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ABSTRACT. In this paper, we introduce operator-valued weighted bi-shifts on
the Hilbert space l2(N,H), of all square-summable sequences whose elements
are in a complex Hilbert space H, and study their spectral and local spectral
properties. We determine the spectrum and its parts of such bi-shifts, and
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bi-shift to enjoy the single-valued extension property.
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INTRODUCTION

Let L(H) denote the algebra of all bounded linear operators acting on a
complex Hilbert spaceH, and let K stand either for the set of all integers Z or the
set of all nonnegative integers N. Let l2(K,H) be the usual Hilbert space of all
square-summable sequences (xn)n∈K whose elements are in H. The correspond-
ing inner product is defined by

〈(xn)n∈K; (yn)n∈K〉 := ∑
n∈K
〈xn; yn〉, ((xn)n∈K, (yn)n∈K ∈ l2(K,H)).

Let A := (An)n>0 be a sequence of uniformly bounded invertible operators of
L(H). The corresponding unilateral operator-weighted shift is defined by

SA x := (0, A0x0, A1x1, A2x2, . . .), x = (xn)n>0 ∈ l2(N,H),

and its adjoint is given by

SA∗ x := (A∗0 x1, A∗1 x2, A∗2 x3, . . .), x = (xn)n>0 ∈ l2(N,H).
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Throughout this paper, we assume in addition thatA−1 := (A−1
n )n>0 is also

a uniformly bounded sequence. The operator-weighted bi-shift, BA, with the weight
sequence A = (An)n>0 is the operator on l2(N,H) defined by

BA := SA + S∗A∗−1 .

This operator has the following tridiagonal operator matrix representation
0 A0

−1 0 0 · · · · · ·
A0 0 A1

−1 0 · · · · · ·
0 A1 0 A2

−1 0 · · ·
0 0 A2 0 A3

−1 · · ·
· · · · · · · · · · · · · · · · · ·

 .

Clearly, the adjoint of BA is nothing but the weighted bi-shift with the weight
sequence A∗−1 = (An

∗−1)n>0, and therefore has a similar tridiagonal operator
matrix representation.

Note that when H = C, since in this case each An is a multiplication op-
erator on C by a nonzero scalar αn ∈ C, these bi-shifts are exactly the scalar
weighted bi-shifts which have been introduced and studied, in [8], by A. Atz-
mon and M. Sodin. They gave the complete description of their spectrum and
point spectrum, and considered these bi-shifts mainly in the case where each αn
is positive and lim

n→+∞
αn = 1. They showed that if the weight sequence (αn)n>0

satisfies certain additional growth conditions, then the spectrum of every part of
either the corresponding bi-shift Bα or its adjoint B∗α equals the whole interval
[−2, 2]; a part of an operator is its restriction to a closed invariant subspace. In
this case, such bi-shifts are said to be completely indecomposable. The question
whether any scalar weighted bi-shift has a proper closed invariant subspace was
affirmatively answered later by A. Atzmon in [7].

In this paper, we study the spectral and local spectral pictures of operator-
valued weighted bi-shifts. In Section 2, we use elementary methods to determine
the spectrum and its parts of an operator-valued weighted bi-shift. In Section 3,
we characterize those bi-shifts who enjoy the single-valued extension property.
While in Section 4, we aim at determining the local spectra of operator-valued
weighted bi-shifts.

1. PREMIMINARIES

In this section we gather together some usual notations and basic facts from
spectral and local spectral theory. We shall also collect some basic facts about the
spectra of the unilateral operator-weighted shift SA. Our references are the books
of Aiena [1] and of Laursen and Neumann [21], and the papers [12] and [20].
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1.1. BASIC FACTS FROM SPECTRAL THEORY. For an operator T ∈ L(H), we de-
note as usual by r(T) its spectral radius given by

r(T) := lim
n→+∞

‖Tn‖1/n = max{|λ| : λ ∈ σ(T)},

where σ(T) := {λ ∈ C : T − λ is not invertible} is the spectrum of T. We also
denote by m(T) := inf{‖Tx‖ : ‖x‖ = 1} the lower bound of T, and recall that
the sequence (m(Tn)1/n)n>1 converges and its limit, denoted by r1(T), coincides
with its supremum and satisfies

r1(T) := lim
n→+∞

m(Tn)1/n = min{|λ| : λ ∈ σap(T)},

where σap(T) := {λ ∈ C : m(T − λ) = 0} is the approximate point spectrum
of T; see [22]. The point spectrum of the operator T is defined by σp(T) :=
{λ ∈ C : T − λ is not injective}, while the surjectivity spectrum of T is defined
by σsu(T) := {λ ∈ C : T − λ is not surjective}. Both the approximate point spec-
trum and the surjectivity spectrum of T are nonempty closed subsets of σ(T), and
are dual to each other, in the sense that σap(T) = σsu(T∗) and σsu(T) = σap(T∗);
see Theorem 2.42 of [1]. Here, T∗ denotes the adjoint of T.

The following result summarizes some well known facts about the spectrum
and its parts.

PROPOSITION 1.1. For an operator T ∈ L(H), the following assertions hold:
(i) σ(T) = σsu(T) ∪ σp(T) = σap(T) ∪ σp(T∗).

(ii) ∂σ(T) ⊂ σap(T) ∩ σsu(T) ⊂ σ(T).
(iii) The set σ(T)\σap(T) is open, and σ(T)\σap(T) ⊂ int(σp(T∗)).
(iv) The set σ(T)\σsu(T) is also open, and σ(T)\σsu(T) ⊂ int(σp(T)).
(v) If T is invertible, then m(T) = 1/‖T−1‖.

(iv) m(T1)m(T2) 6 m(T1T2) 6 ‖T1‖m(T2) for all T1, T2 ∈ L(H).

1.2. BASIC FACTS FROM LOCAL SPECTRAL THEORY. The single-valued extension
property was first introduced by N. Dunford [16], [17] and has, successively, re-
ceived a more systematic treatment in Dunford-Schwartz [18]. It plays an impor-
tant role in local spectral theory; see the monograph of Laursen and Neumann
[21].

DEFINITION 1.2. An operator T ∈ L(H) is said to have the single-valued
extension property provided that for every open set O ⊂ C there exists no nonzero
analyticH-valued function φ on O such that

(1.1) (T − λ)φ(λ) = 0, (λ ∈ O).

Recently, there has been a flurry of activity regarding the localization of the
single-valued extension property in the sense of J.K. Finch [19] which has been
widely studied in recent papers [2], [4], [3], [6], [5]. The recent monograph by
P. Aiena [1] contains further details.
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DEFINITION 1.3. An operator T ∈ L(H) is said to enjoy the single-valued
extension property at a point λ0 ∈ C if for every open disc O centered at λ0, the
equation (1.1) has no nontrivial analytic solution φ on O.

The set of all points on which T fails to have the single-valued extension
property will be denoted by<(T). It is an open subset of C contained in int(σp(T)),
and is empty precisely when T has the single-valued extension property.

In [5], P. Aiena and O. Monsalve showed that operators that do not have
the single-valued extension property at a given point in C may be characterized
by means of some typical tools of the local spectral theory. To state their useful
characterization, we recall that the local resolvent set, ρT (x), of an operator T ∈
L(H) at point x ∈ H is defined to be the union of all open subsets U of C for
which there is an analytic function φ : U → H which satisfies (T − λ)φ(λ) =
x, (λ ∈ U). Evidently, it is an open subset of C which contains ρ(T) the resolvent
set of T. The local spectrum of T at x is defined by

σT (x) := C\ρT (x),

and is a closed subset (possibly empty) of σ(T).
We shall make use of this useful characterization quoted from Theorem 1.9

in [5].

THEOREM 1.4. An operator T ∈ L(H) does not have the single-valued extension
property at a point λ ∈ C if and only if there exists a nonzero x ∈ ker(T − λ) such that
σT (x) = ∅.

Finally, we recall that the local spectral radius of an operator T ∈ L(H) at a
vector x ∈ H is defined by

rT(x) := lim sup
n→+∞

‖Tnx‖1/n,

and equals max{|λ| : λ ∈ σT(x)} provided that T has the single-valued extension
property; see Theorem 2.21 of [1].

1.3. SPECTRA OF SA . Throughout this paper, we let (Bn)n>0 be the sequence
given by

Bn =
{

An−1 An−2 · · · A1 A0 if n > 0,
1 if n = 0,

and set
R(SA) := sup{1/ lim sup ‖B∗n

−1x‖1/n : x ∈ H, ‖x‖ = 1}.
The following known result summarizes the complete description of some

parts of the spectrum of a unilateral operator-weighted shift.

LEMMA 1.5. The following assertions hold:
(i) r(SA) = lim

n→+∞
[sup

k>0
‖Bn+kB−1

k ‖]
1/n.

(ii) r1(SA) = lim
n→+∞

[inf
k>0
{1/‖BkB−1

n+k‖}]
1/n.
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(iii) σ(SA) = σsu(SA) = {λ ∈ C : |λ| 6 r(SA)}, and σp(SA) = ∅.
(iv) {λ ∈ C : |λ| < R(SA)} ⊂ σp(SA∗) ⊂ {λ ∈ C : |λ| 6 R(SA)}.
(v) <(SA∗) = {λ ∈ C : |λ| < R(SA)}.

For the proof see [12] and [20].

2. SPECTRA OF BA

In what follows, we denote by ϕ the function defined on C\{0} by

ϕ(ξ) := ξ + ξ−1, ξ ∈ C\{0}.

In the proofs of the main results of this section, we need some lemmas. The
first one is quoted from Lemma 3.1 in [8], and is in fact easy to prove.

LEMMA 2.1. If T1 and T2 are operators in L(H) such that T2T1 = 1, then

ϕ({ρ(T1) ∩ ρ(T2)}\{0}) ⊂ ρ(T1 + T2).

Proof. Since T2T1 = 1, for all ξ ∈ C\{0} we have the next relation and the
desired statement follows:

(2.1) (ϕ(ξ)− T1 − T2) = ξ−1(ξ − T2)(ξ − T1).

The spectrum of BA is described in term of the following quantity:

δ := max{r(SA), r(SA∗−1)}.

LEMMA 2.2. We always have δ > 1. Moreover, if δ = 1 then

r(SA) = r(SA∗−1) = 1.

Proof. For every positive integers n, k, we have

16‖An· · ·An+k‖‖A−1
n+k· · ·A

−1
n ‖=‖An· · ·An+k‖‖A∗n

−1· · ·A∗−1
n+k‖6‖SA

n‖‖SA∗−1
n‖.

From this it follows that 1 6 r(SA)r(SA∗−1) 6 δ2, and the proof is therefore
complete.

2.1. POINT SPECTRUM OF BA . We describe the point spectrum of the bi-shift BA.
For this, we need to fix some notations and make some useful observations.

For every x ∈ H, we let x(n) := (δn,kx)k∈K, (n ∈ K), where δn,k is the usual
Kronecker-Delta symbol. Let x be a nonzero fixed element ofH, and let Bx be the
restriction of BA on Mx :=

∨{BAnx(0) : n > 0}. For every n > 0, we put

vn := (Bnx)(n)/‖Bnx‖ and αn = ‖Bn+1x‖/‖Bnx‖.

We have BAx(0) = BAv0 = α0v1, and

BAvn = αnvn+1 + αn−1
−1vn−1
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for all n > 1. From this, we see that (vn)n>0 is an orthonormal basis of Mx, and Bx
is a scalar weighted bi-shift with the weight sequence (αn)n>0 and is cyclic with
a cyclic vector v0 = x(0).

PROPOSITION 2.3. The point spectrum of BA is given by σp(BA) =
⋃

x 6=0
σp(Bx).

More precisely, the following assertions hold:
(i) If R(SA∗−1) 6 1 and (Bnx)n>0 6∈ l2(N,H) for all nonzero x ∈ H, then

σp(BA) = ∅.
(ii) If R(SA∗−1) 6 1 and (Bnx)n>0 ∈ l2(N,H) for some nonzero x ∈ H, then

(−2, 2) ⊂ σp(BA) ⊂ [−2, 2].
(iii) If R(SA∗−1) > 1, then

{a + ib ∈ C : a2/c2
1 + b2/c2

2 <1}⊂σp(BA)⊂{a + ib ∈ C : a2/c2
1 + b2/c2

2 61},

where c1 := R(SA∗−1) + R(SA∗−1)−1 and c2 := R(SA∗−1)− R(SA∗−1)−1.

Proof. We trivially have σp(Bx) ⊂ σp(BA) for all nonzero element x ∈ H,
and

⋃
x 6=0

σp(Bx) ⊂ σp(BA).

Conversely, suppose that λ ∈ C is an eigenvalue for BA and (xn)n>0 ∈
l2(N,H) is a corresponding eigenvector. We have (A0

−1x1, A0x0 + A1
−1x2, A1x1

+A2
−1x3, A2x2 + A3

−1x4, . . .) = (λxn)n>0. Then

x1 = λB1x0, x2 = (λ2 − 1)B2x0, x3 = λ(λ2 − 2)B3x0, · · · .

In fact, by induction one shows that there is a sequence of polynomials (pn)n>0
such that

xn = pn(λ)Bnx0

for all n > 0. This shows that x0 6= 0, and (xn)n>0 ∈ Mx. Thus, λ ∈ σp(Bx0), and
σp(BA) ⊂ ⋃

x 6=0
σp(Bx), as desired.

Note that, since S∗A∗−1 SA = 1, we have

(ϕ(λ)− BA) = λ−1(1− λS∗A∗−1)(1− λSA) = λ−1(λ− S∗A∗−1)(λ− SA)

for all nonzero λ ∈ C. From these identities, we see that if ϕ(λ) ∈ σp(BA) for
some nonzero λ ∈ C, then both λ and λ−1 are in σp(S∗A∗−1). Therefore,

(2.2) σp(BA) ⊂ ϕ(σp(S∗A∗−1) ∩ σp(S∗A∗−1)−1).

(i) Assume that R(SA∗−1) 6 1 and that (Bnx)n>0 6∈ l2(N,H) for all nonzero
x ∈ H. By Lemma 1.5(iv), we have σp(S∗A∗−1) ⊂ {λ ∈ C : |λ| < 1}. In view of
(2.2), we see that σp(BA) = ∅, and the first statement is established.

(ii) Assume that R(SA∗−1) 6 1 and that there is a nonzero x ∈ H such that
∑

n>0
‖Bnx‖2 < +∞. In this case, we in fact have R(SA∗−1) = 1, and by Lem-

ma 1.5(iv), we see that σp(S∗A∗−1) = {λ ∈ C : |λ| 6 1}. In view of (2.2), we see
that σp(BA) is contained in [−2, 2].
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Since ∑
n>0
‖Bnx‖2 < +∞, the function kx(θ) := (Bnxe−i(n+1)θ)n>0 is well

defined for all θ ∈ [0, 2π]. Moreover, for every θ ∈ [0, 2π], we have

(2 cos θ − BA)kx(θ) = (e−iθ − S∗A∗−1)kx(θ) + (eiθ − SA)kx(θ) = 0 + x(0).

Changing θ by −θ, one also gets that (2 cos θ − BA)kx(−θ) = x(0) for all θ ∈
[0, 2π]. Thus, for every θ ∈ (0, 2π), we have

(2 cos θ − BA)(sin((n + 1)θ)Bnx)n>0 = (2 cos θ − BA)(kx(−θ)− kx(θ)) = 0.

This shows that (−2, 2) ⊂ σp(BA), as desired.
(iii) Suppose that R(SA∗−1) > 1. By (2.2) and Lemma 1.5(iii), we have

σp(BA) ⊂ {a + ib ∈ C : a2/c2
1 + b2/c2

2 6 1}. For a nonzero element x ∈ H
with rSA(x(0)) < 1, we set Ox := {λ ∈ C : rSA(x(0)) < |λ| < rSA(x(0))−1},
and let kx(λ) := (Bnx/λn+1)n>0, (λ ∈ Ox). Just as before, one can verify that
(ϕ(λ)− BA)(kx(λ)− kx(λ−1)) = 0 for all λ ∈ Ox, and ϕ(Ox) ⊂ σp(BA). Since
x is an arbitrary nonzero element in H for which rSA(x(0)) < 1, we infer that
{a + ib ∈ C : a2/c2

1 + b2/c2
2 < 1} ⊂ σp(BA). The proof is therefore complete.

2.2. SPECTRUM OF BA . The following result is an extension of Proposition 3.3
in [8] to the general setting of operator-valued weighted bi-shifts. We provide a
simple and direct proof.

THEOREM 2.4. If δ = 1 then the spectrum of BA is the interval [−2, 2].

Proof. Since δ = 1, it follows from Lemma 1.5(iii) and Lemma 2.2 that
σ(SA) = σ(SA∗−1) = {λ ∈ C : |λ| 6 1}. Thus,

{λ ∈ C : |λ| = 1} ⊂ σap(SA) ∩ σap(SA∗−1).

As S∗A∗−1 SA = 1, it follows from Lemma 2.1 that

σ(BA) ⊂ [−2, 2].

Now, suppose for the sake of contradiction that λ − BA is invertible for some
λ ∈ [−2, 2]. Take a real number θ for which 2 cos θ = λ and note that

(λ− BA) = e−iθ(eiθ − S∗A∗−1)(eiθ − SA).

It follows from this equation that eiθ − S∗A∗−1 is right invertible and eiθ − SA is
left invertible and therefore e−iθ 6∈ σap(SA∗−1) and eiθ 6∈ σap(SA). We have a
contradiction and the proof is complete.

With a little more effort, a proof similar to that of Theorem 2.4 yields the
following result.

THEOREM 2.5. If δ 6= 1, then the spectrum of BA is the solid ellipse

{a + ib ∈ C : a2/δ1
2 + b2/δ2

2 6 1},
where δ1 = δ + δ−1 and δ2 = δ− δ−1.
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Proof. By Lemma 1.5(ii) and Lemma 2.1, we have

σ(BA) ⊂ {a + ib ∈ C : a2/δ1
2 + b2/δ2

2 6 1}.

Note that, since B∗A = BA∗−1 , we may and shall assume without loss of
generality that δ = r(SA∗−1). So, to prove the reverse inclusion, we only need
to show that ϕ(λ) ∈ σ(BA) for all max(1, R(SA∗−1)) 6 |λ| 6 δ = r(SA∗−1); see
Proposition 2.3. Assume that there is λ0 such that max(1, R(SA∗−1)) 6 |λ0| 6 δ =
r(SA∗−1) and ϕ(λ0)− BA is invertible. Since

(ϕ(λ0)− BA) = λ−1
0 (λ0 − S∗A∗−1)(λ0 − SA),

we note that (λ0 − S∗A∗−1) is right invertible, and λ0 6∈ σsu(S∗A∗−1). From this, we
have

λ0 ∈ σ(S∗A∗−1)\σsu(S∗A∗−1) ⊂ int(σp(S∗A∗−1));

see Proposition 1.1(iv). And so, |λ0| < R(SA∗−1); see Lemma 1.5(iv). This contra-
dicts the hypothesis and finishes the proof.

2.3. APPROXIMATE POINT SPECTRUM AND SURJECTIVITY SPECTRUM OF BA . The
description of the approximate point spectrum of BA depends on the one of the
approximate point spectrum of SA which is not yet settled, and is still an open
problem.

PROPOSITION 2.6. The following assertions hold:
(i) If R(SA) 6 1, then σap(BA) = σ(BA).

(ii) If r(SA∗−1) 6 1, then σap(BA) = ϕ(σap(SA)).
(iii) If r(SA∗−1) > 1 and R(SA) > 1, then

σap(BA) ∪ ϕ({λ 6∈ σap(SA) : a < |λ| < b}) = ϕ(σap(SA) ∪ σ(SA∗−1)),

where a = max(1, R(SA∗−1)), and b = min(r(SA∗−1), R(SA)).

Proof. (i) If R(SA) 6 1, then int(σp(B∗A)) = ∅; see Proposition 2.3. By Propo-
sition 1.1(iii), the desired identity holds.

(ii) Assume that r(SA∗−1) 6 1. We always have

(2.3) (ϕ(λ)− BA) = λ−1(λ− S∗A∗−1)(λ− SA)

for all λ 6= 0. In view of Proposition 1.1(vi), we see that

(2.4) ϕ(σap(SA)) ⊂ σap(BA).

Assume that there is µ ∈ σap(BA)\ϕ(σap(SA)), and let λ ∈ C such that |λ| > 1
and µ = ϕ(λ). We claim that λ− S∗A∗−1 is invertible. Of course, the claim is trivial
provided that r(SA∗−1) < 1. So, we may assume that r(SA∗−1) = 1. In this case,
we have {ξ ∈ C : |ξ| = 1} ⊂ σap(SA) as r1(SA) = 1/r(SA∗−1) = 1; see Lemma
1.5(i)–(ii). This implies that |λ| > 1 = r(SA∗−1), and the claim is proved in both
cases.
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From this claim, (2.3), Proposition 1.1(v)–(vi), we have

0=m(µ−BA)=m(ϕ(λ)−BA)> |λ−1|m(λ−S∗A∗−1)m(λ−SA)=
|λ−1|m(λ−SA)
‖(λ−S∗A∗−1)−1‖ .

This shows that m(λ− SA) = 0, and contradicts the fact that λ 6∈ σap(SA). The
reverse inclusion of (2.4) is therefore proved.

(iii) Assume that r(SA∗−1) > 1 and R(SA) > 1. We trivially have

(2.5) σp(BA)) ⊂ σap(BA).

From (2.3) and Proposition 1.1(vi), we get that

(2.6) ϕ(σap(SA)) ⊂ σap(BA) ⊂ ϕ(σap(SA) ∪ σap(S∗A∗−1)).

Note that, since σap(SA∗−1
∗)=σsu(SA∗−1)=σsu(SA∗−1)=σ(SA∗−1), (2.6) becomes

(2.7) ϕ(σap(SA)) ⊂ σap(BA) ⊂ ϕ(σap(SA) ∪ σ(SA∗−1)).

In view of Proposition 1.1(i), we have σ(BA)\σp(BA∗) ⊂ σap(BA). By Proposi-
tion 2.3 and Theorem 2.5, we get

(2.8) ϕ({λ ∈ C : R(SA)) 6 |λ| 6 δ}) ⊂ σap(BA).

Moreover, just as in the proof of (ii), we see that if λ ∈ C such that r(SA∗−1) <
|λ| < δ, then ϕ(λ) ∈ σap(BA) if and only if λ ∈ σap(SA). From this fact, (2.5),
Proposition 2.3, (2.7) and (2.8), one derives the desired identity.

The following is a dual formulation of what has been shown above.

PROPOSITION 2.7. We have the following indentities:
(i) If R(SA∗−1) 6 1, then σsu(BA) = σ(BA).

(ii) If r(SA) 6 1, then σsu(BA) = ϕ(σap(SA∗−1)).
(iii) If r(SA) > 1 and R(SA∗−1) > 1, then

σsu(BA) ∪ ϕ({λ 6∈ σap(SA∗−1) : a∗ < |λ| < b∗}) = ϕ(σap(SA∗−1) ∪ σ(SA)),

where a∗ = max(1, R(SA)), and b∗ = min(r(SA), R(SA∗−1)).

2.4. ESSENTIAL SPECTRUM OF BA . In the rest of this section, we assume thatH =
Cr and shall describe the essential spectrum of BA. Here, r is a fixed natural
number.

For a nonzero subspace V of Cr, we associate two quantities:

κ+(V) := lim
n→+∞

{sup{[(‖Bn+kx‖/‖Bkx‖)]1/n : k > 0, x ∈ V, x 6= 0}},

κ−(V) := lim
n→+∞

{inf{[(‖Bn+kx‖/‖Bkx‖)]1/n : k > 0, x ∈ V, x 6= 0}}.

When V = {0}, we set by convention

κ+({0}) := 0 and κ−({0}) := +∞.

These are called the discrete upper and lower Bohl exponents of SA corresponding to
the subspace V, respectively.
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DEFINITION 2.8. (i) A projection P of Cr is said to be splitting projection for
SA if

κ+(ranP) < κ−(ker P).

(ii) A canonical set of splitting projections for SA is a maximal set (Pi)06i6l of
splitting projections for SA such that

rank Pi < rank Pi+1 (0 6 i 6 l − 1).

In [9], A. Ben-Artzi and I. Gohberg proved that a canonical set (Pi)06i6l of
splitting projections for SA is unique, and the following inequalities always hold:

0 = κ+(ranP0) < κ−(ker P0) 6 κ+(ranP1) < · · ·
< κ−(ker Pl−1) 6 κ+(ranPl) < κ−(ker Pl) = +∞, l 6 r.

The following result gives the complete description of the essential spec-
trum of BA. Recall that an operator T ∈ L(H) is said to be Fredholm if ranT is
closed and both ker T and ker T∗ are finite dimensional. The essential spectrum,
σe(T), is the set of all λ ∈ C for which T− λ is not Fredholm. It is a closed subset
of σ(T), and is, in fact, the spectrum σ(π(T)) in the Calkin algebra L(H)/K(H)
of π(T), where K(H) is the closed ideal of all compact operators on H and π is
the natural quotient map from L(H) onto L(H)/K(H).

PROPOSITION 2.9. If (Pi)06i6l is a canonical set of splitting projections for SA
then

σe(BA) =
l−1⋃
i=0

ϕ({λ ∈ C : κ−(ker Pi) 6 |λ| 6 κ+(ranPi+1)}).

In particular, ifH = C, then

σe(BA) = ϕ({λ ∈ C : r1(SA) 6 |λ| 6 r(SA)}).

Proof. Let P ∈ L(l2(N,H)) be the finite rank projection defined by

P((xn)n>0) = (x0, 0, 0, . . .), ((xn)n>0 ∈ l2(N,H)).

Note that, since S∗A∗−1 SA = 1 and SAS∗A∗−1 = 1 − P, the element π(SA) is in-
vertible in the Calkin algebra L(H)/K(H), and its inverse is π(S∗A∗−1). By the
spectral mapping theorem, we have

σe(BA) = σ(π(BA)) = σ(π(SA) + π(SA)−1) = ϕ(σe(SA)).

The result now follows from Chapter 2, Theorem 1.6 in [9].

3. THE SINGLE-VALUED EXTENSION PROPERTY FOR BA

In this section, we give a necessary and sufficient condition for BA to enjoy
the single-valued extension property. The arguments of the proof are influenced
by ideas from [14].
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THEOREM 3.1. The following statements are equivalent:
(i) The bi-shift BA has the single-valued extension property.

(ii) Each Bx has the single-valued extension property.
(iii) rSA(x(0)) > 1 for all nonzero x ∈ H.
(iv) R(SA∗−1) 6 1.

Moreover, if BA does not have the single-valued extension property, then

<(BA) = {a + ib ∈ C : a2/c2
1 + b2/c2

2 < 1},

where c1 := R(SA∗−1) + R(SA∗−1)−1 and c2 := R(SA∗−1)− R(SA∗−1)−1.

Proof. First of all, let us prove that if x is a nonzero element ofH, then

(3.1) σBx ((xn)n>0) = σBA((xn)n>0)

for all (xn)n>0 ∈ Mx. Fix an element (xn)n>0 ∈ Mx, and note that this inclusion
σBA((xn)n>0) ⊂ σBx ((xn)n>0) always holds. Now, let φ = (φn)n>0 be an l2(N,H)-
valued analytic function on some open set U ⊂ ρBA((xn)n>0) such that (BA −
λ)φ(λ) = (xn)n>0 for all λ ∈ U. We have

A0
−1φ1 − λφ0 = x0; An−1φn−1 + An

−1φn+1 − λφn = xn if n > 1.

For every n > 0, let Fn(λ) := Pnφn(λ), (λ ∈ U), where Pn is the canonical
projection fromH onto Mn := CBnx. As An Mn = Mn+1 and ‖Fn(λ)‖ 6 ‖φn(λ)‖
for all n > 0 and all λ ∈ U, we see that the function F(λ) := (Fn(λ))n∈Z, (λ ∈ U),
is an Mx-valued analytic function on U, and that

A0
−1F1 − λF0 = x0; An−1Fn−1 + An

−1Fn+1 − λFn = xn if n > 1.

From this it follows that (Bx − λ)F(λ) = (xn)n>0, (λ ∈ U). This shows that
U ⊂ ρBA((xn)n>0), and σBx ((xn)n>0) ⊂ σBA((xn)n>0). Thus the desired identity
is established.

Obviously, the equivalence (iii)⇐⇒(iv) always holds. To prove the first
part of the theorem, we shall establish the following equivalence (i)⇐⇒(ii) and
(ii)⇐⇒(iii).

The implication (i)=⇒(ii) is obvious. Conversely, assume that BA does not
have the single-valued extension property. By Theorem 1.9 of [5], there are λ0 ∈ C
and a nonzero element (xn)n>0 ∈ l2(N,H) such that (BA − λ0)(xn)n>0 = 0 and
σBA((xn)n>0) = ∅. Just as in the proof of Proposition 2.3, we see that x0 6= 0 and
(xn)n>0 ∈ Mx0 . Hence, (xn)n>0 is, in fact, an eigenvector of Bx0 . By (3.1), we have

σBx0
((xn)n>0) = σBA((xn)n>0) = ∅.

By Theorem 1.9 of [5], we note that Bx0 does not have the single-valued extension
property. This shows that the implication (ii)=⇒(i) always holds.

Let x be a nonzero element ofH such that rSA(x(0)) > 1. By Proposition 2.3,
we see that int(σp(Bx)) = ∅, and Bx has the single-valued extension property.
Thus the implication (iii)=⇒(ii) holds true.
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Conversely, assume that there is a nonzero element x∈H such that rSA(x(0))
< 1. Set Ox := {λ ∈ C : rSA(x(0)) < |λ| < rSA(x(0))−1}, and let kx(λ) :=
(Bnx/λn+1)n>0, (λ ∈ Ox). For every λ ∈ Ox, we have

(3.2) (ϕ(λ)− BA)(kx(λ)− kx(λ−1)) = 0

for all λ ∈ Ox. Set Ux := ϕ(Ox), and pick µ0 = ϕ(λ0) ∈ Ux such that λ0 6=
±1 and |λ0| < rSA(x(0))−1. As ϕ′(λ0) = 1 − 1/λ0

2 6= 0, there is small open
neighbourhood O of λ0 such that ϕ0 := ϕ|O is a bijective bianalytic function from
O onto U := ϕ(O) which is an open neighbourhood of µ0. Set

Φx(µ) = kx(ϕ0
−1(µ))− kx(1ϕ0

−1(µ)), (µ ∈ U).

It is an Mx-valued analytic function, and satisfies trivially the equation

(µ− BA)Φx(µ) = (µ− Bx)Φx(µ) = 0, (µ ∈ U);

see (3.2). This shows that µ0 ∈ <(Bx), and Ux\{0} ⊂ <(Bx) ⊂ <(BA). As B∗x0
is

a cyclic operator, the set <(Bx) is simply connected; combine Theorem 2.2 of [10]
and Proposition II.7.12 of [15]. Thus, 0 is also in <(Bx), and

Ux = ϕ(Ox) ⊂ <(Bx) ⊂ <(BA).

This shows that BA does not have the single-valued extension property, and es-
tablishes the implication (ii)=⇒(iii).

Assume that BA does not have the single-valued extension property. By
what has gone before, we have

<(BA)=
⋃
{<(Bx) : x ∈ H\{0}, rSA(x(0)) < 1}

=
⋃
{ϕ(Ox) : x ∈ H\{0}, rSA(x(0))<1}={a+ib∈C : a2/c2

1+b2/c2
2 <1}.

This finishes the proof.

4. LOCAL SPECTRA OF BA

In this section, we aim at giving a complete description of the local spectrum
of BA at most point of l2(N,H). For this, we need to fix some notations, and
provide a useful model representation of a weighted bi-shift.

Throughout the rest of this paper, let S be the bilateral operator-weighted
shift defined on l2(Z,H) by

Sx := (. . . , A−1
1 x−3, A−1

0 x−2, [x−1], x0, A0x1, A1x2, . . .),

where for an element x = (. . . , x−2, x−1, [x0], x1, x2, . . . ) ∈ l2(Z,H), we denote by
[x0] the 0th coordinate of x. This bilateral operator-weighted shift is invertible,
and its inverse is defined on l2(Z,H) by

S−1(xn)n∈Z = (. . . , A1x−2, A0x−1, x0, [x1], A−1
0 x2, A−1

1 x3, . . .).
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We shall now see that BA is similar to S + S−1 when restricted to one of its proper
closed invariant subspaces. Indeed, let

K := {(xn)n∈Z ∈ l2(Z,H) : x−n = −xn for all n > 0},

and note that K is a nontrivial closed invariant subspace of S + S−1. Now, let
V : K → l2(H, N) be the invertible operator given by

V(xn)n∈Z := (xn+1)n>0, (xn)n∈Z ∈ K.

A simple computation shows that

(4.1) BAV = V(S + S−1)|K,

and the claim is proved.
This representation of the bi-shift BA as a part of the operator S + S−1 to-

gether with some lemmas will be used to determine the local spectrum of BA at
most points of l2(N,H).

LEMMA 4.1. If (xn)n∈Z ∈ K, then σS+S−1((xn)n∈Z) = σBA((xn+1)n>0).

Proof. We always have

σS+S−1((xn)n∈Z) ⊂ σ(S+S−1)|K
((xn)n∈Z) = σV−1BAV((xn)n∈Z)

= σBA(V(xn)n∈Z) = σBA((xn+1)n>0).

Conversely, let φ = (φn)n∈Z be a l2(Z,H)-valued analytic function on some
open set U ⊂ ρS+S−1((xn)n∈Z) such that

(S + S−1 − λ)φ(λ) = (xn)n∈Z, (λ ∈ U).

We have

(4.2)


Anφ−n−1 + A−1

n+1φ−n−3 − λφ−n−2 = −xn+2 if n > 0,
A−1

0 φ−2 + φ0 − λφ−1 = −x1,
φ−1 + φ1 − λφ0 = 0, φ0 + A−1

0 φ2 − λφ1 = x1,
Anφn+1 + A−1

n+1φn+3 − λφn+2 = xn+2 if n > 0.

Now, we set

φ̃n =
φn − φ−n

2
, (n > 1),

and note that φ̃ = (φ̃n+1)n>0 is a l2(N,H)-valued analytic function on U. In view
of (4.2), we have

A−1
0 φ̃2 − λφ̃1 = x1; Anφ̃n+1 + A−1

n+1φ̃n+3 − λφ̃n+2 = xn+2 if n > 0.

From this it follows that (BA − λ)(φ̃n+1(λ))n>0 = (xn+1)n>0, (λ ∈ U), and U ⊂
ρBA((xn+1)n>0). Thus, as desired,

σBA((xn+1)n>0) ⊂ σS+S−1((xn)n∈Z).



206 ABDELLATIF BOURHIM

Before stating the next lemma, we shall fix some notations. For the sake of
completeness of the reader, we shall sketch its proof.

Assume that T is a bilateral operator-weighted shift on l2(Z,H) with a
weight sequence (Tn)n∈Z of uniformly bounded invertible operators of L(H).
For every n ∈ Z, we set

T̂n :=


Tn−1Tn−2 · · · T1T0 if n > 0,
1 if n = 0,
T−1

n T−1
n+1 · · · T

−1
−2 T−1

−1 if n < 0.

For x ∈ H, we set
ĤT(x) :=

∨
{(T̂nx)(n) : n ∈ Z},

and define

n(T, x) := lim inf
n→+∞

‖T̂−nx‖−1/n
, p(T, x) := lim sup

n→+∞
‖T̂nx‖1/n.

For every element y := (yn)n∈Z ∈ l2(Z,H), we define

R−(T, y) := lim sup
n→+∞

‖T̂−1
−ny−n‖1/n, R+(T, y) := 1/ lim sup

n→+∞
‖T̂−1

n yn‖1/n.

LEMMA 4.2. Let x be a nonzero element of H, and let y = (yn)n∈Z ∈ ĤT(x). If
R−(T, y) < n(T, x) 6 p(T, x) < R+(T, y), then

σT(y) = {λ ∈ C : n(T, x) 6 |λ| 6 p(T, x)}.
Proof. The proof is an immediate consequence of Theorem 4.7(a) in [13],

once one observes that σT(z) = σT|ĤT (x)
(z) for all z ∈ ĤT(x); see Lemma 2.1 of

[11].

LEMMA 4.3. If δ = 1, then rSA((xn)n>0) = 1 for all nonzero element (xn)n>0 ∈
l2(N,H).

Proof. First, we fix a nonzero element x ∈ H, and prove that rSA(x(n)) = 1
for all n > 0. Since SAn(Bn

−1x)(0) = x(n), it suffices to prove this identity for
n = 0; see [23].

Indeed, for every integer k, we have ‖x‖ 6 ‖B−1
k ‖‖Bkx‖ 6 ‖Sk

A∗−1‖‖Bkx‖.
And so, ‖x‖1/k 6 ‖Sk

A∗−1‖1/k‖Bkx‖1/k for all k > 1. From this it follows that

1 6 r(SA∗−1)rSA(x(0)) 6 r(SA∗−1)r(SA).

As δ=1, it follows from Lemma 2.2 that r(SA)= r(SA∗−1)=1, and rSA(x(0))=1.
Now, assume that x := (xn)n>0 is a nonzero element of l2(N,H). So, there

is an integer k > 0 such that xk 6= 0. Since, ‖SAnx‖2 =
+∞
∑

i=0
‖Bn+iB−1

i xi‖2, (n > 0),

we have
‖Bn+kB−1

k xk‖1/n 6 ‖Sn
Ax‖1/n, (n > 0).
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By taking lim sup as n → +∞, we get rSA(x(k)
k ) 6 rSA(x). From this and what

has shown above, we infer that rSA(x) = 1. The proof is therefore complete.

For every y = (yn)n>0 ∈ l2(N,H), we define

R(y) := 1/ lim sup
n→+∞

‖B−1
n yn‖1/n.

Now, we are able to state and prove one of the main results of this section.

THEOREM 4.4. Assume that δ = 1. Let x be a nonzero element of H, and let
y = (yn)n>0 ∈

∨{BAnx(0) : n > 0}. If 1 < R(y), then

σBA(y) = [−2, 2].

In particular, if y is a finite combination of elements of {BAnx(0) : n > 0}, then
σBA(y) = [−2, 2].

Proof. One easily verifies that∨
{BAnx(0) : n > 0} =

∨
{(Bnx)(n) : n > 0},

and that V−1(
∨{BAnx(0) : n > 0}) is a subspace of K which is, of course, con-

tained in ĤS(x). Now, let z := V−1y, and keep in mind that z is in ĤS(x). Since
δ = 1, we have

p(S, x) = lim sup
n→+∞

‖Bn−1x‖n = rSA(x0) = 1;

see Lemma 4.3. We also have

n(S, x)=1/p(S, x)=1, R−(S, z))=1/R(y)<n(S, x)=p(S, x)=1<R+(S, z)=R(y).

By Lemma 4.2, we have σS(z) = σS(V−1y) = {λ ∈ C : |λ| = 1}. Therefore, it
follows from this ([21], Theorem 3.3.8) and Lemma 4.1 that

[−2, 2] = ϕ(σS(V−1y)) = σS+S−1(V−1y) = σBA(y).

To prove the last part of the theorem, it suffices to check that if y is a finite
combination of elements of {BAnx(0) : n > 0}, then it is a finite combination of
elements of {(Bnx)(n) : n > 0} as well, and 1 < R(y) = +∞.

COROLLARY 4.5. If δ = 1, then we have for all nonzero x ∈ H, and all n > 0

σBA(x(n)) = [−2, 2].

Proof. For every x ∈ H and n > 0, the vector x(n) is a combination of
(B−1

n x)(0), BA(B−1
n x)(0), BA2(B−1

n x)(0), . . . , BAn(B−1
n x)(0).

Next theorem shows that the conclusion of the second part of Theorem 4.4
remains valid for all nonzero finitely supported elements in l2(N,H) not neces-
sary in some subspace of the form

∨{BAnx(0) : n > 0}, x ∈ H. To prove that, we
need the following elementary lemma which is easy to verify.
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LEMMA 4.6. If p is a nonconstant complex polynomial, then the next function has
no continuous extension across the unit circle T:

φ(λ) :=
{

p(λ) if |λ| < 1,
p(1/λ) if |λ| > 1.

THEOREM 4.7. If δ = 1, then σBA(y) = [−2, 2] for all nonzero finitely supported
elements y ∈ l2(N,H).

Proof. Assume that y = (y0, y1, . . . , yn, 0, . . .) with yn 6= 0. We only have
to show that the function λ 7−→ (λ − BA)−1y, λ ∈ C\[−2, 2] has no analytic
extension across the interval [−2, 2]. To do that, it suffices to show that

λ 7−→ (ϕ(λ)− BA)−1y, λ ∈ C\T

has no analytic extension across the unit circle T since ϕ is analytic in C\{0} and
ϕ(T) = [−2, 2].

Without loss of generality, we may and shall assume that y0 6= 0. Since
S∗A∗−1 SA = 1 and σ(SA) = σ(S∗A∗−1) = {λ ∈ C : |λ| 6 1}, we have

(4.3) (ϕ(λ)− BA)−1 = λ(1− λSA)−1(1− λS∗A∗−1)−1

for all |λ| < 1. Therefore, for every |λ| < 1, we have

〈(ϕ(λ)− BA)−1y; (y0)(0)〉

= 〈y; (ϕ(λ)− BA)∗−1(y0)(0)〉 = 〈y; (ϕ(λ)− B∗A)−1(y0)(0)〉

= 〈y; (ϕ(λ)− B∗A)−1(y0)(0)〉 = 〈y; λ(1− λSA∗−1)−1(1− λS∗A)−1(y0)(0)〉

= 〈y; λ(1− λSA∗−1)−1(y0)(0)〉 =
〈

y;
+∞

∑
i=0

λ
i+1Si

A∗−1(y0)(0)
〉

=
+∞

∑
i=0

λi+1〈y; (B∗−1
i y0)(i)〉 =

n

∑
i=0

λi+1〈yi; B∗−1
i y0〉 =

n

∑
i=0

λi+1〈B−1
i yi; y0〉.

As ϕ(λ) = ϕ(λ−1) for all λ 6= 0, we, in fact, have

〈(ϕ(λ)− BA)−1y; (y0)(0)〉 =


n
∑

i=0
λi+1〈B−1

i yi; y0〉 if |λ| < 1,
n
∑

i=0
λ−(i+1)〈B−1

i yi; y0〉 if |λ| > 1.

Since 〈B−1
0 y0; y0〉 = ‖y0‖2 6= 0, the polynomial p(z) :=

n
∑

i=0
zi+1〈B−1

i yi; y0〉 is non-

constant, and the function 〈(ϕ(λ) − BA)−1y; (y0)(0)〉 has no analytic extension
across the unit circle T; see Lemma 4.6. Therefore we have as desired:

σBA(y) = [−2, 2].
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We close this section with a similar result of Theorem 4.4 but for the case
when δ 6= 1. The proof is essentially the same as the one of Theorem 4.4, and is
therefore omitted here.

THEOREM 4.8. Let x be a nonzero element ofH. The following statements hold:
(i) If rSA(x(0)) < 1, and if y is a finite combinations of elements of {BAnx(0) : n >

0}, then σBA(y) = ∅.
(ii) If rSA(x(0)) = 1, and if y ∈ ∨{BAnx(0) : n > 0} such that 1 < R(y), then

σBA(y) = [−2, 2].
(iii) If 1 < rSA(x(0)), and if y ∈ ∨{BAnx(0) : n > 0} such that rSA(x(0)) < R(y),

then
σBA(y) = {a + ib ∈ C : a2/δ2

x,1 + b2/δ2
x,2 6 1},

where δx,1 = rSA(x(0)) + 1/rSA(x(0)) and δx,2 = rSA(x(0))− 1/rSA(x(0)).
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