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ABSTRACT. Motivated by a question on subnormal Toeplitz subnormal oper-
ators raised in 1970 by P.R. Halmos, we show that there exist quasihyponormal
Toeplitz operators which are neither hyponormal nor analytic. In addition, for
ϕ ∈ L∞(T) and letting ϕ = f + g, where f and g are in H2, we show that the
Toeplitz operator Tϕ is quasihyponormal if and only if P(g f ) = c + Th f f for
some constant c and some function h ∈ H∞(D) with ‖h‖∞ 6 1. Finally, we
also show that the problem of quasihyponormality for Toeplitz operators with
(trigonometric) polynomial symbols can be reduced to the classical Schur’s
algorithm in function theory.
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1. INTRODUCTION

Let H be an arbitrary complex Hilbert space. A bounded linear operator T
on H is called quasihyponormal if T∗(T∗T − TT∗)T > 0 or equivalently

‖T∗Tx‖ 6 ‖TTx‖ for all x in H.

For more details on quasihyponormal Toeplitz operators one can refer to [22] and
references therein. L2 = L2(T) denotes the space of all complex-valued Lebesgue
measurable functions on unit circle T such that

∫
T
| f |2 < ∞. This space has a

canonical orthonormal basis 〈en〉 given by en(z) = zn, for all n ∈ Z, Z being
the set of integers. The Hardy space H2 = H2(T) is the closed linear span of
{en : n = 0, 1, . . .}. An element f ∈ L2 is said to be analytic if f ∈ H2 and co-
analytic if f ∈ L2 	 H2. If P denotes the orthogonal projection from L2 to H2,
then for every ϕ ∈ L∞ the operators Tϕ and Hϕ on H2 defined by

Tϕ f = P(ϕ f ) and Hϕ f = (I − P)(ϕ f ), for each f ∈ H2



70 S.C. ARORA AND GEETA KALUCHA

are called the Toeplitz and Hankel operators, respectively, with symbol ϕ. Also

Hϕ f = J(I − P)(ϕ f ),

where J is the unitary operator from H2⊥ onto H2 defined as

J(e−inθ) = ei(n−1)θ .

Another way of representing the operator Hϕ [18] is an operator on H2 defined
by

〈zuv, ϕ〉 = 〈Hϕu, v∗〉,(1.1)

for all u ∈ H2, v ∈ H∞ where v∗(eiθ) = v(e−iθ).
This paper has been divided into three sections. The first section is devoted

to a problem initiated by P.R. Halmos [12], [13] in the year 1970. The second
section characterizes quasihyponormal Toeplitz operators while the third section
adopts K. Zhu’s [23] method based on the classical interpolation theorems of I.
Schur [21] to obtain an abstract characterization of the trigonometric polynomials
which yield quasihyponormal Toeplitz operators.

2. A PROBLEM BY HALMOS

In the year 1970, P.R. Halmos initiated the following problem:

Is every subnormal Toeplitz operator either normal or analytic?

This was answered in the negative by C. Cowen and J. Long [6]. The ques-
tion has been answered [16] in the affirmative for a certain class of functions ϕ
and for quasinormal Toeplitz operators [2]. In 1976, M.B. Abrahamse [1] gave a
general sufficient condition to obtain the answer of the problem to be affirmative.
If the condition of subnormality is weakened to hyponormality then this ques-
tion has been answered in the negative by Ito and Wong [16]. We further ask the
following

Is every quasihyponormal Toeplitz operator either hyponormal or analytic?

In this section we show that the answer to this question is also in the nega-
tive. In fact we show that there exist quasihyponormal Toeplitz operators which
are neither hyponormal nor analytic.

EXAMPLE 2.1. Consider the Toeplitz operator 2U∗−U where U denotes the
unilateral shift on the space H2. We have the following:

(2U∗ −U)∗(2U∗ −U)− (2U∗ −U)(2U∗ −U)∗

= (2U −U∗)(2U∗ −U)− (2U∗ −U)(2U −U∗) = 3(UU∗ − I).

Now 3(UU∗ − I)e0 = −3e0 < 0 and for each n 6= 0, 3(UU∗ − I)en = 0. Hence
(2U∗−U) is not hyponormal, rather it is a cohyponormal operator as [2U∗−U]60.
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As U = Te1 , U∗ = Te−1 are Toeplitz operators and since the set of Toeplitz
operators [3] is a self adjoint vector space containing the identity we have that
2U∗ −U is a Toeplitz operator. We also observe that 2U∗ −U is a quasihyponor-
mal Toeplitz operator as

(2U∗ −U)∗[2U∗ −U](2U∗ −U) = (2U −U∗)3(UU∗ − I)(2U∗ −U).

Now

(2U −U∗)3(UU∗ − I)(2U∗ −U)e0 = (2U −U∗)3(UU∗ − I)(−e1) = 0,

and for n 6= 0

(2U −U∗)3(UU∗ − I)(2U∗ −U)en = (2U −U∗)3(UU∗ − I)(2en−1 − en+1) = 0.

Hence
(2U∗ −U)∗[2U∗ −U](2U∗ −U) = 0.

Also 2U∗ −U is not analytic since 2U∗ −U = T2e−1−e1 .

The above Example 2.1 can be generalized in the following way.

THEOREM 2.2. The Toeplitz operator (aU∗
n0 − bUn0) with |a| > |b| > 0 and

n0 > 0 is a quasihyponormal Toeplitz operator.

REMARK 2.3. The operator in Theorem 2.2 above is not normal when |a| 6=
|b|. For if |a| = |b|, then

[aU∗
n0 − bUn0 ] = |a|2Un0U∗

n0 − |a|2 + |b|2 − |b|2Un0U∗
n0 = 0.

Motivated by Proposition 11 of [4], we observe the following:

THEOREM 2.4. If Tϕ is quasihyponormal then

Ker(HϕTϕ) ∩Ker(T∗ϕ[Tϕ]Tϕ) = Ker(HϕTϕ).

Proof. For f ∈ H2,

〈 f , T∗ϕ(T∗ϕTϕ − TϕT∗ϕ)Tϕ f 〉 = 〈TϕTϕ f , TϕTϕ f 〉 − 〈T∗ϕTϕ f , T∗ϕTϕ f 〉.

Now

〈TϕTϕ f , TϕTϕ f 〉 = 〈ϕTϕ f , P(ϕTϕ f )〉 = ‖ϕTϕ f ‖2 − 〈P⊥ϕTϕ f , P⊥ϕTϕ f 〉
= ‖ϕTϕ f ‖2 − ‖HϕTϕ f ‖2.

Similarly
〈T∗ϕTϕ f , T∗ϕTϕ f 〉 = ‖ϕTϕ f ‖2 − ‖HϕTϕ f ‖2.

Consequently
〈 f , T∗ϕ[Tϕ]Tϕ f 〉 = ‖HϕTϕ f ‖2 − ‖HϕTϕ f ‖2.

Now a vector f ∈ H2 is in Ker(HϕTϕ) if and only if HϕTϕ f = 0. So that
‖HϕTϕ‖2 = 0 and hence

〈 f , T∗ϕ[Tϕ]Tϕ f 〉+ ‖HϕTϕ f ‖2 = 0.
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Therefore the equation holds if and only if f ∈ Ker(HϕTϕ) ∩Ker(T∗ϕ[Tϕ]Tϕ).

Tϕ is hyponormal [4] if the analytic part of ϕ dominates the conjugate ana-
lytic part. Similar computations yield the following:

THEOREM 2.5. If χ is inner and ϕ ∈ L∞ is such that Tϕ is hyponormal, then Tχϕ

is quasihyponormal.

3. CHARACTERIZATION

The goal of this section is to characterize quasihyponormality of Toeplitz
operators Tϕ on the space H2 by properties of the symbol ϕ ∈ L∞ following an
elegant theorem of C. Cowen ([5], Theorem 1).

Normal Toeplitz operators were characterized [3] by a property of their
symbols in the early 1960’s by A. Brown and P.R. Halmos. Twenty five years later
the exact nature of relationship between the symbol ϕ ∈ L∞ and the positivity
of the self commutator [T∗ϕ, Tϕ] was understood via Cowen’s theorem [5] which
requires one to solve a certain functional equation in unit ball of H∞. Motivated
by Cowen’s theorem we frame the operator theoretic problem of quasihyponor-
mality of Toeplitz operators, into the problem of finding a solution with specified
properties to a certain functional equation in unit ball of H∞ involving the sym-
bol ϕ. The basis of the proof is this Cowen’s theorem again and hence a Dilation
theorem [19]. The proof uses standard results about Hankel operators [5], [18].
However it still remains open to characterize subnormality of Toeplitz operators
in terms of their symbols.

THEOREM 3.1. If ϕ is in L∞, where ϕ = f + g for f and g in H2, then Tϕ is
quasihyponormal if and only if

P(g f ) = c + Th f f ,

for some constant c and some function h ∈ H∞(D) with ‖h‖∞ 6 1.

Proof. Let ϕ = f + g where f , g ∈ H2. Now if p is any polynomial, then

〈T∗ϕ[Tϕ]Tϕ p, p〉
= 〈T∗ϕ(T∗ϕTϕ − TϕT∗ϕ)Tϕ p, p〉
= 〈Tϕ(Tϕ p), Tϕ(Tϕ p)〉 − 〈T∗ϕ(Tϕ p), T∗ϕ(Tϕ p)〉

= 〈P f Tϕ p + PgTϕ p, P f Tϕ p + PgTϕ p〉 − 〈P f Tϕ p + PgTϕ p, P f Tϕ p + PgTϕ p〉
= 〈P f Tϕ p, P f Tϕ p〉+ 〈PgTϕ p, PgTϕ p〉 − 〈P f Tϕ p, P f Tϕ p〉 − 〈PgTϕ p, PgTϕ p〉
= 〈 f Tϕ p, f Tϕ p〉+ 〈gTϕ p, PgTϕ p〉 − 〈 f Tϕ p, P f Tϕ p〉 − 〈gTϕ p, gTϕ p〉
= 〈(I−P)( f f+f Pg)p, (I−P)( f f+f Pg)p〉−〈(I−P)(g f+gPg)p, (I−P)(g f+gPg)p〉
=‖H f f + f Pg p‖2 − ‖Hg f +gPg p‖2 = ‖H f f p‖2 − ‖Hg f p‖2.
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Since the analytic polynomials are dense in H2 and the Hankel and Toeplitz
operators involved are bounded, we see that Tϕ is quasihyponormal if and only if

‖Hg f u‖ 6 ‖H f f u‖, for all u ∈ H2.(3.1)

Let K denote the closure of range of H f f and S denote the compression of the
unilateral shift U to K. Since K is invariant for U∗, the operator S∗ is the restriction
of U∗ to K.

Now suppose first that Tϕ is quasihyponormal. Define an operator A on the
range of H f f by

A(H f f u) = Hg f u.

A is well defined because if H f f u1 = H f f u2 then H f f (u1 − u2) = 0. The inequal-
ity (3.1) implies that Hg f (u1 − u2) = 0 too and it follows Hg f u1 = Hg f u2. Also,
inequality (3.1) implies that ‖A‖ 6 1, so A has an extension to K, which will
also be denoted by A, with the same norm. Now by the intertwining formula for
Hankel operators HϕU = U∗Hϕ and the fact that K is invariant for U∗, we have

Hg f U = AH f f U = AU∗H f f = AS∗H f f

and also
Hg f U = U∗Hg f = U∗AH f f = S∗AH f f .

Since the range of H f f is dense in K, we find that AS∗ = S∗A on K, or taking
adjoints, that SA∗ = A∗S. In the following cases we use the fact: Either Hϕ is
one-one or Ker(Hϕ) = χH2 where χ is an inner function. The closure of the range of
Hϕ is H2 in the former case and (χ∗H2)⊥ in the later.

Case 1. H f f is one-one. Then K = H2 so that A∗ is an operator on H2 com-
muting with U. Hence by Theorem 1 of [19], (or by the usual theory of the unilat-
eral shift if K = H2), there is a function k in H∞(D) with

‖k‖∞ = ‖A∗‖ = ‖A‖ 6 1, and A∗ = Tk.

Case 2. H f f is not one-one, then K = (χ∗H2)⊥ = H2 	 χ∗H2 and A∗ is an
operator on K commuting with S, so that by Theorem 1 of [19], there is a function
k in H∞(D) with

‖k‖∞ = ‖A∗‖ = ‖A‖,
such that A∗ is the compression of Tk to K .

Since K is invariant for Tk∗ = Tk, this means that A is the restriction of Tk to
K and

Hg f = Tk H f f .(3.2)

Conversely, if equation (3.2) holds for some k in H∞(D) with ‖k‖∞ 6 1, then
clearly inequality (3.1) holds for all u, and Tϕ is quasihyponormal. The proof will
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be completed by analyzing the relationship given by (3.2). Using the formulation
(1.1), equation (3.2) holds if and only if for all functions u, v ∈ H∞

〈zuv, g f 〉 = 〈Hg f u, v∗〉 = 〈Tk H f f u, v∗〉 = 〈H f f u, kv∗〉 = 〈zuk∗v, f f 〉

= 〈zuv, k
∗

f f 〉 = 〈zuv, Tk
∗ f f 〉.

Since the closed span of {zuv : u, v ∈ H∞} is zH2, this means that equation (3.2)
holds if and only if (g f − Tk

∗ f f ) is in H2⊥ , so that P(g f )− Tk
∗ f f is in H2⊥ , and

hence
P(g f ) = c + Th f f ,

for some constant c and h = k∗, with ‖h‖∞ = ‖k∗‖∞ = ‖k‖∞ 6 1.

4. MATRICIAL REPRESENTATION

We discuss Kehe Zhu’s computing process [23] by way of Schur’s functions
so that we can determine any given polynomial ϕ such that Tϕ is quasihyponor-
mal. We reformulate the characterization of quasihyponormality in the case of a
trigonometric polynomial ϕ, so that the quasihyponormality of Tϕ can be decided
by applying Schur’s algorithm to the Schur function ΦN . This approach has been
put to use in the works [8], [10], [11], [15], [17] and [23] to study hyponormal
Toeplitz operators on H2.

If ϕ is a trigonometric polynomial of the form

ϕ(z) =
N

∑
n=−m

anzn,

where a−m and aN are non-zero, then the non-negative integers N and m denote
the analytic and co-analytic degrees of ϕ.

Theorem 3.1 says that if f1 and f2 are functions in H2 with f = f1 + f 2
in L∞, then Tf is quasihyponormal if and only if there exist a constant c and a
function g in (H∞)1 (that is g ∈ H∞, ‖g‖∞ 6 1) such that P( f2 f 1) = c + Tg f1 f 1.
It is clear that the above holds if and only if P( f2 f 1 − g f1 f 1) = c if and only if
( f 2 f1 − g f 1 f1) is in H2.

REMARK 4.1. Thus the quasihyponormality of the Toeplitz operator Tf is
equivalent to the solvability of the functional equation

f 2 f1 − g f 1 f1 = h, for g ∈ (H∞)1 and h ∈ H2.

By Zhu [23] and in view of the above observation we deduce the following:

COROLLARY 4.2. Suppose f = p + q where p is an analytic polynomial of degree
n and q ∈ H∞. If Tf is quasihyponormal, then q must be an analytic polynomial of
degree less than or equal to n.
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Proof. Write p(z) =
n
∑

k=0
akzk, an 6= 0. The quasihyponormality of Tf implies

that there exist functions g ∈ (H∞)1 and h ∈ H2 such that (qp− gpp) = h. Now
for z ∈ T, we have

g(z)p(z)p(z) = z−ng(z)
[( n

∑
i=1

aiai−1

)
zn−1 +

( n

∑
i=2

aiai−2

)
zn−2 + · · ·

+ ana0z0 +
( n

∑
i=n−1

aiai−(n−1)

)
z +

( n

∑
i=n−2

aiai−(n−2)

)
z2 + · · ·

+
n

∑
i=0
|ai|2zn+

( n−1

∑
i=0

aiai+1

)
zn+1+

( n−2

∑
i=0

aiai+2

)
zn+2+· · ·+a0anz2n

]
.

Thus znq(z)p(z) = zng(z)p(z)p(z) + h(z)zn is analytic and hence z−nq(z)p(z) is
co-analytic. This implies that q is an analytic polynomial of degree 6 n.

Given two analytic polynomials p(z) =
n
∑

k=0
akzk, q(z) =

n
∑

k=0
bkzk, ana0 6= 0,

we proceed to determine, in terms of the coefficients of p and q the following:

When is the Toeplitz operator Tf , f = p + q, quasihyponormal?

By the Remark 4.1, we are trying to determine whether or not the functional
equation

qp− gpp = h,

has solutions (g, h) in (H∞)1 × H2. Write

g(z) =
∞

∑
k=0

ckzk, and h(z) =
∞

∑
k=0

hkzk.

Comparing Taylor coefficients, we find that the equation qp− gpp = h, has solu-
tions (g, h) in (H∞)1 × H2 if and only if

bna0 = c0ana0

bna1+bn−1a0 = c1ana0+c0ana1+c0an−1a0

bna2+bn−1a1+bn−2a0 = c2ana0+c1ana1+c0ana0+c1an−1a0

+ c0an−1a1+c0an−2a0

·
·
·

bnan−2+bn−1an−3+· · ·+b2a0 = cn−2ana0+cn−3ana1+· · ·+c0anan−2+cn−3an−1a0

+cn−4an−1a1+· · ·+c0an−1an−3+· · ·+c0a2a0
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bnan−1+bn−1an−2+· · ·+b1a0 = cn−1ana0+cn−2ana1+· · ·+c0anan−1+cn−2an−1a0

+cn−3an−1a1+· · ·+c0an−1an−2

+· · ·+c1a2a0+c0a2a1+c0a1a0,

where c0, c1, . . . , cn−1 are the first n coefficients of a function in (H∞)1. In matrix
form the above equations become

BnXn = AnYn,

where

Bn =



b1 b2 b3 · · · bn−2 bn−1 bn
b2 b3 b4 · · · bn−1 bn 0
b3 b4 b5 · · · bn 0 0

...
...

...
...

...
...

bn−1 bn 0 · · · 0 0 0
bn 0 0 · · · 0 0 0


,

An =



a1a0+· · ·+anan−1 a2a0+· · ·+anan−2 · · · · · · ana1+an−1a0 ana0
a2a0+· · ·+anan−2 a3a0+· · ·+anan−3 · · · · · · ana0 0
a3a0+· · ·+anan−3 a4a0+· · ·+anan−4 · · · · · · 0 0

...
...

...
...

an−2a0+· · ·+ana2 an−1a0+ana1 ana0 · · · 0 0
an−1a0+ana1 ana0 0 · · · 0 0

ana0 0 0 · · · 0 0


,

Xn =
[

a0 a1 a2 · · · an−2 an−1
]′ ,

and
Yn =

[
c0 c1 c2 · · · cn−2 cn−1

]′ .
Note that A′n, the transpose of the n× n matrix An, is equal to An. Since ana0 6= 0,
the matrix An is invertible. Thus the first n coefficients of the function g in (H∞)1
are uniquely determined by the coefficients of p and q.

Summarizing, we obtain the following:

THEOREM 4.3. Suppose p(z) =
n
∑

k=0
akzk with ana0 6= 0, q(z) =

n
∑

k=0
bkzk and f

= p + q. With the notation as above, let

Yn = A−1
n BnXn.

Then Tf is quasihyponormal if and only if there exists a function g in (H∞)1, whose first
n Taylor coefficients are c0, c1, . . . , cn−1 in that order.

The problem of determining the quasihyponormality of Tf , f = p + q with
deg(p) = n and deg(q) 6 n, is now equivalent to the problem of characterizing
the first n Taylor coefficients of function in (H∞)1. We adopt Kehe Zhu’s method
[23] based on Schur’s solution to this coefficient problem [21] to obtain an abstract
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characterization of those trigonometric polynomial symbols that correspond to
quasihyponormal Toeplitz operators.

We first review Schur’s algorithm [21]: Suppose f (z) =
∞
∑

k=0
ckzk is a general

function in (H∞)1. Let f0 := f . Define by induction a sequence { fn} of functions
in (H∞)1 as follows:

fn+1 =
fn(z)− fn(0)

z(1− fn(0) fn(z))
, n > 0, |z| < 1.

Then fn(0) only depends on the coefficients c0, c1, . . . , cn. Thus we can write

fn(0) = Φn(c0, c1, . . . , cn), n > 0,

where Φn is a function of n + 1 complex variables. We call the Φ′ns Schur’s func-
tions. By straight calculations we can see that:

Φ0(c0) = c0, Φ1(c0, c1) =
c1

1− |c0|2
, Φ2(c0, c1, c2) =

c2(1− |c0|2) + c0c2
1

(1− |c0|2)2 − |c1|2
.

THEOREM 4.4 ([21]). Given n + 1 complex numbers c0, c1, . . . , cn, they are the
first n + 1 Taylor coefficients (in the given order) of a function g in (H∞)1 if and only if

|Φk(c0, c1, . . . , ck)| 6 1, 0 6 k 6 n.

As a consequence we obtain the following:

THEOREM 4.5. Suppose

f (z) =
n

∑
k=0

akzk +
n

∑
k=0

bkzk, ana0 6= 0.

As in Theorem 4.3, let
Yn = A−1

n BnXn.

Then Tf is quasihyponormal if and only if

|Φk(c0, c1, . . . , ck)| 6 1, 0 6 k 6 n− 1.

We use this characterization to give explicit necessary and sufficient con-
dition for quasihyponormality in terms of the coefficients of the polynomial ϕ
when n 6 3. It is interesting to note that the conditions coincide with those for
hyponormality as calculated by Kehe Zhu [23].

EXAMPLE 4.6. If f (z) = a−1z + a0 + a1z, then it is easily checked that Tf is
quasihyponormal if and only if |a−1| 6 |a1|.

EXAMPLE 4.7. If f (z) = a0 + a1z + a2z2 + g(z) with a2a0 6= 0 and g ∈ H∞,
then Tf is quasihyponormal if and only if g(z) = b0 + b1z + b2z2 with

|b2|2 + |a2b1 − a1b2| 6 |a2|2.
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Proof. Let Y2 = A−1
2 B2X2 then Y2 = Z2, where

Z2 =

[ b2
a2

a2b1−a1b2
a2

2

]
,

which turns out to be same matrix as obtained by Kehe Zhu [23] for hyponor-
mality of Tf and thus by Corollary 4.2 and Theorem 4.5, Tf is quasihyponormal
if and only if g(z) = b0 + b1z + b2z2 with |b2|2 + |a2b1 − a1b2| 6 |a2|2.

Thus by Example 6 of [23] and Example 4.7, we conclude Tf is quasihy-
ponormal if and only if is hyponormal.

EXAMPLE 4.8. Suppose f (z) = a0 + a1z + a2z2 + a3z3 + g(z) with a3a0 6= 0
and g ∈ H∞. Then

(i) Tf is quasihyponormal if and only if g(z) = b0 + b1z + b2z2 + b3z3 with
|b3| 6 |a3| and

|(|a3|2 − |b3|2)[a2
3b1 − a2a3b2 + (a2

2 − a1a3)b3] + a3b3(a3b2 − a2b3)2|
6 |a3|[(|a3|2 − |b3|2)2 − |a3b2 − a2b3|2].

(ii) Tf is quasihyponormal if and only if g(z) = b0 + b1z + b2z2 with

|b2|2 + |a3b1 − a2b2| 6 |a3|2.

Proof. Let Y3 = A−1
3 B3X3 then Y3 = Z3, where

Z3 =


b3
a3

a3b2−a2b3
a2

3
a2

3b1−a2a3b2+(a2
2−a1a3)b3

a2
3

 .

These are indeed the Fourier coefficients of the (H∞)1 function for hyponormal-
ity of Tf as obtained in Example 7 of [23]. The desired result follows from Corol-
lary 4.2 and Theorem 4.5 and previously obtained formulas for Φ0, Φ1 and Φ2.

Again Example 7 of [23] and Example 4.8 conclude that Tf is quasihyponor-
mal if and only if it is hyponormal. Indeed the case of arbitrary trigonometric
polynomial ϕ, though solved in principle by Theorem 3.1 or Schur’s algorithm is
in practice very complicated.

REFERENCES

[1] M.B. ABRAHAMSE, Subnormal Toeplitz operators and functions of bounded type,
Duke Math. J. 43(1976), 597–604.

[2] I. AMEMIYA, T. ITO, T.K. WONG, On quasinormal Toeplitz operators, Proc. Amer.
Math. Soc. 50(1975), 254–258.



QUASIHYPONORMAL TOEPLITZ OPERATORS 79

[3] A. BROWN, P.R. HALMOS, Algebraic properties of Toeplitz operators, J. Reine Angew.
Math. 213(1963-64), 89–102.

[4] C.C. COWEN, Hyponormal and subnormal Toeplitz operators, in Surveys of Some Re-
cent Results in Operator Theory, Vol. 1, Pitman Res. Notes Math. Ser., vol. 171, Longman
1988, pp. 155–167.

[5] C.C. COWEN, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103(1988),
809–812.

[6] C.C. COWEN, J.J. LONG, Some subnormal Toeplitz operators, J. Reine Angew. Math.
351(1984), 216–220.

[7] R.E. CURTO, S.H. LEE, W.Y. LEE, Subnormality and 2-hyponormality for Toeplitz
operators, Integral Equations Operator Theory 44(2002), 138–148.

[8] R.E. CURTO, W.Y. LEE, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc.
712(2001).

[9] R. DOUGLAS, Banach Algebra Techniques in Operator Theory, Second edition, Springer-
Verlag, New York 1998.

[10] D.R. FARENICK, W.Y. LEE, Hyponormality and spectra of Toeplitz operators, Trans.
Amer. Math. Soc. 348(1996), 4153–4174.

[11] D.R. FARENICK, W.Y. LEE, On hyponormal Toeplitz operators with polynomial and
circulant-type symbols, Integral Equations Operator Theory 29(1997), 202–210.

[12] P.R. HALMOS, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76(1970), 887–933.

[13] P.R. HALMOS, Ten years in Hilbert space, Integral Equations Operator Theory 2(1979),
529–564.

[14] P.R. HALMOS, A Hilbert Space Problem Book, Second edition, Springer-Verlag, New
York 1982.

[15] I.S. HWANG, I.H. KIM, W.Y. LEE, Hyponormality of Toeplitz operators with polyno-
mial symbols, Math. Ann. 313(1999), 247–261.

[16] T. ITO, T.K. WONG, Subnormality and quasinormality of Toeplitz operators, Proc.
Amer. Math. Soc. 34(1972), 157–164.

[17] T. NAKAZI, K. TAKAHASHI, Hyponormal Toeplitz operators and extremal problems
of Hardy spaces, Trans. Amer. Math. Soc. 338(1993), 753–769.

[18] S.C. POWER, Hankel Operators on Hilbert Space, Pitman, Boston 1982.

[19] D. SARASON, Generalized interpolation in H∞, Trans. Amer. Math. Soc. 127(1967), 179–
203.

[20] D. SARASON, Holomorphic spaces: a brief and selective survey, in Holomorphic Spaces
(Berkeley, CA 1995), Math. Sci. Res. Inst. Publ., vol. 33, Cambidge Univ. Press, Cam-
bidge 1998, pp. 1–34.

[21] I. SCHUR, Über Potenzreihen die im Innern des Einheitskreises beschränkt sind, J.
Reine Angew. Math. 147(1917), 205–232.

[22] N.C. SHAH, I.H. SNETH, Some results on quasihyponormal operators, J. Indian Math.
Soc. (N.S.) 39(1975), 285–291.



80 S.C. ARORA AND GEETA KALUCHA

[23] K. ZHU, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations
Operator Theory 21(1995), 376–381.

S.C. ARORA, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI, DELHI-
110007, INDIA.

E-mail address: scarora@maths.du.ac.in

GEETA KALUCHA, DEPARTMENT OF MATHEMATICS, PGDAV COLLEGE, UNI-
VERSITY OF DELHI, DELHI-110065, INDIA.

E-mail address: geetakalucha@yahoo.com

Received October 26, 2005.


