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ABSTRACT. We characterize various objects in a C∗-algebra A in terms of the
size and the location of the contractive perturbations. We prove that if S is
a precompact subset of the unit ball of A, there exists a faithful representa-
tion π of A such that π(a) is compact for each a ∈ S if and only if cp2(λS)
is compact, for each 0 < λ < 1. We provide a geometric characterization
of the hereditary C∗-subalgebras and the essential ideals of A, as well as of
any separable C∗-algebra within its multiplier algebra. We present examples
showing that the notion of contractive perturbations is not appropriate for the
description of compact operators on a general Banach space.
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1. INTRODUCTION

The geometric structure of the unit ball of a C∗-algebra has been an object
of interest from the beginning of the theory of operator algebras. In his study of
isometries between C∗-algebras R. Kadison characterized the extreme points of
the unit ball of a unital C∗-algebra [17]. From his result it follows that the extreme
points of the unit ball of B(H) are the isometries and the co-isometries.

In [4], the n-th contractive perturbations of a subset S of the unit ball of a
C∗-algebra A, denoted cpn(S), were introduced. An element a in the unit ball

of A is an extreme point precisely when cp2(a) def= cp2({a}) is the whole unit
ball. On the other hand, if H is a Hilbert space, a bounded contraction A on H
is a compact (respectively finite rank) operator if and only if cp2(A) is a compact
(respectively finite dimensional) subset of B(H). The main result of [4] is that if
a is an element of the unit ball of a C∗-algebra A then the image of a under some
faithful representation of A is compact if and only if cp2(a) is compact.
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In [5] and [6] the contractive perturbations are used in the study of compact
and finite rank operators in a nest algebra and in the algebra of adjointable opera-
tors on a Hilbert module, and in [18] in the study of the facial structure of the unit
ball of an operator algebra. An analogous approach is used in [3] and [13] to give
a geometric characterization of partial isometries in a C∗-algebra and of tripotents
in a JB*-triple. The set cp1(S) is also related to the notion of M-orthogonality in-
troduced and studied in [12].

In this work we extend the study of contractive perturbations in several
directions. We are interested in characterizing various objects in C∗-algebras in
terms of the size and the location of the contractive perturbations. In Section 3 we
examine the joint second contractive perturbations of a precompact subset S of
the unit ball of a C∗-algebraA and show that there exists a faithful representation
π ofA such that π(a) is compact for each a ∈ S if and only if cp2(λS) is compact,
for each 0 < λ < 1. This result extends Theorem 2.2 of [4]. As a corollary, we
obtain a characterization of compact elementary operators.

In Section 4 we provide a geometric characterization of the hereditary C∗-
subalgebras and the essential ideals of a C∗-algebra A. We also show, using a
result of L. Brown, that if A is a separable C∗-algebra and M(A) its multiplier
algebra, then an element a of the unit ball of M(A) belongs to A if and only if
cp2(a) is separable.

In Section 5 we show that a compact face of the unit ball of a C∗-algebra is
necessarily finite dimensional. We also determine the affine hull of the smallest
face containing a fixed element of the unit ball of a C∗-algebra, in the case it is
finite dimensional.

It is natural to ask if the notion of contractive perturbations may be used to
describe compact operators on a general Banach space X . In Section 6 we present
some examples which show that this cannot be achieved. We show that if X is
any of the spaces lp, 1 6 p < +∞, p 6= 2, c0 or C(K), then there exists a rank one
contraction A acting on X such that cp2(A) is not compact. We also show that
if A is a compact contraction on c0, then cp2(A) is compact in the weak operator
topology, but not vice versa.

We introduce some notation. If X is a Banach space we will denote by X1
the closed unit ball of X . If S ⊆ X , we denote by [S ] the linear span of S and by
S the closure of S .

If H is a Hilbert space, B(H) denotes the C∗-algebra of all bounded linear
operators on H and K(H) the closed ideal of all compact operators. For A ∈
B(H) we denote by |A| the square root of A∗A. If P is an (orthogonal) projection
onH, we set P⊥ = I − P.

Let A be a C∗-algebra. The reduced atomic representation of A is the direct
sum (

⊕
i πi,

⊕
iHi) of a maximal family of pairwise inequivalent irreducible rep-

resentations (πi,Hi) of A. We let A∗∗ be the enveloping von Neumann algebra
ofA, which can be identified with the second dual ofA. We denote byM(A) the
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multiplier algebra of A. If a, b ∈ M(A) we let Ma,b be the operator on A given
by Ma,b(x) = axb, x ∈ A.

Some of the results in this paper arose from questions that were posed to us
by V. S. Shulman. We would like to thank him for his interest in our work.

2. THE CONTRACTIVE PERTURBATIONS

We start with some basic definitions and general facts concerning the notion
of contractive perturbations. Let (X , ‖ · ‖) be a Banach space and s ∈ X1. We set

cp(s) = {x ∈ X : ‖s± x‖ 6 1}.

For a subset S ⊆ X1, we let

cp(S) = cp1(S) =
⋂

s∈S
cp(s).

We call an x ∈ cp(S) a contractive perturbation of S . The n-th contractive per-
turbations of S are defined as

cpn(S) = cp(cpn−1(S)), n = 2, 3, . . . .

Clearly, the set cp(S) is a closed convex subset of X , S ⊆ cp2(S) and if S ⊆ T
then cp(T ) ⊆ cp(S). It follows that cp3(S) = cp(S) and thus the consideration
of the n-th contractive perturbations for n > 2 is of no interest. If X is a subspace
of a Banach space Y and S ⊆ X1 we will denote by cpn

X (S) and cpn
Y (S) the n-th

contractive perturbations, computed with respect to X and Y , respectively. If X
is a normed linear space and S ⊆ X we denote by co(S) the closed convex hull
of S .

LEMMA 2.1. Let X be a Banach space and S ⊆ X1. Then cp(S) = cp(co(S)).

Proof. Let x ∈ cp(S). Then S ⊆ cp(x). Since cp(x) is closed and convex,
we have that co(S) ⊆ cp(x), which implies that x ∈ cp(co(S)). Thus cp(S) ⊆
cp(co(S)). The converse inclusion is trivial.

The following theorem, which was proved by R. Moore and T. Trent ([19],
Theorem 3), is useful for the study of the set cp(A) where A is a contraction on a
Hilbert spaceH.

THEOREM 2.2. Let H be a Hilbert space and A ∈ B(H)1. Then we have (I −
|A∗|)1/2B(H)1(I − |A|)1/2 ⊆ cp(A).

The following result follows from Proposition 1.2. of [4] and exhibits non-trivial
second contractive perturbations of an element in the unit ball of a C∗-algebra.

PROPOSITION 2.3. Let A be a C∗-algebra and a ∈ A1. If x ∈ A and ‖x‖ 6 1
2

then axa ∈ cp2(a).
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DEFINITION 2.4. Let (X , ‖ · ‖) be a Banach space and x ∈ X1. We say that x
is geometrically compact if cp2(x) is a compact subset of X . We say that x is of finite
geometric rank if the dimension of the linear space generated by cp2(x) is finite.

The notions defined above were introduced in [4], where the following re-
sult was also proved.

THEOREM 2.5. Let A be a C∗-algebra and a ∈ A1. The following conditions are
equivalent:

(i) The element a is geometrically compact.
(ii) There exists a faithful representation π of A such that π(a) is compact.

We will also need a result due to K. Ylinen [23]:

THEOREM 2.6. Let A be a C∗-algebra and a ∈ A1. There exists a faithful repre-
sentation π ofA such that the following conditions are equivalent, for an element a ∈ A1:

(i) The operator π(a) is compact.
(ii) The operator x → axa on A is compact.

3. JOINT CONTRACTIVE PERTURBATIONS

The main result of this section is a geometric characterization of the subsets
of the unit ball of a C∗- algebra A which can be faithfully represented as precom-
pact sets of compact operators. First we introduce some notation.

LetH be a Hilbert space. For e, f ∈ H we will denote by e∗ ⊗ f the rank one
operator given by e∗ ⊗ f (x) = 〈x, e〉 f . We denote by (sn,A)∞

n=1 the sequence of s-

numbers of a compact operator A and we fix a Schmidt expansion
∞
∑

n=1
sn,Ae∗n,A ⊗

fn,A of A. We let Ek,A be the projection onto the span of {ei,A : i 6 k}, Fk,A the
projection onto the span of { fi,A : i 6 k} and Rk,A the projection onto the span of
{ei,A, fi,A : i 6 k}. We set E0,A = F0,A = R0,A = 0 and s0,A = 0. For each ε > 0,
we let Rε,A = Rk−1,A, where k is the smallest positive integer with sk,A 6 ε.

LEMMA 3.1. LetH be a Hilbert space,A ⊆ B(H) be a non-degenerate C∗-algebra
and S ⊆ A1 ∩K(H). Let 0 < ε < 1 and R ∈ A be a projection with R > Rε,A, for all
A ∈ S . Then for each Y ∈ cp2(S), we have

max{‖R⊥Y‖, ‖YR⊥‖} 6
√

1− (1− ε)2.

Proof. Let X ∈ A1. We claim that

(1− ε)R⊥XR⊥ ∈ cp(S).

Fix A ∈ S . Let k be the smallest positive integer with sk,A 6 ε. We consider
orthonormal families {xi,A} and {yj,A} such that {en,A, xi,A : n, i} and { fn,A, yj,A :
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n, j} are orthonormal bases forH. Let

Yk,A =
∞

∑
l=k

(1− sk,A)1/2

(1− sl,A)1/2 f ∗l,A ⊗ fl,A + (1− sk,A)1/2 ∑
j

y∗j,A ⊗ yj,A,

Zk,A =
∞

∑
l=k

(1− sk,A)1/2

(1− sl,A)1/2 e∗l,A ⊗ el,A + (1− sk,A)1/2 ∑
i

x∗i,A ⊗ xi,A,

where the sums converge in the strong operator topology. We have that ‖Yk,A‖ 6
1, ‖Zk,A‖ 6 1 and, by simple computations,

(I − |A∗|)1/2Yk,A = (1− sk,A)1/2F⊥k−1,A, Zk,A(I − |A|)1/2 = (1− sk,A)1/2E⊥k−1,A.

Let W ∈ A1. We have

(1− sk,A)F⊥k−1,AWE⊥k−1,A = (I − |A∗|)1/2Yk,AWZk,A(I − |A|)1/2

and hence by Theorem 2.2,

(1− sk,A)F⊥k−1,AWE⊥k−1,A ∈ cp(A).

Set W = 1−ε
1−sk,A

R⊥XR⊥ . We obtain

(1− ε)R⊥XR⊥ = (1− sk,A)F⊥k−1,AWE⊥k−1,A ∈ cp(A).

The claim follows.
Let Y ∈ cp2(S) and {Gα} be a contractive approximate unit of A consisting

of positive operators. Then ‖Y ± (1 − ε)R⊥GαR⊥‖ 6 1 for each α. Since A is
non-degenerate, Gα → I strongly and hence ‖Y± (1− ε)R⊥‖ 6 1. Therefore,

Y∗Y + (1− ε)2R⊥ + (1− ε)(Y∗R⊥ + R⊥Y) 6 I,

and
Y∗Y + (1− ε)2R⊥ − (1− ε)(Y∗R⊥ + R⊥Y) 6 I,

and taking the arithmetic mean of these inequalities we see that Y∗Y 6 I − (1−
ε)2R⊥ and so

(YR⊥)∗(YR⊥) = R⊥Y∗YR⊥ 6 (1− (1− ε)2)R⊥.

Hence, ‖YR⊥‖ 6
√

1− (1− ε)2.
Similarly, we conclude that ‖R⊥Y‖ 6

√
1− (1− ε)2.

PROPOSITION 3.2. Let A ⊆ B(H) be a C∗-algebra and S = {An : n ∈ N},
where An ∈ A1 ∩K(H) and lim

n→∞
An = 0. Then cp2(coS) is compact.

Proof. By Lemma 2.1, it suffices to show that cp2(S) is totally bounded. Fix

an ε > 0 and let δ = 1−
√

1− ε2

16 . Since An → 0, there exist only finitely many Aj
for which Rδ,Aj 6= 0. Thus the smallest projection R dominating all Rδ,An , n ∈ N,
has finite rank and belongs to A. By Lemma 3.1, for every Y ∈ cp2(S) we have

max{‖R⊥Y‖, ‖YR⊥‖} 6
ε

4
.
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There exists an ε
2 -net (Si)N

i=1 for RB(H)1R. We show that (Si)N
i=1 is an ε-net for

cp2(S). Let Y ∈ cp2(S) and i be such that ‖RYR− Si‖ < ε
2 . Then

‖Y− Si‖ = ‖RYR− Si + RYR⊥ + R⊥Y‖ 6
ε

2
+

ε

4
+

ε

4
= ε.

LetX be a Banach space andK⊆X1. It follows from a result of Grothendieck
[14] that if K is precompact then K is in the closed convex hull of a null sequence
(xn). It is easily seen that (xn) cannot always be chosen in X1. However, we have
the following:

PROPOSITION 3.3. Let K be a precompact subset of the unit ball X1 of a Banach
space X . Then for every λ > 1 there exists a null sequence (xn)∞

n=1 ⊆ λX1 such that
K ⊆ co((xn)∞

n=1).

Proof. For every n = 1, 2, . . . we set εn = (λ−1)n

(n+1)λn+1 and λn = λn

(λ−1)n−1 .
Let Fn ⊆ K be a finite εn-net of K. We set G1 = λF1 ∪ {0} and for n > 2,

Gn = λn(Fn−Fn−1)∩ 1
nX1. It is clear that the elements of

∞⋃
n=1
Gn can be arranged

to form a null sequence in λX1. Since
∞⋃

n=1
Fn is a dense subset of K it is enough

to show that
∞⋃

n=1
Fn ⊆ co

( ∞⋃
n=1
Gn

)
. Let yn ∈ Fn and choose yn−1, . . . , y1 such

that yi ∈ Fi and ‖yi − yi−1‖ 6 εi−1 for every i = 2, . . . n. Then yn = 1
λ (λy1) +

n
∑

i=2

1
λi

(λi(yi − yi−1)) and 1
λ +

n
∑

i=2

1
λi

6 1.

The main result of this section is the following:

THEOREM 3.4. Let A be a C∗-algebra and S ⊆ A1. The following are equivalent:
(i) S is precompact and there exists a faithful representation π : A → B(H) such

that π(S) consists of compact operators.
(ii) The set cp2(λS) is compact for each λ ∈ (0, 1).

(iii) There exists λ ∈ (0, 1) such that the set cp2(λS) is compact.
Moreover, if one of the conditions above holds then π(cp2(λS)) ⊆ K(H), for each

λ ∈ (0, 1), where π is any representation satisfying (i).

Proof. (i)⇒ (ii) We identifyAwith π(A). Let 0 < λ < 1. By Proposition 3.3,
there exists a null sequence (xn) ⊆ 1

λA1 ∩ K(H) such that S ⊆ co((xn)). But
then λS ⊆ co((λxn)) and (λxn) ⊆ A1 ∩ K(H). By Proposition 3.2, cp2(λS) is
compact.

(ii)⇒ (iii) is obvious.
(iii)⇒ (i) Since λS ⊆ cp2(λS) we have that λS is precompact and hence S is

precompact. Let a ∈ S . Then cp2(λa) ⊆ cp2(λS) and hence cp2(λa) is compact.
By Proposition 2.3, 1

2 λ2(aA1a) ⊆ cp2(λa) and hence the operator x → axa on A
is compact. It follows from Theorem 2.6 that there exists a faithful representation
π of A such that π(a) is compact for each a ∈ S .
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REMARK 3.5. It follows from the proof of Theorem 3.4 that if S is a finite
set, then condition (ii) is satisfied with λ ∈ (0, 1].

COROLLARY 3.6. Let S ⊆ B(H)1. The following are equivalent:
(i) S is a precompact set of compact operators.

(ii) The set cp2(λS) is compact for each λ ∈ (0, 1).
(iii) There exists λ ∈ (0, 1) such that the set cp2(λS) is compact.

Proof. (i)⇒(ii) follows from Theorem 3.4, while (ii)⇒(iii) is trivial.
(iii)⇒(i) Assume cp2(λS) is compact, for some λ ∈ (0, 1). Then clearly S is

precompact. For each A ∈ S , cp2(λA) ⊆ cp2(λS) and hence it is compact. By
Proposition 2.3, the operator X → AXA on B(H) is compact. It is well-known
(see e.g. Section 33 Corollary 5 of [8]) that this implies A ∈ K(H).

COROLLARY 3.7. Let A be a prime C∗-algebra and T =
n
∑

i=1
Mai ,bi

be an ele-

mentary operator whose minimal length is n, where ai, bi ∈ A1, i = 1, 2, . . . , n. The
following are equivalent:

(i) T is compact.
(ii) cp2

A({a1, b1, . . . , an, bn}) is compact.

Proof. The proof follows from Theorem 3.4 and Corollary 5.3.26 of [7].

REMARK 3.8. The implication (ii)⇒(i) of Corollary 3.7 holds for arbitrary
C∗-algebras while (i)⇒(ii) does not hold in general. Indeed, let A = l∞. Let A
and B be infinite disjoint sets with characteristic functions χA and χB. Since A
and B are infinite, cp2({χA, χB}) is not compact. But MχA ,χB is the zero operator
and hence is compact.

As can be seen from the following proposition, condition (i) of Theorem 3.4
does not imply in general that cp2(S) is compact.

PROPOSITION 3.9. LetH be an infinite dimensional Hilbert space. There exists a
compact set S ⊆ K(H)1 such that cp2(S) is not compact.

Proof. Let {en}∞
n=1 be an orthonormal set ofH and fn = λne1 + µnen, where

|λn|2 + |µn|2 = 1 for each n, λ1 = 1, |λn| 6= 1 for each n > 2 and λn → 1. Let
An = e∗1⊗ fn and S = {An : n = 1, 2, . . . }. We have that fn → e1 and so An → A1;
hence S is a compact set of compact contractions. Assume that X ∈ cp(S). Then
‖X ± e∗1 ⊗ fn‖ 6 1 for each n. It follows that XX∗ 6 I − f ∗n ⊗ fn and hence
X∗ fn = 0. This implies that X∗en = 0, for each n. Similarly, X∗X 6 I − e∗1 ⊗ e1
and so Xe1 = 0. It follows that e∗1 ⊗ en is a contractive perturbation of X, for each
n, and thus cp2(S) is not compact.

In the following theorem we characterize the subsets S of the unit ball of a
C∗-algebra A for which [cp2(S)] is finite dimensional.
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THEOREM 3.10. Let A be a unital C∗-algebra and S ⊆ A1. The following are
equivalent:

(i) dim[cp2(S)] < ∞.
(ii) dim[S ] < ∞ and there exists a faithful representation π of A such that π(a) has

finite rank for each a ∈ S .

Proof. (i)⇒(ii) Since [S ] ⊆ [cp2(S)], it follows that dim[S ] < ∞. For each
a ∈ S , we have that cp2(a) ⊆ cp2(S) and hence dim[cp2(a)] < ∞. By Proposi-
tion 2.3, the operator x → axa onA has finite rank for each a ∈ S . It follows from
[23] that there exists a faithful representation π ofA such that π(a) has finite rank
for each a ∈ S .

(ii)⇒(i) We identify A with π(A). Since S is finite dimensional and every
element of S has finite rank, there exists a projection p ∈ A of finite rank such
that S ⊆ pAp. It follows from Theorem 4.1 below (see also Proposition 2.1 of [6])
that cp2(S) ⊆ pAp, hence dim[cp2(S)] < ∞.

4. CHARACTERIZATION RESULTS

Let H be a Hilbert space and T ∈ B(H)1. It is not hard to see that if
T ∈ K(H)1 then cp2(T) ⊆ K(H). This leads to the following problem: Find
the C∗-subalgebras B of a C∗-algebra A such that b ∈ B1 implies cp2(b) ⊆ B.
In the following theorem we show that these are precisely the hereditary C∗-
subalgebras of A.

THEOREM 4.1. Let B be a C∗-subalgebra of a C∗-algebra A. The following are
equivalent:

(i) If b ∈ B1 then cp2(b) ⊆ B.
(ii) B is a hereditary C∗-subalgebra of A.

Proof. (i)⇒(ii) Let b be a positive element in B1 and assume that a ∈ A
satisfies 0 6 a 6 b. It follows from Proposition 2.3 that bAb ⊆ [cp2(b)]. By our
hypothesis, bAb ⊆ B and so bAb ⊆ B. Now, bAb is a hereditary C∗-subalgebra
of A containing b ([20], Corollary 3.2.4) and hence a ∈ bAb. We conclude that
a ∈ B.

(ii)⇒(i) Represent A faithfully and non-degenerately on a Hilbert space H.
Fix b ∈ B1. Let {uα} be an approximate unit of A consisting of positive contrac-
tions, x = (1− |b|)1/2 and y = (1− |b∗|)1/2. It is easy to see that yuαx ∈ A. By
Theorem 2.2, yuαx ∈ cp(b). Thus, if c ∈ cp2(b), then ‖c± yuαx‖ 6 1. This implies
that

cc∗ 6 1− yuαx2uαy.

But 1− yuαx2uαy → 1− yx2y weakly, and hence cc∗ 6 1− yx2y. On the other
hand, 1− yx2y is positive and belongs to B. Since B is hereditary in A, we have



CONTRACTIVE PERTURBATIONS IN C∗ -ALGEBRAS 61

that cc∗ ∈ B . Similarly, we show that c∗c ∈ B. Now it follows from Theorem 3.2.1
of [20] that c ∈ B.

REMARK 4.2. Let S be a finite subset of B(H). If follows from Remark 3.5
that if S ⊆ K(H)1, then cp2(S) ⊆ K(H). The following example shows that
this is not true if we replace B(H) by a C∗-algebra A and K(H) by a hereditary
C∗-subalgebra of A. Note that, by Theorem 4.1, this inclusion is valid if S is a
singleton.

EXAMPLE 4.3. Let H be a Hilbert space and P, Q be projections on H in
generic position forming a zero angle (see [15]). Let B be the C∗-algebra generated
by P and Q; then B is non-unital [22]. Let A = M(B). Then every contractive
perturbation of P in A is of the form P⊥AP⊥, and every contractive perturba-
tion of Q in A is of the form Q⊥BQ⊥. Since P⊥H ∩ Q⊥H = {0}, we have that
cp({P, Q}) = {0} and cp2({P, Q}) = A1.

COROLLARY 4.4. Let A be a unital C∗-algebra and a ∈ A be a positive contrac-
tion. Then aAa = [cp2(a)]. Thus, if A is separable then its hereditary C∗-subalgebras
are precisely the subsets of the form [cp2(a)], where a is a positive contraction.

Proof. It follows from Proposition 2.3 that

aAa ⊆ [cp 2(a)].

On the other hand, aAa is a hereditary subalgebra of A containing a. By Theo-
rem 4.1, [cp2(a)] ⊆ aAa.

The following theorem shows that if A is a separable C∗-algebra then the
elements of A1 can be characterized among the elements of M(A) in terms of
the size of their second contractive perturbations.

THEOREM 4.5. Let A be a separable C∗-algebra and a ∈ M(A)1. Then a ∈ A if
and only if cp2

M(A)(a) is separable.

Proof. Assume that a ∈ A. By Theorem 4.1, cp2
M(A)(a) is contained in

A and hence is separable. Conversely, assume that a /∈ A and cp2
M(A)(a) is

separable. By Proposition 2.3, aM(A)a is separable. Since A is a hereditary
C∗-subalgebra of M(A), it follows from Theorem 3.2.1 in [20] that aa∗ /∈ A
or a∗a /∈ A. Without loss of generality we may assume that aa∗ /∈ A. We
have that aa∗M(A)aa∗ ⊆ aM(A)aa∗ and hence aa∗M(A)aa∗ is separable. But
aa∗M(A)aa∗ is the hereditary subalgebra ofM(A) generated by aa∗ ([20], Corol-
lary 3.2.4); it follows from Corollary 7 in [9] that it is non-separable, a contradic-
tion.

As an immediate consequence, we obtain the following:
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COROLLARY 4.6. LetA and B be separable C∗-algebras. If φ :M(A)→M(B)
is a surjective isometry then φ(A) = B.

We will need some facts about open projections and hereditary subalgebras.
We refer the reader to [21]. Let A be a C∗-algebra. If p ∈ A∗∗ is a projection, we
write Bp = A ∩ pA∗∗p. The set Bp is a hereditary C∗-subalgebra of A. Con-
versely, if B is a hereditary C∗-subalgebra ofA, there exists a unique open projec-
tion p ∈ A∗∗ such that B = Bp. If p ∈ A∗∗ is any projection, we write int(p) for
the largest open projection dominated by p and p for the smallest closed projec-
tion which dominates p. It is easy to see that if p ∈ A∗∗ then Bp = Bint(p).

PROPOSITION 4.7. LetA be a unital C∗-algebra. If p ∈ A∗∗ is an open projection

then cp(Bp
1 ) = Bint(p⊥)

1 .

Proof. It suffices to show that cp(Bp
1 ) = Bp⊥

1 . It is clear that Bp⊥
1 ⊆ cp(Bp

1 ).
Let y ∈ A and assume that y ∈ cp(Bp

1 ). We consider A∗∗ as the weak closure of
the image of A under its universal representation. Since p is open, there exists
an increasing net of positive contractions in Bp whose weak limit is p. Since
the set of contractive perturbations of any set is weakly closed, we conclude that
‖y± p‖ 6 1, which implies that y ∈ Bp⊥ .

The last proposition has the following corollaries.

COROLLARY 4.8. Let A be a unital C∗-algebra and p ∈ A∗∗ be an open projec-
tion. The following are equivalent:

(i) cp2(Bp
1 ) = Bp

1 .
(ii) int(p⊥) = p⊥.

Proof. It is immediate from Proposition 4.7 that condition (i) is equivalent
to the condition int(int(p⊥)⊥) = p. The equivalence with (ii) follows from the
identity int(q⊥) = q⊥, which holds for any open projection q, by letting q =
int(p⊥).

Let H be a Hilbert space. It is easy to see that cpB(H)(K(H)1) = {0}. It
follows from Proposition 4.7 that this property characterizes the essential ideals
of a unital C∗-algebra. Recall that an ideal J is essential if and only if it is of the
form Bp with p open, dense and central.

COROLLARY 4.9. (i) Let A be a unital C∗-algebra. An ideal J ⊆ A is essential
if and only if cpA(J1) = {0}.

(ii) LetA and B be unital C∗-algebras and φ : A → B a surjective isometry. Assume
that J is an ideal of A and that φ(J ) is an ideal of B. Then J is essential if and only if
φ(J ) is essential.
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5. SMALL FACES IN C∗-ALGEBRAS

The faces of the unit ball of a C∗-algebra were examined in detail by Ake-
mann and Pedersen in [2]; in this section we obtain some results concerning the
finite dimensional ones.

We introduce some notation (see also [1]). The segment joining the points
x, y of a Banach space X is the set

seg[x, y] = {λx + (1− λ)y : λ ∈ [0, 1]}.

We let seg(x, y) = seg[x, y] \ {x, y}. Let K be a convex subset of X . A convex
subset F of K is called a face of K if for any x, y ∈ K and v ∈ F such that
v ∈ seg(x, y) we have that x, y ∈ F . A face F is called finite dimensional if the
linear subspace generated by F is finite dimensional. The real subspace spanned
by a subset S of X is denoted by [S ]R.

If H is a separable infinite dimensional Hilbert space then the unit ball of
B(H) contains finite dimensional faces of arbitrarily large dimension. On the
other hand the unit ball of a unital C∗-algebra has no infinite dimensional com-
pact faces as the following proposition shows. In the sequel we shall consider A
as a subalgebra of its enveloping von Neumann algebra A∗∗.

PROPOSITION 5.1. Let F be a compact face of the unit ball of a unital C∗-algebra
A. Then F is finite dimensional and there exists a partial isometry v in A such that

F = v + (1− vv∗)A1(1− v∗v).

Proof. It follows from Theorem 5.6 of [2] that the weak closure Fw
of F is

a weakly closed face of the unit ball of the von Neumann algebra A∗∗ and hence
by Theorem 4.4 of [2] there exists a partial isometry v in A∗∗ such that

Fw = v + (1− vv∗)(A∗∗)1(1− v∗v).

Since F is compact, F = Fw
. Hence the unit ball of the Banach space (1 −

vv∗)A∗∗(1− v∗v) is compact and this implies that (1− vv∗)A∗∗(1− v∗v) is finite
dimensional. We conclude that F is finite dimensional.

Since F = v + (1− vv∗)(A∗∗)1(1− v∗v), we see that v ∈ A. Now it follows
from Kaplansky’s Density Theorem that (1− vv∗)A1(1− v∗v) is strongly dense
in (1− vv∗)(A∗∗)1(1− v∗v). Since (1− vv∗)(A∗∗)1(1− v∗v) is finite dimensional,
we have

(1− vv∗)A1(1− v∗v) = (1− vv∗)(A∗∗)1(1− v∗v)
and so F = v + (1− vv∗)A1(1− v∗v).

Let K be a convex set and x ∈ K. The minimal face of K containing x is
denoted by F (x). It can be shown that F (x) is the union of all segments seg[y, z]
such that y, z ∈ K and x ∈ seg(y, z) (see Theorem 1.2 of [1] for a proof). If F
is a face and x ∈ F , then the subspace [x − F ]R does not depend on x. We set
S(F ) = [x−F ]R.
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Let A be a unital C∗-algebra. It is shown in [18] that if F is a finite dimen-
sional face of A1 then F = (a + S(F )) ∩ A1, where a is any point of F . Let
a ∈ A, ‖a‖ = 1. It is proved in [18] that S(F (a)) = [cp(a)]R. In the sequel we
completely determine [cp(a)]R in case it is finite dimensional.

We shall need the following fact whose proof is left to the reader.

LEMMA 5.2. Let E and F be finite rank operators on a Hilbert spaceH. Then

EB(H) ∩ B(H)F = EB(H)F.

THEOREM 5.3. LetA be a unital C∗-algebra and a∈A1. Assume that dim[cp(a)]R
< ∞ or dim(1− |a∗|2)1/2A(1− |a|2)1/2 < ∞. Then

[cp(a)]R = (1− |a∗|2)1/2A(1− |a|2)1/2.

Proof. We set b = (1− |a∗|2)1/2 and c = (1− |a|2)1/2. It follows from Theo-
rem 2.2 that bAc ⊆ [cp(a)]R, and hence to prove the theorem it suffices to prove
that if dim bAc < ∞ then cp(a) ⊆ bAc.

Let π = (⊕iπi,⊕iHi) be the reduced atomic representation of A. Then
the subspace π(b)π(A)π(c) is finite dimensional and so it is equal to its strong
closure

⊕
i

πi(b)B(Hi)πi(c). Put J = {i : πi(b) 6= 0} ∩ {i : πi(c) 6= 0}. It follows

that the set J is finite and that πi(b), πi(c) are finite rank operators for every i ∈ J.
Let x ∈ cp(a). Then πi(x) ∈ cp(πi(a)) and Lemma 1 of [19] implies that

πi(x) ∈ πi(b)B(Hi) ∩ B(Hi)πi(c). By Lemma 5.2, πi(b)B(Hi) ∩ B(Hi)πi(c) =
πi(b)B(Hi)πi(c) which is equal to πi(b)π(A)πi(c). Finally we have

π(x) ∈
⊕
i∈J

πi(b)π(A)πi(c) = π(b)π(A)π(c) = π(bAc)

and so x ∈ bAc.

6. CONTRACTIVE PERTURBATIONS IN B(X )

In this section we present some results showing that the notion of geometric
compactness is not appropriate for the description of the compact operators on a
general Banach space. All Banach spaces considered in this section are assumed
to be real.

Let X be a Banach space. We denote by B(X ) the Banach algebra of all
bounded linear operators onX and byK(X ) the ideal of compact operators onX .
If x ∈ X and x∗ is in the dual X ∗ of X , we denote by x∗⊗ x the rank one operator
on X defined by x∗ ⊗ x(y) = x∗(y)x. We denote by {en}n∈N the canonical basis
of c0 (respectively `p, p > 1) and by e∗n the linear functional on c0 (respectively `p,
p > 1) defined by e∗n(em) = 0 for n 6= m and e∗n(en) = 1.

In the next three propositions we show that if X is any of the spaces lp,
1 6 p < +∞, p 6= 2, or C(K), there are rank one operators in B(X )1 which are
extreme points of B(X )1. Note that in Proposition 4.4 of [18] Katsoulis provides
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an example of an operator algebra A acting on a Hilbert space H, and a rank one
operator a ∈ A1 which is an extreme point of A1.

PROPOSITION 6.1. Let x∗ be an extreme point of the unit ball of `∞ and y be an
extreme point of the unit ball of `1. Then the rank one operator A = x∗ ⊗ y is an extreme
point of B(`1)1.

Proof. Let T ∈ B(`1)1 be such that ‖A± T‖ 6 1. Then

‖Az± Tz‖ 6 1, ∀z ∈ `1, ‖z‖ = 1.

We conclude that if x∗(z) = ±1 then Tz must be 0. But the set

{z ∈ `1 : ‖z‖ = 1, x∗(z) = ±1}
contains the canonical basis of `1 and hence T = 0.

Next we show that an analogous result holds for the space B(`p), p > 1,
p 6= 2. We recall a lemma of J. Hennefeld [16]. If x ∈ `p we set

supp(x) = {n ∈ N : e∗n(x) 6= 0}.

LEMMA 6.2. Let T ∈ B(`p), p > 2 and suppose that for some n, m with n 6= m,
we have that supp(Ten) ∩ supp(Tem) 6= ∅. Then

‖T‖ > max{‖Ten‖, ‖Tem‖}.

PROPOSITION 6.3. There exists a rank one operator in B(`p) for 1 < p < ∞,
p 6= 2, which is an extreme point of B(`p)1.

Proof. Assume first that p > 2. Let a = (a1, a2, . . .) be a vector in `p such
that ‖a‖ = 1 and ai 6= 0, ∀i ∈ N. Put T = e∗1 ⊗ a. We show that T is an extreme
point of the unit ball of B(lp). Let S ∈ B(`p)1 be such that ‖T ± S‖ 6 1. We have
‖Te1 ± Se1‖ 6 1 and since Te1 is an extreme point of the unit ball of lp, Se1 = 0.
Assume that Sem 6= 0 for some m 6= 1. It follows from Lemma 6.2 that

‖S + T‖ > max{‖(S + T)e1‖, ‖(S + T)em‖} = max{1, ‖Sem‖} = 1

a contradiction. So, Sem = 0 and hence T is an extreme point of the unit ball of
B(lp).

For 1 < p < 2 the assertion follows by duality.

PROPOSITION 6.4. Let K be a compact metrizable Hausdorff space. There exists a
rank one operator on C(K) which is an extreme point of B(C(K))1.

Proof. Let k0 be in K and λ be a continuous function on K satisfying |λ(k)| =
1, ∀k ∈ K. Then the operator T on B(C(K)) defined by

T f (k) = λ(k) f (k0)

is a rank-one operator and it is easy to see that it is an extreme point of the unit
ball of B(C(K)). (For a complete description of the extreme points of B(C(K)) we
refer the reader to [10]).
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The situation for B(X ) when X = c0 is somewhat different. Indeed, by a
result of J. Hennefeld [16], K(X )1 is the norm closed convex hull of its extreme
points when X = `p with p > 1, p 6= 2. On the other hand it is known that for
X = c0 or X = `2 the unit ball of K(X ) has no extreme points. However, we
shall see (Proposition 6.5) that there exist compact operators in B(c0) which are
not geometrically compact.

We shall need a description of the operators in B(c0) which follows from
Theorem VII.2.1 in [11]. An operator T ∈ B(c0) has the form

T =
∞

∑
i=1

ai ⊗ ei, where ai ∈ `1, w*- lim
i→∞

ai = 0,

and its norm is given by

‖T‖ = sup
i∈N
‖ai‖`1 .

The operator T is compact if and only if lim
i→∞

ai = 0.

PROPOSITION 6.5. Let A = e∗1 ⊗ e1 ∈ B(c0). Then

cp2(A) = {x⊗ e1 : x ∈ `1, ‖x‖`1 6 1}.
Proof. The statement follows from the fact that

cp(A) =
{

T =
∞

∑
i=2

ai ⊗ ei : ai ∈ `1, w*- lim
i

ai = 0, ‖ai‖`1 6 1
}

.

We next show that if T is in K(c0)1 then cp2(T) is a compact subset of B(c0)
with respect the weak operator topology. Recall that if X is a Banach space then
the weak operator topology (wot) on B(X ) is defined by the the family of neighbor-
hoods of 0

Uε,F,G = {T : |x∗(Tx)| < ε, x∗ ∈ F, x ∈ G}

where F is a finite subset of X ∗, G is a finite subset of X and ε > 0.

THEOREM 6.6. Let T ∈ B(c0)1. If T is compact, then cp2(T) is wot compact.

Proof. Let Pn ∈ B(c0) be defined by Pn

( ∞
∑

j=1
xjej

)
=

n
∑

j=1
xjej. Fix a wot neigh-

bourhood U of 0 in B(c0). To show that cp2(T) is wot compact it suffices to show
that there exists a finite set F such that F + U covers cp2(T). Let V be a wot neigh-
bourhood of 0 in B(c0) such that V + V ⊆ U. Let ε > 0 be such that the open
ball B(0, ε) with radius ε and centre 0 is contained in V. Let n ∈ N be such that
‖T − PnT‖ < ε

2 .
We show that if X ∈ cp2(T), then ‖(I − Pn)X‖ 6 ε. Let S be an operator

such that (I − Pn)S = S and ‖S‖ 6 1− ε. Since ‖T − PnT‖ < ε
2 we have that

S ∈ cp(T). Let X ∈ cp2(T). Then X = PnX + (I − Pn)X and since ‖X ± S‖ 6 1
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we have ‖(I − Pn)X ± (I − Pn)S‖ 6 1. Letting Sn = 1−ε
‖(I−Pn)X‖ (I − Pn)X, we

conclude that ‖(I − Pn)X‖ 6 ε.
Since PnB(c0)1 is wot-compact, there exists a finite set F such that PnB(c0)1

⊆ F + V. Let X ∈ cp2(T). Then

X = PnX + (I − Pn)X ∈ F + V + V ⊆ F + U.

REMARK 6.7. The converse of the last theorem is not true. Indeed, let T be
the operator on c0 defined by:

T =
∞

∑
i=1

1
2
(e∗2i−1 + e∗2i)⊗ ei.

It is clear that the operator T is not compact. Simple computations show that

cp 2(T) =
{ ∞

∑
i=1

1
2
(aie∗2i−1 + aie∗2i)⊗ ei, |ai| 6 1, ∀i ∈ N

}
which is a wot compact set.
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