(T, m)

intertwines the operators U−1 and V, where V is the multiplication by ζ in the

space
N−1⊕
n=0

L1(T, m), and ker ZX = {0}. The space clos ZX
∞⊕

n=1
L2(τn, m) is an

invariant subspace of V, therefore there exists a measurable family of spaces
S(ζ) ⊂ CN , ζ ∈ T, such that

clos ZX
∞⊕

n=1

L2(τn, m)=
{

f∈
N−1⊕
n=0

L1(T, m)= L1(T, m; CN) : f(ζ)∈S(ζ) for a.e. ζ∈T
}

,

and nU(ζ) = dim S(ζ) for a.e. ζ ∈ T. The conclusion of Theorem 1.1 concerning
U can be rewritten as nU(ζ) = N + 1−min{n : 1 6 n 6 N, ζ ∈ σn} for a.e.
ζ ∈ T. To prove Theorem 1.1 we shall show that dim S(ζ) > N + 1−min{n :
1 6 n 6 N, ζ ∈ σn} and dim S(ζ) 6 N + 1−min{n : 1 6 n 6 N, ζ ∈ σn}.
Theorem 4.2 shows that dim S(ζ) > N − ν for a.e. ζ ∈ Iν \ Iν+1 = σν+1 \ σν. To
prove the inverse inequality we will use Lemma 4.6.

Before formulating Theorem 4.2 we need to prove Lemma 4.1 and to intro-
duce the notation.

LEMMA 4.1. Let I be an open subset of T. We put E(I) = {E ⊂ T \ I : E
is separated from (T \ I) \ E}, E0(I) = {E ∈ E(I) : m(E) = 0}, and J(I) =
I ∪ ⋃

E∈E0(I)
E. Then:

(i) J(I) is an open subset of T;
(ii) m(J(I)) = m(I);

(iii) T \ J(I) does not contain (nonempty) separated subsets of zero measure;
(iv) if a0, b0 ∈ T, a0 6= b0, I = [a0, b0] is a closed subarc of T and E is a subset of

I \ J(I) such that E is separated from (I \ J(I)) \ E and m(E) = 0, then E ⊂ {a0, b0};
in particular, if (a0, b0) \ J(I) 6= ∅, then m(I \ J(I)) > 0.

Proof. First, we will show that E(I) is no more than countable. We denote
by O the collection of finite unions of open subarcs of T which have rational
endpoints. We note that E ∈ E(I) if and only if there exists O ∈ O such that
clos E ⊂ O and O ∩ ((T \ I) \ E) = ∅. From the inclusion clos E ⊂ T \ I we
conclude that clos E = E. We have that for every E ∈ E(I) there exists OE ∈ O

such that E ⊂ OE and OE ∩ ((T \ I) \ E) = ∅. If E1, E2 ∈ E(I) and E1 6= E2,
from the last equality we conclude that OE1 6= OE2 . But O is countable, therefore
E(I) is no more than countable set. Now (ii) is proved and (i) follows from the
representation J(I) = I ∪ ⋃

E∈E0(I)
OE.

Parts (iii) and (iv) of the lemma can be proved in a similar way, so their
proofs are omitted.
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Let us recall that Φ is a function meromorphic in D, and Φ = ϕ
ψ , where ϕ is

inner, ψ is a finite Blaschke product, deg ψ = N < ∞, and N 6 deg ϕ 6 ∞. For
n = 1, . . . , N we introduced the sets In = {λ ∈ T : Φ − λ has at least n zeros
in D (counted with multiplicities)}. Also, we put I0 = T and IN+1 = ∅. It is
evident that In is an open subset of T. Now, we put Jn = J(In), where J(I)
for an open subset I of T is defined in Lemma 4.1. Also, we put A = {λ ∈ T :
there exists z ∈ D such that Φ(z) = λ and Φ′(z) = 0}. Evidently, A is no more
than countable. We recall that the subspace E(K) for a compact set K ⊂ T was
defined in Theorem 3.4.

THEOREM 4.2. We use the notation introduced above. Let 0 6 ν 6 N − 1, and
let λ0 ∈ Iν \ (A ∪ Jν+1). Then there exists a compact set K(λ0) ⊂ T such that λ0 ∈
K(λ0), the set K(λ0) does not contain (nonempty) separated subsets of zero measure, and
there exists a linear bounded transformation

Y : E(K(λ0))→
N−1⊕
n=ν

L1(K(λ0), m)

such that ker Y = {0}, clos YE(K(λ0)) =
N−1⊕
n=ν

L1(K(λ0), m) and YT−1 = VY, where

V acts in
N−1⊕
n=ν

L1(K(λ0), m) by the formula

(V{ fn}N−1
n=ν )(ζ) = {ζ fn(ζ)}N−1

n=ν .

To prove Theorem 4.2 we need the following lemmas.

LEMMA 4.3. Let K ⊂ T be a compact set, let m(K) > 0, and let ν be a number,
0 6 ν 6 N. Let ηj : K → C be continuous functions such that ηj(K) ∩ η`(K) = ∅ for
j 6= `, j, ` = 1, . . . , ν. Further, let

(4.1) M =

1 η1 . . . ηN−1
1

...
...

. . .
...

1 ην . . . ηN−1
ν


be a matrix-function. We put

L = L(K,M) =
{
{ fn}N−1

n=0 ∈
N−1⊕
n=0

L1(K, m) :M{ fn}N−1
n=0 = O

}
,

and we define the mapping W = W(K,M) : L →
N−1⊕
n=ν

L1(K, m) by the formula

W{ fn}N−1
n=0 = { fn}N−1

n=ν .
Then W is a linear bounded invertible transformation, and for

{ fn}N−1
n=ν ∈

N−1⊕
n=ν

L1(K, m)
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the elements of W−1{ fn}N−1
n=ν with numbers 0, . . . , ν−1 are given by the formula { fn}ν−1

n=0
= −M−1

1 M2{ fn}N−1
n=ν , where the matrix-functionsM1 andM2 consist of the columns

ofM with numbers 1, . . . , ν and ν + 1, . . . , N, respectively.
If ν = N, then the claim of the lemma is that L = {0}.
The proof of Lemma 4.3 consists in easy computations. We mention only

that the determinant of M1 is a Wandermonde determinant, which is not zero
because ηj(K) ∩ η`(K) = ∅, if j 6= `.

LEMMA 4.4. Let 0 6 ν 6 N − 1, let K ⊂ T be a compact set, and let ηj, j =
1, . . . , ν, be functions analytic in a neighbourhood D of K and such that for K and ηj,
j = 1, . . . , ν, the assumption of Lemma 4.3 holds. Further, let ν 6 κ 6 N − 1, and
let fκ be a function on K such that Fκ is bounded on Ĉ \ K. We put fn = 0, n 6= κ,

n = ν, . . . , N − 1, { fn}N−1
n=0 = W−1{ fn}N−1

n=ν , and gκ j(λ) =
N−1
∑

n=0
Fn(λ)(ηj(λ))n,

λ ∈ D \ K, j = 1, . . . , ν, where Fn are defined by fn in (3.3), n = 0, . . . , N − 1.
Then gκ j can be extended to functions analytic in D, j = 1, . . . , ν.

Proof. We shall use the notation from Lemma 4.3. The elements ajn of the
matrix −M−1

1 M2 are functions analytic and bounded on some neighbourhood
D1 ⊂ D of K, and fn = anκ fκ , n = 0, . . . , ν− 1. Further,

gκ j(λ) =
1

2πi

∫
K

( ν−1
∑

n=0
anκ(ζ) fκ(ζ)

)
ηn

j (λ) + fκ(ζ)ηκ
j (λ)

ζ − λ
dζ

=
1

2πi

∫
K

fκ(ζ)
ζ − λ

( ν−1

∑
n=0

anκ(ζ)ηn
j (λ) + ηκ

j (λ)
)

dζ

for λ ∈ D1 \ K. Further,
ν−1
∑

n=0
anκηn

j is the element ofM1(−M−1
1 M2) = −M2 on

the intersection of the jth row and κth column, that is,
ν−1
∑

n=0
anκηn

j = −ηκ
j , and

ν−1

∑
n=0

anκ(ζ)ηn
j (λ)+ηκ

j (λ)=
ν−1

∑
n=0

anκ(ζ)ηn
j (λ)−

ν−1

∑
n=0

anκ(λ)ηn
j (λ)=

ν−1

∑
n=0

(anκ(ζ)−anκ(λ))ηn
j (λ),

therefore

gκ j(λ) =
1

2πi

ν−1

∑
n=0

ηn
j (λ)

∫
K

anκ(ζ)− anκ(λ)
ζ − λ

fκ(ζ)dζ.

We put

ξn(λ) =
∫
K

anκ(ζ)− anκ(λ)
ζ − λ

fκ(ζ)dζ, λ ∈ D1 \ K.
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We recall that fκ ∈ L∞(K, m) and anκ are analytic on D1. It is well-known (and
easy to see by using the Morera theorem) that ξn are analytic on D1. We have

gκ j = 1
2πi

ν−1
∑

n=0
ηn

j ξn on D1, therefore gκ j are analytic on D1, and, consequently,

on D.

Before formulating next lemmas we introduce some more notation. Let 0 6
ν 6 N, and let λ0 ∈ Iν \ A. Then all zeros of Φ− λ0 are simple, and Φ− λ0 has
at least ν zeros z1, . . . , zν in D. There exist a closed disk D(λ0) centered at λ0 and
open sets V1, . . . ,Vν, such that zj ∈ Vj, Vj ∩ V` = ∅, j 6= `, Φ is univalent on Vj
and D(λ0) ⊂ Φ(Vj), j, ` = 1, . . . , ν. We put

ηj = Φ−1|D(λ0) : D(λ0)→ D, j = 1, . . . , ν.

Then, evidently, ηj are analytic functions, Φ(ηj(λ)) = λ, λ ∈ D(λ0), ηj(Φ(z)) =
z, z ∈ ηj(D(λ0)), and ηj(D(λ0)) ⊂ Vj, therefore ηj(D(λ0)) ∩ η`(D(λ0)) = ∅ if
j 6= `, j, ` = 1, . . . , ν.

We shall say that the local branches ηj of the inverse function to Φ are well-defined
on D(λ0). Of course, ηj depend on λ0, and, if Φ− λ0 has more than ν zeros, on
the choice of zeros z1, . . . , zν.

In what follows, we shall substitute z = ηj(λ), j = 1, . . . , ν, into (3.1) and
study the linear relations that are obtained in this way. Also, Lemmas 4.3 and
4.4, which are formulated for arbitrary functions ηj, really will be applied to local
branches of the inverse function to Φ.

LEMMA 4.5. Let 0 6 ν 6 N, and let λ0 ∈ Iν \ (A ∪ Jν+1). Then there exist
a closed arc I(λ0) ⊂ T and a closed disk D(λ0) centered at λ0 such that λ0 ∈ I(λ0),
(I(λ0) \ Jν+1) ∩ A = ∅, I(λ0) \ Jν+1 does not contain (nonempty) separated subsets
of zero measure, I(λ0) ⊂ int D(λ0), and local branches of the inverse function to Φ are
well-defined on D(λ0).

Proof. By the assumption, Φ− λ0 has exactly ν simple zeros z1, . . . , zν in D.
We take closed disks D1(λ0), D(λ0) centered at λ0 such that local branches of
the inverse function to Φ are well-defined on D(λ0), D1(λ0) ⊂ D(λ0), D1(λ0) 6=
D(λ0), and we put I(λ0) = D1(λ0) ∩ T. By the construction, Φ− λ has exactly ν
simple zeros in D for any λ ∈ I(λ0) \ Jν+1. In particular, (I(λ0) \ Jν+1)∩ A = ∅.

We denote by a0 and b0 the ends of the arc I(λ0). Let E be a set such that
E ⊂ I(λ0) \ Jν+1, m(E) = 0, and E is separated from (I(λ0) \ Jν+1) \ E. Then,
by the part (iv) of Lemma 4.1, E ⊂ {a0, b0}, that is, E = ∅, or E = {a0}, or
E = {b0}, or E = {a0, b0}. For definiteness, let E = {a0}. Since {a0} is separated
from (I(λ0) \ Jν+1) \ {a0}, there exists a point ζ0 ∈ T such that the arc (a0, ζ0] is
a subset of I(λ0) and (a0, ζ0] ⊂ Jν+1. In this case we replace I(λ0) = [a0, b0] by
[ζ0, b0]. If {b0} is separated from (I(λ0) \ Jν+1) \ {b0}, too, we change I(λ0) once
again. Now, the endpoints of the new (changed) arc I(λ0) belong to Jν+1. By the
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part (iv) of Lemma 4.1 we conclude that I(λ0) \ Jν+1 does not contain separated
subsets of zero measure.

LEMMA 4.6. Let 0 6 ν 6 N, let λ0 ∈ Iν \ A, and let D(λ0) be a closed disk
such that local branches ηj, j = 1, . . . , ν, of the inverse function to Φ are well-defined on
D(λ0). Further, let K ⊂ D(λ0) ∩ T be a compact set such that m(K) > 0, and letM
be the matrix-function defined in (4.1) by ηj|K, j = 1, . . . , ν. Then ZE(K) ⊂ L(K,M).

We recall that Z is defined in Corollary 3.5, and E(K) for a compact set K is
defined in Theorem 3.4.

Proof. Let k ∈ E(K), let Fn be defined by k in (3.1), and let { fn}N−1
n=0 = Zk.

Then for Fn and fn (3.3) holds, therefore Fn has angular boundary values Fn+ and
Fn− from inside of D and from outside of D, respectively, and fn = Fn+ − Fn−,
n = 0, . . . , N − 1. From the definition of E(K) we have fn = 0 on T \ K. Further,
αk is analytic on D and ηj are analytic in D(λ0), j = 1, . . . , ν, therefore (αk) ◦ ηj

are analytic in D(λ0), j = 1, . . . , ν. From (3.1) we have ((αk) ◦ ηj)(λ) =
N−1
∑

n=0
(Fn ◦

Φ)(ηj(λ))(ηj(λ))n for all λ ∈ D(λ0) such that |Φ(ηj(λ))| 6= 1. By the definition
of ηj we have Φ(ηj(λ)) = λ, that is,

(4.2) ((αk) ◦ ηj)(λ) =
N−1

∑
n=0

Fn(λ)(ηj(λ))n

for all λ ∈ D(λ0) \T. But from the analyticity of (αk) ◦ ηj on D(λ0) we have that
lim

λ→ζ,|λ|<1
((αk) ◦ ηj)(λ) = lim

λ→ζ,|λ|>1
((αk) ◦ ηj)(λ) for all ζ ∈ K ⊂ D(λ0) ∩ T, and

from the last equality and (4.2) we have

N−1

∑
n=0

Fn+(ζ)(ηj(ζ))n =
N−1

∑
n=0

Fn−(ζ)(ηj(ζ))n

for ζ ∈ K. Therefore,
N−1
∑

n=0
fnηn

j = 0 on K, j = 1, . . . , ν.

Proof of Theorem 4.2. We apply Lemma 4.5 to the number ν and the point λ0.
We put K(λ0) = I(λ0) \ Jν+1. We apply Lemma 4.3 to the set K(λ0) and to the
local branches ηj of the inverse function to Φ. Thus, we have the matrix-function
M and the mapping W. We put Y = WZ, where Z was defined in Corollary 3.5.
By Lemma 4.6 we have ZE(K(λ0)) ⊂ L(K(λ0),M). Now we shall use Lemma 4.4

to prove that clos WZE(K(λ0)) =
N−1⊕
n=ν

L1(K(λ0), m).

By Theorem VIII.2.2 in [9], for any compact set K ⊂ T such that m(K) > 0
there exists a function F analytic and bounded on Ĉ \ K and such that f 6= 0
a.e. on K, where F(λ) = 1

2πi

∫
K

f (ζ)dζ
ζ−λ , λ /∈ K; evidently, f ∈ L∞(K, m). For the

compact set K(λ0) we denote these functions by F∗ and f∗.
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We fix a number κ, ν 6 κ 6 N − 1. We construct the functions Fn, n =
0, . . . , N − 1, by Lemma 4.4 with fκ = f∗. We define a function h by the formula

h(z) =
N−1

∑
n=0

Fn(Φ(z))zn

for all z ∈ D such that Φ(z) /∈ K(λ0). We shall show that h can be continued
into D so that this continuation will be from H∞(D). By Lemma 4.5, we have

Φ−1(K(λ0)) ⊂
ν⋃

j=1
ηj(D(λ0)), and ηj(D(λ0)) ∩ η`(D(λ0)) = ∅, if j 6= `. We

fix j, 1 6 j 6 ν, and we write h = (h ◦ ηj) ◦ Φ on ηj(D(λ0) \ K(λ0)), and we
have h ◦ ηj = gκ j, where gκ j is a function from Lemma 4.4. The function gκ j
has an analytic continuation to D(λ0), therefore h has an analytic continuation to
ηj(D(λ0)). Thus, h has an analytic continuation in D. Now we will check that h is
bounded on D. Since Fn are bounded on Ĉ \D(λ0), we have that h is bounded on

D \
ν⋃

j=1
ηj(D(λ0)). The set

ν⋃
j=1

ηj(D(λ0)) is a compact set (D(λ0) is a closed disk),

and we conclude that h is bounded on D. Of course, Fn(∞) = 0, n = 0, . . . , N− 1,
therefore h can be represented in the form h = αk, where k ∈ H∞ ⊂ H2. From
(3.1) we conclude that k ∈ K. By the construction, k ∈ E(K(λ0)) and

WZk =



0
...
f∗
...
0

 ,

where the number of f∗ in this column, numerated from ν to N − 1, is κ.
Now we use the intertwining property of the transformations W and Z. We

shall denote by the same letter V the multiplication by ζ in the spaces
N−1⊕̀
=n

L1(K, m)

for all numbers n, 0 6 n 6 N − 1, and all (measurable) sets K ⊂ T. The equality
ZT−1 = VZ was proved in Corollary 3.5, the equality WV = VW is evident from
the definition of W, and the inclusion T−1E(K) ⊂ E(K) for a compact set K is
proved in Theorem 3.4. Now we write

WZT−nk =



0
...

ζ
n f∗
...
0

 , n = 0, 1, 2, . . . .
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Since K(λ0) 6= T and f∗ 6= 0 a.e. on K(λ0), we have
∞∨

n=0
ζ

n f∗ = L1(K(λ0), m).

Now we conclude that

0
...

L1(K(λ0), m)
...
0

 ⊂ clos WZE(K(λ0)),

where the number of L1(K(λ0), m) in this column, numerated from ν to N−1, is κ.
Since κ was arbitrary number from ν to N − 1, we can conclude that

N−1⊕
n=ν

L1(K(λ0), m) ⊂ clos WZE(K(λ0)).

Thus, we achieve the equality clos YE(K(λ0)) =
N−1⊕
n=ν

L1(K(λ0), m). The

equalities ker Y = {0} and YT−1 = VY are evident consequences of the con-
struction of Y.

Proof of Theorem 1.1. We recall that U is an absolutely continuous unitary
operator which is similar to T = TΦ|K. We can consider U as the operator

of multiplication by ζ in the space
∞⊕

n=1
L2(τn, m), where τn are measurable sub-

sets of T such that T ⊃ τ1 ⊃ · · · ⊃ τn ⊃ τn+1 ⊃ · · · . Further, there ex-

ists a linear bounded invertible transformation X :
∞⊕

n=1
L2(τn, m) → K such

that XU = TX. From Corollary 3.5 we have that the linear bounded trans-

formation ZX :
∞⊕

n=1
L2(τn, m) →

N−1⊕
n=0

L1(T, m) intertwines U−1 and V and that

ker ZX = {0}. From this facts we obtain that m(τn) = 0 for n > N, that is,
∞⊕

n=1
L2(τn, m) =

N⊕
n=1

L2(τn, m).

Let ν and λ0 be as in Theorem 4.2, and let F0 = X−1E(K(λ0)). Then F0 is a

subspace of
N⊕

n=1
L2(τn, m) such that UF0 ⊂ F0 and U−1F0 ⊂ F0. Therefore U|F0

is a unitary operator which is unitarily equivalent to the multiplication by ζ in
N⊕

n=1
L2(τ0n, m), where T ⊃ τ01 ⊃ · · · ⊃ τ0N , and, evidently, τ0n ⊂ τn, n = 1, . . . , N.

By Theorem 4.2, there exists a linear bounded transformation

Y0 :
N⊕

n=1

L2(τ0n, m)→
N−1⊕
n=ν

L1(K(λ0), m)
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such that

ker Y0 = {0}, clos Y0

( N⊕
n=1

L2(τ0n, m)
)

=
N−1⊕
n=ν

L1(K(λ0), m), Y0ζ = ζY0.

From this fact we conclude that τ0n = K(λ0), n = 1, . . . , N − ν, and τ0n = ∅,
n = N − ν + 1, . . . , N. From the inclusions τ0n ⊂ τn, n = 1, . . . , N, we conclude
that K(λ0) ⊂ τN−ν. Since ν was an arbitrary number between 0 and N− 1 and λ0
was an arbitrary point from Iν \ (A∪Jν+1), we conclude that In \ Jn+1 ⊂ τN−n,
n = 0, . . . , N − 1. From the equalities m(Jn+1) = m(In+1) and σn = T \ In
we conclude that σn+1 \ σn ⊂ τN−n, and, using the inclusions σn ⊂ σn+1 and
τn+1 ⊂ τn, we obtain σn+1 ⊂ τN−n, n = 0, . . . , N − 1.

Now let us suppose that for some ν, 1 6 ν 6 N, the set τN−ν+1 \ σν has
positive measure. Then there exists a compact set K0 such that K0 ⊂ τN−ν+1 \ σν,
m(K0) > 0 and K0 does not contain separated subsets of zero measure. We have
K0 ⊂ Iν, therefore (Iν \ A) ∩ K0 6= ∅. Let λ0 ∈ (Iν \ A) ∩ K0, and let D(λ0)
be a closed disk such that local branches ηj, j = 1, . . . , ν, of the inverse function
to Φ are well-defined on D(λ0). We put K = K0 ∩ D(λ0). By the part (iv) of
Lemma 4.1 applied to T \ K0 = J(T \ K0), we have m(K) > 0. We put F =
N−ν+1⊕

n=1
L2(K, m) and E = XF . Then E ⊂ K, the subspace E is invariant for T, and

σ(T|E ) ⊂ K. Let k ∈ E , and let {Fn}N−1
n=0 be the functions defined by k in (3.2).

From the equality (T − λ)−1|E = (T|E − λ)−1, λ /∈ T, we conclude that Fn has
an analytic continuation to Ĉ \ K, n = 0, . . . , N − 1, that is, k ∈ E(K). We have
E ⊂ E(K). By Lemma 4.6 ZE(K) ⊂ L(K,M), where the matrixM is constructed
by the functions ηj, j = 1, . . . , ν, as in Lemma 4.3. Thus, by Lemmas 4.3 and 4.6

we have WZE(K) ⊂
N−1⊕
n=ν

L1(K, m). Consequently, WZXF ⊂
N−1⊕
n=ν

L1(K, m). The

linear bounded transformation WZX acts from
N−ν+1⊕

n=1
L2(K, m) to

N−1⊕
n=ν

L1(K, m),

has zero kernel and intertwines the multiplications by ζ in these spaces. From

this fact we must conclude that the number of summands in
N−ν+1⊕

n=1
L2(K, m) is no

more than the number of summands in
N−1⊕
n=ν

L1(K, m), which is a contradiction.

We obtain σn = τN−n+1, n = 1, . . . , N.

5. EXAMPLES AND REMARKS

Let us recall that we consider functions Φ of the form Φ = ϕ
ψ , where ϕ is

inner, ψ is a finite Blaschke product, deg ψ = N < ∞, N 6 deg ϕ 6 ∞, ϕ and ψ
are relatively prime, and we put ΩΦ = {z ∈ D : |Φ(z)| > 1}.
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5.1. SOME TECHNICAL LEMMAS.

LEMMA 5.1. Let µ be a positive atomic measure on T with the weight (denoted by

the same letter µ) at the point 1 only. Let ϕµ(z) = exp
(
− µ 1+z

1−z

)
, ψ(z) = z, z ∈ D,

and let Φµ = ϕµ

ψ . Further, let 0 < µ < 2. Then arg Φµ(eit) increases on (0, t(µ)) ∪
(2π − t(µ), 2π) and decreases on (t(µ), 2π − t(µ)), where t(µ) = arccos(1 − µ).
Thus, ∂ΩΦµ ∩ T = {eit : t ∈ [t(µ), 2π − t(µ)]}. Further, m(∂ΩΦµ ∩ T) decreases
from 1 to 0, when µ ranges over (0, 2). If µ = 2, then ∂ΩΦµ ∩T = {−1}, and if µ > 2,
then ∂ΩΦµ ∩T = ∅.

The proof of Lemma 5.1 consists of a trivial computation and is omitted.
The following two lemmas describe some properties of functions that are

compositions with Φ.

LEMMA 5.2. Let s1, s2 be numbers such that −π < s1 < s2 < π, let J = {eis :
s ∈ [s1, s2]}, and let w(eis) = ((s− s1)(s2 − s))−1/2, where s1 < s < s2. Further, let
ω : Ĉ \ J → D be a conformal mapping. Then there exist a constant C > 0 such that

(5.1) ‖F ◦ω−1‖H2 6 C‖ f ‖L2(J,wdm)

for every f ∈ L2(J, wdm), where

(5.2) F(λ) =
1

2πi

∫
J

f (ζ)dζ

ζ − λ
, λ ∈ Ĉ \ J.

Proof. First, we extend w on T by the formula w(eis) = (|s− s1| |s− s2|)−1/2,
where −π < s < π, and we show that w satisfies Helson–Szegö condition. The
function h(z) = log(1 + ei(π−s1)z) + log(1 + ei(π−s2)z), z ∈ D, is analytic in D,
and − i

2 h = v + iṽ on T, where

v(eis) =


1
2

(
s− s1+s2

2 + π
)
−π < s < s1,

1
2

(
s− s1+s2

2

)
s1 < s < s2,

1
2

(
s− s1+s2

2 − π
)

s2 < s < π.

We put

u(eis) = −1
2

log
|s− s1| |s− s2|

4 sin |s−s1|
2 sin |s−s2|

2

.

We have log w = u + ṽ, u, v ∈ L∞(T, m) and ‖v‖∞ < π
2 . Thus, w satisfies Helson–

Szegö condition. Therefore there exist a constant C1 > 0 such that

‖F±‖L2(T,wdm) 6 C1‖ f ‖L2(J,wdm)

for every f ∈ L2(J, wdm), where F is defined by f in (5.2) and F+, F− are angular
boundary values of F from inside of D and from outside of D, respectively.
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Further, it is sufficient to check the estimate (5.1) for functions f smooth on
T and vanishing on T \ J only. We have that F ◦ ω−1 ∈ H∞ for smooth f . By
usual change of variables∫

T

|F ◦ω−1|2dm �
∫
J

|F+|2wdm +
∫
J

|F−|2wdm 6 2C2
1‖ f ‖2

L2(J,wdm)

(where a � b denotes, as usual, that there exist positive constants c, C such that
ca 6 b 6 Ca). Lemma is proved.

COROLLARY 5.3. Suppose that the conditions of Lemma 5.2 are fulfilled, and
Φ : D→ Ĉ\ J is a meromorphic function. Then there exist a constant C>0 such that

(5.3) ‖F ◦Φ‖H2 6 C‖ f ‖L2(J,wdm)

for every f ∈ L2(J, wdm), where F is defined by f in (5.2).

Proof. We apply the Littlewood subordination theorem (see, for example,
Theorem 1.7 in [7]) to the analytic function ω ◦Φ : D → D. We obtain that there
exists a constant C1 (which depends on ω ◦Φ) such that

(5.4) ‖h ◦ (ω ◦Φ)‖H2 6 C1‖h‖H2

for any h ∈ H2. We write F ◦Φ = (F ◦ω−1) ◦ (ω ◦Φ). The estimate (5.3) follows
from the last equality and the estimates (5.1) and (5.4).

LEMMA 5.4. Let I ⊂ T be an open arc, and let G ⊂ D be a simple Jordan domain
such that ∂G ∩ T = clos I . Further, let Φ : D → Ĉ be a meromorphic function such
that Φ has angular boundary values Φ(ζ) ∈ T at a.e. ζ ∈ I and Φ(closG ∩D) ⊂ D.
Finally, let I0 be a closed arc such that I0 ⊂ I . Then there exists a constant C such that∫
I0

|F ◦Φ|dm 6 C
∫
T
|F|dm for any F ∈ L1(T, m).

Proof. Let ω : D→ G be a conformal mapping. By well-known properties of
conformal mappings, ω can be extended to a continuous function (denoted by the
same letter) ω : clos D→ closG, and ω−1 is continuous, too. We put Γ = ω−1(I)
and Γ0 = ω−1(I0). We have that ω is analytic on Γ and |ω′| � 1 on Γ0.

Further, if ζ ∈ I and Φ has angular boundary value Φ(ζ) at ζ, then Φ ◦ ω

has an angular boundary value Φ(ζ) at ω−1(ζ). Let σ ⊂ T be a measurable
set. We put Φ−1(σ) = {ζ ∈ I0 : Φ has angular boundary value Φ(ζ) at ζ and
Φ(ζ) ∈ σ} and (Φ ◦ ω)−1(σ) = {ξ ∈ Γ0 : Φ ◦ ω has angular boundary value
(Φ ◦ ω)(ξ) at ξ and (Φ ◦ ω)(ξ) ∈ σ}. We put µ(σ) = m(Φ−1(σ)). We have
ω((Φ ◦ ω)−1(σ)) = Φ−1(σ) ∪ e, where e ⊂ I0 and Φ has no angular boundary
values on e. By assumption, m(e) = 0, hence, µ(σ) = m(ω((Φ ◦ ω)−1(σ))). By
usual change of variables,

m(ω((Φ ◦ω)−1(σ))) =
∫

(Φ◦ω)−1(σ)

|ω′|dm 6 C1m((Φ ◦ω)−1(σ)),
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where C1 is from the estimate |ω′| � 1 on Γ0. Now we apply Theorem VIII.30
from [15] to the function Φ ◦ ω : D → D. We obtain that there exists a con-
stant C2 such that m((Φ ◦ ω)−1(σ)) 6 C2m(σ) for any measurable set σ ⊂ T.
Thus, µ(σ) 6 C1C2m(σ), in particular, µ is a measure absolutely continuous
with respect to m. By the Radon–Nikodym theorem, there exists a function h ∈
L∞(T, m), h > 0, such that µ(σ) =

∫
σ

h dm for any measurable set σ ⊂ T. By the

change of variable theorem,
∫
I0

F ◦ Φ dm =
∫
T

Fhdm for any measurable function

F, and the lemma is proved.

5.2. SUBARCS OF ∂ΩΦ ∩T AND ANALYTICITY OF Φ ON SUBARCS OF T. Let I ⊂ T
be an open arc, and suppose Φ has an analytic continuation throughout I. From
well-known properties of analytic functions it is easy to see that I ∩ ∂ΩΦ consists
of no more than a countable union of mutually separated points and subarcs of
I, closed as subsets of I. Moreover, if J is an open arc such that J ⊂ I ∩ ∂ΩΦ,
then arg Φ decreases on J. On the other hand, if I ⊂ T is an open arc such that
I ⊂ ∂ΩΦ, then Φ has an analytic continuation throughout I [8].

However, there exist functions Φ such that m(∂ΩΦ ∩ T) > 0 and ∂ΩΦ ∩ T
does not contain open arcs. An example of such Φ with ψ(z) = z, z ∈ D, is given
in [8].

5.3. THE CASE N = 1. In this subsection, we consider the functions Φ of the form
Φ = ϕ

ψ , where ϕ is inner and ψ is a Blaschke factor, that is, deg ψ = 1.

LEMMA 5.5 ([8]). Let Φ = ϕ
ψ , where ϕ is inner, ψ is a Blaschke factor, and let

ΩΦ = {z ∈ D : |Φ(z)| > 1}. Then ΩΦ is a simple Jordan domain and Φ|ΩΦ
is a

conformal mapping of ΩΦ onto Ĉ \ clos D, in particular, Φ|∂ΩΦ
is a homeomorphism of

∂ΩΦ and T.

REMARK. As was mentioned in the previous subsection, there exists a func-
tion Φ such that m(∂ΩΦ ∩ T) > 0 and ∂ΩΦ ∩ T does not contain open arcs. By
Theorems 1.1 and 2.7 TΦ is similar to U⊕ S, where S is a unilateral shift of infinite
multiplicity, and U is the operator of the multiplication by independent variable
in the space L2(Φ(∂ΩΦ ∩ T), m). By Theorem 2.7, m(Φ(∂ΩΦ ∩ T)) > 0, and by
Lemma 5.5, Φ(∂ΩΦ ∩T) does not contain open arcs.

The following lemma shows that in the case N = 1 the space L1 in Corol-
lary 3.5 can be replaced by L2.

LEMMA 5.6. Let Φ = ϕ
ψ , where ϕ is inner and ψ is a Blaschke factor. We recall

that the space K was defined in the end of Section 2, and the transformation Z : K →
L1(T, m) was defined in Corollary 3.5. We have that ZK ⊂ L2(T, m) and Z : K →
L2(T, m) is a linear bounded transformation.
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Proof. We recall that α(z) = z − δ, where δ is the only zero of ψ. By The-
orem 3.3, K = {k ∈ H2 : there exists a vanishing at infinity function F analytic
on Ĉ \ T such that (αk)(z) = (F ◦ Φ)(z) for all z ∈ D such that |Φ(z)| 6= 1}.
But αk is analytic on D, therefore F must be analytic on Φ(D). It is evident
that k ∈ H2 if and only if F ◦ Φ ∈ H2. Further, if F ◦ Φ ∈ H2, then, act-
ing in the same way as in the proof of Proposition 3.3 of [14], we obtain that
F|D ∈ H2(D) and F|Ĉ\clos D ∈ H2(Ĉ \ clos D). Therefore angular boundary val-

ues F+, F− of F from inside of D and from outside of D belong to L2(T, m), hence,
f = F+ − F− ∈ L2(T, m). Thus, Zk = f ∈ L2(T, m). By the closed graph theorem,
Z : K → L2(T, m) is bounded.

In the following lemma we consider a particular case of functions Φ, and we
construct a linear bounded transformation which gives a similarity of T = TΦ|K
and the unitary summand U of isometry to which TΦ is similar.

LEMMA 5.7. Let Φ = ϕ
ψ , where ϕ is inner, ψ is a Blaschke factor, and let ΩΦ =

{z ∈ D : |Φ(z)| > 1}. Further, let I ⊂ T be a closed subarc such that I ⊂ ∂ΩΦ

and there is no arc I such that I is a proper subset of I and I ⊂ ∂ΩΦ. We put J =
Φ(I). We have that J is a closed arc and J 6= T. For convenience, we suppose that
J = {eis : s ∈ [s1, s2]}, where −π < s1 < s2 < π. Further, let Φ be analytic
on a neighbourhood of I. We put w(eis) = ((s − s1)(s2 − s))−1/2, where s1 < s <
s2. Then Z : E(J) → L2(J, wdm) is a bounded invertible transformation, which gives
the similarity of T−1|E(J) and the multiplication by ζ on L2(J, wdm), where ζ is the
independent variable.

We recall that E(K) for K ⊂ T was defined in Theorem 3.4, and the transfor-
mation Z was defined in Corollary 3.5.

Proof. We recall that α(z)= z−δ, where δ is the only zero of ψ. By Lemma 5.5
Φ(D) ⊂ Ĉ \ J, therefore it is easy to see that E(J) = {k ∈ H2 : there exists a
vanishing at infinity function F analytic on Ĉ \ J such that αk = F ◦Φ}.

We define the mapping Z : L2(J, wdm) → H2 by the formula Z f = F ◦ Φ,
where F is defined by f in (5.2). By Corollary 5.3 Z is bounded. We define the
mappingZ1 : L2(J, wdm)→ H2 by the formulaZ1 f = 1

α F ◦Φ, where F is defined
by f in (5.2). Since Z is bounded, we have Z1 is bounded.

By Lemma 5.6 we have that ZE(J) ⊂ L2(J, m), therefore to show that ZE(J)
⊂ L2(J, wdm) we need to check only that ZE(J) ⊂ L2(J1 ∪ J2, wdm), where J1
and J2 are some closed arcs such that J1, J2 ⊂ J, J1 ∩ J2 = ∅ and eisj ∈ Jj, j = 1, 2.
We denote the ends of I by eitj , then Φ(eitj) = eisj , j = 1, 2. By the assump-
tion, we can choose closed arcs I1, I2 such that Ij ∩ I = eitj , j = 1, 2, and Φ is
analytic in a neighbourhood of I ∪ I1 ∪ I2. By the assumption, arg Φ decreases
on I and increases on I1 and on I2, therefore Φ′(eitj) = 0, and Φ(Ij) ⊂ J, if Ij
is sufficiently small, j = 1, 2. We request that Φ(I1) ∩ Φ(I2) = ∅, too. We put
Jj = Φ(Ij), j = 1, 2. From the form of Φ we conclude that Φ′′(eitj) 6= 0, j = 1, 2.
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Indeed, if Φ′′(eitj) = 0, it would imply that Φ− λ has two zeros in D for λ from a
neighbourhood of eisj , which contradicts to Lemma 2.6. Now let F be a function
analytic on Ĉ \ J and such that F ◦Φ ∈ H2. Then∫

T

|F ◦Φ|2dm >
∫

I∪I1∪I2

|F ◦Φ|2dm

=
∫
J

|F−|2
dm

|Φ′ ◦Φ−1
I |

+
∫
J1

|F+|2
dm

|Φ′ ◦Φ−1
I1
|
+
∫
J2

|F+|2
dm

|Φ′ ◦Φ−1
I2
|
,

where Φ−1
I denote the branch of Φ−1 with values on I . From analyticity of Φ on

a neighbourhood of I ∪ I1 ∪ I2 we obtain that w � 1
|Φ′◦Φ−1

I |
for I = I, I1, I2. Thus,

F± ∈ L2(J1 ∪ J2, wdm), and f = F+ − F− ∈ L2(J1 ∪ J2, wdm). We proved that
ZE(J) ⊂ L2(J, wdm). Now we write Z−1 = Z1, and Lemma 5.7 is proved.

5.4. ON THE SPACE E(K) FOR K ⊂ T \ Φ(D). Let K be a compact set, let K ⊂
T \Φ(D), and let m(K) > 0. For n = 0, . . . , N − 1 we put

En(K) = {k ∈ E(K) : f j = 0 for j 6= n, j = 0, . . . , N − 1}.

It is easy to see from propositions proved in Sections 3 and 4 that En(K) 6= {0},

En(K) is a linear closed subset of E(K), T−1En(K) = En(K) and
N−1∨
n=0

ZEn(K) =

clos ZE(K) =
N−1⊕
n=0

L1(K, m). From these equalities and the fact that T|E(K) is sim-

ilar to the multiplication by ζ on
N−1⊕
n=0

L2(K, m) one can obtain that

N−1∨
n=0
En(K) = E(K).

Indeed, let X :
N−1⊕
n=0

L2(K, m) → E(K) be a linear bounded invertible transforma-

tion such that Xζ = T−1X, let Fn = X−1En(K), and let F =
N−1∨
n=0
Fn. We have

ZXF =
N−1∨
n=0

ZXFn =
N−1∨
n=0

ZEn(K) =
N−1⊕
n=0

L1(K, m) and ZXζ = ζZX, hence,

F =
N−1⊕
n=0

L2(K, m). Thus,
N−1∨
n=0
En(K) = E(K).

In general, E0(K) + · · ·+ EN−1(K) 6= E(K). To show this, we consider the
following example.

EXAMPLE 5.8. Let Ψ be a function with the following properties:
(i) Ψ = ϕ

ψ , where ϕ is inner and ψ is a Blaschke factor (deg ψ = 1);
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(ii) I = ∂ΩΨ ∩ T is a closed arc, and Ψ is analytic in sufficiently large neigh-
bourhood of I;

(iii) m(Ψ(I)) > 1
2 and, for convenience, the center of the arc Ψ(I) is 1, that is,

Ψ(I) =
{

eit : |t| 6 π
2 + s0

}
, where 0 < s0 < π

2 .

The example of such function Ψ is Ψ(z) = − exp(−µ 1+z
1−z )

z , z ∈ D, with appro-
priate choice of µ, see Lemma 5.1.

We put Φ = Ψ2 and K = {eis : π − 2s0 6 s 6 π}. We have K ⊂ J =
{eis : π − 2s0 6 s 6 π or − π 6 s 6 2s0 − π} = T \ Φ(D). We shall show that
E0(K) + E1(K) 6= E(K).

First, we introduce the notation. J0 = {eis : |s| 6 π − 2s0}, eit1 and eit2 are
the ends of I, the sets I1, I2, I3, I4 are the closed subarcs of T with the following
properties: I3, I4 ⊂ I, eit1 ∈ I3, eit2 ∈ I4, Ij ∩ I = eitj , j = 1, 2, Ψ(I2) = Ψ(I4) ={

eis :
∣∣s − π

2

∣∣ 6 s0
}

, Ψ(I1) = Ψ(I3) =
{

eis :
∣∣s + π

2

∣∣ 6 s0
}

, and Ψ is analytic
on a neighbourhood of I ∪ I1 ∪ I2. Assumption (iii) allows us to choose such arcs
I1, I2, I3, I4. We have Φ(Ij) = J, j = 1, 2, 3, 4. We put ηj = (Φ|Ij)

−1, ηj : J → Ij,
j = 1, 2, 3, 4, and η0 = (Φ|I\(I3∪I4))

−1, η0 : J0 → I \ (I3 ∪ I4). Further, we put
w1(eis) = |s − (π − 2s0)|−1/2, w2(eis) = |s − (2s0 − π)|−1/2, s ∈ (−π, π), and
w = w1w2. We have the following estimates:

1
|Φ′ ◦ ηj|

� w1, j = 1, 3;
1

|Φ′ ◦ ηj|
� w2, j = 2, 4;(5.5)

|ηj − eit1 | � 1
w1

, j = 1, 3; |ηj − eit2 | � 1
w2

, j = 2, 4.(5.6)

Let f0, f1 ∈ L1(J, m), let F0 and F1 be defined by f0 and f1 as in (5.2), and let
g(z) = (F0 ◦Φ)(z) + z(F1 ◦Φ)(z), z ∈ D. Using the change of variables and (5.5)
we have∫

I1∪I3

|g|2dm =
∫
I1

|(F0+ ◦Φ)(ζ) + ζ(F1+ ◦Φ)(ζ)|2dm(ζ)

+
∫
I3

|(F0− ◦Φ)(ζ) + ζ(F1− ◦Φ)(ζ)|2dm(ζ)

=
∫
J

(|F0+ + η1F1+|2
1

|Φ′ ◦ η1|
+ |F0− + η3F1−|2

1
|Φ′ ◦ η3|

dm

�
∫
J

(|F0+ + η1F1+|2 + |F0− + η3F1−|2)w1dm.

Thus, we have the estimate

(5.7)
∫

I1∪I3

|g|2dm �
∫
J

(|F0+ + η1F1+|2 + |F0− + η3F1−|2)w1dm,
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and, similarly, the estimate

(5.8)
∫

I2∪I4

|g|2dm �
∫
J

(|F0+ + η2F1+|2 + |F0− + η4F1−|2)w2dm,

where Fn+ and Fn− are angular boundary values of Fn from inside of D and from
outside of D, respectively, n = 0, 1.

Now we shall show that ZE(J) ⊂ L2(J, m)⊕ L2(J, m), and that for k ∈ E(J)

f0 + eitj f1 ∈ L2(J, wjdm), j = 1, 2, where
(

f0
f1

)
= Zk. Let k ∈ E(J), we put g(z) =

(F0 ◦ Φ)(z) + z(F1 ◦ Φ)(z), where F0, F1 are defined by k in (3.1). By (5.7) and
(5.8)

∫
T
|g|2dm >

∫
∪4

j=1 Ij

|g|2dm �
∫
J
(|F0+ + η1F1+|2w1 + |F0+ + η2F1+|2w2 +

|F0−+ η3F1−|2w1 + |F0−+ η4F1−|2w2)dm, where Fn+ and Fn− are angular bound-
ary values of Fn from inside of D and from outside of D, respectively, n = 0, 1.
We obtain that F0+ + ηjF1+ ∈ L2(J, m), j = 1, 2, and F0− + ηjF1− ∈ L2(J, m),
j = 3, 4. From these inclusions we have (η1 − η2)F1+, (η3 − η4)F1− ∈ L2(J, m).
Further, 1

η1−η2
, 1

η3−η4
∈ L∞(J, m), thus, F1+, F1− ∈ L2(J, m), and we conclude

that f1 = F1+ − F1− ∈ L2(J, m), f0 = F0+ − F0− ∈ L2(J, m). Also we have
f0 + η1F1+− η3F1− ∈ L2(J, w1dm), and f0 + η1F1+− η3F1− = f0 + (η1− η3)F1+ +
η3 f1 = f0 + ((η1 − eit1) + (eit1 − η3))F1+ + (η3 − eit1) f1 + eit1 f1. By (5.6) we have∫
J
|(ηj − eit1)h|2w1dm 6 C

∫
J
|h|2 1

w1
dm 6 C1

∫
J
|h|2dm for h ∈ L2(J, m), j = 1, 3.

From the inclusion F1+, f1 ∈ L2(J, m) we conclude that f0 + eit1 f1 ∈ L2(J, w1dm).
The inclusion f0 + eit2 f1 ∈ L2(J, w2dm) can be proved in a similar way.

Now let k ∈ E(K), then f0, f1 vanish in the neighbourhood of ei(2s0−π),
therefore f0 + eit1 f1 ∈ L2(K, wdm). By Corollary 5.3, (F0 + eit1 F1) ◦ Φ ∈ H2(D),
hence, (eit1 − z)(F1 ◦Φ)(z) ∈ H2(D).

We define the mapping Z : L2(K, m)→ H2(D) by the formula

(Z f )(z) = (eit1 − z)(F ◦Φ)(z), z ∈ D,

where F is defined by f as in (5.2), on functions f smooth on T and vanishing
on T \ K. We shall prove that there exists a constant C such that ‖Z f ‖H2(D) 6
C‖ f ‖L2(K,m) for smooth functions f . Let f be a such function. We put g = Z f . By
F+ and F− we denote angular boundary values of F from inside of D and from
outside of D, respectively. By (5.7) and (5.6) we have∫

I1∪I3

|g|2dm �
∫
J

(|eit1 F+ − η1F+|2 + |eit1 F− − η3F−|2)w1dm

=
∫
J

(|eit1 − η1|2|F+|2 + |eit1 − η3|2|F−|2)w1dm



26 MARIA F. GAMAL’

6 C1

∫
J

1
w1

(|F+|2 + |F−|2)dm 6 C2‖ f ‖2
L2(K,m),

and we obtain the estimate

(5.9)
∫

I1∪I3

|g|2dm 6 C2‖ f ‖2
L2(K,m).

Using (5.8), (5.6) and the fact that |eit1 − ηj|, j = 2, 4, are bounded, we obtain that∫
I2∪I4

|g|2dm�
∫
J

(|eit1 F+ − η2F+|2 + |eit1 F− − η4F−|2)w2dm

=
∫
J

(|eit1−η2|2|F+|2+|eit1−η4|2|F−|2)w2dm6C3

∫
J

(|F+|2+|F−|2)w2dm.

Now we use that f = 0 in a neighbourhood W of ei(2s0−π). We have F+(λ) =
F−(λ) = F(λ) for λ /∈ K, and |F(λ)| 6

∫
K

| f (ζ)|dm(ζ)
|ζ−λ| 6

∫
K

| f (ζ)|dm(ζ)
dist(λ,K) for λ ∈ W ,

therefore |F(λ)| 6 C4

( ∫
K
| f |2dm

)1/2
= C4‖ f ‖L2(K,m), where C4 depends on W .

We have
∫
J
(|F+|2 + |F−|2)w2dm 6 2C2

4‖ f ‖2
L2(K,m)

∫
J

w2dm. Thus, the estimate

(5.10)
∫

I2∪I4

|g|2dm 6 C5‖ f ‖2
L2(K,m)

is proved. Further,
∫

I\(I3∪I4)
|g|2dm =

∫
J0

|(eit1 − η0)F−|2 1
|Φ′◦η0|

dm 6 C6
∫
J0

|F−|2dm

6 C6‖ f ‖2
L2(K,m), and we have the estimate

(5.11)
∫

I\(I3∪I4)

|g|2dm 6 C6‖ f ‖2
L2(K,m).

It remains to obtain the estimate

(5.12)
∫

T\(I∪I1∪I2)

|g|2dm 6 C7‖ f ‖2
L2(K,m).

To do it, we apply Lemma 5.4. We put I0 = clos(T \ (I ∪ I1 ∪ I2)), and by I we
denote an open arc such that I0 ⊂ I and clos I ⊂ T \ I. By the assumption, for
every ζ ∈ I there exists a disk D(ζ) centered at ζ and such that Φ(D(ζ)∩D) ⊂ D
and D(ζ) ∩ T ⊂ I . Therefore there exists a sequence {ζn}n such that ζn ∈ I and⋃
n

D(ζn) ⊃ I . We put G =
⋃
n

D(ζn) ∩D. By Lemma 5.4, there exists a constant C0
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such that
∫
I0

|G ◦Φ|dm 6 C0
∫
T
|G|dm for any G ∈ L1(T, m). Thus,

∫
I0

|g|2dm =
∫
I0

|(eit1 − ζ)(F+ ◦Φ)(ζ)|2dm 6 sup
ζ∈I0

|eit1 − ζ|2
∫
I0

|F+ ◦Φ|2dm

6 4C0

∫
T

|F+|2dm 6 C‖ f ‖2
L2(K,m),

and (5.12) is proved.
From (5.9), (5.10), (5.11), and (5.12) we conclude that there exists C > 0 such

that ∫
T

|g|2dm 6 C‖ f ‖2
L2(K,m)

for functions f smooth on T and vanishing on T \ K, where g = Z f . Thus, Z can
be extended from smooth functions to the whole space L2(K, m). We recall that
α(z) = (z− δ)2, z ∈ D, where δ is the only zero of ψ. We take f ∈ L2(K, m) such
that f /∈ L2(K, wdm), and we put k = 1

αZ f . Then k ∈ E(K). We will show that
k /∈ E0(K) + E1(K). Indeed, if we assume that k ∈ E0(K) + E1(K), then we must
have F ◦Φ ∈ H2(D), and, by (5.7) (where F0 = F and F1 ≡ 0)∫

T

|F ◦Φ|2dm >
∫

I1∪I3

|F ◦Φ|2dm �
∫
J

(|F+|2 + |F−|2)w1dm,

hence, F+, F− ∈ L2(J, w1dm) and f = F+ − F− ∈ L2(J, w1dm). But, by the
assumption, f vanishes on T \ K, therefore the last inclusion means that f ∈
L2(K, wdm), which is a contradiction. Thus, we proved that E0(K) + E1(K) 6=
E(K).
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