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BOUNDED TOEPLITZ PRODUCTS
ON WEIGHTED BERGMAN SPACES
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ABSTRACT. We consider the question for which square integrable analytic
functions f and ¢ on the unit disk the densely defined products T;Tg are
bounded on the Bergman space. We prove results analogous to those we
obtained in the setting of the unweighted Bergman space [17]. We will fur-
thermore completely describe when the Toeplitz product T;Ty is invertible
or Fredholm and prove results generalizing those we obtained for the un-
weighted Bergman space in [18].
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1. INTRODUCTION

The Bergman space A2 is the space of analytic functions on D which are
square-integrable with respect to the measure dA,(z) = (a + 1)(1 — |z|?)*dA(z),
where dA denotes normalized Lebesgue area measure on D. The reproducing
kernel in A2 is given by
1

Ky (z) = A—ware’

for z,w € D. If (-, ), denotes the inner product in L2(D,dA,), then (h, Kéf‘)},x =
h(w), for every h € A2 and w € D. The orthogonal projection P, of L2(D,dA,)

onto A2 is given by

(Pes) @) = (8. ) = [ 50) g Anla),
D
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for g € L*(D,dA,) and w € D. Given f € L*(DD), the Toeplitz operator Ty is
defined on A2 by T¢h = Py(fh). We have

(nhxw»—/kf“”“”dAan,

1— 2w)2+zx
D

forh € A,,zé and w € D. Note that the above formula makes sense, and defines a
function analytic on D, also if f € L2(D,dA,). So, if ¢ € A2 we define T by the

formula -
(te) = [ SR dAe)
D

forh € A2 and w € D. Ifalso f € A2, then T¢Tgh is the analytic function fTgh.

1.1. PROBLEM OF BOUNDEDNESS OF TOEPLITZ PRODUCTS ON A2. For which f
and g in A2 is the operator T¢Tg bounded on A2?

We will first give a necessary condition for boundedness of the Toeplitz
product T;Tg, and then show that this condition is very close to being sufficient.

To formulate a necessary condition, we need to define the (weighted) Bere-
zin transform: for a function u € L'(DD,dA,), the Berezin transform B,[u] is the
function on D defined by

mwm»:/wm
D

(1 _ \w|2)2+“

Wd[qa (Z).

The following result gives a necessary condition for the Toeplitz product to be
bounded.

THEOREM 1.1. Let —1 < & < oo, and let f and g be in A2. If T¢ Ty is bounded
on A2, then

sup Bq[|f|?](w)Ba||g]*)(w) < .

wel
The following result gives a sufficient condition for the Toeplitz product to
be bounded close to the above necessary condition.
THEOREM 1.2. Lete >0, =1 < a < oo, and let f and g be in A2. If

sup Ba[lf**¥](w)Ba[Ig]**](w) < eo,

then the Toeplitz product T Tg is bounded on A2,

Note that in the limiting case « | —1 these transforms correspond to

2

/wﬂ>1‘wpd9=ﬂm,
0

11— wei®2 27
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the Poisson extension of u on D, as the Hardy space H? can be regarded as the
limiting case of the weighted Bergman spaces A2 (see [22]). It is well-known that
a Toeplitz operator on H? is bounded if and only if its symbol is bounded on the
unit circle dD. Sarason [10], [11] found examples of f and g in H? such that the
product T;Tg is actually a bounded operator on H?, though neither Ty nor Tg is
bounded. Sarason [12] also conjectured that a necessary and sufficient condition
for this product to be bounded is

sup |f12(w)|g[2(w) < oo.
wel

Treil proved that the above condition is indeed necessary (see [12]). The second
author [20] showed that the stronger condition

sup [f127¢ (w) g2 (w) < ,
wel

for ¢ > 0, is sufficient for the Toeplitz product T Ty to be bounded on H2.

The above results were proved by the authors for the unweighted case (¢« =
0) in [17]. The proof in [17] does not carry over to the weighted setting without
some major adjustments. The proof of the unweighted case of Theorem 2.1 made
use of the fact that the reciprocal of the Bergman kernel’s norm is a polynomial.
This is, however, not the case in the weighted spaces A2. We will show that
the reciprocal of the Bergman kernel’s norm is the sum of a polynomial and a
power series absolutely convergent on the closure of the unit disk. The proof
of the unweighted case of Theorem 2.2 made use of an inner product formula
that involved derivatives. This inner product formula is not enough to prove
Theorem 2.1, for which we will need inner product formulas involving higher
order derivatives.

Cruz-Uribe [3] showed that if f and g are outer functions, a necessary and
sufficient condition for T;Tg to be bounded and invertible on H? is that (fg)~!

is bounded and sup{m\z(w)@\z(w) tw € D} < co. A similar, though different,
characterization of bounded invertible Toeplitz products on H? with outer sym-
bols was obtained by the second author [20]. Cruz-Uribe’s [3] proof relied on
a characterization of invertible Toeplitz operators due to Devinatz and Widom,
which in turn is closely related to the Helson-Szego theorem, that character-
izes the weights w such that the conjugation operator (or Hilbert transform) is
bounded on L?(9D), wdm). See Sarason’s book [9] for more on these results. On
the other hand, the proof in [20] is based on a distribution function inequality.

Following our proof of Theorems 2.1 and 2.2 we will consider the special
case that g = %, in which case it will be possible to remove the ¢ > 0 in the
condition of Theorem 3.1, so that the necessary condition is also sufficient; we
will prove the following result.



280 KAREL STROETHOFF AND DECHAO ZHENG

THEOREM 1.3. If f € A2 satisfies the condition

sup Ba[lf)(w)Bull f1 %) (w) < oo,

then the Toeplitz product TsTi/p is bounded on A2.

We will give applications of this result to describe invertible and Fredholm
products TsTg, for f,g € A2, The results extend those we obtained for the un-
weighted case in [18]. As in [18], we extend the basic techniques of the real-
variable theory of weighted norm inequalities [2], [4], [5], [8] and [13] to the
weighted Bergman spaces. We make use of dyadic rectangles on the unit disk
and dyadic maximal operators. We will show that every dyadic rectangle that has
positive distance to the unit circle is always contained in the pseudohyperbolic
disk with the same center as the dyadic rectangle and a fixed radius independent
of the dyadic rectangle. This observation simplifies the arguments even for the
unweighted case.

2. NECESSARY CONDITION FOR BOUNDEDNESS

Suppose f and g are in L2(D,dA,). Consider the operator f ® ¢ on A2
defined by
(f@gh=(hgf,
for h € A2. Tt is easily proved that f ® g is bounded on A2 with norm equal to

1/2
Ilf ® gll = lf ll«llglla, where ||h||x denotes the norm (f \h|2dA,1> in A2,
D

We will obtain an expression for the operator f ® g in terms of the opera-
tors involving the Toeplitz product T;Tg, where f, g € A2. This is most easily
accomplished by using the Berezin transform, which has been useful in the study

of operators on the Bergman space [1] and the Hardy space [15]: writing k;‘,x ) for
the normalized reproducing kernels in A2, we define the Berezin transform of a
bounded linear operator S on A2 to be the function B,[S] defined on D by

Ba[S](w) = (K&, ki),

for w € D. The boundedness of operator S implies that the function B,[S] is
bounded on ID. The Berezin transform is injective, for By [S|(w) = 0, forallw € D,
implies that S = 0, the zero operator on A2 (see [14] for a proof). Using the

reproducing property of Kz(f,x ) we have

@2 _ @) o)y gl 1
[Kw |l = (Koo', Ko " )a = Ky " (w) = A= [wp)e
thus
(2.1) k;’j‘)(z) _ (1 o |w|2)(2+1x)/2

(1 ,@Z)Z—HX
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for z,w € D. It follows from (2.1) that
Ba[S](w) = (1 — [w[?)>**(SK, Ki)a,

for w € D. It is easily seen that TgKy, @ g(w)Kuf‘). Thus (T¢TgKy ® K('X Ya

(Tgkly!, ToK o = (@)Y, Flaw) ) = F(w)g@) (K, K)o, and we see
that

Bu [Ty Tgl(w) = f(w)g(w).

We also have

Ba[f®g](w) = (1—w|) > ((f @ §)K, K)o = (1w )2 (K, g)af, K{)a
{

= (1 — [w]?)2 (K, @)a(f, K& Yo = (1 = [w0]2)2F f(w) g (w).

We will use the last formulas to obtain an expression for operator f ® g in terms
of the operators involving the Toeplitz product T;Tg, where f, g € A2. We need
the following lemma, which may be of independent interest. For a real number
B, let [B] denote the integer part of S and {8} = B — [B] = 0.

LEMMA 2.1. Suppose that a is a real number in (—1,00). The function (1 — t)>+%
has the power series expansion

(1t Z . F3+zx) 4 (1) I(3+w) sm(7t{oz}Z (n+1—{a}) Binla]

I'(3+a—j) (B+n+[a))!
Proof. We will show that
j 00
(1) Bt — 2: I(B+k+1) ¢ (1)t F(ﬁ+k+1 2: "+ﬂt”*

I'(—p+k+1—j) j! (B (p+1) =

for 0 < B < 1 and every positive integer k. Interpreting the first sum as 0 when
k = 0, this formula is the usual binomial expansion for (1 — t)~P. Assuming the
above formula to hold, integration with respect to ¢ yields

1— (1 _ t)fﬁ+k+1

Bkl
oy LBkt # ( L(B+k+1) & T(+B) ik
_];)(_1)]F(—ﬁ+k+l—j) ot Tk

g F T(=B+k+1) (/5+k+1 v L+ B) ik
__fzzl(_l)]r(—ﬁ+k+2—j)ﬁ OV rErcE ) Sk
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which implies

1— (1 _ )7ﬁ+k+1

i (—B+k+ DI (—B+k+1)#H
p Ir'(-p+k+2-j5 j!
c(=BF+k+DI(-p+k+1) & I'(n+P) ek
B T e R R S TEr S T
5 [(—B+k+2) ¥ ¢ T(-B+k+2) & T(n+P) ki
:];H) rpikiz i OV Bk
and thus

I(-B+k+2) t
= T(-B+k+2—j)j!

[(—p+k+2) & T(n+p) ,
+(_1)k+11“([5) (—B+1) Z (n+k+1)! L

This proves the induction step. Assuming a to be a non-integer, the lemma fol-
lows by taking f = 1 —{a} and k = [#] +3. Then0 < B < land —-Bf+k =
2+ {a} + [a] = 2 + a. Using the next relation the stated identity follows:

7T

F(B)r(—p+1)=T(1—{a})I'({a}) = sin({a})’

Applying the above lemma to t = |w|? = ww we have

LR TG4a)
(1—-|w[?)>** = ];;) (—1)]mw]w]
4 (—1)+ (3+04)Sm r{a}) i 377:”14: {T)}) AR )
Multiply by f(w)g(w) to obtain
2l TB4a) L
Belf @ 8l0) = X (Vg g =gy w5

" I'(3+ i X I'n+1- ntla PN P
b (o1 ( oc):n(n{oc}) ); ((3n+n+ [i[])()}!)w3+ o) £ (w)ewd W g (w).

Using that for analytic functions / and k the Toeplitz product Tj, T has Berezin
transform By [T, T](w) = h(w)k(w), the above formula and the unicity of the
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Berezin transform imply the following operator identity

2t o T(3+4a)
fes ]};0( VTG ra—)) 2 7s

g TG +a)sin(r{a}) & In+1- {a))
(L1 - ngo Grn ) 2Ty

2+ o] - I'(B+a)

- Y a2y G
].;0( ViTGra—p 2T

e TG @sinCr{a)) & T+ 1= {8) umsiiy o raencis
+ ( 1)1+ - HZ::O Grnta) Tz+jL TngT++ .

This operator identity in turn implies

2+(a] . )
(3+oc) I'(3+a)sin(rt{a}) & I'(n+1—{a}) .

L(n+1-{a})

Using Stirling’s formula it is easy to verify that B! ™ 7{3%,

series

so the positive

i I'(n+1—{a})
= B+n+[a])!
converges. Hence there exists a finite positive number C, such that

[fllallglle = lIf ®gll < Call TfTg-
For w € D the function ¢, has real Jacobian equal to

oy (L= wl?)?
gl =
Using the identity
2.2) 1- |pu(z)? = 1= |w[*)(1 = |z

|1 — wz|?
it is readily verified that
(1= ) IS ()P = |9k (2) (1 = |gu(z) )",
which implies the change-of-variable formula
23) [ Houen I @PdAE) = [ HdAsw),
D D
for every h € L1(DD). It follows from (2.3) that the mapping Uéua)h = (ho q)w)k,(ﬁ‘ )

is an isometry on A2:

U R|? = / 1w (2)) P (2) Pd Au / () Pd Ag () = [[1]]3,
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for all h € A2. Using the identity

1—[w|?
1—gu(z)w = "0
we have
(1 o |w|2)(2+ac)/2 7 (1 o Zw)Z—&-lx 1

(@) _ -
ko' (9u(z)) = (1— pu(2)w)2+e C (1 - |w|?)@+0/2 kﬁﬁ‘)(Z)‘

Since @y o @y = id, we see that
UL (USR)) (2) = (US R (90(2)KS (2) = RS (9u(2)KS (2) = h(2),

forallz € Dand h € A2. Thus (LIZ(U“ ))_1 = UZ(U“ >, and hence Uz(lf‘ ) is unitary on A2,
Furthermore,

(2.4) Tfop, Us) = USIT;.

For h € H® and g € A2 the following equations establish (2.4):

(U Ty, U g)s = (Tyhg)s = (fhg)a = [ Fl0h(0RTIAAL(:)
D
— [ F(pu@)h(gu()RTulEN I (2)PdAu(2)
D

— [ F(pu@pu@KY @(pu@I (2)dAu(2)
D

= (FUSI, U ) = (Trop, UL, UG @)
It follows from (2.4), applied to f and g, that Tr.p, Tgop, = (Tfog, ul ) ul.

(Tgoge U VUG = (U T U (U To) U = U (T T U, thus
If o pwllallg o Pulla < Ca”Tfoqszgwpw” = Ca||TfT§||r
hence
2 2 2 12
Bu[|fI7/(w)Ba[lg|"](w) < Gl Tf Te %,
for all w € D. So, for f,g € A2, a necessary condition for the Toeplitz product
T¢ Ty to be bounded on AZis

25) sup Ba 7)) Ballg ] 1) < oo

This completes the proof of Theorem 1.1.
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3. SUFFICIENT CONDITION FOR BOUNDEDNESS

Theorem 1.2 states that a condition slightly stronger than the necessary con-
dition (2.5) is sufficient, namely the condition that for f,¢ € A2 and for e > 0

(3.1) sup Ba[|f|**¥](w) Bu[|g[* "] (w) < co.

welD
3.1. ESTIMATES. We establish some estimates for the n-th order derivatives of
images of Toeplitz operators.

LEMMA 3.1. Let —1 < a < oo and let n be a non-negative integer. For f € A2
and h € H* (D) we have, for allw € D,

I'(a+2+n) 1 5 w1/2||h||a.

|(T7h) ™ (w)] < 2" ) (1_|w|2)n+1+a/23a[|f|]( )

Proof. Differentiating the formula
(rp ) = 1) [ - raAG)
D

n times yields

G2 (T (w) = - %(:ﬁ)") / (1Zifzf)z))2ii)+a(1—|Z|2)“dA(z).

The following inequalities give the desired estimate:

(T30 (w)

cLat2+n) [ |f(2)|h(z)|

S T(a+1) |1 — wz|2+nte
D

2
<l [ e raac /|h (12 A=) /2

Mat2+4n) 1 ( f(@) (122" Az 1/2</h 2(1—|z[2 “dA(z))l/z

S T(a+1) (- w])\J |1—wz|+2«
D

(1—[z*)"dA(2)

_Ie+2+n) 1 ( Bu[If)?](w) )1/2||h||

Fla+2) (1—|w])* \(1—|w|?)2te @
[(x+2+n) i

B I‘f(lx—i—Z)n (1= |w[?)n+1+ar2 Bu[|f] }(w)l/thHzx- 1

LEMMA 3.2. Let =1 < & < oo, let € > 0, and let n be an integer at least as large

as %i"‘ There exists a constant C, only depending on « and n, such that for f € A2 and
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*© 2
h € H®(D) we have, for all w € D, where § = %g,

6
(T @) € o Bll ) 2 (L an2)"

Proof. Using formula (3.2) and Holder’s inequality we have

(Ti) ™ (w))|
cLlat24n) [ |f(2)]lh(z)]

2
OV e (1 [zP)*dA(2)

I'la+2+n) |2+e - e
Fla+1) / 1 —wz‘2+a+n(2+g) (1—1z[%) dA(z))

- </ 1—hwz|2+a(1 - |Z|2)“dA(Z))1/5

tx+2+n ‘2+e ) 12te)
T T(a+1) / 11— wz|4+2a+n 2+e)—(2+a) 1~z )”‘dA(Z))
\h e 1/6
(1- A
/ ‘1 wz|2+1x |z|7)"d (Z)>
06+2+n f(z)|2te - 1@4e)
0(+1 |1_wz‘4+2a 1_ |w|) (24¢)—(2+a) (1_ |Z| ) dA(z))

h 1/6
/ |1— - wz|2+tx (1- |Z|2)adA(Z)>

F(oc—|—2—|—n) 1 1 By|fI77€](w)\ 1/ (2+e)
SO T(a+1) (1 [w])r @/ @) (04+1 (1- IWIZ)”"‘)
1 |h(2)[° /s
X (vc+1 1 _wz|2+vch“(z))
_ T(a+2+n) (1+|w|) (2+a)/ (2+e) . 1/(2+e)
= FatD A Tuly (Ballf12*](w) )
|h(2)[° /s
X ( WdAa(z))
I'(a+2+n) 2”*(2“‘)/(2*‘“') . c |h(z)|° 1/6
F(D(+2) (1 _ ‘ZU|2) Hf|2+ ]( )1/ @+ )( W <Z>) ’

which gives the desired estimate. 1
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3.2. INNER PRODUCT FORMULA IN A2. In this subsection we will establish a for-
mula for the inner product in A2 needed to prove our sufficiency condition for
boundedness of Toeplitz products.

If f and g satisfy the sufficiency condition (3.1), and & and k are polynomials,
Lemma 3.1 shows that the analytic functions F = T}‘h and G = Tgk satisfy

(1= 12?2 (2)0® (2)] < Coelialklle,

while Lemma 3.2, combined by the LP-boundedness of the Bergman projection
on A2 will be used to show that

/(1 — 22" u (2)0(M) (2)|d A(2) < CopllhllallK]la,
D

rovided 1 > 2% (details will follow). So we need to rewrite the inner product
P 2+¢ p

in such a way that the above estimates can be used. Write

(gl = [ f38A: = +1) [ FEZE( - 12PAAG).
D D

Note that
oy, = 2]
T T(n+a+2)
A calculation shows for all f, ¢ € A2 that
— (f',8)a+2 (f', 8 )a+s
(3-3) (fr&)u=(fr&u+2+ @r2)(@+3) T @ra)(atd)

We iterate formula (3.3) to obtain an inner product formula useful in esta-
bilishing the sufficiency condition (3.1) for boundedness of Toeplitz products on
the weighted Bergman space A2.

LEMMA 3.3. Let —1 < a < oo. There exist constants by, 1,...,b, 2,+1 such that,
forall f,g € A2,

2 n—1
Fo8)a= a2+ 1Y buoirio(f®, e pioksjnn
j=1k=1
3
(3.4) +

]
Proof. The inductive step is to use (3.3) on

Buansj-2(f ", 8™ Varanj 1.
1

(f(n+1)rg(n+l)>a+2n+j+1
a+2n+j+1)(a+2n+j+2)

<f(n+1)fg(n+l)>a+2n+j+2
(a+2n+j+2)(a+2n+j+3)’

<f(n)/g(n)>a+2n+j—l = <f(n)/g(n)>zx+2n+j+l + (
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for j = 1,2. The following definitions establish the induction step, and can be
used to determine these inner product formulas recursively:

b _ ann b _ bn2n+bn2n 1
L2 T 0 o ) (e 2n+5) V2T i on 4 3)(a+2n 1 4)
buon—1
b = ieiam b =b,y, for1 <k <2n.
n+1,2n+1 (“ T on+ 2)(“ T on+ 3) n+1k nks TOT 1 & n

This proves the result.

3.3. PROOF OF THE SUFFICIENCY CONDITION. The inner product formula (3.4)
and the estimates discussed will establish that for analytic functions f and g sat-
isfying condition (3.1) the Toeplitz operator T Ty is bounded on A2,

Let f and g be analytic functions satisfying the condition (3.1), and let & and
k be polynomials. Put F = T}‘h and G = Tgk, and choose a positive integer 1 such

that n > %fr’i‘ By Lemma 3.1, there are finite constants C, ; (depending on the

constant in condition (3.1)) such that
(1= 2P)*2 | FO (2) 6P (2)] < CullhalIkllas
for all z € D. This implies fork =1,...,n —1and j = 1,2 that
[(FY, GOy okl < Cageliellal ke

Using Lemma 3.2,

(1= )" ()™ (@) [|(T30) ™ (a0)|
\CBQ[|f|2+€]( )1/ 2+s [|g|2+£}(w)1/(2+g)

><< MdAa(z)>l/5< Md&(z))“

11 _Zw|2+1x 11 _Zw|2+1x
< CM(Qulh|® ()" (QulKl* ()",
where Q, denotes the integral operator defined by
u(2)]
Quu(w) = [ T dA(2),
D
Using the inequality of Cauchy-Schwarz,

/(1*IWI V(T (@) [(Tgh) ™ (w) |d Aa(w)

D

<cm( [ (Qulh ) danm) ([ (Qulkt () danw)
D

D
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Since p = % > 1, the LP-boundedness of operator Q, on A2 (which can be proved
simﬂarly to Theorem 4.2.3 and Remark 4.2.5 in [21] considering the test function
(1 — |z]?)~ @1/ (P2)), shows that

[(Qulol @) dau(w) < € [ (1o @) dAnte) = [o]2,
D D
thus

[ =R @ EIAA) < Conltle

D

This implies |<F<k),G(k)>a+2n+j,1| < Canllhllallk|la, for j = 1,2,3. Also, by Lem-
ma 3.1, |{F, G)at2| < Cuollhllallk|la- With the help of the inner product formula
(3.4) it follows that

2n+1

[(F,Ghal < ( X ol max Coe ) Ila Kl

proving that the Toeplitz product T;Tg is bounded on A2 1

4. A REVERSED HOLDER INEQUALITY

In this section we will prove a reverse Holder inequality for f in A2 satisfy-
ing the following invariant weight condition:

(M) sup Ba[| f|?)(w) B[l f| %] (w) < co.
webD
We will prove that the above condition implies that
(Ma+¢) sup By[|f|**] () Bu[| f| %9 (w) < o0
weD

for sufficiently small ¢ > 0. By Holder’s inequality,

/(2
/ fraa)” / freday)
Applying this to the function f o ¢y, it follows that
Bullf*)(w) < Ballf1*] () 279,

and thus

Bull f2)(w) Bul| f172)(w) < (Bullf**)(w) Bul| f|~#+¥)] (0))> 29,

so condition (Mp,) implies (M3). Thus, the above implication will follow once
we prove a reversed Holder inequality:
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THEOREM 4.1. Suppose that f € A2 satisfies condition (My) with constant

M = Sug)Ba[\f\z](W)Ba[lfI*Z](W) < 0.

There exist constants epr > 0 and Cpy > 0 such that for every w € Dand 0 < € < g
we have

Ba[|f1*](w) < Cpm(Bal|f|*)(w))ZT9)72,
As in [18], our proof will make use of dyadic rectangles and the dyadic max-

imal function. We first discuss the dyadic rectangles and prove some elementary
properties related to these rectangles.

DYADIC RECTANGLES. Any set of the form
Qump = {rel? : (m—1)27" <r<m2™"and (k— 127" r <0 < k27" 1r},

where 1, m and k are positive integers such that m < 2" and k < 2" is called a
dyadic rectangle. The center of the above dyadic rectangle Q = Q,, ,,  is the point
zg = (m — %)2’”9”, with ¢ = (k— %)21’”71. If d(Q) denotes the distance be-
tween Q and dD, and ¢(Q) denotes the length of the square in the radial direction
(¢(Qnmk) =27"), then

(4.1) 1—|zg| =d(Q) + 3¢(Q).

The following figure shows these quantities for a dyadic rectangle not adjacent to
the unit circle oD.

-~

Figure 1: Dyadic rectangle Q with center zg
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A simple calculation shows that

(42) QI = 8lz0|(1 — |zo] = 4(Q))*.

Write A, (E) to denote the measure of a measurable set E C D with respect
to dAy(z) = (x +1)(1 — |z|>)*dA(z). If Q is a dyadic rectangle, then its weighted
area is

A(Q)=L(QA(A(Q)+£(Q) ™1+ |zg|— 3£(Q) ™ —d(Q) ™ (1+|zg|+ 3 (Q) ™}

The above formula for A,(Q) can be used to obtain estimates for use in our
proofs. However, many different cases need to be considered. As it turns out,
dyadic rectangles not in contact with the unit circle can be treated easily without
knowing their weighted area. The following formula give the weighted area of a
dyadic rectangle that lies adjacent to the unit circle. If Q is a dyadic rectangle in
the unit disk other than D for which d(Q) = 0, then

(4.3) An(Q) = 2572z " (1 — |zg])*H2.

4.1. INVARIANT WEIGHT CONDITION. For w € D let ké‘j‘) denote the normalized
reproducing kernel in the weighted Bergman space A2.

LEMMA 4.2. Let =1 < a < oo. There exists a positive number c, such that for
every dyadic rectagle Q in D and every z € Q

Ca
(1= Jzg)>+*

Proof. If z = rel € Q and Q = Qumi, then zg = 27" (m — %)ew, where
=2k~ %)n, thus

k) (2)2 >

27

LRSS on+1

<27(1 - |zgl)-

Since r > |zg| — 2,,% > |zg| — (1 — |zql), we have r|zg| > |zg|* — |zol(1 — |zg]),
thus

1—rlzgl < 1—|zg* + |zql(1 — |zgl) = (1 +2|zg|) (1 — |zg|) < 3(1 — |zg)).
Hence
11-Zgz[>=1+r?|zg|* — 2r|zg| cos(f — ©) = (1 — r|zg|)? + 4r|zg| sin?(¥52)
<(1-lzq)24]2q] (0-8)2<9(1-|zg| ) +47%r|zq | (1-]20] 2<50(1-|zg| 2,
and we obtain

2 _ (1 _ |ZQ|2)2+04 1
1 _ZQZ|4+ZIX ~ 502+e(1 — |ZQ|)2+0¢'

k) (2)]

This proves the inequality with ¢, = 1

1
502+« *
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Forw € Dand 0 < s < 1let D(w,s) denote the pseudohyperbolic disk with

center w and radius 0 < s < 1, i.e,

D(w,s) = {z € C: |pu(z)| < s}.

LEMMA 4.3. Suppose that f € A2 satisfies the invariant weight condition (Mp)
and let 0 < s < 1. There is a constant cs > 0 such that the following inequalities hold

for every z € D(w,s):

1 |f(2)]
o S S

Proof. Fix w € D. Let u be in D(0,s). Since f is in A2 we have f(u)

(f, k) )a- Applying the Cauchy-Schwarz inequality we obtain
T Vi

(1- |u|2)(2+“)/2 = (1— 52)(2+tx)/2’

£ < I f lall KLl =

for each 1 in D(0,s). Now if z € D(w, s) then z = ¢, (u), for some u € D(0,s).

Replacing f by f o ¢y in the above inequality gives

f<z>|=|<foqow><u>|<(1'VSZ>"§§“+:‘>/2=(1 z§2+w RIS

By the Cauchy-Schwarz inequality

L
|f ()]

Combining these inequalities we have

=(f o 9u) O < [If " 0 gulla = Ballf 1?1 ()%,

M1/2
(1— 52)(2+a)/2’

Ig((;))“ S- 2; rra72 Ballf171 () 2Bl f1 2] ()2 <

forall z € D(w, s). Replacing f by its reciprocal f ! gives the other inequality.

PROPOSITION 4.4. There existsa 0 < R < 1 such that
Q C D(ZQ, R),

for every dyadic rectangle in ID that has positive distance to oD.

The following figure illustrates the above proposition.
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————

—_—— -

Figure 2: Dyadic rectangle Q included in D(z, R).

Proof. 1t suffices to consider dyadic rectangles closest to dD. Let Q be such
a dyadic rectangle with positive distance to 0. For 0 < r < 1 the pseudohyper-
bolic disk D(zg, ) is a euclidean disk in ) whose euclidean center is closer to the
(177’2)ZQ

T2 and the euclidean

origin than zg is (the euclidean center of D(zq,7) is
radius is % ; see [6], page 3). Recall that the center zg of Q has argument
v = (Zkz]l)". We need to show that Q’s outer corners (1 — 27")el(#£7/2") pe.
long to D(zq,r) for sufficiently large 0 < r < 1. Using rotation-invariance, it
will be enough to estimate the pseudohyperbolic distance d,, between the points
Zp=1-— %2*” and A, = (1 —27")e'%, where 8, = - A calculation shows that

|zZn — An? = 27272 1 4(1 - 327) (1 — 27 ") sin®(16y),

and
11— ZuAn? =25 x 272172(1 — 2272 + 4(1 — 327™) (1 — 27 ") sin®(18,).
It follows that
2 1+4(1—327")(1 - 27" 2 (sin(304) / (304))? 1+ 472

"25(1 - 22712 4 4(1 - 327m)(1 - 272 (sin(39,) / (184))2 25+ 42

as n — oo. Consequently, there exists a 0 < R < 1 such that d, < R, for all
positive integers n. Then Q C D(zq, R), for every dyadic rectangle for which
Q) >0. 1
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LEMMA 4.5. If f € A2 satisfies the invariant weight condition (My), then there is
a constant C > 0 such that for every dyadic rectangle Q

2dA, ) (% / £72dA,) <
Q

The following proof of this more general result is actually more elementary
than the proof of the corresponding lemma given in [18].

Proof. Suppose f € A2 satisfies the invariant weight condition

Ball f17](w)Bul| f| *](w) < M < o0,

for all w € . Let Q be a dyadic square in the unit disk other than D (if Q = D
the estimate holds, s1r1cef |f|?d Ay = Ba[|fI?](0 andf |f|72d Ay = By[|f|72](0)).

First assume that d(Q) > 0. By Proposition 4.4, Q C D(zg, R). By Lemma 4.3,
there exists a positive constant C such that

Elfzo)l < If() < CIf(z0)],

for all z € Q. Therefore

1 —_
(Aa@)Q/ ) / £172dA) < (CPIf(20) P (C2lf (2)| ) =C*.

Next assume that 4(Q) = 0. Usmg Lemma 4.2 we have

BallF](20) / R 2dA, > / P PaA > ot / fI2d Ay

Since Q # D and d(Q) = 0 we have |zg| > 3, 1 and it follows from (4.3) that
An(Q) = 2774 (1 = [zg))**".

Combining the above two inequalities yields

22+th“
BP0 > 5o Q/ FPdA,.

A similar inequality holds for f~1. Thus we have as desired
1 2 1 -2 Ball f1%](z0)\ (Ballf [ *z0)y . M
(A“(Q)ﬁfl dA“) (Aa(Q)ﬂf‘ dA“)g( 22+uc, )( 22+ac, )<42+ac§ !
Q Q

LEMMA 4.6. Let —1 < a < o0 and suppose that f € A2 satisfies the invariant

weight condition (Mp). For every w € D let dyw |f 0 pw|?dAs. IfO < 7y < 1, then
there exists a 0 < 6 < 1 such that whenever E is a subset of Q with Ay(E) < vA«(Q)

u(E) < 6l (Q).
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Proof. Suppose that By[|f|?](w)Ba[|f]72](w) < M, forallw € D. Let E be a
subset of Q with Ay(E) < 7Ax(Q). Applying the inequality of Cauchy-Schwarz
and Lemma 4.5 we have

AvQVEP=( [1F o gullfo pul 1Ay <( [1F o guldas)( [ 170 gul 2da,)

Q\E Q\E Q\E
<(foman)([iroai o)

Q\E

()
fO(Pw|2dA CAL |fogpw‘ dA) (Q)Z{l_ﬂw (E)}

2

Q\E Hw

Ifweputy=1- A= ) it follows that

(Dé)
po (E) _ o 1/ Ax(E)\2
oo el ) <

THE DYADIC MAXIMAL FUNCTION. Define the dyadic maximal operator M, by

(Maf)(e0) = sup 2o Q/ FldAq,

where the supremum is over all dyadic rectangles Q that contain w. The maximal
function is of weak-type (1, 1) and the maximal function is greater than the dyadic
maximal function, so the dyadic maximal function of any continuous integrable
function is finite on . In particular, if f € A2 satisfies the invariant Ap-condition,
then the dyadic maximal function M,|f|? is always finite. This can also be seen
directly as follows. Given a point w € D, there is a number 0 < R < 1 such that
all but a finite number of dyadic rectangles containing the point w lie inside the
closed disk D(0,R) = {z € C : |z| < R}. If f € A2 and Q is a dyadic rectangle
containing w inside the disk D(0, R), then

/ f(2)2dAg(z) < max{|f(z) : |2 < R}.

If Qy,...,Qum are dyadic rectangles containing w not contained in disk D(0,R),
then

2 2. 2
Malf () < max{((2) £ 2] < R} + max IQI/|f PdA() <

This proves that the dyadic function of | f|? is finite on D.

The principal fact about the dyadic maximal function is the Calderon-Zyg-
mund decomposition formulated in the next theorem. We will need the notion
of “doubling” of dyadic rectangles in its proof. Suppose that n > 1 and m, k are
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positive integers such that m, k < 2". The double of Q = Q,, ,, , denoted by 2Q,
is defined by

2Q = Qu_1,[(m+1)/2)[(k+1)/2)/
where [¢] denotes the greatest integer less than or equal to .

4.2. DOUBLING PROPERTY. The following figures show a dyadic rectangle Q and
its double 2Q.

~ ~ N
N
A
A
AS
Q AN
\
\
d(Q)\
\
\

\

\
(o) .
\ \
| |
[ |
| 1

Figure 3: Dyadic rectangle Figure 4: Dyadic rectangle
and its double and its double

Using (4.2) as well as d(2Q) = d4(Q) — %E(Q) and £(2Q) = 24(Q), an ele-
mentary calculation shows that

12Q]
(4.4) 0l <8,

for every proper dyadic rectangle Q in the unit disk. We will show that this
doubling property extends to the weighted measures A,. We first prove two
elementary lemmas.

LEMMA 4.7. For every dyadic rectangle in the unit disk other than D the following
inequalities hold:

3(1—|zgl) <1—|z0l < 3(1—|zg]).
Proof. If 2Q) is closer to the unit circle, as in Figure 3, then
1—|zgl =1 - |z20| + 34(Q).
Clearly 1 — |zp0] < 1 — |zg]. Since £(Q) < 1 — |zp| we also have

1 |z20] =1~ |zg| = 34(Q) > 1~ |zo| = 5(1— |zg]) = 3(1 — |zg)).
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Thus
%(1 - |ZQ|) <1- ‘ZZQ| <1- |ZQ|.

If d(2Q) = d(Q), as in Figure 4, then

1 - |z0| = 1~ |zg| + 34(Q).
Clearly 1 — |zp0] > 1 — |zg]. Since £(Q) < 1 — |zp| we also have

1 [z20] = 1 |zg| + 16(Q) < 1 - 2ol + 1(1 — |z0l) = 3(1 - Izq)).
Thus, we have the following that completes the proof:
(1-|zgl) < 1— |zagl < 3(1 - |zgl)-

That the functions (1 — |z|?)* are approximately constant on pseudohyper-
bolic disks is well know. The following lemma gives concrete bounds.

LEMMA 48. Let w € D, 0 < r < 1, and let « be a real number. Then, for all
zeD(w,r),

(T -ty < - < (755) " a - by,

This lemma is easily proved using (2.2) and standard estimates.
The following proposition shows that the doubling property (4.4) extends
to the weighted cases.

PROPOSITION 4.9. If —1<a <o, then there exists a constant Ny < oo such that

Ax(2Q)
Ax(Q)

for every dyadic rectangle Q in the unit disk which is not equal to D.
Proof. Let Q be a dyadic rectangle other than D = Qg ; 1, and let 2Q denote
its double. There are three cases to consider.

Case 1. d(2Q) > 0. By Proposition 4.4 we have 2Q C D(zpq,R). Using
Lemma 4.8 we get

As(2Q) = (a+1) [ (1= P)dAE < @+1) (Tr) (- f20?) /dA
20

= @+ D(3ER) (1~ [z 20

< N

Since also d(Q) > 0 we also have A, (Q) > (v + 1) (L‘L—ﬁ) |al(l - |ZQ|2)"‘|Q|. Thus

(ZQ) <1 +R)2\a\ (1—|z20/*)* |2Q]
Ay(Q) T \1-R (1T—1]zg)* 1QI7

and that this is bounded above follows from (4.4) as well as Lemma 4.7.
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Case2. d(2Q) = 0and d(Q) > 0. By the Proposition 4.4, Q C D(zq, R). Then

Ar(Q) = (e +1) (ﬁ—ﬁ)lal(l — |zo[*)*|Q. Since Q is near the boundary, |zg| > 1,

and it follows from formula (4.2) that |Q| > (1 — |zg|?)?, thus

4@ > @) (3 m) "1~ o)

By (4.3)
Aa(zQ) — 41+zx‘ZZQ|1+a(1 _ ‘ZZQDDH-Z < 41+a(1 _ |ZZQ|)’X+2~
Combining the last inequalities we have the next which is bounded by Lemma 4.7:

A (2Q) < 4o+l (1+R)\rx\<l— |z2Q|)z+ac
A(Q) T a+1\1-R 1—|zg] :

Case 3. d(2Q) = 0 and d(Q) = 0. In this case, by (4.3)
A(Q) = 41 |zg|" (1 — |20 )*** > (1~ |zg])**

(since |zg| > %). Hence

Ax(2Q) 14a (1= |22\ 240
a0 <)

which is bounded by Lemma 4.7. This proves the doubling property. 1
The following theorem should be compared with Lemma 1 in Section IV.3

(p. 150) of Stein’s book [13].

THEOREM 4.10 (Calderon-Zygmund Decomposition Theorem). Let —1 <
a < oo and let f be locally integrable on D, let t > 0, and suppose that Q2 = {z € D :
My f(z) > t} is not equal to D. Then (2 may be written as the disjoint union of dyadic
rectangles {Q;} with

1 /
< —— dA, < Nyt,
Atx(Qj)Q |f| ¢ ¢
J

where N, is as in Proposition 4.9.

Proof. Suppose that w € (2, thatis, M, f(w) > t. Then there exists a dyadic
rectangle Q containing w such that

1
A‘X(Q)Q/|f|dAa -

Now, if z € Q, then

1
M“f(z)>Aa(Q)Q/|fdA“>t'
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and it follows z € (2. This proves that Q C (2. It follows that 2 = (J Q;. We may

]
assume that the Q; are maximal dyadic rectangles. Since Q = Q; isnotequal to D,
by maximality its double 2Q is not contained in (2. This means that 2Q contains
a point z which is not in Q. Since M, f(z) < t, we obtain m [ 1fldAs <
2Q

M, f(z) < t, and hence

/|f|dA,X </|f|dA,x < tA(2Q).
Q 2Q

A:(2Q) _
/|f| An SHZES S Nuko

It follows that:

Before we prove the reversed Holder inequality (Theorem 4.1), we need one
more preliminary result for the dyadic maximal function:

PROPOSITION 4.11. If f € A2, then:
@) |fI* < Malf|* on D, and
(@) [IfII < Malflz(O) < (37 IfIE
Proof. (i) In fact, we will prove that if g is continuous on D, then |g(w)| <
Mg (w) for every w € D. Fixw € D. Let Qg be any dyadic rectangle containing
w such that Qy C D. Since the function g is uniformly continuous on Qy, given
€ > 0, thereis a 0 > 0 such that |g(z) — g(w)| < € whenever z,w € Qg are such
that |z — w| < 4. If necessary, subdividing Qp a number of times, there exists
a dyadic rectangle Q containing w with diameter less than J. Then |g(w)| <
1g(z)| + |g(w) — g(2)| < |g(z)| + e for all z € Q. This implies that

301 < g Q/ 8(2)IdAu(2) +€ < Mag(w) +

This implies the desired inequality
§(w)| < Mag(w).

(ii) Since D is a dyadic rectangle and A, is a probability measure, we have

Mal f12(0) 2dAs = | f-

Suppose f € A2. If Q is a dyadic rectangle other than D containing 0, then
Q € D(0,1/2). Then for each z in the unit disk, f(z) = (f, Kg“) )a and the inequal-
ity of Cauchy-Schwarz imply

1
FE@E S IARIKD IR = e 17 < G IAI
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forallz € D(0,1/2). Since Q C D(0,1/2) it follows that

2dAx < (3)PHIFIR-

We conclude that
17 < Malf20) < ()X IfIIZ.
We are now ready to prove the reversed Holder inequality in Theorem 4.1.
Proof of Theorem 4.1. First we prove that for some constant Cp; > 0,

[ 177 ann < cu( [ 1rPan.)
D D

(2+¢)/2

Let m be a positive integer such that the constant N, of Proposition 4.9 satisfies
N, < 2™-1 For each integer k > 0, set

Er = {z € D: MalfP(z) > 2" fI3).

By Proposition 4.11 (ii) we have M| f|?(0) < (3)2+¥||f]|2 < 2"k+|| £||2, for every

positive integer k, so the set E; does not contain 0. Fix k > 1. By the Calderon-

Zygmund Decomposition Theorem, Ex = |JQj, where Q; are disjoint dyadic
j

rectangles in Ej that satisfy

2mkra £ < < 2PN |1 £112,
thus
An(Q)) <27 £ / f|dAs and / |fldAx < 2N FI12 A (Q)).
Qj Qj

Let Q be a maximal dyadic rectangle in E;_;. Summing over all such Q; C Q
gives that

AdENQ) = T AlQ) <2702 / fRdA
J:Q;cQ

since the Q; are disjoint and their union is E;. On the other hand, by maximal-
ity the double 2Q is not contained in E;_1, and as in the proof of the Calderon-
Zygmund Decomposition Theorem it follows that

/|f\2dAa<2m(k’1WNaHflliAa(QKZm(k’m“Zm’lHfllﬁAa(Q)=2mk+“’1HflliAa(Q)-
Q

Hence

Ax(ExN Q) < 344(Q).
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Now by Lemma 4.6 there exists a 0 < § < 1 such that
Ha(Ex N Q) < 0pa(Q),

where du, = |f|>?dA,. Taking the union over all maximal dyadic rectangles Q in
E 1 gives py(Ex) < 0pa(Eg_1), and therefore

Ha(Ex) < 0pa(Eo) < &*|IfI3.
Now, using Proposition 4.11, we have

/ FPdA,

D

< /(Ma\flz)E/Zlflsz - /(M FPE/2 fPdA, +2 / (Mol F 272 F2d A,
D {Ma|fI2<2(|f113} Ek\Ek+1

<2*| flla ||f|\2+22 (e S/zllfllwa(EkKZ"‘||f|\§“+22(mk+m+“)8/25kllf||§%

2(m+zx)e/2
(z

[e9)
k
21x”fH2+£ _|_2 m+ea €/2||f||§+€ Z(st/Z(s) _ + m) ||f”2+€r

k=0
if 27¢/25 < 1. Put ey = 20U 1f 0 < ¢ < ey, then 27/2 < L5 thus
me/2
% < 1.So,if Cpy = 2% + 2%M/2 then for 0 < & < &)y we have shown that

€)/2

2+
J1greaan < cu( [ IfPaa)
D D

For a fixed w € D, by Mébius-invariance of the Berezin transform we also have

My = sup Ba[|f 0 g0 [*)(2)Bullf © 9| ?(2)-
zeD
Applying the above argument to the function |f o @, |*> we obtain

(2+¢€)/2
/|f° (Pw|2+€dAtx < CM(/ |fo (Pw|2dAzx>
D D

4

that is,
Ballf121€)(w) < Cp(Ba[lf 2] (w))®H0)/2.

Note that Theorem 4.1 combined with Theorem 1.2 give a proof of Theo-
rem 1.3.

Proof of Theorem 1.3. 1f f € A2 satisfies the condition

sup Bq[|f|%] () Ba[| f] %] (w) < o,
wel
then by the reversed Holder inequality of Theorem 4.1, for some & > 0,
sup Ba[| f1*] (w) Ba | f|~**9)(w) < o,
wel
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for all w € D. By Theorem 1.2, TfTW is bounded on A2. 1

5. INVERTIBLE TOEPLITZ PRODUCTS

In this section we will completely characterize the bounded Fredholm Toe-
plitz products T;Tg on the weighted Bergman space A2. We have the following
result:

THEOREM 5.1. Let —1 < &« < oo and let f,g € A2. Then: T¢Tg is bounded
and invertible on A2 if and only if sup{Ba[|f|?](w)Bs[|g|*](w) : w € D} < co and
inf{| () |g(w)| : © € D} > 0.

Proof. “=" Suppose that T;Tg is bounded and invertible on A2, By Theo-
rem 1.1 there exists a constant M such that

G.1) Ba[|f1%)(w) Bu[lg[*] (w) < M,
for all w € D. Note that T¢Tgke, = g(w)fkggo. Thus

1T Tk 13 = |g(w) 2 K 13 = |g(w) 2Bal|f 2] (w),
so the invertibility of T¢ Ty yields
(5.2) 18(w)2Be[| f1)(w) = 61 > 0

for some constant é; and for all w € . Since also Ty Tf = (TfTg)" isbounded and
invertible, there also is a constant J, such that

(5.3) |f(@)*Ballgl?](w) = &2 > 0
for all w € D. Putting 6 = 915y, it follows from (5.1), (5.2) and (5.3) that for all
wel

& < |f(w) Plg(w)*Ball f17)(w) Ballg P (w) < MIf (w)*[g(w)[?,

and thus
51/2

f@)lig@) = 5773

“«=" Suppose that
M =sup{Ba[| f?](w) Ba[|g|*} (w) :w € D} <e0 and 1 = inf{| f (w)||g ()| :w €D} > 0.
By the inequality of Cauchy-Schwarz,

|f(@)? < BalfP](w),

thus | f(w)||g(w)| < M2, forallw € . So, fg is a bounded function on ID. Note
that f and g cannot have zeros in D. Since |g(z)|* > #?|f(z)| 72, forallz € D, we
have B,[|g|%](w) = #?Ba[|f|7%](w), for all w € D. Consequently

M > Bu[|f ) (w)Ballg|*)(w) > 1?Ballf ) (w) Ballf| ] (w),
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so that
BuI12] () B[ f|2)(w) < UAf

for all w € D. This means that f satisfies the (M) condition. By Theorem 1.3 the
Toeplitz product T/ 77 7is bounded on A2. Since fg is bounded on D, the operator
f c is bounded on A2. It follows that T}%ZI}TWT}? is bounded on A2.
The function ¢ = % is bounded on ID, so the operator Ty is bounded on AZ.
Using that
TiTgTy = 1= TyT Ty,

we conclude that T;Tg is invertible on A2

6. FREDHOLM TOEPLITZ PRODUCTS

In this section we will completely characterize the bounded invertible Toe-
plitz products T;Tg on A2. We have the following result:

THEOREM 6.1. Let —1 < a < oo and let f and g be in A2. Then: TTgisa
bounded Fredholm operator on A2 if and only if By[|f|?|Ba[|g|?] is bounded on D and
the function |f||g| is bounded away from zero near .

The latter condition simply means that there exists a number r with 0 < r <
1 such that inf{|f(z)||g(z)| : ¥ < |z] < 1} > 0.

In the proof of the above theorem we will need the following lemma.

LEMMA 6.2. Let —1 < a < oo. Suppose that f € A2 has a finite number of

zeros. Let b denote the Blaschke product of the zeros of f and F = g, Then there exists a
constant Cy, only depending on «, such that for all w in D

B[l F*)(w) < Cochx[Iflz]
Proof. Choose 0 < R < 1 so that |b(z)| >
w € . Then

Ballf %) /If (¢o0(2)) Pd Al /\b (90(2)) PIF (9 (2))*d Au(2)

\f’ forall R < |z| < 1. Suppose

1
>5[ Feu@)Pdad).
R<|¢pw(z)|<1

By a change of variable,

o 2\2+u
[ FewePdae - [ F<z>|2(|11_LU%dAa<z>.

R<|guw(z)|<1 R<|z|<1
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Now, if h is analytic on I, then

61) / HRPAA) < e [ @A),

R<|z|<1

It is enough to prove inequality (6.1) for monomials /(z) = z". Integration by
parts shows that

1
2n 2\a+1
/ \z|2"dA,x(z)=/x”(1—x)“dx R (1 R tx+1/ 1 X a+1dx

a+1
R<|z|<1 R2 R2
RZn(l o RZ)DH—]
- a+1
On the other hand,
1— RZ)tx—H RZn(l o RZ)DH—l a—+1
2n < R2n _ ( — _
/ 27 dAu(z) <R {1 a+1 } a+1 {(1—R2)0‘+1 1}

|zI<R
o+ 1 2
<{W_l} / 2| d Ax(2).
R<|z|<1
Thus, we have the following, proving inequality (6.1):
a+1
/|Z|2ndAlx /|Z‘2ndAa / ‘Z‘anAa( )<W / |Z|2ndAtx(Z)'
D |z|<R R<|z|<1 R<|z|<1
Applying the above estimate to the function

(1~ Jw2)' 2

= F —_—m
h(z) = F&) g g
we see that
(1 _ |w 2)2+zx
P<z>|2|1_wz|4+adAa<z>
R<|z|<1
RZ a+1 2 |w‘ )2+1x (1 . RZ)uH—l

> - .
Heme /\ P A (2) > S BulIFR )

2 a+1
Thus By[|f2](w) > 3 52" B,[|F*)(w), so that

Ba[|F|*](w) < CuBallf*](w),

with C, = %, forallweD. &
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Proof of Theorem 6.1. “="1f T;Tg is bounded on A2, then there is an M

such that By[|f|?]Ba[|g]?] < M on D. If T¢ Ty is Fredholm, then T; Ty + K is invert-
ible in the Calkin algebra. Thus there exist a bounded operator V and a compact
operator S such that

VTf z=1+S.

Using that T Ty k) = =g(w )fk( we have

IVIl1g () Ballf121(w) /2 = | V|| Ty Tek' [la = VT Tk |1
> K0 = 15K o = 1= | SKD .

Since S is compact on A2 and kgff ) o0 weakly on A we have ||Sk || « — 0as

|w| — 17, so thereexistsan 0 < rq < 1such that ||Sk ||,X < 2,forallrl < |lw| < 1.
The above inequality shows that

18(w)”Bull f17](w) = Mi(= 3[VIIY),

forall r; < |w| < 1. Since also Tng = (TfTg)" is Fredholm, there is a positive
constant M, and a number r, with 0 < r, < 1 such that

|f(@)[*Ba[|g*](w) = My,
forallr, < |w| < 1. Thus My My < |f(2)[?|g(2)[*Ba|fI*](2) Bx[Ig|*](z) < M| f () [>-
|g(2)|?, and hence for all max{ry,r2} < |z| < 1

F)Plg)R > .

<=" Suppose that
() f(2)lIg(2)] =6 >0,

forall 0 < r < |z| < 1. Inequality () implies that f and g have no zeros in the
annulus {z : r < |z| < 1}. Let by and b, denote the (finite) Blaschke products of
the zeros of f and g respectively. Then F = l{—l and G = l% are zero free, and by
(x) we have
|F(2)]|IG(2)] = 6]b1(2)]b2(2)],

forallr < |z| < 1. The function on the right is positive and continuous on annulus
{z: %(1 +7r) < |z| < 1}, thus has a positive minimum. So putting p = %(1 +7),
we have |F(z)||G(z)| > #/, forall p < |z| < 1. Then |G(z)| > #'|F(z)|7}, for
all p < |z| < 1. Note that " = inf{|F(2)||G(z)] : |z| < p} > 0. If we take
7 = min{y’, "}, then |G(z)| > |F(z)|~!, for all z € D. By Lemma 6.2 we have
forallze D

Bu[|F|*](2) < CaB,XHf\Z](z) and B,[|G]*)(z) < CacBa[|g|2](Z)-
Thus By [|F|?)(2)Bs[|G|?](z) < M/, for all z € D. As before we conclude that

Bul|FP)(2)Bal|F|2)(2) < ?742
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for all z € D, so F satisfies condition (M;). By Theorem 1.3 the Toeplitz prod-
uct TrT) /5 is bounded. As in the proof of Theorem 5.1 it follows that TrT is
bounded. This implies that the following operator is bounded:

TyTg = Ty, Tr T5 Ty,

Since % is bounded, the Toeplitz operator T} , ;5 is bounded, and it follows
that Tr T is invertible. Since TEz is Fredholm, there is a bounded operator V, on

Aﬁ and a compact operator S, on Aﬁ such that TEz Vo, = I+ S,. It follows that
TngVz = Tbl TFTE + Tbl TFTESZI thus

T(TeVa(TeTg) ™! = Ty, + Ty, TeTeSa(TeTe)

Using that also Tj, is Fredholm, there is a bounded operator V; on A3 and a
compact operator S; on A2 such that Ty, V1 = I + S1. Then

TeTeVa(TrTe) 'Sy = I+ Sy + Ty, TrTeSa(TrTg) ™.

Hence T;Tg + K is right-invertible in the Calkin algebra. Similarly T;Tg + K is
left-invertible in the Calkin algebra, so that T T is Fredholm. &
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ADDED IN PROOFS. After we submitted our paper, we were made aware of the
following article which contains results similar to Theorems 1.1 and 1.2:
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S. POTT, E. SROUSE, Product of Toeplitz operators on the Bergman spaces Aﬁ [Russian],
Algebra i Analiz 18(2006), 144-161; English St. Petersburg Math. ]. 18(2007), 105-118.



