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INTRODUCTION

Product decompositions of function spaces play an important role in com-
plex analysis and operator theory, and they are closely related to the study of
Hankel operators. For instance, the well-known Hardy space factorization H1 =
H2H2, with control on the norms of the factors, together with Fefferman’s the-
orem yield the characterization of bounded Hankel operators on H2, i.e. a Han-
kel operator is bounded on H2 if and only if the analytic part of its symbol is a
BMOA function. These problems become considerably more difficult in the case
of vector-valued function spaces or in several complex variables. One such exam-
ple is the characterization of the boundedness in terms of the symbol for the Han-
kel operator on vector-valued Hardy spaces, which is still not completely under-
stood in the infinite dimensional case. There is however an operator-valued ana-
logue of the decomposition of H1 mentioned above which was found by Sarason
[14]. He showed that H1(D,S1) = H2(D,S2)H2(D,S2), where S1,S2 denote the
trace class, respectively Hilbert-Schmidt operators on a separable Hibert spaceH.
This implies that the space of bounded Hankel operators acting on vector-valued
Hardy spaces can be identified with the dual of H1(D,S1) (see also [12]).

A similar role is played by weak product decompositions, that is a decom-
position in sums of products of elements of two given spaces, with control on
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the norms. For example, in their recent study of Hankel operators on the Hardy
space on the bidisc, H2(D2), Ferguson and Lacey [8] proved that any f ∈ H1(D2)
can be written as

f =
∞

∑
i=1

gihi,

where gi, hi ∈ H2(D2) and
∞

∑
i=1
‖gi‖H2(D2)‖hi‖H2(D2) 6 k‖ f ‖H1(D2).

In the terminology introduced above this is a weak product decomposition of
H1(D2) with factors in H2(D2). The factorization of scalar-valued Bergman space
functions was obtained by Horowitz [11]. Weak product decompositions for
scalar Bergman spaces are related to atomic decompositions (see [9]) and they
also appear in a very recent description of the preduals of the Qp-spaces (see [1]).

The aim of this paper is to study weak product decompositions and little
Hankel operators on vector-valued Bergman spaces. From now on, whenever
we use the terminology Hankel operator, we refer to the little Hankel operator.
Given α > −1, p > 0, and a Banach space Y, the standard weighted Bergman
space Lp,α

a (D, Y) is the space of Y-valued functions f , holomorphic on D, with

‖ f ‖Lp,α
a (D,Y) =

( ∫
D

‖ f (z)‖p
Y dAα(z)

)1/p
,

where dA denotes the normalized area measure on the unit disc D in the com-
plex plane, and dAα(z) = (α + 1)(1− |z|2)αdA(z). We are going to establish the
Bergman space analogues of the theorems by Sarason [14] and Ferguson-Lacey [8]
mentioned above, and to give a characterization of the compactness of the Hankel
operators on vector-valued Bergman spaces. As an application, we give a short
proof of Zhu’s [15] characterization of compact Hankel operators on Bergman
spaces on the polydisc.

Our analogue to Sarason’s theorem is proved in Section 2 and states that
any function f ∈ L1,α

a (D,S1) can be written as

(0.1) f =
∞

∑
n=1

gnhn,

with gn ∈ Lr,α
a (D,S2), hn ∈ Ls,α

a (D,S2) and
∞

∑
n=1
‖gn‖Lr,α

a (D,S2)‖hn‖Ls,α
a (D,S2) ∼ ‖ f ‖L1,α

a (D,S1),

where 1/r + 1/s = 1. As in [2], our approach differs from the one used in [14]
for Hardy spaces. The key step is an atomic decomposition theorem for the
spaces L1,α

a (D, X∗), where X is a separable Banach space. As in [1], this atomic
decomposition is deduced from sampling theorems via the duality (B0(X))∗ =
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L1,α
a (D, X∗). This duality theorem completes results by Arregui and Blasco [3]

and is presented in Section 1. As a direct consequence of this result, we deduce
that the dual of L1,α

a (D,S1) can be identified with the bounded Hankel operators
on L2,α

a (D,H). This together with a result by Arregui and Blasco [3] that identifies
the dual of L1,α

a (D,S1) with B(L), where L denotes the space of bounded linear
operators on H, yields a characterization of the bounded Hankel operators on
L2,α

a (D,H). An alternative direct proof of this fact can be found in [2]. We should
point out here that in the study of Hankel operators on Bergman spaces we en-
counter a completely different situation to the one in Hardy spaces. For example,
given a separable Hilbert space H, it is shown in [2] that for a Foguel-Hankel
matrix (

M∗z Γf
0 Mz

)
,

where Γf is the Hankel operator with symbol f on L2,α
a (D,H), and Mz is the oper-

ator of multiplication by z on L2,α
a (D,H), the power boundedness, the polynomial

boundedness and the complete polynomial boundedness are equivalent. This is
in contrast to Pisier’s famous example [13] of such a matrix on vector-valued
Hardy spaces, which is polynomially bounded but not completely polynomially
bounded.

We continue the investigation of such operators in Section 3. We prove that
a Hankel operator Γf defined on L2,α

a (D,H), is compact if and only if its symbol f
is an analytic function on D with values in the space of compact operators on H,
that satisfies the following little Bloch condition

‖ f ′(z)‖(1− |z|)→ 0 as |z| → 1.

Since the values f ′(z) can be computed with the formula

f ′(z) = (α + 2)
∫
D

f (w)
w

(1− wz)α+3 dAα(w),

we can say that, in the scalar case, the Hankel operator satisfies the normalised
reproducing kernel synthesis, i.e. boundedness and compactness can be charac-
terized considering only the action of the operator on the normalised reproducing
kernels. With the appropriate interpretation of the reproducing kernels, this re-
sult remains true in the vector-valued case as well.

The Bergman space analogue of the Ferguson-Lacey [8] result is proved in
Section 4. We show that any function f ∈ L1,α

a (Dn) can be written as

f =
∞

∑
i=1

gihi,

where gi, hi ∈ L2,α
a (Dn) and

∞

∑
i=1
‖gi‖L2,α

a (Dn)‖hi‖L2,α
a (Dn) ∼ ‖ f ‖L1,α

a (Dn).
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This type of results for Dn are obtained by an inductive process with respect to
the number of variables. As a byproduct of this technique, we also obtain an ana-
logue of Sarason’s theorem for operator-valued Bergman spaces on the polydisc.

Our analogue of the Ferguson-Lacey result together with the compactness
theorem proven in Section 3 imply Zhu’s [15] characterization of compactness for
Hankel operators on Bergman spaces on the polydisc. Moreover, our approach
yields the following very natural formulation of the necessary and sufficient con-
ditions for the Hankel operator to be bounded, respectively compact. The Han-
kel operator Γf is bounded on L2,α

a (Dn) if and only if its holomorphic symbol
f : Dn → C belongs to the Bloch-type space B(n) defined inductively by B(1) = B,
B(n) = B(B(n−1)), n > 2.

Similarly, we show that Γf is compact if and only if f ∈ B(n)
0 , where B(1)

0 =

B0, B(n)
0 = B0(B

(n−1)
0 ), n > 2.

1. PRELIMINARIES

Throughout our considerations k will stand for a generic positive constant
whose dependence on parameters will be indicated whenever it is relevant. More-
over, by “E1 ∼ E2” we denote two functions that are comparable, i.e. there is a
constant k > 0 independent of the argument such that kE2 > E1 > 1/k E2.

Let Dn be the polydisc in Cn. We denote by dA the normalized area measure
on D, and for α > −1, we let dAα(z) = (α + 1)(1− |z|2)αdA(z). Given a Banach
space Y, and p > 0, we consider the standard weighted vector-valued Bergman
spaces Lp,α

a (Dn, Y), which consist of holomorphic functions f : Dn → Y with

‖ f ‖Lp,α
a (Dn ,Y) =

( ∫
Dn

‖ f (z1, . . . , zn)‖p
Y dAα(z1) · · · dAα(zn)

)1/p
< ∞,

and note that, for n > 2, Lp,α
a (Dn, Y) = Lp,α

a (D, Lp,α
a (Dn−1, Y)) When Y = C we

shall simply denote these spaces by Lp,α
a (Dn), while for n = 1, Y = C we shall

denote these spaces by Lp,α
a . Moreover, we denote by B(Y), the vector-valued

Bloch space which consists of holomorphic functions f : D→ Y that satisfy

‖ f ‖B(Y) = sup
z∈D

(1− |z|2)‖ f ′(z)‖Y < ∞.

In case Y = C, we shall simply write B instead of B(C). For B(1) = B, B(2) =
B(B), we define inductively the spaces B(n) = B(B(n−1)), n > 2. One can easily
show that

B(n) =
{

f : Dn → C holomorphic : max
β∈An

sup
z∈Dn
|(∂β f (β · z)| (1− |z|)β < ∞

}
,
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where An denotes the set of multi-indices β = (β1, . . . , βn) with the entries βi ∈
{0, 1}, 1 6 i 6 n, and

z = (z1, . . . , zn), β · z = (β1z1, . . . , βnzn),

∂β = ∂
β1
z1 · · · ∂

βn
zn , (1− |z|)β = (1− |z1|)β1 · · · (1− |zn|)βn .

The little Bloch space B0(Y), will be the subspace of B(Y), consisting of
Y-valued functions f , analytic on D, for which the following holds

(1− |z|2)‖ f ′(z)‖Y → 0 as |z| → 1.

We shall also consider the spaces B(n)
0 , n > 1, defined as B(n)

0 = B0(B
(n−1)
0 ) for

n > 2, with B(1)
0 = B0. An alternative characterization of functions in B(n)

0 is
given by the following result.

PROPOSITION 1.1. We have

B(n)
0 =

{
f analytic on Dn : lim

(1−|z|)β→0
(1− |z|)β|∂β f (βz)| = 0 f or β ∈ An

}
,

the convergence being uniform in z ∈ Dn.

Proof. The fact that functions with the property specified in the statement
belong to B(n)

0 follows at once; we only need to notice that the boundedness of
point evaluations on B(n) ensures f ′(z1) (z2, . . . , zn) = ∂z1 f (z1, . . . , zn).

The converse inclusion can be proved by induction. For n = 1 the statement
is true by definition. Assume the statement is true for n− 1 with n > 2, and let
us prove that it holds for B(n)

0 as well.

Let f ∈ B(n)
0 , β = (β1, . . . , βn) ∈ An, and denote w = (z2, . . . , zn). If β1 =

0, then, since Dn−1 3 w 7→ f (0, w) ∈ B(n−1)
0 , we clearly have lim

(1−|z|)β→0
(1 −

|z|)β|∂β f (βz)| = 0, uniformly for z ∈ Dn. Suppose now β1 = 1 and denote
β̃ = (0, β2, . . . , βn), β̂ = (β2, . . . , βn). Let ε > 0. Then, since f ∈ B(n)

0 , we can find
δ = δ(ε) > 0 such that

(1− |z|)β|∂β f (βz)| < ε, z ∈ Dn, 1− |z1| < δ.

For z1 ∈ D and w ∈ Dn−1 we define

gw(z1) = (1− |z|)β̃∂β̃ f (z1, β̂w), z = (z1, w).

Since the set K = {z1 ∈ D : |z1| 6 1− δ} is compact we can find C > 0 such that

|g′′w(z1)| < C, w ∈ Dn−1, z1 ∈ K.

Indeed, the map D 3 z1 7→ f (z1) ∈ B
(n−1)
0 is analytic, so that

sup
z1∈K
‖ f ′′(z1)‖B(n−1) < C.
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Thus

|g′′w(z1)| = (1− |z|)β̃|∂2
z1

∂β̃ f (z1, β̂w)| < C, z1 ∈ K, w ∈ Dn−1.

The compactness of K also ensures the existence of N disks D(z1,k, rk), k=1,. . . ,N,

centered at z1,k ∈ K and of radius rk < ε/C, such that K ⊂
N⋃

k=1
D(z1,k, rk) ⊂ D.

Given z1 ∈ K, if |z1,k − z1| < ε/C, then

|(1− |z|)β∂β f (z1, β̂w)− (1− |z|)β∂β f (z1,k, β̂w)| 6 |g′w(z1)− g′w(z1,k)|

6 C |z1 − z1,k| < ε, w ∈ Dn−1,

so that

(1− |z|)β|∂β f (z1, β̂w)| 6 (1− |z|)β̃|∂β f (z1,k, β̂w)|+ ε, z1 ∈ K.

Combined with the induction hypothesis this yields

lim
(1−|z|)β→0

(1− |z|)β|∂β f (z1, β̂w)| < ε uniformly for |z1| 6 1− δ, w ∈ Dn−1.

From the above we deduce that

lim
(1−|z|)β→0

(1− |z|)β|∂β f (βz)| < ε + ε = 2ε

uniformly in z ∈ Dn, which completes the proof.

Let H be a separable Hilbert space and T : D → L(H) a holomorphic
operator-valued function, where L(H) denotes the bounded linear operators on
H. The Hankel operator ΓT is defined by means of the Hankel form

〈ΓT x, y〉 = lim
r→1

∫
|z|6r

〈T(z) x(z), y(z)〉dA(z),

where x, y are H-valued holomorphic functions in a disk of radius strictly larger
than 1 (as it is well-known these functions form a dense subset in L2,α

a (D,H)). It
turns out (see [2]) that ΓT extends to a bounded linear operator on L2,α

a (D,H) if
and only if T ∈ B(L(H)) and, in addition, ‖ΓT‖ ∼ ‖T‖B(L(H)).

From now on we let X be a separable Banach space. We shall frequently use
in the sequel the following lemmas. The second one is a direct application of the
Stokes’ lemma (see [2]).

LEMMA 1.2 ([10], Theorem 1.7). For any α ∈ (−1, ∞) and any β > 0, there
exists k > 0 such that the following estimate holds∫

D

(1− |w|2)α

|1− zw|2+α+β
dA(w) 6 k

1
(1− |z|2)β

, z ∈ D.
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LEMMA 1.3. Let g ∈ L1,α
a (D, X∗) and f : D → X be analytic in a neighborhood

of D. Then the following equality holds:∫
D

〈 f (z), g(z)〉dAα(z)=
1

α+1

∫
D

〈
f ′(z),

g(z)−g(0)
z

〉
(1−|z|2)dAα(z)+〈 f (0), g(0)〉.

Let now B00(X) be the closed subspace of B0(X), consisting of functions
that vanish at 0. Our next theorem shows that the dual of B00(X) can be iden-
tified with L1,α

a (D, X∗). This completes a result by Arregui and Blasco [3]. Our
method of proof is, however, different from the one in [3] and essentially follows
the argument in the scalar-valued case. Recall that the functions analytic in a
neighborhood of D form a dense subset of B0(X) (see [3]).

THEOREM 1.4. The dual of B00(X) can be identified with L1,α
a (D, X∗), α > −1,

under the pairing

(1.1) 〈 f , g〉 =
∫
D

〈 f (z), g(z)〉dAα(z),

where g ∈ L1,α
a (D, X∗) and f is an X-valued function, analytic in a neighborhood of D,

f (0) = 0. This identification is an isomorphism from (B00(X))∗ onto L1,α
a (D, X∗).

Proof. Let f be an X-valued function, analytic on a neighborhood of D with
f (0) = 0. Then, for g ∈ L1,α

a (D, X∗), Lemma 1.3 gives∣∣∣∫
D

〈 f(z), g(z)〉dAα(z)
∣∣∣=∣∣∣∫

D

〈
f ′(z),

g(z)−g(0)
z

〉
(1−|z|2)dAα(z)

α+1

∣∣∣6k‖ f ‖B(X)‖g‖L1,α
a (D,X∗).

From this we immediately deduce that the mapping f 7→ 〈 f , g〉 extends to a
bounded linear functional on B00(X) for any g ∈ L1,α

a (D, X∗). Moreover, distinct
functions in L1,α

a (D, X∗) induce distinct linear functionals on B00(X). Indeed, if
〈znx, g1〉 = 〈znx, g2〉, for all x ∈ X and n ∈ N, then the Taylor coefficients of g1
equal the Taylor coefficients of g2.

Now we shall show that every bounded linear functional on B00(X) is in-
duced by a function in L1,α

a (D, X∗). Let φ be a bounded linear functional onB00(X)
and put

gφ(λ)(x) = φ
( 1

(1− ζ λ)α+2 x
)

,

where ζ denotes the identity function of D. We want to show that gφ ∈ L1,α
a (D, X∗)

and 〈 f , φ〉 = 〈 f , gφ〉, for all f ∈ B00(X). To this end consider the embedding
J : B00(X)→ C(D, X)

J( f )(z) = f ′(z)(1− |z|2), z ∈ D.

Clearly J is an isometry, and hence ψ = φJ−1 defines a bounded linear functional
on a closed subspace of C(D, X) (i.e. the range of J), and by the Hahn-Banach
theorem it extends to a bounded linear functional on C(D, X) preserving its norm.
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Then (see [6]) there exists an X∗-valued countably additive measure µ on D such
that

gφ(λ)(x) = φ
( 1

(1− zλ)α+2 x
)

= ψ
( (α + 2)λ(1− |z|2)

(1− zλ)α+3 x
)

= (α + 2)
∫
D

λ(1− |z|2)
(1− zλ)α+3 x dµ(z) λ ∈ D.

The measure µ induces (see [6] for details) a finite nonnegative regular Borel mea-
sure |µ| on D, which is called the variation of µ, and satisfies∣∣∣ ∫

D

h(z) dµ(z)
∣∣∣ 6 ∫

D

‖h(z)‖d|µ|(z),

for any h ∈ C(D, X). In particular, we have |µ|(D) 6 ‖φ‖. Then

|gφ(λ)(x)| 6 (α + 2)
∫
D

1− |z|2
|1− zλ|α+3 d|µ|(z) ‖x‖, λ ∈ D,

and hence

‖gφ(λ)‖ 6 (α + 2)
∫
D

1− |z|2
|1− zλ|α+3 d|µ|(z).

Now, by Fubini’s theorem and Lemma 1.2, we deduce∫
D

‖gφ(λ)‖dAα(λ) 6 (α + 2)
∫
D

∫
D

1− |z|2
|1− zλ|α+3 d|µ|(z) dAα(λ)

= (α + 2)
∫
D

∫
D

1− |z|2
|1− zλ|α+3 dAα(λ) d|µ|(z)

6 k
∫
D

d|µ|(z) 6 k|µ|(D) 6 k‖φ‖.

This shows that gφ ∈ L1,α
a (D, X∗).

For an X-valued function f , analytic in a neighborhood of D and with f (0) =
0, Lemma 1.3 gives

(α + 1)〈 f , gφ〉 =
∫
D

〈 f ′(z), gφ(z)− gφ(0)〉1− |z|
2

z
dAα(z)

=
∫
D

φ
( f ′(z)

(1− zλ)α+2 − f ′(z)
) 1− |z|2

z
dAα(z)(1.2)

= φ
( ∫

D

( f ′(z)
(1− zλ)α+2 − f ′(z)

) 1− |z|2
z

dAα(z)
)

.
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The last step above is obtained as follows. For r < 1 we split the inner integral as
below

φ
( ∫
|z|<r

( f ′(z)
(1−zλ)α+2− f ′(z)

)1−|z|2
z

dAα(z)
)
+φ
( ∫
|z|>r

( f ′(z)
(1−zλ)α+2−f ′(z)

)1−|z|2
z

dAα(z)
)

.

Since f ∈ B00(X) that the second term above tends to 0 as r → 1, while in the
first term we clearly can interchange the action of φ with the integration. By a
standard formula in Bergman spaces (see [16]), we now get from (1.2)

〈 f , gφ〉 = φ( f (λ)− f (0)) = φ( f ),

which completes the proof.

The next theorem will be the main tool in our further investigations.

THEOREM 1.5. There exists a sequence (λi)i>1⊆D such that any g∈L1,α
a (D, X∗)

can be written as

g(λ) = g(0) +
∞

∑
i=1

Ci
λ(1− |λi|2)
(1− λiλ)3+α

, λ ∈ D,

with (Ci)i = (Ci(g))i ∈ `1(X∗) satisfying

‖(Ci)i>1‖`1(X∗) ∼ ‖g‖L1,α
a (D,X∗).

Proof. There exists a sequence (λi)i>1 ⊆ D, with no accumulation points in
D, such that the following relation holds

(1.3) ‖ f ‖B(X) ∼ sup
i>1
‖ f ′(λi)‖(1− |λi|2), f ∈ B00(X),

with constants independent of f . Indeed, consider for example a sequence (λi)i>1
⊆ D that satisfies

inf
i>1
|z− λi| < c(1− |z|), z ∈ D,

for some constant 0 < c < 1. It is easy to see that if c is sufficiently small, relation
(1.3) holds for such a sequence (λi)i>1 (see [1] for more details). Let c0(X) denote
the space of sequences in X that tend to 0. Consider the embedding I : B00(X)→
c0(X) given by

I( f ) = ( f ′(λi)(1− |λi|2))i∈N,

where the λi’s satisfy (1.3). Note that I is bounded below and above.
Now let g ∈ L1,α

a (D, X∗). By Theorem 1.4, g defines via (1.1) a bounded
linear functional φg ∈ (B00(X))∗ with ‖φg‖ ∼ ‖g‖L1,α

a (D,X∗). Hence ψ = φgI−1

defines a bounded linear functional on the range of I which is a closed subspace
of c0(X), and, by the Hahn-Banach theorem, it extends to a bounded linear func-
tional on c0(X) with the same norm. But the dual of c0(X) can be identified with
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`1(X∗) with the natural pairing. Hence there exists (ci)i ∈ `1(X∗) such that for
any f ∈ B00(X) we have

φg( f ) = ψ(( f ′(λi)(1− |λi|2))i) =
∞

∑
i=1
〈 f ′(λi)(1− |λi|2), ci〉.

Clearly ‖(ci)i‖`1(X∗) ∼ ‖φg‖ ∼ ‖g‖L1,α
a (D,X∗). In particular, for x ∈ X, λ ∈ D and

fλ(z) = 1
(α+2)λ

(
1

(1−λz)α+2 − 1
)

x, we get

(1.4) φg( fλ) =
∞

∑
i=1
〈 f ′λ(λi)(1− |λi|2), ci〉 =

∞

∑
i=1
〈x, ci〉

1− |λi|2

(1− λiλ)3+α
.

On the other hand, by Lemma 1.3 it follows that

φg( fλ) =
∫
D

〈
f ′λ(z),

g(z)−g(0)
z

〉
(1−|z|2)dAα(z)=

∫
D

〈
x,

g(z)−g(0)
z

〉 1−|z|2

(1−zλ)3+α
dAα(z)

=
α + 1
α + 2

〈
x,

g(λ)− g(0)
λ

〉
, λ ∈ D.(1.5)

From (1.4), (1.5) we now get

g(λ) = g(0) +
∞

∑
i=1

Ci
λ(1− |λi|2)
(1− λiλ)3+α

, λ ∈ D,

where Ci = (α + 2)/(α + 1) ci.

2. A THEOREM OF SARASON TYPE ON BERGMAN SPACES

Let H be a separable Hilbert space. For t > 0 we let S t denote the cor-
responding Schatten class, which consists of compact linear operators T on H,
such that the eigenvalues of the modulus |T| form an `t sequence. In particular,
S1 = S1(H), S2 = S2(H) denote the set of trace class operators on H, respec-
tively the set of Hilbert-Schmidt operators onH.

The main result of this section gives the Bergman space analogue of Sara-
son’s theorem mentioned in the introduction.

THEOREM 2.1. Let t > 1, t1, t2, r, s > 0 be such that 1/t1 + 1/t2 = 1/t, 1/r +
1/s = 1. Then, any function f ∈ L1,α

a (D,S t), α > −1, can be written as

f =
∞

∑
n=1

gnhn,

with gn ∈ Lr,α
a (D,S t1), hn ∈ Ls,α

a (D,S t2) and
∞

∑
n=1
‖gn‖Lr,α

a (D,S t1 )‖hn‖Ls,α
a (D,S t2 ) ∼ ‖ f ‖L1,α

a (D,S t).
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Proof. In view of the fact that S1 = (K(H))∗ and (S t)∗ = S t′ , for t >

1, 1/t + 1/t′ = 1, we can apply Theorem 1.5 to deduce that, for any f ∈L1,α
a (D,S t),

there are Ci ∈ S t and λi ∈ D, i > 1, such that

f (λ) = f (0) +
∞

∑
i=1

Ci
λ(1− |λi|2)
(1− λiλ)3+α

, λ ∈ D,

with (Ci)i = (Ci( f ))i ∈ `1(S t) satisfying

‖(Ci)i>1‖`1(S t) ∼ ‖ f ‖L1,α
a (D,S t).

Denote C0 = f (0) and let Ci = Wi|Ci| be the polar decomposition of Ci, i > 0,
(see [5]). For λ ∈ D, i > 1, put

gi(λ) = Wi|Ci|t/t1 λ
(1− |λi|2)1/r

(1− λiλ)(3+α)/r
, g0(λ) = W0|C0|t/t1 ,

hi(λ) = |Ci|t/t2
(1− |λi|2)1/s

(1− λiλ)(3+α)/s
, h0(λ) = |C0|t/t2 .

Note that gi ∈ Lr,α
a (D,S t1), hi ∈ Ls,α

a (D,S t2) and

(2.1) f =
∞

∑
i=0

gihi.

By Lemma 1.2 we obtain

‖gi‖Lr,α
a (D,S t1 ) ∼ ‖Wi|Ci|t/t1‖S t1 ∼ ‖|Ci|t/t1‖S t1 = k‖Ci‖t/t1

St
,

while
‖hi‖Ls,α

a (D,S t2 ) ∼ ‖|Ci|t/t2‖S t2 = k‖Ci‖t/t2
St

, i > 0.

Thus
∞

∑
i=0
‖gi‖Lr,α

a (D,S t1 )‖hi‖Ls,α
a (D,S t2 ) ∼

∞

∑
i=1
‖Ci‖S t ∼ ‖ f ‖L1,α

a (D,S t).

With this, the proof is complete.

For the sake of completeness, we shall apply this theorem to identify the
dual of L1,α

a (D,S1) with the bounded Hankel operators on L2,α
a (D,H) and with

the vector-valued Bloch-space B(L(H)). As mentioned in the introduction, one
could derive this also from [2] together with a theorem by Arregui and Blasco
[3], that identifies the dual of L1,α

a (D,S1) with B(L(H)) with the natural pairing
given in (2.2) below.

Given B∈ (L1,α
a (D,S1))∗, where (L1,α

a (D,S1))∗ denotes the dual of L1,α
a (D,S1),

we can associate to it the analytic operator-valued function b : D→ L(H),

〈b(z) x, y〉 = B(Kz(·) y⊗ x), x, y ∈ H,



168 OLIVIA CONSTANTIN

where

Kz(w)=
1

(1−wz)α+2 , w, z∈D and y⊗x : H→H, y⊗x( f )= 〈 f , x〉y, f ∈H.

Some of the considerations below are the Bergman space analogues of those
made in [12].

COROLLARY 2.2. Let b, B be as above. Then :
(1) If F ∈ L1,α

a (D,S1) is an S1-valued analytic function in a neighbourhood of D, we
have, with b∗(z) is the adjoint of b(z) for z ∈ D,

(2.2) BF =
∫
D

tr (b∗(z)F(z)) dAα(z).

(2) If Γb is the Hankel operator defined on L2,α
a (D,H) with symbol b, then the follow-

ing quantities are comparable:
(i) ‖B‖∗;

(ii) ‖Γb‖;
(iii) ‖b‖B(L(H)) = sup

z∈D
(1− |z|2) ‖b′(z)‖ .

The result in Corollary 2.2 is in contrast to the situation in the Hardy space
with the Bloch condition replaced by BMO, where the above inequalities are true
only for finite dimensional subspaces. Investigations of this problem were made
in [12] where, roughly speaking, it is shown that the norm of a Hankel operator
cannot exceed a constant multiple of the logarithm of the dimension times the
BMO-norm of the symbol, and that this estimate is sharp.

The proof of Corollary 2.2 relies on a further identification of Hankel op-
erators that act on different spaces. More precisely, given b as above, there is a
natural way to associate to it a Hankel operator ΓT(b) acting on L2,α

a (D,S2). Its
symbol T(b) : D 7→ L(S2) is defined by

(2.3) T(b)(z)S = b(z)S, S ∈ S2.

The following lemma expresses a general fact which holds in all weighted
Bergman spaces or even Hardy spaces.

LEMMA 2.3. Let b ∈ L1
a(D,L(H)). Then ΓT(b) is bounded on L2,α

a (D,S2) if and
only if Γb is bounded on L2,α

a (D,H), and

‖ΓT(b)‖ = ‖Γb‖.
Proof. One inequality is almost obvious. Suppose that ΓT(b) extends to a

bounded operator on L2,α
a (D,S2). Denote by {en}n the standard orthonormal

basis of H and let x, y be H-valued functions, analytic in a neighborhood of D.
Then for a fixed n ∈ N

〈b(z)x(z), y(z)〉= 〈b(z)x(z)⊗ en, y(z)⊗ en〉S2 = 〈T(b)(z) x(z)⊗ en, y(z)⊗ en〉S2 ,
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which implies

〈Γbx, y〉L2,α
a (D,H) = 〈T(b)(z)x(z)⊗en, y(z)⊗en〉L2,α

a (D,S2) = 〈ΓT(b)x⊗en, y⊗en〉L2,α
a (D,S2).

From this we immediately deduce that

‖Γb‖ 6 ‖ΓT(b)‖.

To prove the reverse inequality let F, G ∈ L2,α
a (D,S2) be S2-valued analytic

functions in a neighbourhood of D (this class of functions is dense in L2,α
a (D,S2)

and note that

〈ΓT(b)F, G〉L2,α
a (D,S2) =

∫
D

〈T(b)(z)F(z), G(z)〉S2 dAα(z)

=
∫
D

∞

∑
n=1
〈T(b)(z)F(z)en, G(z)en〉dAα(z)

=
∫
D

∞

∑
n=1
〈b(z)F(z)en, G(z)en〉dAα(z),

by relation (2.3). Hence,

|〈ΓT(b)F, G〉L2,α
a (D,S2)|6

∞

∑
n=1

∫
D

|〈b(z)F(z)en, G(z)en〉|dAα(z) =
∞

∑
n=1
|〈ΓbFen, Gen〉|

6
∞

∑
n=1
‖Γb‖‖Fen‖L2,α

a (D,H)‖Gen‖L2,α
a (D,H)6‖Γb‖‖F‖L2,α

a (D,S2)‖G‖L2,α
a (D,S2),

by the Cauchy-Schwarz inequality. Thus

‖ΓT(b)‖ 6 ‖Γb‖,

and with this the proof is complete.

Poof of Corollary 2.2. (1) Taking into account the fact that∫
D

|∂zKz(ξ)|dAα(ξ) 6
k

1− |z|2 ,

one can easily see that b satisfies

sup
z∈D

(1− |z|2) ‖b′(z)‖ < k‖B‖∗,

and hence the right-hand-side of (2.2) is well-defined. Now, to prove (2.2), let
{en}n be an orthonormal basis forH and let PM denote the orthogonal projection
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on span{e1, . . . , eM}, M > 1. Then∫
D

tr (b∗(z)F(z)PM) dAα(z)

=
∫
D

∞

∑
n=1
〈F(z)PMen, b(z)en〉dAα(z) =

∫
D

M

∑
n=1

B(Kz(·) F(z)en ⊗ en) dAα(z)

=
∫
D

B
( M

∑
n=1

Kz(·) F(z)en ⊗ en

)
dAα(z) = B

( ∫
D

Kz(·)
M

∑
n=1

F(z)en ⊗ en dAα(z)
)

= B
( ∞

∑
n=1

F(·)PMen ⊗ en

)
= B(FPM).

But FPM→ F in L1,α
a (D,S1), so, if we let M→∞ in the above relation we obtain

(2.2).
(2) The fact that (ii)∼(iii) is a direct application of Theorem 3.1 in [2]. We

shall only show that (i)∼(ii). Note that

(2.4) B(GH) = 〈ΓT(b)H̃, G〉L2,α
a (D,S2),

where G, H are S2-valued functions, analytic in a neighborhood of D, and H̃(z)
= H∗(z). This follows immediately from

tr(b∗(z)G(z)H(z)) = tr(H∗(z)G∗(z)b(z)) = tr(G∗(z)b(z)H∗(z))

= 〈T(b)(z)H∗(z), G(z)〉S2 = 〈T(b)(z)H̃(z), G(z)〉S2 , z ∈ D.

From relation (2.4) we obtain the inequality

‖B‖∗ > ‖ΓT(b)‖.

On the other hand, given F ∈ L1,α
a (D,S1), we deduce by Theorem 2.1 that there

are Gn, Hn ∈ L2,α
a (D,S2), n = 1, 2, . . . such that F =

∞
∑

n=1
Gn Hn, where the series

converges in L1,α
a (D,S1), and
∞

∑
n=1
‖Gn‖L2,α

a (D,S2)‖Hn‖L2,α
a (D,S2) 6 k ‖F‖L1,α

a (D,S1).

Hence

|B(F)| =
∣∣∣ ∞

∑
n=1

B(GnHn)
∣∣∣ =

∣∣∣ ∞

∑
n=1
〈ΓT(b)H̃n, Gn〉L2,α

a (D,S2)

∣∣∣
6

∞

∑
n=1
‖ΓT(b)‖ · ‖Gn‖L2,α

a (D,S2) · ‖Hn‖L2,α
a (D,S2) 6 k‖ΓT(b)‖ ‖F‖L1,α

a (D,S1).

Therefore ‖B‖∗ ∼ ‖ΓT(b)‖. Combine this with Lemma 2.3 to deduce that the
quantity in (i) is comparable to the quantity in (ii).
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3. COMPACT HANKEL OPERATORS ON VECTOR-VALUED BERGMAN SPACES

LetH be a Hilbert space and denote byK(H) the space of compact operators
onH. Recall the result in [2] mentioned in the previous section which asserts that
the Hankel operator ΓT is bounded on L2,α

a (D,H) if and only if T∈B(L(H)) and

(3.1) ‖ΓT‖ ∼ ‖T‖B(L(H)).

The following theorem provides a compactness criterion for ΓT .

THEOREM 3.1. ΓT is compact on L2,α
a (D,H) if and only if T ∈ B0(K(H)).

Proof. Assume first that T ∈ B0(K(H)) and denote by Tr(z) = T(rz), z ∈
D, r < 1. By a standard argument, analogous to the one used in the scalar case,
it follows that ‖Tr(z) − T(z)‖B(H) → 0 as r → ∞. Then by (3.1) we get ‖ΓTr −
ΓT‖ → 0 as r → ∞, and hence it is enough to show that ΓTr is compact. But
since Tr is analytic on a neighborhood of D, it can be approximated by its Taylor
polymonials in the B(H)-norm, i.e.∥∥∥Tr(z)−

n

∑
k=0

T̂(k)rkzk
∥∥∥
B(H)

→ 0, as n→ ∞,

where T̂(k) ∈ K(H) are the Taylor coefficients of T. Again, by (3.1), it now fol-
lows that it is enough to show that ΓT̂(k)zk is a compact operator for all n, k ∈ N.

But this is easily proven since one can approximate T̂(k) with finite rank opera-
tors T̂p(k), and then one approximates ΓT̂(k)zk with the operators ΓT̂p(k)zk which
are also finite rank operators. With this, the "if part" is proven.

Let us now prove the "only if" part. If ΓT is compact, then it is bounded and
by (3.1) we get T ∈ B(L(H)). We shall first prove that the Taylor coefficients
T̂(k), k > 0 of T are compact operators onH. For this let fk ∈ H, fk

w→ 0 as k→ ∞
(here w→ denotes weak convergence). For a fixed n0 ∈ N, set

xk(z) = zn0 fk, yk(z) = T̂(n0) fk, z ∈ D, k ∈ N.

It is straightforward to check that for k → ∞ both sequences (xk), ( fk) converge
weakly to zero in L2,α

a (D,H).
Then, since ΓT is compact we get 〈ΓTxk, yk〉 → 0 as k→ ∞. But 〈ΓTxk, yk〉 =

n0!Γ(α + 2)
Γ(n0+α+2) ‖T̂(n0) fk‖2 −→

k→∞
0, which shows that T̂(n0) is compact on H, and,

as n0 is arbitrary, this holds for all n0 ∈ N. By the above and the pointwise
convergence of the Taylor series of T, we deduce that T(z) is compact for any
z ∈ D.

It remains to show that T verifies the "little Bloch" condition. For any a, b ∈
H, the function z 7→ 〈T(z)a, b〉 belongs to L1,α

a since T ∈ B(L(H)), and then by a
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standard formula for Bergman spaces

(3.2) 〈T′′(z)a, b〉 = (α + 2)(α + 3)
∫
D

〈T(w)a, b〉 w2

(1− wz)α+4 dAα(w).

For each fixed z ∈ D, the operator T′′(z) is compact and hence there exists x0 =
x0(z) ∈ H with ‖x0(z)‖ = 1 such that ‖T′′(z)‖ = ‖T′′(z)x0(z)‖. Put now y0(z) =
T′′(z)x0(z)/‖T′′(z)‖. Note that ‖y0(z)‖ = 1 and

‖T′′(z)‖ = ‖T′′(z)x0(z)‖ = 〈T′′(z)x0(z), y0(z)〉.

By (3.2) and the above relation we get

(1− |z|2)2‖T′′(z)‖ = (α + 2)(α + 3)
∫
D

〈T(w)x0(z), y0(z)〉w
2(1− |z|2)2

(1− wz)α+4 dAα(w)

= 〈ΓTxz, yz〉,(3.3)

where

xz(w) =
x0(z)(1− |z|2)
(1− wz)2+α/2 , yz(w) = (α + 2)(α + 3)

w2y0(z)(1− |z|2)
(1− wz)2+α/2 , w, z ∈ D.

Let us now show that

(3.4) xz, yz
w→ 0 as |z| → 1.

In view of (3.3) and the compactness of ΓT , this implies (1− |z|2)2T′′(z) → 0 as
|z| → 1, which is equivalent to T′(z)(1− |z|2)→ 0 as |z| → 1 (see [4] for the proof
in the scalar case; the proof in the vector-valued case is analogous).

Thus it remains to prove (3.4). To this end, denote for each w ∈ D, a ∈ H

ew,a(ζ) =
1

(1− ζw)α+2 a, ζ ∈ D.

The functions ez,a ∈ L2,α
a (D,H) induce bounded linear functionals on L2,α

a (D,H)
with the natural pairing, and their linear span is dense in L2,α

a (D,H). Note that,
for any w ∈ D,

〈xz, ew,a〉 = 〈xz(w), a〉 → 0, 〈yz, ew,a〉 = 〈yz(w), a〉 → 0 as |z| → 1,

and hence, in order to prove (3.4), it is enough to have

sup
z∈D
‖xz‖ < ∞, sup

z∈D
‖yz‖ < ∞,

but these follow immediately from Lemma 1.2.
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4. PRODUCT DECOMPOSITIONS FOR BERGMAN SPACES ON THE POLYDISC

As mentioned in the Introduction, Ferguson and Lacey [8] proved a weak
product decomposition theorem for the Hardy space H1(D2). Our aim is to give
an analogue of this result for the Bergman space.

THEOREM 4.1. For α > −1, any function f ∈ L1,α
a (Dn) can be written as

(4.1) f =
∞

∑
i=1

gihi,

where gi, hi ∈ L2,α
a (Dn) and

(4.2)
∞

∑
i=1
‖gi‖L2,α

a (Dn)‖hi‖L2,α
a (Dn) ∼ ‖ f ‖L1,α

a (Dn).

Moreover, the functions gi, hi above are analytic in a neighborhood of Dn
.

Proof. We shall prove the theorem by induction over n. Let n = 1 and apply
Theorem 1.5 with X = C to deduce that any f ∈ L1,α

a can be written as

f (λ) = f (0) +
∞

∑
i=1

ci
λ(1− |λi|2)
(1− λiλ)3+α

, λ ∈ D,

where λi ∈ D and (ci)i = (ci( f ))i ∈ `1 satisfy

(4.3) ‖(ci)‖`1 ∼ ‖ f ‖L1,α
a

.

Put g0 ≡ 1, h0 ≡ f (0) and

gi(λ) = ci
λ(1− |λi|2)1/2

(1− λiλ)(3+α)/2
, hi(λ) =

(1− |λi|2)1/2

(1− λiλ)(3+α)/2
, λ ∈ D, i > 1.

By Lemma 1.2 we deduce ‖gi‖L2,α
a
∼ |ci| and ‖hi‖L2,α

a
∼ 1, and hence, by (4.3), we

have
∞

∑
i=0
‖gi‖L2,α

a
‖hi‖L2,α

a
∼ ‖ f ‖L1,α

a
.

So the statement is true for n = 1. Suppose now it is true for n ∈ N. By Theo-
rem 1.5 applied for X∗ = L1,s

a (Dn) = (B(n)
0 )∗, we can write any f ∈ L1,s

a (Dn+1) =
L1,s

a (D, L1,s
a (Dn)) as

(4.4) f (λ) = f (0) +
∞

∑
i=1

ci
λ(1− |λi|2)
(1− λiλ)3+α

, λ ∈ D,

where λi ∈ D and (ci)i = (ci( f ))i ∈ `1(L1,α
a (Dn)) satisfy

(4.5) ‖(ci)‖`1(L1,α
a (Dn)) ∼ ‖ f ‖L1,α

a (Dn+1).
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To simplify the notation set c0 = f (0). By the induction hypothesis we can now
write each ci ∈ L1,α

a (Dn), i > 0, as

(4.6) ci =
∞

∑
j=1

gijhij,

where gij, hij ∈ L2,α
a (Dn) and

(4.7)
∞

∑
j=1
‖gij‖L2,α

a (Dn)‖hij‖L2,α
a (Dn) ∼ ‖ci‖L1,α

a (Dn).

By (4.4)–(4.6) we now get

f (λ, z′) = f (λ)(z′)

=
∞

∑
j=1

g0j(z′)h0j(z′) +
∞

∑
i,j=1

gij(z′)hij(z′)
λ(1− |λi|2)
(1− λiλ)3+α

, z′ ∈ Dn, λ ∈ D.

For i, j > 1 and λ ∈ D, z′ ∈ Dn, we put

Gij(λ, z′) = gij(z′)
λ(1− |λi|2)1/2

(1− λiλ)(3+α)/2
, and G0j(λ, z′) = g0j(z′);

Hij(λ, z′) = hij(z′)
(1− |λi|2)1/2

(1− λiλ)(3+α)/2
, and H0j(λ, z′) = h0j(z′).

Clearly

f =
∞

∑
i=0,j=1

GijHij,

and by Lemma 1.2 we deduce that

‖Gij‖L2,α
a (Dn+1) ∼ ‖gij‖L2,α

a (Dn), ‖Hij‖L2,α
a (Dn+1) ∼ ‖hij‖L2,α

a (Dn), i > 0, j > 1.

In view of (4.5)–(4.7) we then get
∞

∑
i=0,j=1

‖Gij‖L2,α
a (Dn+1)‖Hij‖L2,α

a (Dn+1) ∼ ‖ f ‖L1,α
a (Dn+1),

and the proof is complete.

As mentioned in the introduction, we can combine the approach used in the
above proof with our analogue of Sarason’s theorem proven in Section 2 to obtain
the following

THEOREM 4.2. Let t > 1, t1, t2, r, s > 0 be such that 1/t1 + 1/t2 = 1/t, 1/r +
1/s = 1. Then, any function f ∈ L1,α

a (Dn,S t), α > −1, can be written as

f =
∞

∑
n=1

gnhn,
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with gn ∈ Lr,α
a (Dn,S t1), hn ∈ Ls,α

a (Dn,S t2) and
∞

∑
n=1
‖gn‖Lr,α

a (Dn ,S t1 )‖hn‖Ls,α
a (Dn ,S t2 ) ∼ ‖ f ‖L1,α

a (Dn ,S t).

Sketch of the proof. For n = 1 the result is given in Theorem 2.1, while the
inductive step from n to n + 1 is obtained as in the proof of Theorem 4.1, tak-
ing into account L1,α

a (Dn,S t) = (B(n)
0 (S t′))∗ for t > 1, 1/t + 1/t′ = 1, and

L1,α
a (Dn,S1) = (B(n)

0 (K(H)))∗.

Given f∈L1,α
a (Dn), the Hankel operator Γf on L2,α

a (Dn) is defined as usual by

〈Γf φ, ψ〉 =
∫
Dn

f (z)φ(z)ψ(z) dAα(z1) · · · dAα(zn),

where φ, ψ are holomorphic in a neighborhood of Dn
, and z = (z1, . . . , zn) ∈ Dn.

Our next step is a direct application of the results by Arregui and Blasco [3].

PROPOSITION 4.3. Let B(n) be the space of analytic functions defined in Section 2.
The dual of L1,α

a (Dn) can be identified with B(n) with the pairing

(4.8) 〈 f , g〉 =
∫
Dn

f (z) g(z) dAα(z1) · · · dAα(zn),

where f is analytic in a neighborhood of Dn
and g ∈ B(n).

Proof. In [3] it is shown that given a separable Banach space X, the dual of
L1,α

a (D, X) can be identified with B(X∗) under the pairing

〈 f , g〉 =
∫
D

〈 f (z) , g(z)〉dAα(z),

where g ∈ B(X∗) and f is an X-valued function holomorphic on a neighborhood
of Dn

. Note that the X-valued functions holomorphic on a neighborhood of Dn

are dense in L1,α
a (D, X). We apply this result for L1,α

a (Dn) = L1,α
a (D, L1,α

a (Dn−1)),
i.e. X=L1,α

a (Dn−1), to deduce that (L1,α
a (Dn))∗ can be identified withB((L1,α

a (Dn−1))∗).
We can now continue with the same reasoning for (L1,α

a (Dn−1))∗, and, induc-
tively, we obtain that (L1,α

a (Dn))∗ can be identified with B(n) with the pairing
(4.8).

The next two corollaries provide a direct proof for the characterizations of
the boundedness and of the compactness for the Hankel operator on L2,α

a (Dn).
Although these characterizations were previously obtained in [16], we give a dif-
ferent formulation of the necessary and sufficient conditions.

COROLLARY 4.4. Γf is bounded on L2,α
a (Dn) if and only if f ∈ B(n). Moreover,

(4.9) ‖Γf ‖ ∼ ‖ f ‖B(n) .
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Proof. The "if" part follows immediately from (L1,α
a (Dn))∗ = B(n) and the

Cauchy-Schwarz inequality.
Let us now prove the "only if" part. Assume that Γf is bounded and let

φ : Dn → C be analytic on a neighborhood of Dn
. We use Theorem 4.1 to deduce

that φ can be written as φ = ∑
i>1

gihi, where gi, hi are analytic on a neighborhood

of Dn
and satisfy

‖φ‖L1,α
a (Dn) ∼ ∑

i>1
‖gi‖L2,α

a (Dn)‖hi‖L2,α
a (Dn).

Note that the series ∑
i>1

gihi converges also uniformly on the compact subsets of

Dn
to the function φ.

Then∫
Dn

f (z)φ(z)dAα(z1) · · ·dAα(zn) = lim
r→1

∫
Dn

f (z)φ(rz)dAα(z1) · · ·dAα(zn)

= lim
r→1

∫
Dn

f (z) ∑
i>1

gi(rz)hi(rz)dAα(z1) · · ·dAα(zn)

= lim
r→1

∑
i>1

∫
Dn

f (z)gi(rz)hi(rz)dAα(z1) · · ·dAα(zn)

= lim
r→1

∑
i>1
〈Γf gi

∗
r , hir〉,

where hir(z) = hi(rz), gi
∗
r (z) = gi(rz), z ∈ Dn. Hence∣∣∣ ∫

Dn

f (z)φ(z)dAα(z1) · · ·dAα(zn)
∣∣∣6 lim

r→1
∑
i>1
‖Γf ‖‖gi

∗
r ‖L2,α

a (Dn)‖hir‖L2,α
a (Dn)

6‖Γf ‖∑
i>1
‖gi‖L2,α

a (Dn)‖hi‖L2,α
a (Dn) 6k‖φ‖L1,α

a (Dn).

Since the functions analytic in a neighborhood of Dn
are dense in L1,α

a (Dn), we
deduce that f induces a bounded linear functional on L1,α

a (Dn), and, by Proposi-
tion 4.3, we obtain f ∈ B(n).

COROLLARY 4.5. Consider the spaceB(n)
0 defined in Section 2 and let f∈L1,α

a (Dn).

Then Γf extends to a compact operator on L2,α
a (Dn) if and only if f ∈ B(n)

0 .

Proof. We prove the theorem by induction. For n = 1 the statement reduces
to a well-known result (see [16]). Now suppose the statement is true for n− 1, i.e.
the operator Γg is compact on L2,α

a (Dn−1) if and only if g ∈ B(n−1)
0 . Let f ∈ B(n).

Since the space L2,α
a (Dn) can be identified with L2,α

a (D, L2,α
a (Dn−1)), then the oper-

ator Γf can be regarded as the Hankel operator ΓF acting on L2,α
a (D, L2,α

a (Dn−1)),
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where the symbol F : D→ L(L2,α
a (Dn−1)) is given by

F(z1) = Γf (z1,ζ), z1 ∈ D,

where ζ denotes the identity function on Dn−1, and Γf (z1,ζ) denotes the Hankel

operator on L2,α
a (Dn−1) with symbol z′ 7→ f (z1, z′), z′ ∈Dn−1. A straightforward

argument, based on (4.9) and the fact that f∈B(n), gives F∈B(L(L2,α
a (Dn−1))) and

(4.10) F′(z1) = Γ∂z1 f (z1,ζ), z1 ∈ D.

Note that for any φ, ψ ∈ L2,α
a (Dn) = L2,α

a (D, L2,α
a (Dn−1)), we have

〈Γf φ, ψ〉 = 〈ΓFφ, ψ〉.

Clearly Γf is compact on L2,α
a (Dn) if and only if ΓF is compact on L2,α

a (D, L2,α
a (Dn−1)).

By Theorem 3.1 we deduce that ΓF is compact if and only if F∈B0(K(L2,α
a (Dn−1))),

where K(L2,α
a (Dn−1)) denotes the set of compact operators on L2,α

a (Dn−1). By the
induction hypothesis we deduce that the condition F(z1)= Γf (z1,ζ)∈K(L2,α

a (Dn−1)),

for any (fixed) z1 ∈ D, is equivalent to f (z1, ζ) ∈ B(n−1)
0 , for any (fixed) z1 ∈ D.

Moreover, in view of (4.9)–(4.10), the condition

‖F′(z1)‖(1− |z1|)→ 0 as |z1| → 1,

is equivalent to

‖∂z1 f (z1, ζ)‖B(n−1)(1− |z1|) = ‖∂z1 f (z1, ζ)‖
B(n−1)

0
(1− |z1|)→ 0 as |z1| → 1,

that is f ∈ B(n)
0 . The above considerations show that Γf is compact on L2,α

a (Dn) if

and only if f ∈ B(n)
0 , which completes the proof.

A similar characterization of bounded and compact Hankel operators has
been obtained by Zhu [15]. His conditions are formulated in case n = 2 in terms
of the derivatives involved in the definition of B0(B0).
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