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ABSTRACT. We study refinements between spectral resolutions in an arbitrary
II; factor M and obtain diffuse (maximal) refinements of spectral resolutions.
We construct models of operators with respect to diffuse spectral resolutions.
As an application we obtain new characterizations of sub-majorization and
spectral preorder between positive operators in M and new versions of some
known inequalities involving these preorders.
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1. INTRODUCTION

The study of the norm closure of unitary orbits of self-adjoint operators in
von Neumann algebras is a well established area of research. Some of the early
results on this subject go back to the work of Weyl and von Neumann in the type I
factor case. Kamei, in his development of majorization between operators in 1I;
factors, obtained an interesting characterization of the norm closure of the uni-
tary orbit of a positive operator in terms of its singular values. Recently, Arveson
and Kadison have described these sets for self-adjoint operators in terms of spec-
tral distributions [4] in the II; factor and Sherman [17] has obtained interesting
descriptions of several closures of unitary orbits in von Neumann algebras un-
der weak restrictions (see the introduction of [17] for a detailed account on the
history of these problems and recent references). It turns out that even in the gen-
eral setting of [17], the spectral data of operators play a fundamental role in these
investigations.

There are other notions closely related to unitary orbits, that are defined in
terms of spectral data, such as majorization, sub-majorization and spectral dom-
inance; the study of these notions has been considered in several research works
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like the papers of Kamei [16] and Hiai [9], [10], Hiai and Nakamura [11], [12] and
the more recent papers of Kadison [13], [14], [15] and of Arveson and Kadison [4].
In this context one usually tries to describe operators in some set associated with
(the norm closure of)

Um(b) :={u"bu: u e M isaunitary operator}

where M is a semifinite von Neumann algebra with faithful semifinite trace T
and b € M is a self-adjoint operator. For example, it is well known [16] that if
M is a II; factor then a lies in the norm closure of conv (U, (b)) if and only if a
is majorized by b, which is a spectral relation. In this case the spectral data of
a may be more complex (disordered) than that of b. This makes things difficult
when trying to recover a as an element of conv (i (b)) whenever we know that
a is majorized by b. In order to overcome a similar difficulty, in [2] we considered
an “diffuse” refinement of the (joint) spectral measure of an ordered n-tuple of
mutually commuting self-adjoint elements of a II; factor M.

In this work we consider a related construction to that obtained in [2] that,
roughly speaking, allows us to represent every positive operator 2 € M™ as
Borel functional calculus (by an increasing left-continuous function) of a posi-
tive operator ' € M with maximal disordered spectral resolution (with respect
to a preorder called refinement that we shall introduce). Moreover, the operator
a’ € M™ has the following property: any positive operator b € M™ is, up to ap-
proximately unitary equivalence, Borel functional calculus of 4’ (by an increasing
left-continuous function). These constructions are what we call diffuse refinements
of spectral resolutions and modelling of operators. We also consider some relations
between these constructions and maximal abelian subalgebras of M. The idea
of considering maximal (diffuse) refinements of spectral resolutions and of con-
structing some models of operators in finite factors has already been considered
in [11], [12] although the notion of refinement introduced here has not. In this
work we attempt a brief but systematic treatment of these concepts.

Our results are related to Kadison’s study of Schur-type inequalities [15]
and Arveson-Kadison’s study of closed unitary orbits in II; factors [4]. Indeed
our techniques provide alternative proofs to some of their results. Moreover, our
refinements and modelling techniques are the basis for a version of the Schur-
Horn type theorem in II; factors in [3].

As an application of these constructions we present characterizations of the
sets

{ceM:0<c<delpm(a)}
and
{ceM:0<c<deconv(Up(a))}

in terms of spectral data. These characterizations are then applied to some recent
spectral inequalities obtained in [1], [5], [7].
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The paper is organized as follows. In Section 2 we recall some definitions
and facts regarding spectral relations (spectral preorder, majorization and sub-
majorization). In Section 3 we present our results on refinements of bounded
right spectral resolutions in II; factors. In Section 4 we consider the modelling
of operators and use this construction to study spectral dominance and sub-
majorization.

2. PRELIMINARIES

Let B(H) be the algebra of bounded operators on a Hilbert space H. In
what follows, the pair (M, T) shall denote a semifinite von Neumann algebra
and a faithful normal semifinite (fns) trace on M. In particular, if M is a finite
factor then 7 denotes the unique fns trace such that (1) = 1. The real space
of self-adjoint operators in M is denoted by Ms,, the cone of positive opera-
tors by M™ and the unitary group by Uy. If a € Ms, then P?(A) denotes the
spectral projection of a corresponding to the measurable set A C R. For simplic-
ity of notation we shall write P*(«, B) (instead of P*((«,B))) for a real interval
(0, ) € R. P(M) C Ms, denotes the lattice of orthogonal projections in M
endowed with the strong operator topology. For a € M, R(a) denotes its range
and Pray € P(M) the orthogonal projection onto the closure of its range. By a
decreasing function (respectively increasing) we mean a non-increasing function
(respectively non-decreasing). If (X, v) is a measure space then L®(v)" denotes
the cone of v-essentially bounded nonnegative functions on X. The set of non-
negative numbers is denoted by R .

2.1. SINGULAR VALUES, SPECTRAL PREORDER AND (SUB) MAJORIZATION. The
T-singular values (or T-singular numbers) [8] of x € M are defined for each t € R}

by
(2.1) Ux(t) = inf{||xe|| : e € P(M), T(1 —e) < t}.

The function y, : Rj — Ry is decreasing and right-continuous. If x, y € M then

(2.2) [ () — puy ()] < Jlx =yl

which shows a continuous dependence of the singular values on the operator
norm. If a € M™, we have

pa(t) =min{s € R : T(P(s,00)) < t}.

This last characterization of the singular values of positive operators shows the
following property: if a, b € M™ are such that T(P(s,00)) = T(Pb(s,0)) for
every s € Rj then yi, = pp. On the other hand, from (2.1) we see that y, =
Muau+ fOr every unitary operator u € Uy Moreover, from this last fact and the
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continuous dependence (2.2) we see that y; = pp, whenever b € U (a), where
U (a) denotes the norm closure of the unitary orbit

Upn(a) = {uau™ 1 u € Up )

Kamei proved [16] a converse of this fact when (M, 7) is a finite factor. We sum-
marize these remarks in the following proposition.

PROPOSITION 2.1. Let a, b € M, where (M, T) is a semifinite von Neumann

algebra.

@) Ifb € Upnq(a), then p, = pyp.

(ii) (Kamei [16]) Assume further that (M, T) is a finite factor and p, = py. Then
b elUp(a).

Next we recall the definitions of three different preorders that we shall con-
sider in the sequel. If 4, b € M™ we say that b spectrally dominates a, and write
a 3 b, if any of the following (equivalent) statements holds:

(@) pa(t) < pp(t), forallt > 0;
(b) T(P%(t,00)) < T(Pb(t,00)), forallt > 0.

If in addition (M, T) is a semifinite factor

(c) P%(t,00) X Pb(t,00) in the Murray-von Neumann'’s sense.

We say that a is sub-majorized by b, and write a <, b, if

S S
/yﬂ(t) dt < /yb(t)dt, for every s > 0.
0 0

If in addition 7(a) = 7(b) then we say that a is majorized by b and write a < b. It
iswellknownthata <b=a 3Xb=a <ywb.

We shall need the following result due to Hiai and Nakamura [12], concern-
ing functions in a finite measure space (X, v). In this case, a function g € L*(v) is
considered as an operator in the finite von Neumann algebra (L*(v), ¢) and sin-
gular values are defined with respect to the normal faithful finite trace ¢ induced
by v, ie.

(2.3) p(g) == /gdv, g€ L¥©).
X

PROPOSITION 2.2. Let (X, v) be a probability space and let f, g € L®(v)*. Then
f <w g if and only if there exists h € L®(v)" such that f <h < g.

REMARK 2.3. If (M, T) is a finite factor and a € M™, then let v be the reg-
ular Borel probability measure given by v(A) = 7(P?(A)). For every g € L®(v)"
let

g(a) = / gdP" € M
o(a)
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and note that y1,(;) = jig. As a consequence we get that 7(g(a)) = ¢(g), where @ is
given by (2.3). Thus, if h, g € L®(v)™, then h(a) =X g(a) (respectively h(a) < g(a),
h(a) <w g(a))in M if and only if h X g (respectively h < g, h <y g) in L*(v).

3. REFINEMENTS OF SPECTRAL RESOLUTIONS

Let I = [&, 8] C R be a closed interval, and recall that P(M) denotes the
lattice of orthogonal projections in M endowed with the strong operator topol-
ogy. If p € P(M), we say that amap E : I — P(M) is a bounded right spectral
resolution of p (abbreviated “brsr of p”) if E is decreasing and right-continuous,
E(B) = 0and E(a) = p. If p = 1 then this notion agrees with the usual definition
of brsr in M. For example, any a € M™ induces a brsr of p = Preays by
(3.1) E(A) = P*(A, 00), A €]0,]all].

Given E : I — P(M) a brsr (of E(«x)), we identify E with the family {E)} ¢y,
where E) = E(A) for every A € I. If the set [ is clear from the context, we simply
write {E, }.

IfE: [a, 8] — P(M) is a brst, we say that Ay € (&, ] is an atom for {E, },
if the resolution is not continuous at Ag; if p # 1 then « is considered as an atom.
The set of atoms of {E, } is denoted by At({E, }). We say that {E, } is a diffuse brsr
if the set At({E, }) is empty. It is clear that {E, } is diffuse if and only if E(a) =1
and E is a continuous function (recall that P (M) is endowed with the SOT). We
say that a positive operator 2 € M™ has continuous distribution if the resolution
induced by a (see (3.1)) is diffuse. Therefore, a € M™ has continuous distribution
if and only if PW =1and P*({x}) = 0 forevery x € R.

It is well known that, given a brsr {E, } ¢ in M, there exists a unique spec-
tral measure F on I with values in P(M) such that E, = F((A,)) for every
A el Ifh:1 — Cis auniformly bounded measurable function then we use the
following notation

(32) / R(A)AE) = / I dF.
I I

DEFINITION 3.1. Let {Ey} ¢ and {E) } ey be brst’s, where I = [a, B] and
I' = [a/, B']. We say that {E/, } refines {E, } if there exists f : I — I’ such that:
(i) f is increasing, right-continuous and f(B) = B’;
(i) E) = E}()\) for every A € I.
We say that {E/, } strongly refines {E, } if f also satisfies:
(iii) f(A) = A forevery A € [;
(iv) f(A) = f(u) 2 A —p, forevery A > p € L.
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If {E) } (strongly) refines {E, } we also say that ({E }, f) is a (strong) refine-
ment of {E, }, where f is as in Definition 3.1. It is easy to see that refinement is a
preorder relation.

The following, which is the main result of this section, is related with the
refinement of spectral measures of separable abelian C*-subalgebras in a II; factor
developed in [2].

THEOREM 3.2. Let (M, T) be a 11y factor and let a € M™. Then there exists
a' € M with continuous distribution and such that the brsr induced by a’ strongly

refines the brsr induced by a. Further, if a € A", where A is a masa in M, then a’ can
be selected from A.

In what follows we state some lemmas and use them to prove Theorem 3.2
at the end of this section. In the rest of the paper, the pair (M, ) will always
denote a Il factor. Let I = [, B] and let {E,} < be a brsr of a projection p €
P(M).If Ay € (a, B] is an atom for {E, }, then

(3.3) Alir? Eyx = E), +p(Ao), p(ro) #0.

In this case p(Ag) € P(M) is the jump projection of {E,} at Ag. If p # 1 thena €
At({E,}) and the jump projection at « is by definition p(«) = 1 — p. Note that the
set of atoms At({E,}) is countable. Indeed, if Ag, A1 € At({E;}) and Ag # A4,
then it is easy to see that p(Ag) p(A1) = 0, i.e. p(Ap) and p(A1) are orthogonal
projections. Therefore

(3.4) JUED = Y, ) =t( ¥ pw)<1

A€AL({E}) AEAL({E-})

and this implies that At({E,}) is countable. The real number J({E,}) is called
the total jump of the resolution.

LEMMA 3.3. Let {Ex}aer, {E}\ }aer be brst’s in M. If {E}\ } refines {E,} then
J({Ex}) = THELD).

Proof. Let Ay € At({E/}) and consider pig = min{y € I : f(u) > Ao} which
is well defined by (i) in Definition 3.1. Then by definition of g, f(uo) = Ao and
f(u) < Agif u < po. So

ylg;rtla Ey—Ey = Vhr;{l Ef( Ef (o) = /\lir?f E\ — ESLO #£0,

since Ag is an atom of {E }. Therefore yiy € I is an atom of the resolution {E, }
and we have

(3.5) lim 7(E,) = lim T(Ef ) > T(E)\o) (Ef y) = T(Epp),
H—Hy H—Hg

since f(u) — A < Ag when u — py and Ag € At({E}}). We consider the
following relation in At({E} }): if A, A, € At({E}}) then Ay = A, if and only if
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there exists yg € At({E,}) such that
(3.6) T(E},), T(E},) € [T(Em),lirnPHya T(Ey)).

The inequality (3.5) shows that this relation is reflexive. On the other hand it is
clearly symmetric. Note that if y; < pp then lim 7(E,) < 7(Ey,) and
}14»],[2_

[T(Eﬂz),limﬂHVE T(Ey)) N [T(Em),limyﬁﬂl_ T(Ey)) = @.

So, if A; & A; then there exists a unique yg € At({E,}) such that (3.6) holds, so
in particular ~ is an equivalence relation. Therefore, for any equivalence class
Q € IT = At({E}})/ =, there exists a unique atom y € At({E, }) such that

T(E)) € [‘L’(EP,Q),limPHyé T(Ey)) forallA € Q.

Let Ay, ..., Ay € Qwith Ay < -+ < Ay, Then, if p/(A;) is the jump projection of
the resolutlon {E}} at A; and p( yQ) is the jump projection of the resolution {E, }
at po, we have

Lv0/ () = 1 ( lim (L) ~(E,)) < lim w(EL) —(E))
< Jim (B~ T(Ep ) = (o)
Q
Taking limit over n if necessary, we get Y. 7(p'(A)) < T(p(pg)). Therefore
A€Q
JUED = ) ) ( < ). T(p(ng)) < T({EN})
Qell AeQ Qell

where the rearrangement is valid since it is a series of positive terms. I

We introduce the following notation in order to state Lemma 3.5.

DEFINITION 3.4. If {a; }erw € £1(RT) we say that a sequence ({EIR}/\eIk)keN
of brsr’s in M is {ay }xen-compatible if the following conditions hold:
(i) 3w, B € Ry such that I = [a, B + Z§:1 ;] for every k € N.
(i) ({E’)‘L+1 }, fx) is a strong refinement of {EX} for every k € N.
(iil) fx(A) — A < ay, for every A € I and for every k € N.

LEMMA 3.5. Let {a; }ren € (1(RT) and ({E Frer Jken be {ay fren-compatible.
Then there exists a brsr {Ej } yc1 in M such that {E, } strongly refines {E /\} for every
k € N. Moreover, if A C M is a masa and {E }is in A for each k € N, we can choose
{E,} also in A.

Proof. For simplicity, we shall assume that « = 0. The general case follows
from this by reparametrization. Let I = [0, + }_;°; «;] and for every k € N let
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fr + Ix = Ixyq1 be as in Definition 3.4. Note that, since fy(A) > A for A € i
(condition (iii) in Definition 3.1),

k _ rk+1 k+1
Ey = E;(, < EXTL

Therefore, for each A € I the sequence {Ef‘\} keN is increasing, where we set E’/i =0
if A € I.. Let us define

(3.7) E, = \/EA_ lim EAEP(M), Ael
keN

where the limit is in the strong operator topology. Note that, if A C M is a masa

and El)‘\ € P(A) for every k € N, then E, € A. To see that {E, } \< is a brsr note

first that E,, > E, if Ag < A. Thus 3 lier E)x < Ey,. If {Ay} C Iis a decreasing
A=Ay

sequence such that lim A, = A then
n—oo

(hm E,, ) = lim 7(E,,) = lim lim T(E/\ )

n—oo n—oo Nn—00 k—o00
ot 1) v
€

where the change of order of the iterated limits is valid since the double se-
quence {T (E’)‘\ )}k is positive, bounded and increasing in each variable. There-

fore lim Ej = E,,and {E, })¢; is a brsr.
/\ﬂ)\

F1x k € N and consider the sequence {uy, : Iy — Ixy,}nen of increasing
right-continuous functions, given inductively by 1y = fi and uy, = fr.,, 10,1
for n > 2. Then, it is easy to see that:

E} = Eullh

2. Ups1 2 Un, [ — tnlleo < dypks

3o up(A) —up(p) 2 A —pifA, p€ rand A > p.

Let hy : Iy — I be the uniform limit of the increasing sequence {u,}. Then h is
increasing right-continuous, hk( ) = A(up = fr)and h(A) —hy(pu) > A —pif
A > p € Iy Let Ag € [0, + Lf_; ;) and note that E§ = EFf > EFf1 , since
uy(A) < hi(A). Therefore

—

(3.8) EX, > lim E}*7

Jim Ej, o) = En(a0)-

To see that equality holds in (3.8) we consider
A i=min{A € I 0 u,(A) = he(Ao) }-

k k+n
By definition we have u;, ([3 + ) oci) =B+ ¥ a;so A, is well defined. Further,
i=1 i=1

An = Api1 = Ag, since {uy} is an increasing sequence, and A, — /\6r . Indeed, if
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A > Apand A — Ag = e then I (A) = hi(Ap) + € and there exists n € N such that
un(A) > hi(Ag), which implies that Ag < A, < A. Finally, we have

Ehk()\o) = Eun()\n) = Eﬁ:{i\n) = EI){M, vn e N
. . . . k _ k
which implies that Ej, () = nlglgo Ey, =E 1

LEMMA 3.6. Let {Ej })c[q,p) beabrsrin M. If Ag € At({E)}), then there exists
a strong refinement ({E'} ey, f) of {Ex}, where I' = [a, B+ T(p(Ag))] such that:
@) T{Ey}) = THEL}) — t(p(Ao));
(ii) f(A) —A < T(p(Ag)) forevery A € I;
(iii) At({E} }) = f(At({Ex} \ Ao))-

Moreover, if A C M is a masa and {E,} is a brsr in A then we can choose {E', } in A.

Proof. For simplicity, we assume that I = [0, ] (x = 0). The general case
follows from this by reparametrization. Let Ay € At({E,}), po = p(Ao) be the
jump projection at Ag and ag = T(po).

It is well known [4], [15] that there exists {U) } \c[0,¢,] @ brst of pg in M such
that
(3.9) () = T(po) (a0 — A)

A .
2 ;A e0,a]

Moreover, if A C M is a masa and pg € P(.A) then we can choose {U, } to be in
A. Let

E, if 0<A <A,
E, = EA0+UA—7\0 if Ag <A < Ag+ap,
E,\,ao if Adg+ap <A < g+ B

It is easy to see that {E/ } \c, where I’ = [0, B + a), is a brsr. Note that if {E, } is
in amasa A C M then pg € A and we can choose {U, } in A, so that {E} } is also
in A. The increasing, right-continuous function f : I — I’ given by

(A if 0< A< Ay,
(3.10) f(A){ Atag if Ag <A< B+a,

satisfies E;, = E}(/\)’ A € [0, B]. Moreover At({E}}) = f(At({Ex}) \ {Ao}) and

p(A) = p'(f(A)) for every A € At({E,}) \ {Ao}, where p/(f(A)) is the jump
projection of {E/ } at f(A) € At({E}}). Therefore

J{EW) = )3 T(p(f(M) = T{Er}) — T(po)-

AcAt({Ex})\ {20}

The rest of the properties of f follow directly from (3.10). 1

Proof of Theorem 3.2. Let a € M™ and consider the brsr induced by a (see
(3.1)). Set B = |ja||, let I = [0,B] and let {A,},cn be an enumeration of the set
At({E,}), where N C Nis an initial segment, and let &, = T(p(Ay)) > 0. By (3.4)

wehave ¥ a, <1.Letl := I, {E}}:={E,} andlet ({E3})cy,, f1) be the strong
neN
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refinement obtained from {E}},c}, and the atom A; as in Lemma 3.6. Recall that
inthiscase I = [0, + T(p1)] and set gp := f1 : [1 — L.

We proceed inductively: assume that for 1 g t < k — 1 we have brsr’s
{E{}rer,, where I; = [0,B + Z] 1 uc]] and for 1 < i < k — 2 increasing right-
continuous functions ﬂ I; — I;;1 such that ({EIH} fi) strongly refines {E}}
and such that f;(A) — A < a; for A € I;. Assume further that for2 <1 < k-1
there exist injective functions g1+ I — I such that

At({EL}) = gi(At{EA D) \ {1, A )

and
-1

JHED) =T{E ) - Ly
j=1
Apply Lemma 3.6 to the brsr {Ef\*l}/\dk , and the atom gi_1(Ax_1). Then we
obtain a brsr {E /\} rel Ik = [0,B+ Zk aj], and an increasing right-continuous
function fy_q : Iy_1 — Ii such that ({EA},fk_l) is a strong refinement of {Ek 1,
in this case we have fi_1(A) — A < ap_q. f welet gy = fr1089k1: 1 — I then
gy is injective and such that

At{ES}) = fir (AH{EY ")\ {8k 1 (A1) }) = 8k(At{EAD \ A1, -+, A1 }).

Moreover, 7 (E{}) = T({ES ) — a1 = TUE) - L

We obtain in this way a sequence {E},c; of brsr’s where Iy = [0, +
Z] 1 #j], and increasing right-continuous functions {f : Iy — Ixy1} fork € N
as in the hypothesis of Lemma 3.5. Thus, there exists a brsr {E} } \c» such that for
every k € N {E}} is a strong refinement of {EX}. In particular, {E}} is a strong
refinement of {E,} = {E}}. By Lemma 3.3, 7 ({E}}) < J({EX}) forevery k € N
and therefore 7 ({E} }) = 0, i.e. {E} } is diffuse.

Note that if 4 € A for some masa A C M then {E,} is a brsr in A; by
Lemma 3.6 we can construct each {EX } also in A and so, by Lemma 3.5 then {E/ }
is in A. Finally if we let a’ = [ A dE) (see (3.2)) then a’ € M™ has the desired

I/

properties. 1

4. MODELLING OF OPERATORS AND APPLICATIONS

4.1. MODELLING OF OPERATORS. We begin with the following elementary lem-
mas about functions that we shall need in the sequel.

LEMMA 4.1. Let I = [a,B], ] = [&/, B'] C R be closed intervals, g : ] — [0,1]
a decreasing right-continuous function and let h : I — [0, 1] be a decreasing continuous
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function such that h(a) > g(a) and h(B) < g(B). Ifwelet g : ] — I be given by

g(x) =max{t € I: g(x) =h(t)}
then g is an increasing right-continuous function and g = ho g.

LEMMA 4.2. Let I = [a,B], ] = [/, B'] C Randlet f : | — I be an increasing
right-continuous function such that f(B') = B. If f* : I — ] is the function given by

YA =min{t € J: A < f(1)}
then it is increasing, left-continuous and such that for every t € |
(4.1) Ael:A>f)y={rel: ff(A) >t}

If f is strictly increasing then f* is continuous. Moreover, if | := [v,6] C | and
g : | — lis increasing and right-continuous, g(6) = p" and f(t) > g(t) forevery t € J,
then gt > f1.

LEMMA 4.3. Let [ = [a,B], ] = [&/,B'] C Randlet f : I — ] be an increasing
left-continuous function such that f(a) = «'. If fy : ] — 1 is the function given by

ft(A)=max{teI: A > f(t)}

then it is increasing, right-continuous and such that for every t € I

(4.2) {AeJ: A< f®)={re]: f+t(A) <t}

The following theorem develops the modelling of positive operators and
relates it with the refinement between the spectral resolutions induced by these
operators.

THEOREM 4.4. Let (M, T) be a 1 factor, let a € M™ with continuous distribu-
tion and let I = [0, ||a||]. Then
(@) If b € M, there exists a nonnegative increasing left-continuous function hy on
I such that if b = hy(a) then py, = 1y
(ii) The brsr induced by a refines the brsr induced by b if and only if b = b. Moreover,
if the brsr induced by a strongly refines the brsr induced by b then hy, is continuous.
(iii) If ¢t € M then ¢ 3 b (respectively ¢ <w b, ¢ < b) if and only if he(a) < hy(a)
(respectively hc(a) <w hy(a), he(a) < hy(a)).

Proof. Let a € M™ with continuous distribution, let I = [0, ||a||] and let
h : I — [0,1] be the decreasing continuous function defined by h(t) = T(P*(t, )).
Note that h(]|a]|) = 0 and, since a has continuous distribution, #(0) = 1.

(i) Letb € M™*, ] =[0,]|b]|]] and let ¢ : ] — [0,1] be the decreasing right-
continuous function defined by g(s) = T(P(s,)). By Lemma 4.1, there exists
an increasing right-continuous function g : | — I, suchthatg =ho g, i.e.

(4.3) T(Pb(s,00)) = T(P*(g(s),0)), se€].
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By Lemma 4.2 there exists an increasing (and therefore uniformly bounded mea-
surable) left-continuous function hy, := g* : I — ] such that

(4.4) {Ael: hy(A)>st={Arel:A>3(s)}, se].

Let b = hy(a) and note that T(P?(s,00)) = T(P(s, %)), which follows from (4.3)
and (4.4). Therefore, b and b have the same singular values.

To prove (ii) assume that the brsr induced by b € M is refined by the
brsr induced by a. Let b= hy(a) and note that P?(s,00) = P%(g(s), ) and by
hypothesis P?(s,00) = P%(f(s), ) for some increasing right-continuous function
f:] — I Then PP(s,00) < P¥(s,00) or P’(s,00) < PP(s,0) and by (4.4) we have

7(Pb(s,0)) = T(PE(S,OO)) so PP(s,00) = Pz(s,w), s € J. Therefore b = b. On the
other hand, if b = j(a) for any increasing left-continuous function j : I — J, then
by Lemma 4.3 there exists an increasing right-continuous function f :=j; : | — I

such that
Pb(/\,oo) =P'({tel:A<jt)})=P'{tel: f(A) <t}) =P (f(L) ),

so the brsr induced by a refines the brsr induced by b. Finally assume that the brsr
induced by a strongly refines the brsr induced by b. Then, by (iv) in Definition 3.1
f is strictly increasing and therefore, by Lemma 4.2 h, = fT is continuous.

To prove (iii) assume that c € M™ is such that T(P¢(s, 00)) < T(P(s, %)) for
all s > 0 and therefore ||c|| < ||b||. Asbefore, letk : [0, ||c||]] — [0, 1] be the function
given by k(s) = t(P(s,0)), k obtained from k as in Lemma 4.1, and h. = k'
obtained from k as in Lemma 4.2. Then, () < k(t) for every t € [0, ||c||] and, by
Lemma 4.2, we conclude that h, = Kt < §+ = hy,. From this it follows that ¢ < E,
where b = Iy (a), ¢ = he(a). The rest of the statement is a consequence of the fact
that pp = pyand pe = pz. 1

We say that c € M™ is a model of b € M™ with respect to a € M, if there
exists a nonnegative, left-continuous and increasing function / such that ¢ = h(a)
and p. = pp. Thus, with the notations of the proof of Theorem 4.4, we see that
b € M* isamodel of b € M* with respect to 4. As an immediate consequence
of (ii) in Proposition 2.1, we conclude that the model bis approximately unitarily
equivalent to b in M.

REMARK 4.5. In [15] Kadison solved the following problem in a II; factor
(M, 1): givenamasa A C M,a € Asa and t € [0,1] find a projection p € A
and A € R such that 7(p) = t,ap > Ap and a(I — p) < A(I — p). Note that
Theorems 3.2 and 4.4 give an alternative proof of this statement in the case a €
At. Indeed, let 2’ € AT be as in Theorem 3.2 and h, be as in Theorem 4.4. Then,
if we let p = P? (a, c0) with T(p) = t (such a always exists since a’ has continuous
distribution) and A = h,(«) then p and A have the desired properties, since h; is
an increasing function.
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As a final comment let us note that a variation of the proof of Theorem 4.4
implies that if 2 € M™ has continuous distribution and if v is any regular Borel
probability measure of compact support in the real line, then there exists h :
[0, |a]|] — R such that v(A) = T(P"%)(A)). Indeed, we just have to replace the
function T(P?(A,00)) by v((A,00)) in the proof of (ii). In particular, if A C M
is a masa and we consider 4 € A" then this argument gives a different proof of
Proposition 5.2 in [4].

4.2. SOME APPLICATIONS OF THE MODELLING TECHNIQUE. The following ap-
plication of Theorem 4.4 provides new characterizations of spectral preorder and
sub-majorization between positive operators in II; factors. Note that these re-
formulations have an inequality-type form.

THEOREM 4.6. Let (M, T) be a1y factor and let a, b € M™. Then
(i) b spectrally dominates a if and only if

(4.5) there exists ¢ € Up(b) with a<c

or, equivalently, if

(4.6) there exists d € Upq(a) with d < b.

Moreover, we can assume that a and ¢ commute and that b and d commute.
(i) b sub-majorizes a if and only if there exists c € M™ such that

4.7) a<c=b.

Moreover, we can assume that a and ¢ commute.

Proof. Recall that for positive operators a4, b € M™, a < bimpliesa 3 b.
Thus, the existence of a sequence of unitary operators satisfying (4.5) or (4.6) im-
plies spectral domination. Analogously, the existence of an operator satisfying
(4.7) implies sub-majorization. Next we show that the reverse implications are
also true.

To prove the first part of (i) let a, b € M™ such that a < b. By Theorem 3.2
there exists #’ € M™ with continuous distribution such that the brsr induced by a/
(strongly) refines the brsr induced by a. By Theorem 4.4 there exists an increasing
left-continuous function /;, such that, if b= hy(a'), py = #3- By (ii) in Proposition

2.1, this implies that b € Up(b). Since by hypothesis p1, < pp, by (ii) and (iii) in
Theorem 4.4 we have b = hy,(a’') > h,(a') = a. Thus, we obtain (4.5) with ¢ = b.
The proof of the second part follows a similar path, considering the model of a
with respect to a refinement of b.

To prove (ii), let a and 4’ be as in the first part of the proof. Let b € M™
be such that a < b and let v denote the regular Borel probability measure on
I' = [0, ||a’||] given by v(A) = T(P” (A)). Then, if h,, hy are as in Theorem 4.4 we
have (see Remark 2.3) that h; <y &y in L*(v). Therefore, by Proposition 2.2 there
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exists h € L®(v) such that h, < h < hy. If welet ¢ = h(a') thena < ¢ < bby
construction, since a = h,(a’). 11

The first part of (i) in Theorem 4.6 gives a partial affirmative solution to
the following problem posed in [6], [7]: given a (M, T) a II; factor and 4, b €
M such that a 3 b, is there any automorphism of M, ©, such that ©(b) >
a? Our considerations above lead to a sequence of T-preserving automorphisms
(Ady,)nen, where uy, € Uy, such that in the limit the above statement is true.

COROLLARY 4.7. Leta, b € M. Then the following statements are equivalent:
(i) b spectrally dominates a.
(ii) There exists a brsr {E) } yc1, where I = [0, ||a|] such that T(E,) = T(P*(A, 0))
forevery A € I and

(4.8) AEy < EpbE), VAZ=O.

Proof. Assume (i) and note that, by Theorem 4.6 there exists a sequence
(vn)n C Upq such that nhn;o |ld — viav,| = 0and d < b for some d € M™. Then
T(p(a)) = t(p(d)) for every polynomial p € C[x] and, using monotone conver-
gence, we have T(P%(A,0)) = T(P¥(A, )), A > 0. Moreover,

APY(A,00) < P4(A,00)d < PA(A,00) b PY(A, 00).

Then, if we set E, = P9(A,0), {E;} Ae[o, [laf] is the desired brsr. Conversely, as-
sume that there exists a brsr {Ex } \¢[o,|a) @8 in (ii). Givene > 0, let b = b + €l and
note that A Ey < E bE,, so PEAP<Ex () 00) = E,. In [8] Fack proved the follow-
ing interlacing-like inequality: for every orthogonal projection p € M, pbp 3 b.
Then we have

T(P*(A,00)) = T(E) = T(PEA P EN (A, 00)) < T(PP(A, 00)).

The inequality above shows that u, < y, for every e > 0. The corollary is now a
consequence of the fact that lir(1)1+ tp, (t) = pp(t) forevery t > 0. 1
e—

We end with some applications of our previous results. These are mostly
re-statements of some inequalities with respect to spectral preorder and sub-
majorization obtained in [1], [4], [5], [7], using Theorem 4.6.

COROLLARY 4.8. Let (M, 1) be all; factor.
(i) (Young-type inequalities) Let x, y € M and let p, q be conjugated indices. Then
there exist sequences (un)yeN, (Vn)neny € Upg such that
ey | < lim aay (p P+ gyl
and
lim oy xy*[on < p~'|xlP + g7 |yl

(ii) (Jensen-type inequalities) Let A be a unital C*-algebra, @ : A — M be a positive
unital map, a € A% and f : 0(a) — R be a convex function.
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(a) If f is increasing, there exist sequences (iy)yen, (Un)nen C Ung with
f(@(@) < lim u; @(f(@))uy

and
lim v, f(P(a))on < P(f(a)).

n—oo

b) If f is an arbitrary convex function, there exists c € M™ such that
Y

f(@(a)) < ¢ < D(f(a)).
Moreover, we can choose ¢ so that it commutes with f(P(a)).

Proof. In [7], Farenick and Manjegani proved that if p, g, x, y are as above,
then |xy*| 2 p~!x|P + 4 '|y/7. On the other hand, in [1] it was shown that if
D, f, a are as above then, f(®(a)) 3 ¢(f(a)) if f is increasing and in general,
f(@(a)) <w D(f(a)) for an arbitrary convex function f. The corollary follows
from these facts and Theorem 4.6. 1

The proofs of Theorem 4.6 and Corollary 4.7 show a possible interplay be-
tween Theorems 3.2 and 4.4 to get an interesting tool to deal with problems re-
garding spectral relations. As far as we know, the conclusions of Corollary 4.8 are
not possible using the previous literature.

Some of our results extend to certain classes of (unbounded) measurable
operators affiliated with M. Also, note that there is still the problem of finding
characterizations of spectral order and sub-majorization similar to those in The-
orem 4.6, for general semifinite factors; these characterizations may depend on
generalizations of both Theorems 3.2 and 4.4. We shall investigate these matters
elsewhere.
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