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ABSTRACT. For a Banach D-bimodule M over an abelian unital C∗-algebra D,
we define E1(M) as the collection of norm-one eigenvectors for the dual action
of D on the Banach space dual M#. Equip E1(M) with the weak*-topology.
We develop general properties of E1(M). It is properly viewed as a coordinate
system for M when M ⊆ C, where C is a unital C∗-algebra containing D as
a regular MASA with the extension property; moreover, E1(C) coincides with
Kumjian’s twist in the context of C∗-diagonals. We identify the C∗-envelope
of a subalgebra A of a C∗-diagonal when D ⊆ A ⊆ C. For triangular subal-
gebras, each containing the MASA, a bounded isomorphism induces an al-
gebraic isomorphism of the coordinate systems which can be shown to be
continuous in certain cases. For subalgebras, each containing the MASA, a
bounded isomorphism that maps one MASA to the other MASA induces an
isomorphism of the coordinate systems. We show that the weak operator clo-
sure of the image of a triangular algebra in an appropriate representation is a
CSL algebra and that a bounded isomorphism of triangular algebras extends
to an isomorphism of these CSL algebras. We prove that for triangular alge-
bras in our context, any bounded isomorphism is completely bounded. Our
methods simplify and extend various known results; for example, isometric
isomorphisms of the triangular algebras extend to isometric isomorphisms of
the C∗-envelopes, and the conditional expectation E : C → D is multiplicative
when restricted to a triangular subalgebra. Also, we use our methods to prove
that the inductive limit of C∗-diagonals with regular connecting maps is again
a C∗-diagonal.
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morphism.
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1. INTRODUCTION

This paper presents the results of our study of bounded isomorphisms of
coordinatized (nonselfadjoint) operator algebras. Isometric isomorphisms have
been extensively studied (see, for example, [18], [25], [34]) and are quite natu-
ral, as they include restrictions of ∗-isomorphisms. Isometric isomorphisms of
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C∗-algebras preserve adjoints. Bounded isomorphisms, in contrast, need not pre-
serve adjoints or map ∗-subalgebras to ∗-subalgebras. Nonetheless, we obtain
structural results, most notably, that bounded isomorphisms of triangular sub-
algebras of C∗-diagonals are completely bounded and also that they factor into
diagonal-fixing, spatial, and isometric parts, analogous to Arveson-Josephson’s
factorization of bounded isomorphisms of analytic crossed products.

Coordinates have been used in the categories of von Neumann algebras and
C∗-algebras with ∗-homomorphisms for decades, going back at least to the work
of Feldman and Moore ([14], [15]) for von Neumann algebras and Renault’s con-
struction of C∗-algebras for a wide range of topological groupoids [38]. Of par-
ticular interest to us is Kumjian’s construction, in [21], of a certain T-groupoid
which he called a twist, which he showed is a classifying invariant for a diag-
onal pair, a separable C∗-algebra with a distinguished MASA satisfying various
properties. Renault describes twists in terms of the dual groupoid [39] and this
perspective is often helpful, see for example the work of Thomsen in [42]. Twists
have been used by various authors, most notably Muhly, Qiu, and Solel, and
Muhly and Solel, to study varied categories of subalgebras and submodules of
groupoid C∗-algebras with isometric morphisms [24], [27].

To apply coordinate methods to bounded isomorphisms, we found it nec-
essary to revisit these coordinate constructions, eliminating as much as possible
the use of adjoints and clarifying the role of the extension property. We define co-
ordinates for bimodules over an abelian C∗-algebra which are intrinsic to the bi-
module structure and not a priori closely tied to the ∗-structure. These definitions
allow us to simplify and extend some of the structural results in the literature. In
particular, we obtain a number of results for algebras containing the abelian C∗-
algebra: e.g. isomorphism of the coordinates is equivalent to diagonal-preserving
isomorphism of the algebras. This analysis of coordinate systems will be useful,
we expect, in applying coordinate constructions to more general settings.

Bounded isomorphisms play a role in the study of norm-closed operator
algebras which is parallel to similarity transforms in the study of weakly-closed
subalgebras of B(H). During the mid-1980’s and early 1990’s, there was con-
siderable interest in the structural analysis of such algebras via their similarity
theory. This was particularly successful with the class of nest algebras (see, for
example, [6], [7],[22], [23], [29]) and, to a lesser degree, the CSL algebras. Inter-
estingly, by using certain faithful representations of C∗-diagonals, we can employ
similarity theory for atomic CSL algebras to obtain structural results for bounded
isomorphisms between triangular subalgebras of C∗-diagonals.

We turn now to a more detailed outline of the paper. Throughout the pa-
per, we consider bimodules over an abelian unital C∗-algebra D. Our view is that
the set of coordinates for such a bimodule M is the collection E1(M) of norm one
elements of the Banach space dual M# which are eigenvectors for the bimodule
action of D on M#. We use eigenfunctional for such elements, and we topologize
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E1(M) using the weak* topology. With this structure, we call E1(M) the coor-
dinate system for M. In Section 2, we establish some very general, but useful,
properties. For example, Theorem 2.6 shows that when M1 is a submodule of M,
then an element of E1(M1) can be extended (but not necessarily uniquely) to an
element of E1(M).

A key step in minimizing the use of adjoints is replacing normalizers with
intertwiners, that is, elements m ∈ M so that mD = Dm. Section 3 starts by
showing that intertwiners and normalizers are closely related, at least when D is
a MASA in a unital C∗-algebra C containing M (Propositions 3.3 and 3.4). The
extension property is used to construct intertwiners and to slightly strengthen a
key technical result of Kumjian. In this generality, E1(M) need not separate points
of M.

In Section 4 we work in the context of D-bimodules M ⊆ C, where C is a
unital C∗-algebra and D ⊆ C is a regular MASA with the extension property.
Such a pair (C, D) we term a regular C∗-inclusion. Here the coordinates are better
behaved: eigenfunctionals on submodules of M extend uniquely to M. Never-
theless, the coordinates for regular C∗-inclusions again are not sufficiently rich to
separate points. However, the failure to separate points is intimately related to a
certain ideal of N ⊆ C, and Theorem 4.8 shows that the quotient of C by N is a
C∗-diagonal, which is a mild generalization of Kumjian’s notion of diagonal pair
due to Renault [39]. Essentially, a C∗-diagonal is a regular C∗-inclusion where
the conditional expectation E : C → D arising from the extension property is
faithful. There are an abundance of C∗-diagonals: crossed products of abelian
C∗algebras by freely acting amenable groups are C∗-diagonals, and Theorem 4.23
shows that inductive limits of C∗-diagonals are again C∗-diagonals when the con-
necting maps satisfy a regularity condition. In particular, AF-algebras and circle
algebras can be viewed as C∗-diagonals. While our primary interest in this paper
is the use of coordinate methods to study nonselfadjoint algebras, Theorem 4.8
and Theorem 4.23 are examples of results in the theory of C∗-algebras obtained
using our perspective.

When M is a D-bimodule contained in a C∗-diagonal, the elements of E1(M)
do separate points, and when the bimodule is an algebra, also have a continuous
product. In Section 4, we use the extension property to show that the coordi-
nate system E1(C) for a C∗-diagonal agrees with Kumjian’s twist. Our methods
provide some simplifications and generalizations of Kumjian’s results. One of
the interesting features of our approach is that it allows us to show that the co-
ordinate systems for bimodules M ⊆ C are intrinsic to the bimodule alone, and
not dependent on the choice of the embedding into the particular C∗-diagonal.
This and the agreement of our construction with Kumjian’s is achieved in Theo-
rems 4.13, Corollary 4.15, and Proposition 4.17. An interesting application of our
coordinate methods is Theorem 4.21, which shows that if the pair (C, D) is a C∗-
diagonal, and A is a norm closed algebra with D ⊆ A ⊆ C, then the C∗-envelope
of A coincides with the C∗-subalgebra of C generated by A.
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We study the representation theory of C∗-diagonals in Section 5, obtain-
ing a faithful atomic representation compatible with the C∗-diagonal structure.
Our methods are reminiscent of Gardner’s work on isomorphisms of C∗-algebras
in [16]. The significance to us of these representations is that they carry subal-
gebras containing the diagonal to algebras weakly dense in a CSL-algebra, see
Theorem 5.9. This theorem enables us to prove, with fewer hypotheses than pre-
viously needed, that the conditional expectation is multiplicative when restricted
to a triangular subalgebra, Theorem 5.10.

Section 6 considers diagonal-preserving bounded isomorphisms, those that
map the diagonal of one algebra onto the diagonal of the other. Theorem 6.3
shows that in this case there is an isomorphism between coordinate systems
arising naturally from the algebra isomorphism. Consequently, we are able to
prove several results, such as Theorem 6.7, which shows that an automorphism
of a triangular algebra which fixes the diagonal pointwise arises from a cocycle,
and Theorems 6.11 and 6.14, which show that coordinates are invariant under
diagonal-preserving bounded isomorphisms, extending previous results for iso-
metric isomorphisms.

We then turn to bounded isomorphisms of triangular algebras which do not
preserve the diagonal. A main result, Theorem 7.7, shows that a given bounded
isomorphism of triangular subalgebras induces an algebraic isomorphism γ of
their coordinate systems, but our methods are not strong enough to show that
this isomorphism is continuous everywhere. Nevertheless, this does show that
the algebraic structure of coordinate systems for triangular algebras is invariant
under bounded isomorphism, a fact we believe would be difficult to show using
previously existing methods.

While we are not able to prove continuity of the map γ on coordinate sys-
tems in general, we can prove it in various special cases. A bounded isomorphism
of triangular algebras induces a canonical ∗-isomorphism of the diagonals. If
this ∗-isomorphism extends to a ∗-isomorphism of the C∗-envelopes, then Corol-
lary 7.8 shows that the product of γ with an appropriate cocycle yields a con-
tinuous isomorphism. Also, Theorem 7.11 shows that bounded isomorphism of
triangular algebras implies an isomorphism of their coordinate systems when the
triangular algebras are generated by their algebra-preserving normalizers. This is a
new class of algebras which contains a variety of known classes, including those
generated by order-preserving normalizers or those generated by monotone G-
sets.

Another of our main results, Theorem 8.2, shows that if boundedly isomor-
phic triangular subalgebras are represented in the faithful representation con-
structed in Theorem 5.9, then the isomorphism extends to an isomorphism of the
weak closures of the triangular algebras. A crucial ingredient in proving this is
Theorem 7.7. Theorem 8.2 allows us to use known results about isomorphisms of
CSL algebras to prove another main result, Theorem 8.8, which asserts that every
bounded isomorphism of triangular subalgebras of C∗-diagonals is completely
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bounded. Consequently, we are able to prove that every isometric isomorphism
of triangular algebras extends to an isometric isomorphism of the corresponding
C∗-envelopes. Another application of Theorem 8.2 is Theorem 8.7, which gives
the factorization into diagonal-fixing, spatial, and isometric parts mentioned ear-
lier.

Together with Power, we asserted ([12], Theorem 4.1) that two limit alge-
bras are isomorphic if and only if a certain type of coordinates for the algebras,
namely their spectra, are isomorphic. Unfortunately, there is a serious gap in the
proof, and another of our motivations for the work in this paper was an attempt to
provide a correct proof. While we have not yet done this, our results provide ev-
idence that Theorem 4.1 of [12] is true. The main result of Section 9, Theorem 9.9,
shows that an (algebraic) isomorphism of a limit algebra A1 onto another limit al-
gebra A2 implies the existence of a ∗-isomorphism τ of their C∗-envelopes. If we
could choose τ so that τ(A1) = A2, then Theorem 4.1 of [12] would follow easily,
but we do not know this. However, any isomorphism of A1 onto A2 induces a
∗-isomorphism α of A1 ∩A∗

1 onto A2 ∩A∗
2. If τ can be chosen so that τ extends α,

Corollary 7.8 shows that τ carries A1 onto A2, and moreover, there is an isomor-
phism of the corresponding coordinate systems. It is somewhat encouraging that
Theorem 9.9 shows that there is no K-theoretic obstruction to the existence of a τ
which extends α. This is as close as we have been able to come in our efforts to
provide a correct proof of Theorem 4.1 of [12].

2. INTERTWINERS AND EIGENFUNCTIONALS

In this section we provide a very general discussion of coordinates. Al-
though our focus in this paper is on C∗-diagonals and regular C∗-inclusions, de-
fined in Section 4, we start in a more general framework, with a view to extending
coordinate methods beyond our focus here. Indeed, there are several useful gen-
eral results, most notably Theorem 2.6, which shows that eigenfunctionals can be
extended from one bimodule to another bimodule containing the first. From this
result, we characterize when an eigenfunctional with a given range and source
exists, using a suitable seminorm.

2.1. NOTATIONAL CONVENTION. Given a Banach space X, we denote its Banach
space dual by X#, to minimize confusion with adjoints.

Throughout this section, D will be a unital, abelian C∗-algebra, and M will
be a Banach space which is also a bounded D-bimodule, that is, there exists a
constant K > 0 such that for every d, f ∈ D and m ∈ M,

‖d ·m · f ‖ 6 K‖d‖‖m‖‖ f ‖.

As usual, M# becomes a Banach D-module with the action,

〈m, f · φ · d〉 = 〈d ·m · f , φ〉 d, f ∈ D, m ∈ M, and φ ∈ M#.
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DEFINITION 2.1. A nonzero element m ∈ M is a D-intertwiner, or more sim-
ply, an intertwiner if

m ·D = D ·m.

If m ∈ M is an intertwiner such that for every d ∈ D, d · m ∈ Cm, we call m a
minimal intertwiner.

A minimal intertwiner of M# will be called a eigenfunctional; when necessary
for clarity, we use D-eigenfunctional. That is, an eigenfunctional is a nonzero linear
functional φ :M→C so that, for all d∈D, x7→φ(dx), x7→φ(xd) are multiples of φ.

Denote the set of all D-eigenfunctionals by ED(M) (or E(M), if the con-
text is clear). We equip E(M) with the relative weak∗-topology (i.e. the relative
σ(M#, M)-topology).

Denote the set of all norm-one D-eigenfunctionals by E1
D(M) or E1(M).

Given an eigenfunctional φ ∈ ED(M), the associativity of the maps d ∈
D 7→ d · φ and d ∈ D 7→ φ · d yields the existence of unique multiplicative linear
functionals s(φ) and r(φ) on D satisfying s(φ)(d)φ = d · φ and r(φ)(d)φ = φ · d,
that is,

(2.1) φ(xd) = φ(x)[s(φ)(d)], φ(dx) = [r(φ)(d)]φ(x).

DEFINITION 2.2. We call s(φ) and r(φ) the source and range of φ, respec-
tively.

There is a natural action of the nonzero complex numbers on E(M), sending
(λ, φ) to the functional m 7→ λφ(m); clearly s(λφ) = s(φ) and r(λφ) = r(φ).

We next record a few basic properties of eigenfunctionals.

PROPOSITION 2.3. With the weak∗-topology, E(M)∪ {0} is closed. Furthermore,
r : E(M) → D̂ and s : E(M) → D̂ are continuous.

Proof. Suppose (φλ)λ∈Λ is a net in E(M) ∪ {0} and φλ
w∗→ φ ∈ M#.

If φ = 0, there is nothing to do, so we assume that φ 6= 0. Choose m ∈ M

such that φ(m) 6= 0. Then φλ(m) → φ(m), so there exists λ0 ∈ Λ such that
φλ(m) 6= 0 for every λ � λ0. For any d ∈ D, and λ � λ0, we have

s(φλ)(d) =
φλ(md)
φλ(m)

→ φ(md)
φ(m)

.

Thus, s(φλ) converges weak* to the functional σ ∈ D̂ given by d 7→ φ(md)/φ(m).
Similarly, r(φλ) converges weak* to ρ ∈ D̂ given by ρ(d) = φ(dm)/φ(m). It now
follows that φ is a eigenfunctional with r(φ) = ρ and s(φ) = σ. Thus, E(M) ∪ {0}
is closed.

In particular, if φλ → φ ∈ E(M), then s(φλ) → s(φ) and similarly for the
ranges, so s and r are continuous.
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To be useful, there should be many eigenfunctionals. This need not occur
for arbitrary bimodules, as Example 2.8 shows. However, for bimodules of C∗-
diagonals, which are the bimodules of principal interest in the present paper,
Proposition 4.20 below will show that eigenfunctionals exist in abundance.

We need the following seminorm to extend eigenfunctionals and to charac-
terize when eigenfunctionals exist.

DEFINITION 2.4. For ρ, σ ∈ D̂, define Bρ,σ : M → R by

Bρ,σ(m) := inf{‖dm f ‖ : d, f ∈ D, ρ(d) = σ( f ) = 1}.

These infima do not increase if we restrict to elements d or f of norm one.
Indeed, for any elements d and f as above, since |ρ(d)| 6 ‖d‖ and |σ( f )| 6 ‖ f ‖,
we can replace them with d/‖d‖ and f /‖ f ‖ and this will only decrease the norm
of ‖dm f ‖. Thus,

Bρ,σ(m) = inf{‖dm f ‖ : d, f ∈ D, ρ(d) = σ( f ) = 1 = ‖d‖ = ‖ f ‖}.

In particular, we have Bρ,σ(m) 6 ‖m‖.
A variant of this seminorm was used by Steve Power in [35] to distinguish

families of limit algebras associated to singular MASAs.

PROPOSITION 2.5. For ρ, σ ∈ D̂, we have the following:
(i) Bρ,σ is a seminorm.

(ii) For m ∈ M and φ ∈ E(M), |φ(m)| 6 ‖φ‖Br(φ),s(φ)(m).
(iii) For m ∈ M, d, f ∈ D, Bρ,σ(dm f ) = |ρ(d)|Bρ,σ(m)|σ( f )|.
(iv) If f ∈ M# \ {0} satisfies | f (m)| 6 Bρ,σ(m) for all m ∈ M, then f ∈ E(M) with

s( f ) = σ, r( f ) = ρ, and ‖ f ‖ 6 1.

Proof. For (i), it is immediate that Bρ,σ(λm) = |λ|Bρ,σ(m), for λ ∈ C and
m ∈ M.

To show subadditivity, let a, b ∈ M and choose ε > 0. Pick norm one
elements d1, d2, f1, f2 of D, satisfying ρ(d1) = ρ(d2) = 1 = σ( f1) = σ( f2),
‖d1a f1‖ < Bρ,σ(a) + ε and ‖d2b f2‖ < Bρ,σ(b) + ε. Then

‖d1d2(a+b) f1 f2‖6‖d2d1a f1 f2‖+‖d1d2b f2 f1‖6‖d1a f1‖+‖d2b f2‖<Bρ,σ(a)+Bρ,σ(b)+2ε,

whence Bρ,σ(a + b) 6 Bρ,σ(a) + Bρ,σ(b).
For (ii), suppose d, f ∈ D with s(φ)(d) = r(φ)( f ) = 1. Then |φ(m)| =

|φ(dm f )| 6 ‖φ‖‖dm f ‖. Taking the infimum over all such d and f gives the in-
equality.

For (iii), we show that Bρ,σ(dm) = |ρ(d)|Bρ,σ(m); the proof for σ and f is
similar.

For any a, b ∈ D with ‖a‖ = ‖b‖ = 1 = ρ(a) = σ(b) we have

‖admb‖ 6 ‖ρ(d)amb‖+ ‖(ad− ρ(d)a)mb‖ 6 |ρ(d)|‖amb‖+ ‖ad− ρ(d)a‖‖m‖.

Hence Bρ,σ(dm) 6 |ρ(d)|‖amb‖+ ‖ad− ρ(d)a‖‖m‖. The definition of Bρ,σ and the
fact that inf{‖ad− ρ(d)a‖ : a ∈ D, ‖a‖ = 1 = ρ(d)} = 0, imply that given ε > 0,
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we may find norm one elements a1, b1 and a2 of D such that ρ(a1) = ρ(a2) =
σ(b1) = 1 and

‖a1mb1‖ < Bρ,σ(m) + ε and ‖a2d− ρ(d)a2‖‖m‖ < ε.

Then

Bρ,σ(dm) 6 |ρ(d)|‖a1a2mb1‖+ ‖a1a2d− ρ(d)a1a2‖‖m‖
6 |ρ(d)|‖a1mb1‖+ ‖a2d− ρ(d)a2‖‖m‖ 6 |ρ(d)|(Bρ,σ(m) + ε) + ε,

whence Bρ,σ(dm) 6 |ρ(d)|Bρ,σ(m).
To obtain |ρ(d)|Bρ,σ(m) 6 Bρ,σ(dm), observe that for a, b ∈ D and ‖a‖ =

‖b‖ = 1 = ρ(a) = σ(b),

|ρ(d)|Bρ,σ(m) 6 ‖ρ(d)amb‖ 6 ‖ρ(d)a− ad‖‖m‖+ ‖admb‖,

and argue as above.
Finally, suppose f is a nonzero linear functional on M satisfying | f (m)| 6

Bρ,σ(m) for every m ∈ M. As Bρ,σ(x) 6 ‖x‖, we see that f is bounded and
‖ f ‖ 6 1.

Suppose d ∈ D, and let k = d − σ(d)I. Clearly σ(k) = 0, and so, for x ∈ M,
| f (xk)| 6 Bσ,ρ(xk) = 0. Therefore f (xd) = f (x)σ(d) + f (xk) = f (x)σ(d). Sim-
ilarly, f (dx) = ρ(d) f (x). Thus, f is an eigenfunctional with range ρ and source
σ.

THEOREM 2.6. Suppose M is a norm-closed D-bimodule and N⊆M is a norm-
closed sub-bimodule. Given φ∈E(N), there is ψ∈E(M) with ψ|N =φ and ‖φ‖=‖ψ‖.

Necessarily, ψ has the same range and source as φ.

Proof. Let σ = s(φ) and ρ = r(φ). From Proposition 2.5 (ii), |φ(n)| 6
‖φ‖Bρ,σ(n) for all n ∈ N. By the Hahn-Banach Theorem, there exists an extension
of φ to a linear functional ψ on M satisfying |ψ(x)| 6 ‖φ‖Bρ,σ(x) for all x ∈ M.
Now apply the last part of Proposition 2.5.

We would like to be able to say that the extension in Theorem 2.6 is unique,
but this need not be true. For example, if N = D and M = C, then we are consid-
ering extensions of pure states, which need not be unique (see [1], [20], for exam-
ple). However, in the context of regular C∗-inclusions the extension is unique, as
we show in Section 4.

We now characterize the existence of eigenfunctionals in terms of the Bρ,σ
seminorms.

THEOREM 2.7. Suppose ρ, σ ∈ D̂. There is φ ∈ E(M) with r(φ) = ρ and
s(φ) = σ if and only if Bρ,σ|M 6= 0.

Proof. If φ ∈ E(M) with s(φ) = σ and r(φ) = ρ, then Proposition 2.5 (ii)
implies Bρ,σ|M 6= 0.
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Conversely, suppose Bρ,σ(m) 6= 0. Define a linear functional f on Cm by
f (λm) = λBρ,σ(m). Now use the Hahn-Banach Theorem to extend f to a lin-
ear functional on all of M which satisfies | f (m)| 6 Bρ,σ(m), and apply Proposi-
tion 2.5.

EXAMPLE 2.8. Here is an example where E(M) is {0}. In B(L2[0, 1]), let D

be the operators of multiplication by elements of C[0, 1], and let M be the com-
pact operators. If ρ ∈ [0, 1] and Λ = {d ∈ D : d̂(ρ) = 1 and 0 6 d 6 I}, then Λ
becomes a directed set with the direction d � e if and only if d − e > 0. View-
ing Λ as a net indexed by itself, then Λ is a bounded net converging strongly to
zero. Hence given any compact operator K, the net {dK}d∈Λ converges to zero in
norm. It follows that Bρ,σ(K) = 0 for all ρ, σ ∈ D̂, so by Theorem 2.7, the set of
eigenfunctionals is {0}.

Not surprisingly, eigenfunctionals behave appropriately under bimodule
maps.

For i = 1, 2, let Mi be D-bimodules and let θ : M1 → M2 be a bounded D-
bimodule map. Recall the Banach adjoint map θ# : M#

2 → M#
1, given by θ#(φ) =

φ ◦ θ. If φ ∈ E(M2), then θ#φ ∈ E(M1), and we have s(φ ◦ θ) = s(φ), and r(φ ◦ θ) =
r(φ).

We include the following simple result for reference purposes; the proof is
left to the reader.

PROPOSITION 2.9. For i = 1, 2, let Mi be D-bimodules and suppose θ : M1 →
M2 is a bounded linear map which is also a D-bimodule map. Then θ#|E(M2) is a contin-
uous map of E(M2) into E(M1) ∪ {0}.

If θ is bijective, then θ#|E(M2) is a homeomorphism of E(M2) onto E(M1). If θ is
isometric, θ#|E1(M2) is a homeomorphism of E1(M2) onto E1(M1).

3. NORMALIZERS AND THE EXTENSION PROPERTY

We begin this section with a discussion of the relationship between normal-
izers and intertwiners. Together, Propositions 3.3 and 3.4 show that all intertwin-
ers of a maximal abelian C∗-algebra are normalizers and every normalizer can
be approximated as closely as desired by intertwiners. This shows that for our
purposes, there is no disadvantage in using intertwiners instead of normalizers;
moreover, the fact that intertwiners behave well under bounded isomorphism is
a considerable advantage.

In the second part of the section, we consider a C∗-algebra C containing a
MASA D which has the extension property (see Definition 3.6) and a D-bimodule
M ⊆ C. We use the extension property and a theorem from [1] to construct in-
tertwiners in M from intertwiners in C, and strengthen a key technical result of
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Kumjian, Proposition 3.12. We see these results as a step towards extending coor-
dinates from C∗-diagonals to more general settings.

3.1. CONTEXT FOR SECTION 3. Throughout this section, C will be a unital C∗-
algebra and D ⊆ C will be an abelian C∗ subalgebra containing the unit of C.
Bimodules considered in this section will be closed subspaces M of C which are
D-bimodules under multiplication in C.

DEFINITION 3.1. An element v ∈ M is a normalizer of D if vDv∗ ∪ v∗Dv ⊆ D.
The set of all such elements is denoted ND(M) or, if D is clear, N(M). Recall that
M is said to be regular if the closed span of ND(M) equals M.

REMARK 3.2. The notion of normalizer in Definition 3.1 is the same as that
used by Kumjian in [21].

Typically, normalizers play a major role in constructing coordinates for op-
erator algebras. Since normalizers depend on the involution, it can be difficult
to determine if isomorphisms that are not ∗-extendible or isometric preserve nor-
malizers. Intertwiners (Definition 2.1) are not defined in terms of the involution
and so it can be easier to decide if they are preserved by such isomorphisms. We
begin with a comparison of normalizers and intertwiners.

It is easy to find examples of intertwiners of abelian C∗-algebras which are
not normalizers: for a simple example, observe that every element of M2(C) is an
intertwiner for CI2. However, the next proposition shows that when the abelian
algebra is a MASA, intertwiners are normalizers.

PROPOSITION 3.3. If v ∈ C is an intertwiner for D, then v∗v, vv∗ ∈ D′ ∩ C. If
D is maximal abelian in C, then v is a normalizer of D.

Proof. Let v be an intertwiner. Let

Js := {d ∈ D : vd = 0} and Jr := {d ∈ D : dv = 0}.

Then Js and Jr are norm-closed ideals in D. Define a mapping αv between D/Js
and D/Jr by αv(d + Js) = d′ + Jr, where d′ ∈ D is chosen so that vd = d′v. It is
easy to check that αv is a well-defined ∗-isomorphism of D/Js onto D/Jr.

Let d = d∗ ∈ D. Then αv(d + Js) = d′ + Jr where d′ is chosen so that d′ =
d′∗ ∈ D. Thus, we have the equality of sets,

{v∗vd} = v∗v(d + Js) = v∗(d′ + Jr)v = [(d′ + Jr)v]∗v

= [v(d + Js)]∗v = (d + Js)v∗v = {dv∗v}.

Hence v∗v commutes with the selfadjoint elements of D and so commutes with
D. Since v∗ is also an intertwiner, we conclude similarly that vv∗ ∈ D′.

If D is maximal abelian, then vDv∗ = Dvv∗ ⊆ D and v∗Dv = v∗vD ⊆ D,
and v is a normalizer as desired.

For v ∈ N(C), let S(v) := {φ ∈ D̂ : φ(v∗v) > 0}; note this is an open set in D̂.
As observed by Kumjian (see Proposition 6 of [21]), there is a homeomorphism
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βv : S(v) → S(v∗) given by

βv(φ)(d) =
φ(v∗dv)
φ(v∗v)

.

It is easy to show that β−1
v = βv∗ .

PROPOSITION 3.4. For v ∈ N(C), if βv∗ extends to a homeomorphism of S(v∗)
onto S(v), then v is an intertwiner. Moreover, if I := {w ∈ C : wD = Dw} is the set of
intertwiners, then N(C) is contained in the norm-closure of I, and when D is a MASA
in C, N(C) = I.

Proof. It is clear that the set of normalizers is norm-closed.
Regard C as sitting inside its double dual C##. Let v = u|v| = |v∗|u be the

polar decomposition for v. Since u is the strong* limit of un := v(1/n + |v|)−1, we
find that u also normalizes D##.

Therefore, given any d ∈ D, vdv∗ = u|v|du∗|v∗| = udu∗vv∗. Hence for
φ ∈ S(v∗), we have

(3.1) βv∗ (φ)(d) = φ(udu∗).

Suppose now that βv∗ extends to a homeomorphism of S(v∗) onto S(v).
By Tietze’s Extension Theorem, we may then find an element d1 ∈ D such that
for every φ ∈ S(v∗), φ(d1) = βv∗ (φ)(d). Thus, for every φ ∈ D̂, φ(vdv∗) =
φ(udu∗)φ(vv∗) = φ(d1vv∗), so that

(udu∗ − d1)vv∗(ud∗u∗ − d∗1) = 0.

This shows that udu∗v = d1v and so

vd = u|v|d = uu∗ud|v| = udu∗u|v| = udu∗v = d1v.

Hence vD ⊆ Dv. Since the adjoint of a normalizer is again a normalizer and
βv = (βv∗ )−1, we may repeat this argument to obtain v∗D ⊆ Dv∗. Taking adjoints
yields Dv ⊆ vD. Hence v is an intertwiner.

Given a general normalizer v, let ε > 0 and let K = {φ ∈ D̂ : φ(vv∗) > ε2}.
Then K is a compact subset of S(v∗). Choose d0 ∈ D so that 0 6 d0 6 I and d̂0

is compactly supported in S(v∗) and d̂0|K = 1. Since βv∗d0 = βv∗ |S(v∗d0) and βv∗

is a homeomorphism, it extends to a homeomorphism of S(v∗d0) onto S(d0v).
Thus d0v is an intertwiner. Further, ‖d0v− v‖ = ‖(d0 − 1)vv∗(d0 − 1)‖1/2 < ε
so d0v approximates v to within ε. Thus, N(C) ⊆ I. When D is a MASA in C,
Proposition 3.3 shows every intertwiner of D is a normalizer, so N(C) = I.

REMARK 3.5. Taken together, Proposition 3.3 and Proposition 3.4 show that
for a MASA D in a C∗-algebra C, a partial isometry v is a normalizer if and only
if it is an intertwiner. Related results for partial isometries are known ([30],
Lemma 3.2).

The ∗-isomorphism αv : D/Js → D/Jr appearing in the proof of Proposi-
tion 3.3 induces a homeomorphism h from the zero set Zr := {σ ∈ D̂ : σ|Jr = 0}
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onto the zero set Zs := {σ ∈ D̂ : σ|Js = 0}. It is not hard to show that if v is an
intertwiner and D is a MASA, then Zs = S(v), Zr = S(v∗) and h is the extension
of βv∗ = β−1

v to Zr. Thus, it is possible to describe βv without explicit reference to
the ∗-structure.

We turn to constructing intertwiners in a module using the next property.

DEFINITION 3.6. Let C be a unital C∗-algebra. A C∗-subalgebra D ⊆ C is
said to have the extension property if every pure state of D has a unique extension
to a state on C and no pure state of C annihilates D.

If D ⊆ C is abelian and D has the extension property relative to C, then
the Stone-Weierstrass Theorem implies that D is a MASA ([20], p. 385). We shall
make essential use of the following result characterizing the extension property
for abelian algebras.

THEOREM 3.7 ([1], Corollary 2.7). Let C be a unital C∗-algebraand let D be an
abelian C∗-subalgebra of C which contains the unit of C. Then D has the extension prop-
erty if and only if

co{gxg−1 : g ∈ D and g is unitary} ∩D 6= ∅.

Furthermore, when this occurs, D is a MASA and there exists a conditional expectation
E : C → D such that

co{gxg−1 : g ∈ D and g is unitary} ∩D = {E(x)}.

REMARK 3.8. Archibold, Bunce and Gregson in [1] also show that the con-
dition

C = D + span{cd− dc : c ∈ C, d ∈ D}
also characterizes the extension property for an abelian subalgebra D ⊆ C. This
characterization was important in Kumjian’s work on C∗-diagonals.

DEFINITION 3.9. For v ∈ N(C), define Ev : C → N(C) by

Ev(x) = vE(v∗x).

Our first application of Theorem 3.7 is essentially contained in the proof of
Proposition 4.4 in [24], but Theorem 3.7 provides a different (and simpler) proof.
The crucial implication of Proposition 3.10 is that bimodules contain many nor-
malizers.

PROPOSITION 3.10. Suppose D is a commutative C∗-subalgebra of the unital C∗-
algebra C which has the extension property, and M ⊆ C is a D-bimodule. If v ∈ C is a
normalizer (respectively intertwiner) and x ∈ M, then Ev(x) ∈ M and is a normalizer
(respectively intertwiner).

Proof. Fix x ∈ M and let G be the unitary group of D. Since v ∈ ND(C), for
every g∈G, vgv∗∈D, so that (vgv∗)xg−1∈M. Thus the norm-closed convex hull,

H := co{(vgv∗)xg−1 : g ∈ G} ⊆ M.
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By Theorem 3.7, E(v∗x) belongs to K := co{gv∗xg−1 : g ∈ G}. Since vK ⊆ H, we
conclude that vE(v∗x) = Ev(x) ∈ M.

Although we have no application for it, the following result, which is a
corollary of Proposition 3.10, provides another means of constructing normalizers
in a bimodule.

PROPOSITION 3.11. With C, D, and M as in Proposition 3.10 and C regular in
D, if v ∈ N(C), m ∈ M and |φ(v)| 6 |φ(m)| for all φ ∈ E1(C), then v ∈ M.

Proof. We show in Proposition 4.7 below that E1(C) consists precisely of
functionals of the form [v, σ], described in Definition 4.3. It is convenient to use
this description for the proof of the present result; the proof of Proposition 4.7
does not use Proposition 3.11, so there is no circular reasoning.

For σ ∈ D̂ with σ(v∗v) 6= 0, σ(v∗v) equals

σ(v∗v)1/2[v, σ](v) 6 |σ(v∗v)1/2[v, σ](m)| = |σ(v∗m)| = |σ(E(v∗m))|,

and so, for σ ∈ D̂, σ(v∗v) 6 |σ(E(v∗m))|. Thus, there exists d ∈ D with v∗v =
E(v∗m)d. Hence for n ∈ N, (v∗v)1/n belongs to the closed ideal of D generated by
E(v∗m). By Proposition 3.10, vE(v∗m) ∈ M and we conclude v(v∗v)1/n ∈ M. But
v = lim

n→∞
v(v∗v)1/n, whence v ∈ M.

Our second application of Theorem 3.7 is to provide an alternate proof of,
and slightly strengthen, a result of Kumjian.

PROPOSITION 3.12 ([21], Lemma 9, p. 972). Let D be an abelian C∗-subalgebra
of the unital C∗-algebra C with the extension property. For v ∈ N(C), v∗E(v) and
vE(v∗) both belong to D. If σ ∈ S(v), then the following are equivalent:

(i) σ(v) 6= 0;
(ii) βv(σ) = σ;

(iii) σ(E(v∗)) 6= 0.

Proof. Taking x = I and M = D in Proposition 3.10 we see that v∗E(v) and
vE(v∗) both belong to D.

Suppose σ(v) 6= 0. An easy calculation shows that when d ∈ D and σ(d) 6=
0, then βvd = βv. Let d = v∗E(v). By hypothesis, we find σ(d) = |σ(v)|2 6= 0, and
another calculation shows that βvd = βv, so (i) implies (ii).

Assume (ii) holds. Letting G again be the unitary group of D, we have, for
all g ∈ G,

σ(v∗gvg−1) = σ(v∗gv)σ(g−1) = βv(σ)(g)σ(g−1)σ(v∗v) = σ(v∗v).

Thus, σ(v∗co{gvg−1 g ∈ G}) ⊆ {σ(v∗v)}, and therefore by Theorem 3.7 we obtain
σ(v∗)σ(v) = σ(v∗E(v)) 6= 0. Thus σ(E(v∗)) 6= 0 and by our earlier remarks,
vE(v∗) ∈ D.

Finally, it is evident that (iii) implies (i).
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4. REGULAR C∗-INCLUSIONS AND C∗-DIAGONALS

We now turn to the principal context for our subsequent work, that of C∗-
diagonals and regular C∗-inclusions. After recalling Kumjian’s twist, we show
that the elements of the twist are eigenfunctionals on the C∗-algebra and con-
versely (Proposition 4.7 and Theorem 4.9). This allows us to show that every
regular C∗-inclusion has a quotient which is a C∗-diagonal with the same coordi-
nate system, Theorem 4.8, as well as strengthening various results from Section 2
in this context. The crucial result for subsequent sections is Theorem 4.13, which
shows that for a bimodule M, the intrinsically defined eigenfunctionals on M and
the restriction of the twist are the same.

DEFINITION 4.1. The pair (C, D) will be called a regular C∗-inclusion if D is
a maximal abelian C∗-subalgebra of the unital C∗-algebra C such that

(i) D has the extension property in C;
(ii) C is regular (as a D-bimodule).

Always, E denotes the (unique) conditional expectation of C onto D. We call
(C, D) a C∗-diagonal if, in addition,

(iii) E is faithful.

REMARKS 4.2. A few comments on the definition are appropriate.
(i) Renault [39] gives, without proof, an example of an algebra satisfying only

the first two conditions but not the third, i.e., a regular C∗-inclusion that is not a
C∗-diagonal.

(ii) By Propositions 3.3 and 3.4, regularity of a bimodule M is equivalent to
norm-density of the D-intertwiners.

(iii) As observed by Renault [39], this definition of C∗-diagonal is equivalent to
Kumjian’s original definition, namely,

(a) there is a faithful conditional expectation E : C → D;
(b) the closed span of the free normalizers in C is ker E.

A normalizer v of D is free if v2 = 0. Kumjian also required that C is separable
and D̂ is second countable, but [39] shows this is not necessary. It is often easier
to verify Kumjian’s axioms when working with particular examples.

(iv) Renault ([38], Definition II.4.13) defines a Cartan subalgebra D of a C∗-
algebra C. Using a partition of unity and the characterization of the extension
property of [1] (described in Remark 3.8 above), one can show that if D ⊆ C

is a Cartan subalgebra in Renault’s sense, then (assuming C is unital) (C, D) is
a regular C∗-inclusion. Combining Theorem II.4.15 of [38] with Theorem 3.3 of
[24], one observes that when C is nuclear and D ⊆ C is Cartan, then (C, D) is
a C∗-diagonal. Finally, we note that the class of regular C∗-inclusions properly
contains the family of pairs (C, D), where D is Cartan in C. One reason for this is
that the class of normalizers Renault uses to define a Cartan subalgebra is more
restrictive than that appearing in Definition 3.1.
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Unless explicitly stated otherwise, for the remainder of this section, we
work in the following setting.

4.1. CONTEXT FOR SECTION 4. Let (C, D) be a regular C∗-inclusion and M ⊆ C

be a norm-closed D-bimodule, where the module action is multiplication. That
is, for d, e ∈ D and m ∈ M, d ·m · e := dme ∈ M.

For σ ∈ D̂, the unique extension on C is σ ◦ E, which we will again denote
by σ. Thus, we regard σ as either a multiplicative linear functional on D or a
pure state on C which satisfies σ ◦ E = σ. In particular, for d ∈ D and x ∈ C,
σ(dx) = σ(xd) = σ(d)σ(x).

We now summarize some results and definitions from [21] and then re-
late eigenfunctionals to the elements of Kumjian’s twist. Note that these results
from [21] hold for regular C∗-inclusions.

DEFINITION 4.3 (Kumjian). For v ∈ N(C) and σ ∈ D̂ with σ(v∗v) > 0, define
a linear functional on C, [v, σ], by

[v, σ](x) =
σ(v∗x)

σ(v∗v)1/2 .

Kumjian denotes by Γ the collection of all such linear functionals. We shall see in
Proposition 4.7 below that Γ = E1(C).

We follow Kumjian ([21], p. 982) in pointing out that Proposition 3.12 im-
plies

COROLLARY 4.4 (Kumjian). The following are equivalent:
(i) [v, σ] = [w, σ];

(ii) σ(v∗w) > 0;
(iii) there are d, e ∈ D with σ(d), σ(e) > 0 so that vd = we.

REMARK 4.5. Using Theorem 3.7 and the techniques of the proof of Propo-
sition 3.10, one can show that when σ(v∗w) > 0, we may take d = w∗wE(v∗w)
and e = w∗vE(v∗w) in the third part of Corollary 4.4.

Kumjian shows that Γ, with a suitable operation and the relative weak∗-
topology, is a groupoid and admits a natural T-action, given by λ[v, σ] = [λv, σ].
The range map for Γ is [v, σ] 7→ βv(σ) and the source map for Γ is [v, σ] 7→ σ.
The map [v, σ] ∈ Γ 7→ (βv(σ), σ) sends Γ to a Hausdorff equivalence relation
(principal groupoid) on D̂, denoted Γ\T, and Γ is a locally trivial principal T-
bundle over Γ\T.

While the range and source maps of this groupoid have, a priori, no con-
nection to the range and source maps for eigenfunctionals, they turn out to be the
same.

We recall the multiplication on Γ and use it to define multiplication of eigen-
functionals for regular C∗-inclusions. The partially defined multiplication on Γ
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has [v1, σ1], [v2, σ2] composable if σ1 = βv2(σ2), in which case,

[v1, σ1] · [v2, σ2] = [v1v2, σ2].

DEFINITION 4.6 (Kumjian). A twist is a proper T-groupoid Γ so that Γ/T is
an r-discrete principal groupoid.

Kumjian constructs, for each twist Γ, a C∗-diagonal, (A(Γ), B(Γ)). The main
result of [21] is that for (C, D) a C∗-diagonal, there is a unique (up to isomor-
phism) twist Γ and an isomorphism Φ : A(Γ) → C such that Φ(B(Γ)) = D. Thus,
every twist arises as a Γ as above, for some C∗-diagonal (C, D).

From our point of view, justified by the following proposition, the twist Γ

associated to (C, D) is E1(C) equipped with this groupoid operation, T-action,
and topology.

PROPOSITION 4.7. For all σ ∈ D̂ and v ∈ N(C) with σ(v∗v) > 0, [v, σ] ∈
E1(C). Moreover, the range and source maps agree, that is, viewed as an element of
E1(C), we have σ = s([v, σ]) and βv(σ) = r([v, σ]).

Conversely, if φ ∈ E(C) there exists a normalizer v ∈ C such that φ(v) 6= 0, and v
may be taken to be an intertwiner if desired. For any normalizer (or intertwiner) v with
φ(v) 6= 0, we have s(φ)(v∗v) 6= 0 and

φ(v)[v, s(φ)] = [v, s(φ)](v)φ.

In particular, if φ ∈ E1(C) then λ := φ(v)
[v,s(φ)](v) ∈ T and φ = λ[v, s(φ)].

Proof. We have [v, σ](xd) = [v, σ](x)σ(d) and, as v∗v(v∗dx) = (v∗dv)v∗x, we
can apply σ to this equation and divide by σ(v∗v)3/2 to obtain

[v, σ](dx) =
σ(v∗dv)
σ(v∗v)

[v, σ](x) = βv(d)[v, σ](x),

so [v, σ] is a D-eigenfunctional with range βv(σ) and source σ. Letting w =
σ(v∗v)−1/2v, [v, σ](w) = 1, so [v, σ] ∈ E1(C).

For the converse, let φ ∈ E1(C) and set σ = s(φ). Since the span of ND(C) is
norm dense in C, there exists v ∈ ND(C) with φ(v) 6= 0, which by Proposition 3.4
may be taken to be an intertwiner if desired. Fix such a v.

For any n ∈ N, φ(v(v∗v)1/n) = φ(v)σ(v∗v)1/n. Since v(v∗v)1/n converges to
v, σ(v∗v) > 0. Also, for any d ∈ D we have,

r(φ)(d)φ(v)=φ(dv)=
φ(dv(v∗v))

σ(v∗v)
=

φ(v(v∗dv))
σ(v∗v)

=
φ(v)σ(v∗dv)

σ(v∗v)
=φ(v)βv(σ)(d),

so r(φ) = βv(σ).
For any unitary element g ∈ D we have,

φ(vgv∗xg−1) = r(φ)(vgv∗)φ(x)σ(g−1) =
σ(v∗vgv∗v)

σ(v∗v)
φ(x)σ(g)−1 = σ(v∗v)φ(x).
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Theorem 3.7 implies that vE(v∗x) belongs to the closed convex hull of {vgv∗xg−1 :
g ∈ U(D)}, and thus φ(vE(v∗x)) = σ(v∗v)φ(x). Hence for any x ∈ C,

φ(v)[v, σ](x) =
φ(v)σ(v∗x)
σ(v∗v)1/2 =

φ(vE(v∗x))
σ(v∗v)1/2 = σ(v∗v)1/2φ(x) = [v, σ](v)φ(x).

This equality, together with the fact that ‖[v, σ]‖ = 1, shows that λ ∈ T when φ
has unit norm.

Proposition 4.7 leads to a description of E(M) in terms of [v, σ]’s, for a norm-
closed D-bimodule M (Theorem 4.13). Before giving this description, we use
Proposition 4.7 as a tool in the following result, which gives the precise relation-
ship between the concepts of regular C∗-inclusion and C∗-diagonal.

THEOREM 4.8. Let (C, D) be a regular C∗-inclusion, and let N := {x ∈ C :
E(x∗x) = 0} be the left kernel of E. Then N is a closed (two-sided) ideal of C and

N = {x ∈ C : φ(x) = 0 for all φ ∈ E(C)}.

Let π : C → C/N be the quotient map. Then (π(C), π(D)) is a C∗-diagonal, π|D
is a ∗-isomorphism of D onto π(D), and the restriction of the adjoint map π#|E(π(C)) is
an isometric isomorphism of E(π(C)) onto E(C).

In particular, the first part of the theorem shows that, in a C∗-diagonal, E1(C)
separates points.

Proof. Since N = {x ∈ C : E(x∗x) = 0} is clearly a closed left ideal, to show
that it is also a right ideal, it suffices to show that, for x ∈ N and a normalizer
v ∈ C, xv ∈ N. To do this, we shall prove that for every σ ∈ D̂, σ(v∗x∗xv) = 0.
When σ(v∗v) = 0, this holds since σ(v∗x∗xv) 6 ‖x‖2σ(v∗v). When σ(v∗v) 6= 0,
let ψ ∈ D̂ be given by

ψ(z) =
σ(v∗zv)
σ(v∗v)

and observe that, as x ∈ N, ψ(x∗x) = 0 and hence σ(v∗x∗xv) = 0 in this case as
well. Thus N is a closed two-sided ideal.

We now show that N = {x ∈ C : φ(x) = 0 for all φ ∈ E(C)}. Suppose that
x ∈ N. Given φ ∈ E(C), by Proposition 4.7 we may assume φ = [v, σ] where
σ ∈ D̂ and v is a normalizer with σ(v∗v) > 0. By the Cauchy-Schwarz inequality
we have |σ(v∗x)|2 6 σ(v∗v)σ(x∗x). But σ(x∗x) = σ(E(x∗x)) = 0, so [v, σ](x) = 0.

Conversely, suppose x 6= 0 and φ(x) = 0 for every φ ∈ E1(C). We shall
show that σ(x∗x) = 0 for every σ ∈ D̂. So fix σ ∈ D̂. Notice that for every
normalizer v ∈ C, we have σ(v∗x) = 0: this follows from the Cauchy-Schwartz
inequality when σ(v∗v) = 0 and from the hypothesis and Proposition 4.7 when
σ(v∗v) 6= 0. Let ε > 0. Since the span of the normalizers is dense in C, we may
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find normalizers v1, . . . , vn so that
∥∥∥x −

n
∑

i=1
vi

∥∥∥ < ε/‖x‖. Thus,

|σ(x∗x)| =
∣∣∣σ(

x∗x −
n

∑
j=1

v∗j x
)∣∣∣ 6

∥∥∥x∗ −
n

∑
j=1

v∗j
∥∥∥‖x‖ < ε,

and we conclude that σ(x∗x) = 0. Since this holds for every σ ∈ D̂, we have
E(x∗x) = 0.

Clearly, N ∩ D = 0, so π|D is an isomorphism of D onto π(D). To see
that (π(C), π(D)) is a C∗-diagonal, observe first that E gives rise to a faithful
conditional expectation on C/N, by the definition of N. Given a pure state σ
of π(D), let τ1 and τ2 be pure states of π(C) which extend σ. Now τi ◦ π are
extensions of the pure state σ ◦ π of D and hence coincide because D has the
extension property in C. Therefore, as π is onto, τ1 = τ2, and π(D) has the
extension property in π(C).

To show that π(C) is regular (relative to π(D)), let x + N ∈ π(C), and

ε > 0. Since C is regular, we may find normalizers vi ∈ C such that y :=
n
∑

i=1
vi

satisfies ‖x − y‖ < ε. Then π(vi) is a normalizer, and since π is contractive,
‖(x + N)− (y + N)‖ < ε. Hence π(C) is regular. It is also clear that π#|E(π(C))
is a homeomorphism of E(π(C)) onto E(C) which preserves the partially defined
product structure. Finally, since the adjoint of a quotient map is always isometric,
the proof is complete.

We turn now to additional consequences of Proposition 4.7. Recall that for
any f ∈ C#, f ∗ is the bounded linear functional given by f ∗(x) = f (x∗). It is easy
to see that if φ is an eigenfunctional on C, then so is φ∗ and also that s(φ∗) = r(φ)
and r(φ∗) = s(φ). Thus, f 7→ f ∗ provides an involution on E1(C). The inverse of
[v, σ] is [v∗, βv(σ)]. Thus, we can summarize Proposition 4.7 and the discussion
preceding it.

THEOREM 4.9. For a regular C∗-inclusion (C, D), E1(C) = Γ and the range and
source maps, the involution, and topology are all the same.

COROLLARY 4.10. If φ, ψ ∈ E(M) satisfy r(φ) = r(ψ) and s(φ) = s(ψ), then
there exists λ ∈ C such that λ 6= 0 and φ = λψ.

Proof. Without loss of generality, assume ‖φ‖ = ‖ψ‖ = 1. Let σ = s(φ) =
s(ψ). Theorem 2.6 shows φ and ψ extend to norm-one eigenfunctionals on C,
which we denote by the same symbols. By Proposition 4.7, we have φ = [v, σ]
and ψ = [w, σ] for some v, w ∈ N(C). It follows from the hypothesis that βv(σ) =
βw(σ). Thus βv∗w(σ) = βv∗(βw(σ)) = σ, so we can find λ ∈ T with σ(λv∗w) > 0.
Hence by Corollary 4.4, [λv, σ] = [w, σ] and therefore λφ = ψ.

REMARK 4.11. Using the expression for φ = [v, s(φ)] from Proposition 4.7
and a short calculation with r(φ)(x) = σ(v∗xv)/σ(v∗v), where σ = s(φ), we
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obtain for all x ∈ C,

φ(x) =
s(φ)(v∗x)

[s(φ)(v∗v)]1/2 =
r(φ)(xv∗)

[r(φ)(vv∗)]1/2 .

Also, we can sharpen the inequality of Proposition 2.5 (ii) to an equality.

COROLLARY 4.12. If φ∈E(M), then |φ(m)|=‖φ‖Br(φ),s(φ)(m) for all m∈M.

Proof. By Proposition 2.5, we have |φ(m)|6‖φ‖Br(φ),s(φ)(m) for every m∈M.
To obtain the reverse inequality, fix m ∈ M such that Br(φ),s(φ)(m) 6= 0.

Given ε ∈ (0, 1), we may find elements a, b ∈ D such that ρ(a) = σ(b) = 1 and
Br(φ),s(φ)(m) > (1− ε)‖amb‖. Let m0 := amb and define a linear functional f on
Cm0 by

f (tm0) = t‖φ‖Br(φ),s(φ)(m0) = t‖φ‖Br(φ),s(φ)(m).
By the Hahn-Banach Theorem and Proposition 2.5, f extends to an eigenfunc-
tional F on M such that for every x ∈ M,

|F(x)| 6 ‖φ‖Br(φ),s(φ)(x).

Thus ‖F‖ 6 ‖φ‖, s(F) = s(φ) and r(F) = r(φ). By Corollary 4.10, there exists a
nonzero scalar λ with |λ| 6 1 and F = λφ. We obtain,

|φ(m)| > |F(m)| = |F(m0)| = | f (m0)| = ‖φ‖
Br(φ),s(φ)(m)
‖amb‖

‖amb‖

> (1− ε)‖φ‖‖amb‖ > (1− ε)‖φ‖Br(φ),s(φ)(m).

Letting ε → 0, we obtain the result.

We now extend Proposition 4.7 to bimodules and show that the set of eigen-
functionals on a bimodule can be written in the form [v, σ] with v ∈ M.

THEOREM 4.13. If φ ∈ E1(M), then there is a intertwiner v ∈ M and σ ∈ D̂ so
that φ = [v, σ]|M.

Conversely, if v ∈ N(M), and σ ∈ D̂ satisfies σ(v∗v) > 0, then [v, σ]|M belongs
to E1(M).

Proof. We prove the second assertion first. Given v ∈ N(M) and σ ∈ D̂ with
σ(v∗v) 6= 0, Proposition 4.7 shows that φ := [v, σ]|M is an eigenfunctional on M.
Clearly, ‖φ‖ 6 ‖[v, σ]‖ = 1. To show that ‖φ‖ = 1, fix m ∈ M with φ(m) 6= 0 and
set w = Ev(m)/σ(v∗v). Proposition 3.10 shows that w ∈ N(M). Calculation then
yields

(4.1) σ(w∗w) = |[v, σ](m)|2 6= 0, [v, σ](w) = [v, σ](m).

Let ε > 0. Pick a norm-one positive element d ∈ D with σ(d) = 1 so that
‖d2w∗w‖ 6 (1 + ε)σ(w∗w). If we let s = wd/σ(w∗w)1/2, then ‖s‖ 6 (1 + ε)1/2

and the equations (4.1) give∣∣∣φ( wd
σ(w∗w)1/2

)∣∣∣ =
∣∣∣[v, σ]

( wd
σ(w∗w)1/2

)∣∣∣ =
∣∣∣ [v, σ](w)
σ(w∗w)1/2

∣∣∣ = 1.
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To prove the first assertion, let φ ∈ E1(M) and fix m ∈ M with φ(m) 6= 0.
By Theorem 2.6, φ extends to a norm-one eigenfunctional, also called φ, on C.
By Proposition 4.7, there is an intertwiner v and σ ∈ D̂ with σ(v∗v) > 0 so that
φ = [v, σ]. By Proposition 3.10,

w :=
vE(v∗m)

φ(m)σ(v∗v)1/2 ∈ M.

and w is an intertwiner. Thus,

φ(w) = φ(v)
σ(v∗m)

φ(m)σ(v∗v)1/2 = φ(v)
[v, σ](m)

φ(m)
= φ(v),

so that [w, σ] = [v, σ] = φ.

REMARK 4.14. Let A ⊆ C be a norm-closed algebra which is also a D-
bimodule. We can use the multiplication defined for elements of Γ to give a
(also partially defined) multiplication on E1(A) and hence on E(A). Indeed, call
φ1, φ2 ∈ E1(A) composable if s(φ1) = r(φ2). By Theorem 4.13, we can write
φi = [vi, σi], where v1 and v2 are in N(A). Define φ1φ2 to be the product of the
[vi, σi] restricted to A, namely [v1v2, σ2]|A.

We can also improve several of the results of the previous section. First, we
immediately have a unique extension in Theorem 2.6.

COROLLARY 4.15. Suppose M1, M2 are norm-closed D-bimodules with M1 ⊆
M2. There is a unique isometric map ι : E(M1) → E(M2) so that, for every φ ∈ E(M1),
ι(φ)|M1

= φ. The image ι(E(M1)) is an open subset of E(M2).
If in addition, M2 is regular, then ι is σ(M#

1, M1)–σ(M#
2, M2) continuous on

bounded subsets of E(M1).

Proof. Fix φ ∈ E(M1). Theorem 4.13 shows φ extends uniquely to an eigen-
functional ι(φ) on M2 of the same norm. Writing φ = [v, σ] for some normalizer
v ∈ M1 and σ ∈ D̂, then {ψ ∈ E(M2) : ψ(v) 6= 0} is a σ(M#

2, M2)-open set
containing ι(φ), so ι(E(M1)) is an open set in E(M2).

It remains to prove that ι is continuous on bounded subsets of E(M1) when
M2 is regular. Suppose φλ is a bounded net in E(M1) converging σ(M#

1, M1) to
φ ∈ E(M1). Let σ = s(φ) and σλ = s(φλ). Then σλ converges in the σ(C#, C)-
topology to σ.

By Theorem 4.13, there exists a normalizer v ∈ M1 such that φ = ‖φ‖[v, σ].
For large enough λ, φλ(v) 6= 0, so there exist scalars tλ ∈ C with |tλ| = ‖φλ‖ and
φλ = tλ[v, σλ]. Since φλ(v) → φ(v) we have tλ → ‖φ‖.

For any normalizer w ∈ M2, we have

ι(φλ)(w) = tλ[v, σλ](w) = tλ
σλ(v∗w)

σλ(v∗v)1/2 → ‖φ‖[v, σ](w) = ι(φ)(w).

As M2 is the span of the normalizers it contains and φλ is a bounded net, we
conclude that for any x ∈ M2, ι(φλ)(x) → ι(φ)(x).



COORDINATES AND ISOMORPHISMS 379

REMARK 4.16. Given a bimodule M ⊆ C, the set ΓM := {φ ∈ Γ : φ|M 6=
0} is an open subset of Γ which plays a crucial role in the study of M (see, for
example, [24], [25]). Theorem 4.13, together with Corollary 4.15, shows that the
restriction map [v, σ] ∈ ΓM 7→ [v, σ]|M is a homeomorphism of ΓM onto E1(M).
Thus, ΓM can be defined directly in terms of the bimodule structure of M, without
explicit reference to C.

Since the norm is only lower semi-continuous for weak* convergence, it is
not possible to show that E1(M) is locally compact for general modules. How-
ever, for regular C∗-inclusions, we can show this.

PROPOSITION 4.17. With the relative weak∗-topology, E1(M) ∪ {0} is compact.
Thus, E1(M) is a locally compact Hausdorff space.

Proof. Suppose that φλ is a net in E1(M) ∪ {0} which converges to φ ∈
(M#)1. If φ = 0, there is nothing to do, so we assume that φ 6= 0 and show
that ‖φ‖ = 1.

Fix a normalizer v ∈ M with φ(v) > 0. From Theorem 4.13, φ = ‖φ‖[v, σ].
Choose a positive element d ∈ D so that 0 6 dv∗vd 6 I and d̂v∗vd = 1 in a
neighborhood of σ. For large enough λ, φλ(vd) 6= 0, so there exists tλ ∈ T such
that φλ = tλ[vd, s(φλ)]. Thus, 1 = |φλ(vd)|. As φλ converges to φ, we obtain
|φ(vd)| = 1 = ‖vd‖, so ‖φ‖ = 1.

As usual, we may regard an element m ∈ M as a function on E1(M) via
m̂(φ) = φ(m), and E1(M) can be regarded as a set of coordinates for M. Thus we
make the following definition.

DEFINITION 4.18. For a norm-closed D-bimodule M, we call the set E1
D(M),

equipped with the relative weak*-topology, the T-action, and the range and source
mappings, a coordinate system for M.

When A is both a norm-closed algebra and a D-bimodule, the coordinate
system E1(A) also has the additional structure of a continuous partially defined
product as described in Remark 4.14. In this case we will sometimes refer to the
coordinate system as a semitwist.

DEFINITION 4.19. If M ⊆ C is a D-bimodule, let R(M) := {|φ| : φ ∈ E1(M)}.
Then R(M) may be identified with the quotient E1(M)\T of E1(M) by the natural
action of T. Obviously, φ 7→ |φ| is the quotient map, and the topology on R(M)
is the quotient topology. Corollary 4.15 shows that we may regard R(M) as a
subset of R(C), and, as C is regular, Corollary 4.15 also implies that if v ∈ M is an
intertwiner, then Gv := {φ ∈ R(M) : |φ(v)| > 0} is an open set and {Gv : v ∈
M is an intertwiner} is a base for the topology of R(M). Thus R(M) is a locally
compact Hausdorff space.

We shall sometimes find it useful to view R(M) as a topological relation on
D̂. The map |φ| 7→ (r(φ), s(φ)) is a bijection between R(M) and {(r(φ), s(φ)) ∈
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D̂× D̂ : φ ∈ E1(M)}, and we will sometimes identify these two sets under this
bijection. With this identification, (ρ, σ) ∈ R(M) if and only if there is an inter-
twiner v ∈ M with σ(v∗v) 6= 0 and ρ = βv(σ); moreover, the set Gv is the graph of
βv and the collection of such sets gives a base for the topology. We call R(M) the
spectral relation of M. Also, R(M) is reflexive if D ⊆ M, is symmetric if M = M∗

and is transitive if M is a subalgebra.
A topological equivalence relation is a principal topological groupoid. If v, w

normalize D, then Gvw = {|φψ| : s(φ) = r(ψ), φ ∈ Gv, ψ ∈ Gw} and Gv∗ = {|φ∗| :
φ ∈ Gv}. It follows that the topology on R(C) is compatible with the groupoid
operations, so R(C) is a topological equivalence relation. We will sometimes write
ρ ∼C σ, or simply ρ ∼ σ, when (ρ, σ) ∈ R(C).

We now show that the regularity of (C, D) and the faithfulness of E imply
that the span of eigenfunctionals is weak* dense in M#, for any norm closed D-
bimodule M.

PROPOSITION 4.20. Suppose (C, D) is a C∗-diagonal, and let M ⊆ C be a norm-
closed D-bimodule. Then span E1(M) is σ(M#, M)-dense in M#.

Proof. Let W be the σ(M#, M)-closure of span E1(M). If W 6= M#, then there
exists a nonzero σ(M#, M)-continuous linear functional ψ on M# which annihi-
lates W. Since ψ is σ(M#, M)-continuous, there exists m ∈ M such that ψ( f ) =
f (m) for all f ∈ M#. But then for every φ ∈ E1(M), we have ψ(φ) = φ(m) = 0.
Since E1(C) separates points (Theorem 4.8), there exists an eigenfunctional φ ∈
E1(C) so that φ(m) 6= 0. The restriction φ := φ|M is an eigenfunctional on M, so
0 = ψ(φ) = φ(m) = φ(m) 6= 0, a contradiction. Therefore, W = M#.

We conclude this section with two applications of the results in this section.
For our first application, we give a description of the C∗-envelope of an algebra
satisfying D ⊆ A ⊆ C.

THEOREM 4.21. Let (C, D) be a C∗-diagonal and suppose A is a norm closed
algebra satisfying D ⊆ A ⊆ C. If B is the C∗-subalgebra of C generated by A, then B is
the C∗-envelope of A.

If in addition, B = C, then R(C) is the topological equivalence relation generated
by R(A).

Proof. Let Be be the C∗-envelope of A and let j : A → Be be the canonical
embedding (see, for example, Section 4.3 of [4]). Then there exists a unique ∗-
epimorphism π : B → Be such that π(a) = j(a) for every a ∈ A. In particular, π
is faithful on D. Assume, to get a contradiction, that π is not injective. Then ker π
is a D-bimodule and let x be a non-zero element of ker π. By Theorem 4.8, eigen-
functionals separate points, so there exists an element φ ∈ E1(C) with φ(x) 6= 0.
Writing φ = [v, σ], Proposition 3.10 shows that u := Ev(x) is a nonzero normalizer
belonging to ker π. But then u∗u is a nonzero element of D ∩ ker π, a contradic-
tion. Thus, π is faithful on B, and hence B is the C∗-envelope of A.



COORDINATES AND ISOMORPHISMS 381

Suppose now that B = C. By Corollary 4.15, there is an inclusion E1(A) ⊆
E1(C). So R(A) ⊆ R(C), and hence R(C) contains the equivalence relation gener-
ated by R(A).

For the other direction, assume that (ρ, σ) ∈ R(C). Then there is φ ∈ E1(C)
with source σ and range ρ. Let W be the set of all finite products of intertwiners
belonging to A or to A∗. Then W ⊆ ND(C) and the set of finite sums from W

is a ∗-algebra which, because A generates C, is dense in C. Hence there is some
w ∈ W so that φ(w) 6= 0. By Proposition 4.7, φ = [w, σ].

Suppose that w factors as v∗2nv2n−1 · · · v∗2v1, where each vi is an intertwiner
in A. Let σ1 = σ and for i = 2, . . . , 2n, let σi be image of σ under conjugation by
the rightmost i− 1 factors in the factorization of w. It follows that φ is the product

[v2n, σ2n]∗[v2n−1, σ2n−1] · · · [v2, σ2]∗[v1, σ1]

and each [vi, σi] is in E1(A). Thus, the equivalence relation generated by R(A)
contains (ρ, σ). Similar arguments apply for the other possible factorizations of
w, so the equivalence relation generated by R(A) contains R(C).

It remains to show that the usual topology on R(C) equals that generated by
R(A), i.e., the smallest topology containing the topology of R(A) which makes
R(C) into a topological equivalence relation.

As we noted in Definition 4.19, R(C) is already a topological equivalence
relation, and so its topology contains the topology generated by R(A). Since the
norm-closed span of W is C, it follows that {Gw : w ∈ W} is a base for the topol-
ogy of R(C), where, as before, Gw = {φ ∈ R(C) : |φ(w)| > 0}. For a topological
equivalence relation, the inverse map is a homeomorphism. Further, given two
precompact open G-sets (i.e., a subset of R(C) on which the two natural projection
maps into D̂ are injective), one can show that their product is again a precompact
open G-set (for example, adapt the proof of Proposition I.2.8 in [38]). Since, for v
an intertwiner in A, each Gv is a precompact open G-set in R(A), and each w ∈ W
is a finite product of such v’s and their inverses, it follows that each Gw, w ∈ W, is
open in the topology generated by R(A). Thus, the topology generated by R(A)
contains R(C).

Our second application is an application of Theorem 4.8. We show that in-
ductive limits of C∗-diagonals are again C∗-diagonals, when the connecting maps
satisfy a certain condition, which we now define. The difficulty in showing that
these inductive limits are again C∗-diagonals is in showing that the expectation
is faithful, and this is where Theorem 4.8 provides a key tool.

DEFINITION 4.22. Given regular C∗-inclusions (Ci, Di), i = 1, 2, and a ∗-
homomorphism π : C1 → C2, we say π is regular if π(N(C1)) ⊆ N(C2).

Of course, if π is regular, then π(D1) ⊆ D2. Indeed, for D ∈ D1 with D > 0,
D1/2 ∈ N(C1) and so π(D) = π(D1/2)1π(D1/2) ∈ D2.
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THEOREM 4.23. Let (Cλ, Dλ), λ ∈ Λ, be a directed net of regular C∗-inclusions
with regular ∗-monomorphisms πλ,µ : Cµ → Cλ. Then the pair of inductive limit C∗-
algebras, (lim−→(Cλ, πλ,µ), lim−→(Dλ, πλ,µ)), is a regular C∗-inclusion. Moreover, if each
(Cλ, Dλ) is a C∗-diagonal, then so is (lim−→(Cλ, πλ,µ), lim−→(Dλ, πλ,µ)).

Proof. The first part of the proof is routine. Regard Cλ as a ∗-subalgebras of
C := lim−→(Cλ, πλ,µ) and identify πλ,µ with the inclusion map from Cλ to Cµ. Then
D = lim−→(Dλ, πλ,µ) is a subalgebra of C.

Given a normalizer v ∈ Cλ, by the regularity of the inclusion maps, v nor-
malizes Dµ for all µ > λ. Thus, v normalizes D and so NDλ

(Cλ) ⊆ ND(C). Since
C is the closed union of the Cλ, and each Cλ is the span of NDλ

(Cλ), C is regular
in D.

Given σ ∈ D̂, suppose φ and ψ are extensions of σ to states of C. Then,
for each λ ∈ Λ, Dλ ⊆ D and so φ|Cλ

and ψ|Cλ
are extensions of the pure state

σ|Dλ
∈ D̂λ and so agree on Cλ. Since C is the closed union of the Cλ, φ = ψ. Thus,

(C, D) is a regular C∗-inclusion.
Let E : C → D be the expectation. By Theorem 4.8, N := {x ∈ C : E(x∗x) =

0} is an ideal of C, and, if q : C → C/N is the quotient map, then (q(C), q(D)) is
a C∗-diagonal. If x ∈ Cλ and E(x∗x) = 0, then σ(x∗x) = 0 for all σ ∈ D̂. Since
every ρ ∈ D̂λ has at least one extension to an element of D̂, we have Eλ(x∗x) = 0,
where Eλ is the expectation for (Cλ, Dλ). Thus, if (Cλ, Dλ) is a C∗-diagonal, then
we have x = 0, that is, N ∩ Cλ = (0), so q is faithful on Cλ.

Therefore, when each (Cλ, Dλ) is a C∗-diagonal, q(C) contains isomorphic
copies of each Cλ, and when λ 6 µ, q(Cλ) ⊆ q(Cµ). By the minimality of the
inductive limit, q is an isomorphism of C onto q(C), i.e. N = 0. Thus, (C, D) is a
C∗-diagonal.

5. COMPATIBLE REPRESENTATIONS OF C∗-DIAGONALS

Our goal in this section is to produce a faithful representation π of a C∗-
diagonal (C, D). Because we require the faithfulness of the expectation, we work
with C∗-diagonals instead of regular C∗-inclusions.

5.1. STANDING ASSUMPTIONS FOR SECTION 5. We assume that (C, D) is a C∗-
diagonal. For (C, D) a C∗-diagonal, we write A ⊆ (C, D) if A ⊆ C is a norm-closed
subalgebra with D ⊆ A. For σ ∈ D̂, we use (Hσ, πσ) for the GNS representation
of C associated to the (unique) extension of σ.

Eigenfunctionals can be viewed as normal linear functionals on C## and we
start by using the polar decomposition for such functionals to obtain a “minimal”
partial isometry for each eigenfunctional. Although these results are implicit in
the development of dual groupoids (see p. 435 of [39]), we give a (mostly) self-
contained treatment.
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Fix a norm-one eigenfunctional φ on C. By the polar decomposition for
linear functionals (see Theorem III.4.2, Definition III.4.3 of [41]), there is a partial
isometry u∗ ∈ C## and positive linear functionals |φ|, |φ∗| ∈ C# so that φ = u∗ ·
|φ| = |φ∗| · u∗. Applying the characterization given in Proposition III.4.6 of [41],
we find that

(5.1) r(φ) = |φ| and s(φ) = |φ∗|.

Moreover, uu∗ and u∗u are the smallest projections in C## which satisfy,

u∗u · s(φ) = s(φ) · u∗u = s(φ) and uu∗ · r(φ) = r(φ) · uu∗ = r(φ).

DEFINITION 5.1. For φ ∈ E1(C), we call the partial isometry u above the
partial isometry associated to φ and denote it by vφ. If φ ∈ D̂, then u is a projection
and we denote it by pφ.

REMARK 5.2. The above equations show that v∗φvφ = ps(φ) and vφv∗φ =
pr(φ). Moreover, given φ ∈ E1(C), vφ, Proposition 5.3 below implies that may be
characterized as the unique minimal partial isometry w ∈ C## such that φ(w) > 0.

Our first goal is to show that the initial and final projections of this partial
isometry are minimal projections in C## and compressing by them gives φ, in the
following sense.

PROPOSITION 5.3. For σ ∈ D̂, pσ = pσ◦E is a minimal projection in C##. For all
φ ∈ E1(C) and x ∈ C##,

pr(φ)xps(φ) = φ(x)vφ.

Proof. First, we show that pσ is a minimal projection in D##. We know that
pσ is the smallest projection in D## such that pσ · σ = σ · pσ = σ. Suppose, to get a
contradiction, that p1, p2 are nonzero projections in D## with 0 6 p1, p2 6 p and
pσ = p1 + p2.

If σ(p1) = 0, then for d > 0, σ(p1d) = σ(p1dp1) 6 σ(p1)‖d‖ = 0 and so, for
all d ∈ D, σ(p1d) = 0. But then p2 · σ = p · σ = σ = σ · p2, which yields p = p2,
contrary to hypothesis. Hence σ(p1) 6= 0 and, similarly, σ(p2) 6= 0.

This implies that σ can be written as a nontrivial convex combination of
states on D, for

σ = σ(p1)
p1 · σ

σ(p1)
+ σ(p2)

p2 · σ

σ(p2)
.

But this is a contradiction, since elements of D̂ are pure states.
Since pσ is minimal in D##, for d ∈ D, pσdpσ = σ(d)pσ.
Now suppose that q ∈ C## is a projection with 0 < q 6 pσ. Since q 6= 0, there

exists a state g ∈ C# such that g(q) > 0. Define

f :=
q · g · q

g(q)
.
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Then f is a state on C with f (q) = 1. As pσq = q, we have for d ∈ D,

f (d) =
g(q(pσdpσ)q)

g(q)
= σ(d).

Since pure states on D extend uniquely to pure states on C, we conclude that
f = σ ◦ E.

If pσ is not minimal, write pσ = q1 + q2 where qi ∈ C## are projections
with 0 < q1, q2 6 pσ. Apply the argument of the previous paragraph to find
states h1 and h2 on C such that hi(qi) = 1 and qi · hi · qi = hi. Since q1q2 = 0,
h1(q2) = h2(q1) = 0. But the previous paragraph shows that h1 = σ ◦ E = h2,
contradicting the extension property. So pσ is minimal in C##.

The uniqueness of polar decompositions implies that pσ = pσ◦E.
To prove the second statement, first note that pr(φ)C

## ps(φ) has dimension
one, since pr(φ), ps(φ) are minimal projections in C## and pr(φ)vφ ps(φ) = vφ 6= 0.
Hence there is a linear functional g on C such that for every x ∈ C##, pr(φ)xps(φ) =
g(x)vφ. Then g|C is an eigenfunctional with the same source and range as φ. Since
g(vφ) = φ(vφ), g = φ.

Recall ([41], Lemma III.2.2) that any ∗-representation π of a C∗-algebra C has
a unique extension to a ∗-representation π̃ : C## → π(C)′′, continuous from the
σ(C##, C#)-topology to the ρ-weak topology on π(C)′′, i.e., the σ(B(H), B(H)∗)-
topology. Let I = ker π̃ ⊆ C##. By the continuity of π̃, I is σ(C##, C#) closed, and
hence (see Proposition 1.10.5 of [40]) there exists a unique central projection P ∈
C## such that I = C##(I − P). Further, π̃|C##P is one-to-one (see Definition 1.21.14
of [40]) and is onto B(H). The projection P is called the support projection for π.

Recall that ρ, σ ∈ D̂ have (σ, ρ) ∈ R(C) if and only if there is φ ∈ E1(C) with
r(φ) = σ and s(φ) = ρ. For brevity, we write ρ ∼ σ in this case.

PROPOSITION 5.4. If σ ∈ D̂, then πσ(D)′′ is an atomic MASA in B(Hσ) and
the support projection for πσ is ∑

ρ∼σ
pρ. Moreover, the map from πσ(C) to πσ(D) given

by πσ(c) 7→ πσ(E(c)) is well-defined and extends to a faithful normal expectation Ẽ :
πσ(C)′′ → πσ(D)′′.

Proof. Let π = πσ and H = Hσ. Since the extension of σ to C is pure, the
representation π is irreducible, so π(C)′′ = B(H).

Recall from Corollary 1 of [19] that if M := {x ∈ C : σ(x∗x) = 0}, then C/M

is complete relative to the norm induced by the inner product 〈x + M, y + M〉 =
σ(y∗x), and thus H = C/M. Our first task is to obtain a convenient orthonormal
basis for H and, towards this end, we require the following observation.

If v, w ∈ N(C) with σ(v∗v) = 1 and σ(v∗w) 6= 0, then

(5.2) w− [v, σ](w)v ∈ M.

To see this, let w1 = σ(w∗v)w. Then σ(v∗w1) > 0, so that by Corollary 4.4,
[v, σ](w1) = [w1, σ](w1), and thus σ(v∗w1) = σ(w∗

1w1)1/2. Therefore |σ(v∗w)| =



COORDINATES AND ISOMORPHISMS 385

σ(w∗w)1/2. A calculation then shows that w − [v, σ](w)v = w − σ(v∗w)v ∈ M, as
required.

Choose a set Z ⊆ C of normalizers such that for each z ∈ Z, σ(z∗z) = 1 and
the map z 7→ r([z, σ]) is a bijection of Z onto O := {ρ ∈ D̂ : ρ ∼ σ}.

We claim that if X =
n
∑

j=1
wj ∈ C with each wj ∈ ND(C), then

(5.3) X + M = ∑
z∈Z

[z, σ](X)(z + M).

To see that the summation is well-defined, first observe that if, for some z ∈ Z,
σ(z∗wj) 6= 0, then r([wj, σ]) = r([z, σ]) ∈ O. Thus, for each j, {z ∈ Z : σ(z∗wj) 6=
0} is a singleton, and so {z ∈ Z : σ(z∗X) 6= 0} is finite. To prove the equality,
interchange the order of summation and use (5.2) as follows:

∑
z∈Z

[z, σ](X)(z + M)=∑
z∈Z

n

∑
j=1

[z, σ](wj)(z + M) =
n

∑
j=1

∑
z∈Z

[z, σ](wj)(z + M)

=
n

∑
j=1

∑
z∈Z,σ(z∗wj) 6=0

[z, σ](wj)(z+M)

=
n

∑
j=1

wj + M by (5.2)

= X+M,

Next, we show that {z + M : z ∈ Z} is an orthonormal basis for H. By
Corollary 4.4, it is an orthonormal set. Given any Y ∈ C and ε > 0, we may find
a finite sum of normalizers X so that ‖X −Y‖C < ε. Then ‖X −Y + M‖2

Hσ
=

σ((X − Y)∗(X − Y)) 6 ‖X −Y‖2
C < ε2. As X + M is in span Z and ε is arbitrary,

Y + M ∈ span Z, so that {z + M : z ∈ Z} is an orthonormal basis.
For d ∈ D and z ∈ Z, using (5.2)

(5.4) π(d)(z + M) = dz + M = [z, σ](dz)z + M = σ(z∗dz)(z + M).

Thus, π(d) is diagonal with respect to the basis {z + M}z∈Z. Fixing z ∈ Z, let
Λ = {d ∈ D : d > 0, and r([z, σ])(d) = 1}. Then Λ is a directed set under the
ordering d1 � d2 if and only if d1 > d2. It is easy to see that the net {π(d)}d∈Λ

decreases to the rank-one projection onto z + M. Thus π(D)′′ is an atomic MASA.
Fix z ∈ Z and let Pz be the orthogonal projection of H onto z + M. Then a

calculation shows that for x ∈ C,

(5.5) Pzπ(x)Pz = σ(z∗xz)Pz.

Since r([z, σ]) is the vector state corresponding to z + M and π̃ is normal, (5.5)
holds when π is replaced by π̃ and x ∈ C##. As pr([z,σ]) is a minimal projection
in C##, π̃(pr([z,σ])) = Pz. If Q = ∑

ρ∼σ
pρ, then π̃(Q) = I. Letting P be the support

projection of π, this implies that P 6 Q. If ρ ∼ σ, then pρ is a a minimal projection



386 ALLAN P. DONSIG AND DAVID R. PITTS

satisfying π̃(pρ) 6= 0. Thus, pρ 6 P and so Q 6 P. This shows that Q is the
support projection for π and that Q ∈ D##.

Finally, (5.4) implies that for x ∈ C,

π(E(x))(z + M) = σ(z∗E(x)z)(z + M) = r([z, σ])(E(x))(z + M)

= r([z, σ])(x)(z + M) = σ(z∗xv)(z + M).

Hence, for x ∈ C, we obtain

π(E(x)) = ∑
z∈Z

Pzπ(x)Pz.

If Ẽ : B(H) → B(H) is defined by Ẽ(T) = ∑
z∈Z

PzTPz, this shows that Ẽ is a

faithful normal conditional expectation of B(H) = π(C)′′ onto π(D)′′ satisfying
Ẽ(π(x)) = π(E(x)) for x ∈ C.

We next record a simple consequence of the proof of Proposition 5.4.

COROLLARY 5.5. Suppose σ ∈ D̂ and φ ∈ E1(C) satisfies σ ∼ s(φ) and σ 6= φ.
Then there exist orthogonal unit vectors ξ, η ∈ Hσ such that for every x ∈ C, φ(x) =
〈πσ(x)ξ, η〉.

Proof. With the same notation as in the proof of Proposition 5.4, there exists
z, w ∈ Z such that r([z, σ]) = s(φ) and r([w, σ]) = r(φ). Let ξ0 = z + M and η =
w + M. For x ∈ C, let ψ(x) = 〈π(x)ξ0, η〉. Observe that ψ(wz∗) = σ(w∗wz∗z) = 1,
so ψ is nonzero. Also, for x ∈ C and d ∈ D, we have

ψ(xd) = σ(w∗xdz) =
σ(w∗xdzz∗z)

σ(z∗z)
= σ(w∗xz)

σ(z∗dz)
σ(z∗z)

= ψ(x)s(φ)(d).

Similarly, ψ(dx) = r(φ)(d)ψ(x). Thus ψ is an eigenfunctional with the same range
and source as φ. Hence, there exists t ∈ T so that φ = tψ. Take ξ = tξ0.

DEFINITION 5.6. Given a C∗-diagonal (C, D), a representation π of C is D-
compatible, (or simply compatible) if π(D)′′ is a MASA in π(C)′′ and there exists a
faithful conditional expectation Ẽ : π(C)′′ → π(D)′′ such that for every x ∈ C,
Ẽ(π(x)) = π(E(x)).

Proposition 5.4 shows that the GNS representation of C associated to an ele-
ment of D̂ is compatible. For an example of a compatible representation π where
π(D) has no minimal projections, let Cn = M2n (C) and Dn ⊆ Cn be the diagonal
matrices. Put (C, D) = lim−→(Cn, Dn) with connecting maps A 7→ A⊕ A. The GNS
construction using the usual trace on C produces a compatible representation π
such that π(D)′′ contains no minimal projections.

REMARK 5.7. Let X be an r-discrete locally compact principal groupoid
with unit space X0 and suppose ρ is a 2-cocycle. Then Drinen [13] shows that
(Cr(X, ρ), C0(X0)) is a C∗-diagonal. We expect that when λu is a Haar system on
X, and µ is a measure on X0, the induced representation Ind(¯) of Cr(X, ρ) (see for
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example, page 44 of [26]) is a compatible representation of (Cr(X, ρ), C0(X0)), and
it would not be surprising if every compatible representation for (Cr(X, ρ),C0(X0))
arises in this way. We do not pursue this issue here, however.

LEMMA 5.8. Let σ, ρ ∈ D̂. Then σ ∼ ρ if and only if the GNS representations πρ

and πσ are unitarily equivalent.

Proof. If U ∈ B(Hσ, Hρ) is a unitary such that UπσU∗ = πρ, the fact that
C/Mσ = Hσ allows us to find X ∈ C such that U∗(I + Mρ) = X + Mσ. Then for
all x ∈ C, we have ρ(x) = 〈πρ(x)(I + Mρ), (I + Mρ)〉 = σ(X∗xX). As ρ and σ

are normal states on C##, this equality is valid for x ∈ C## as well; in particular,
1 = σ(X∗pρX) = ρ(pρ). For x ∈ C, define φ(x) = σ(X∗pρx). Then φ 6= 0 because
φ(X) = 1 and φ is an eigenfunctional with s(φ) = σ and r(φ) = ρ. Hence σ ∼ ρ.
Conversely, if σ ∼ ρ, then find a normalizer v with σ(v∗v) = 1 and ρ(x) = σ(v∗xv)
for every x ∈ C. Then ρ(x) = 〈πσ(x)v + Mσ, v + Mσ〉. By Kadison’s Transitivity
Theorem, there exists a unitary V ∈ C such that V∗(1 + Nσ) = v + Mσ. Then
πρ = VπσV∗.

THEOREM 5.9. If X ⊆ D̂ contains exactly one element from each equivalence class
in R(C), then π =

⊕
σ∈X

πσ on H =
⊕

σ∈X
Hσ is a faithful compatible representation of C

on B(H) and π(D)′′ is an atomic MASA in B(H).
Moreover, if A ⊆ (C, D) and P is the support projection for σ, then ker π̃|A## =

P⊥A## and π̃(A##) is a CSL algebra.

Proof. For σ∈X, let Pσ∈C## be the support projection of πσ. Then for ρ∈D̂,

Pσ pρ =

{
pρ if ρ ∼ σ,
0 otherwise.

Thus π̃(pρ) is a minimal projection for every ρ ∈ D̂. Since

IH = ∑
σ∈X

π̃(Pσ) = ∑
σ∈X

∑
ρ∼σ

π̃(pρ),

which is a sum of minimal projections, π(D)′′ is an atomic MASA in B(H). If, for
each σ ∈ X, E′σ : B(Hσ) → πσ(D)′′ is the expectation on B(Hσ) induced by E, the
map E′ =

⊕
σ∈X

E′σ is faithful and satisfies E′ ◦ π = π ◦ E so π is compatible. For

any x ∈ C such that π(x∗x) = 0,

0 = E′(π(x∗x)) = π(E(x∗x)),

so E(x∗x) = 0 since π is faithful on D. Thus, as E is faithful, we conclude that
x∗x = 0, hence π is faithful on C.

Suppose A ⊆ (C, D). As P = ∑
σ∈X

Pσ, where Pσ is the support projection for

πσ, Proposition 5.4 implies that P ∈ D## ⊆ A##. Thus ker π̃|A## = P⊥A##.
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We claim that π̃(A##) is weak* closed in B(H). By the Krein-Smullian The-
orem, it suffices to prove the (norm-closed) unit ball of π̃(A##) is weak* closed.
Suppose (yλ) is a net in π̃(A##) converging weak* to y ∈ B(H) with ‖yλ‖ 6 1
for all λ. For each λ, choose xλ ∈ A## with π̃(xλ) = yλ. Since π̃ is isometric on
PC##, the net (Pxλ) in A## satisfies ‖Pxλ‖ 6 1 for every λ. Hence a subnet Pxλµ

converges weak* to some x ∈ A##. Then π̃(x) = y, as required.
Since π̃(A##) contains the atomic MASA π(D)′′, L := Lat(π̃(A##)) is an

atomic CSL. We claim that π̃(A##) = AlgL. As AlgL is the largest algebra whose
lattice of invariant subspaces is L, π̃(A##) ⊆ AlgL.

To obtain the reverse inclusion, first observe that for minimal projections
p, q ∈ π(D)′′, we have qAlgLp = qπ̃(A##)p. Indeed, the subspaces AlgLpH and
π̃(A##)pH are each the smallest element of L containing the range of p, so the two
subspaces coincide. Thus qAlgLpH = qπ̃(A##)pH, which yields the observation.

Let A be the set of minimal projections of π(D)′′. Given Y ∈ AlgL, we may
write Y as the weak* convergent sum, Y = ∑

q,p∈A
qYp. As each qYp ∈ π̃(A##), and

π̃(A##) is weak* closed, Y ∈ π̃(A##), as desired.

Muhly, Qiu and Solel ([24], Theorem 4.7) prove that if C is nuclear and
A ⊂ (C, D) with A triangular, then the expectation E|A is a homomorphism. The
connection with CSL algebras provided by Theorem 5.9 allows us to remove the
hypothesis of nuclearity.

THEOREM 5.10. If A is a triangular subalgebra of the C∗-diagonal (C, D), then
E|A is a homomorphism of A onto D.

Proof. Let π be the faithful compatible representation of C provided by The-
orem 5.9, and again write AlgL for π̃(A##). Theorem 5.9 also shows that π̃(D##)
is a MASA in B(H). We claim that L is multiplicity free. To show this, we prove
that AlgL ∩ (AlgL)∗ = π̃(D##). Clearly, π̃(D##) ⊆ AlgL ∩ (AlgL)∗. To show
the reverse implication, suppose q1, q2 ∈ π̃(D##) are distinct nonzero minimal
projections and q2(AlgL)q1 6= (0). It suffices to show that

(5.6) q1(AlgL)q2 = (0).

We may find σ, ρ ∈ D̂ so that q1 = π̃(pσ) and q2 = π̃(pρ), where pσ and pρ are as
in Definition 5.1. Since π(A) is weak* dense in AlgL, we see that pρApσ 6= (0).
Therefore, Bρ,σ is nonzero on A, so that there exists an eigenfunctional φ ∈ E1(A)
with s(φ) = σ and r(φ) = ρ.

We claim that φ∗ vanishes on A. Indeed, as q1 6= q2, σ 6= ρ, so that we may
find a normalizer v ∈ A so that (v∗v)(vv∗) = 0 and φ = [v, σ]. Suppose to obtain
a contradiction, that φ∗ = [v∗, ρ] does not vanish on A, and let y ∈ A satisfy
φ∗(y) 6= 0. Proposition 3.10 shows that w := v∗E(vy) is a nonzero element of A.
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But since v ∈ A and E(vy) ∈ D, we also have w∗ ∈ A. However,

ww∗=v∗E(vy)E(vy)∗v6‖E(vy)‖2v∗v, w∗w= E(vy)∗vv∗E(vy)6‖E(vy)‖2vv∗.

Thus w is a non-normal element of A ∩A∗, violating triangularity of A.
Therefore, φ∗ vanishes on A, so that pσApρ = (0). Applying π̃, we obtain

q1(AlgL)q2 = (0). Therefore, AlgL is multiplicity free as desired.
Each minimal projection e in π̃(D##) is the difference of elements of L, and

hence the compression x 7→ exe is a homomorphism on AlgL. The extension of
Ẽ of E to all of B(H)is faithful and normal, and is the sum of such compressions.
Thus, Ẽ is a homomorphism on AlgL and, by restriction, on A.

We describe the maximal ideals of A and identify ker E|A in algebraic terms.

PROPOSITION 5.11. Let (C, D) be a C∗-diagonal and A ⊆ (C, D) be triangular.
The map J 7→ J ∩D is a bijection between the proper maximal ideals of A and the proper
maximal ideals of D. Further,

ker E|A =
⋂
{J ⊆ A : J is a maximal ideal of A}.

Proof. Let J be a proper maximal ideal of A. For any x ∈ C, E(x) belongs to
the norm-closed convex hull of {gxg−1 : g ∈ D, g is unitary} (Theorem 3.7). Since
J is a closed ideal, we see that E(J) ⊆ J ∩D ⊆ E(J), so E(J) = J ∩D. Since J is
proper, J ∩D 6= D. Hence there exists σ ∈ D̂ such that ker σ ⊇ J ∩D. The unique
extension of σ to A is σ ◦ E|A, so we have J ⊆ ker(σ ◦ E|A). Since J is maximal,
J = ker σ ◦ E|A. Therefore, J ∩D = ker σ, which is a proper maximal ideal of D.

To show that the map J 7→ J ∩D is a bijection, we need only consider proper
maximal ideals. The previous paragraph shows that if J1 is another proper max-
imal ideal of A and J1 ∩ D = J ∩ D, then J = J1. Also, if K ⊆ D is a proper
maximal ideal, then K = ker σ for some σ ∈ D̂, and then J := ker σ ◦ EA is a
proper maximal ideal of A with J ∩D = K. Thus the map is onto.

For x ∈ A, we have x ∈ ker E|A if and only if x ∈ ker σ ◦ E|A for every
σ ∈ D̂. Using the map above, we find that this is equivalent to x belonging to⋂
{J ⊆ A : J is a maximal ideal of A}.

6. INVARIANCE UNDER DIAGONAL-PRESERVING ISOMORPHISMS

As an application of the results obtained so far, we will show that coordi-
nate systems are preserved under isomorphisms of algebras which preserve the
diagonal. These results extend those for isometric isomorphisms and we compare
our results with them.
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DEFINITION 6.1. For i = 1, 2, suppose (Ci, Di) are regular C∗-inclusions and
that Ai are subalgebras with Ai ⊆ (Ci, Di), i.e., Ai ⊆ Ci is a norm-closed subalge-
bra with Di ⊂ Ai. We say that a (bounded) isomorphism θ : A1 → A2 is diagonal
preserving if θ(D1) = D2.

REMARK 6.2. (i) If θ is diagonal preserving, then θ|D1
is a ∗-isomorphism of

D1 onto D2.
(ii) While we are interested in coordinates for modules, when studying in-

variance properties, we note that it suffices to consider subalgebras of regular
C∗-inclusions. This is because of the well-known “2× 2 matrix trick”. If (C, D) is
a regular C∗-inclusion, so is (M2(C), D⊕D). For a D-bimodule M ⊆ C, let T(M)
be the subalgebra of M2(C),

T(M) :=
{[

d1 m
0 d2

]
: d1, d2 ∈ D, m ∈ M

}
contained in (M2(C), D ⊕ D). An isomorphism of Di-bimodules Mi (i = 1, 2),
that is, a bounded map θ : M1 → M2 together with an isomorphism α : D1 →
D2 satisfying θ(dme) = α(d)θ(m)α(e) (d, e ∈ D1, m ∈ M) can be equivalently
described as a diagonal preserving isomorphism of T(M1) onto T(M2).

We have noted that θ# is a bicontinuous isomorphism from E(A2) onto
E(A1) (Proposition 2.9). The next result shows that normalizing θ# pointwise
gives an isomorphism of the norm-one eigenfunctionals.

THEOREM 6.3. For i = 1, 2, let (Ci, Di) be regular C∗-inclusions, let Ai ⊆
(Ci, Di), and suppose θ : A1 → A2 is a bounded diagonal-preserving isomorphism.
There exists a bicontinuous isomorphism of coordinate systems γ : E1(A1) → E1(A2)
given by

γ(φ) =
φ ◦ θ−1

‖φ ◦ θ−1‖
.

Moreover, if φ ∈ E1(A1) is written as [v, σ], then (σ ◦ θ−1)(θ(v)∗θ(v)) is nonzero, and

γ(φ) = [θ(v), σ ◦ θ−1].

When necessary for clarity, we use γθ to denote the dependence of γ on θ.

REMARK 6.4. As a special case, if θ : A1 → A2 is a contractive isomorphism,
then it is diagonal preserving, as its restriction to D1 is then a ∗-homomorphism.
Thus, Theorem 6.3 extends previous work for isometric isomorphisms of TAF
algebras and of subalgebras of (nuclear) groupoid C∗-algebras; see Theorem 3 of
[34] and Theorem 2.1 of [25].

Proof of Theorem 6.3. Given φ ∈ E1(A1), write φ = [v, σ] where v ∈ A1 is an
intertwiner and σ(v∗v) 6= 0. That r(γ(φ)) = r(φ) ◦ θ−1 and s(γ(φ)) = s(φ) ◦ θ−1

follows from the definition of γ.
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Clearly θ(v) is a D2-intertwiner, so θ(v)∗θ(v) ∈ D2. For σ ∈ D̂1 with
σ(v∗v) 6= 0,

(σ ◦ θ−1)(θ(v)∗θ(v)) = inf{‖θ(d)∗θ(v)∗θ(v)θ(d)‖ : d ∈ D1, σ(d) = 1}

= inf{‖θ(vd)‖2 : d ∈ D1, σ(d) = 1}

>‖θ−1‖−2inf{‖vd‖2 : d∈D1, σ(d)=1}=‖θ−1‖−2σ(v∗v) 6=0.

Simple calculations show that [θ(v), σ ◦ θ−1] and φ ◦ θ−1/‖φ ◦ θ−1‖ are elements
of E1

D2
(A2) with the same range. Since both are positive on θ(v),

γ(φ) = [θ(v), σ ◦ θ−1].

This formula implies that γ(φ1φ2) = γ(φ1)γ(φ2) whenever φ1φ2 is defined,
so that γ is an algebraic isomorphism of coordinate systems.

To show continuity, let (φλ) be a net in E1(A1) converging weak* to φ ∈
E1(A1). Write φ = [v, σ] for some intertwiner v ∈ A1 and σ ∈ D̂1. Since
σ(v∗v) 6= 0, there exists d ∈ D1 and a neighborhood of σ, G ⊆ D̂1, with d > 0 and
ρ(d∗v∗vd) = 1 for all ρ ∈ G. Since σ(d) 6= 0, φ = [vd, σ]. Replacing v with vd, we
may assume that ρ(v∗v) = 1 for every ρ in G ⊆ D̂1, a neighborhood of σ.

Since σλ := s(φλ) converges weak* to s(φ) = σ, by deleting the first part of
the net, we may assume that σλ ∈ G and φλ(v) 6= 0 for all λ. By Proposition 4.7,
there exist scalars tλ ∈ T such that φλ = [tλv, σλ]. Since

tλ = [tλv, σλ](v) = φλ(v) → φ(v) = 1,

and [θ(v), σλ ◦ θ−1] converges weak* to [θ(v), σ ◦ θ−1], we conclude

γ(φλ) = [tλθ(v), σλ ◦ θ] = tλ[θ(v), σλ ◦ θ−1] → [θ(v), σ ◦ θ−1] = γ(φ).

Thus, γ is continuous. Similarly, γ−1 is continuous.

We give several applications of Theorem 6.3 to isomorphisms of subalge-
bras. The following corollary is immediate.

COROLLARY 6.5. For i = 1, 2, 3, let (Ci, Di) be regular C∗-inclusions, and let
Ai ⊆ (Ci, Di) be norm-closed algebras. For j = 1, 2, let θj : Dj → Dj+1 be bounded
diagonal preserving isomorphisms. Then γθ2◦θ1 = γθ2 ◦ γθ1 .

DEFINITION 6.6. Suppose (C, D) is a regular C∗-inclusion and A ⊆ (C, D).
By a (1-)cocycle on E1(A), we mean a map c : E1(A) → C∗, the group of nonzero
complex numbers under multiplication, satisfying, for all composable elements
φ, ψ ∈ E1(A),

c(φψ) = c(φ) · c(ψ).

COROLLARY 6.7. Suppose (C, D) is a regular C∗-inclusion, A ⊆ (C, D) is a
norm-closed algebra, and θ : A → A is a bounded automorphism fixing D elementwise.
Assume further that γθ is the identity map on E1(A). Then, for all φ ∈ E1(A),

(6.1) φ(θ(x)) = φ(x)‖φ ◦ θ‖.
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If c : E1(A) → R is defined by c(φ) = ‖φ ◦ θ‖, then c is a positive cocycle on E1(A).
If, in addition, θ is isometric, then θ = idA.

REMARK 6.8. In essence, (6.1) shows that θ is given by multiplication by a
cocycle on E1(A). Thus, we will call θ a cocycle automorphism.

Proof of Corollary 6.7. Formula (6.1) follows immediately from Theorem 6.3
applied to θ−1. If θ is isometric, then (6.1) shows that φ(x) = φ(θ(x)) for all
φ ∈ E1(A). By Theorem 4.8, E1(A) separates points and so x = θ(x) for all x ∈ A.

It remains to show that c is a cocycle. Observe that if v ∈ C is a D-intertwiner,
then v∗θ(v) ∈ D. Indeed, as in the proof of Proposition 3.3, given a self-adjoint
d ∈ D, we may find a self-adjoint d′ ∈ D so that vd = d′v. Then v∗θ(v)d =
v∗d′θ(v) = dv∗θ(v), so that v∗θ(v) commutes with the self-adjoint elements of D

and hence belongs to D.
Finally, suppose for i = 1, 2, that φi = [vi, σi] ∈ E1(A) such that the prod-

uct φ1φ2 is defined. Then φ1φ2 = [v1v2, σ2], and σ1 = r([v2, σ2]), i.e., σ1(x) =
σ2(v∗2xv2)/σ2(v∗2v2). Using (6.1) and these facts, we have

c(φ1φ2) =
[v1v2, σ2](θ(v1v2))
[v1v2, σ2](v1v2)

=
σ2(v∗2v∗1θ(v1)θ(v2))

σ2(v∗2v∗1v1v2)

=
σ2(v∗2v2)σ2(v∗2v∗1θ(v1)θ(v2))

σ2(v∗2v2)σ2(v∗2v∗1v1v2)

=
σ1(v∗1θ(v1))σ2(v∗2θ(v2))

σ2(v∗2v∗1v1v2)

=
σ1(v∗1θ(v1))σ2(v∗2θ(v2))

σ1(v∗1v1)σ2(v∗2v2)
= c(φ1)c(φ2).

For our next application, we need two technical lemmas.

LEMMA 6.9. For i = 1, 2, let (Ci, Di) be regular C∗-inclusions and let Bi ⊆
(Ci, Di) be selfadjoint. If γ : E1(B1) → E1(B2) is an isomorphism of coordinate systems,
then, for all φ ∈ E1(B1), γ(φ∗) = γ(φ)∗.

Proof. Since each Bi is selfadjoint, τ∗ ∈ E1(Bi) if τ ∈ E1(Bi), and so γ(φ∗)
and γ(φ)∗ are defined. As γ(φ∗) and γ(φ)∗ have the same range and domain, by
Corollary 4.10, there is λ ∈ T with γ(φ∗) = λγ(φ)∗. As φ · φ∗ = r(φ), we have

γ(r(φ)) = γ(φ · φ∗) = γ(φ) · γ(φ∗) = γ(φ) · (λγ(φ)∗) = λr(γ(φ)).

As γ(r(φ)) = r(γ(φ), the result follows.

LEMMA 6.10. For i = 1, 2, let (Ci, Di) be regular C∗-inclusions, let Ai ⊆ (Ci, Di)
be regular, and let π : C1 → C2 be a ∗-isomorphism with π(D1) = D2. If γπ maps
E1(A1) into E1(A2), then π(A1) ⊆ A2.

Proof. Since each Ai is regular, it is enough to show that for an intertwiner
v ∈ A1, we have π(v) ∈ A2. Clearly, π(v) is an intertwiner in C2, and it is easy
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to see that the closed D2-bimodule generated by π(v) is isometrically isomorphic
to |π(v)|D2 via the map π(v)d 7→ |π(v)|d. Given σ ∈ D̂2 with σ(π(v∗v)) 6= 0,
we have γ([v, σ ◦ π−1]) = [π(v), σ] ∈ E1(A2). Applying Proposition 3.10, we
conclude that there exists d ∈ D2 with d > 0, σ(d) = 1, and π(v)d ∈ A2. Given
ε > 0, let fε ∈ D be chosen so that 0 6 fε 6 I, f̂ε is compactly supported in
G := {σ ∈ D̂2 : σ(|π(v)|) > 0} and ‖π(v)− π(v) fε‖ < ε. Compactness of
Fε := supp fε ensures that there exist d1, . . . , dn ∈ D2 such that π(v)di ∈ A2 and
σ(∑n

i=1 di) > 0 for every σ ∈ Fε. Hence there exists an element g ∈ D2 such that
for every σ ∈ Fε, σ(g ∑n

i=1 di) = 1. Then

π(v) fε =
n

∑
i=1

π(v)dig fε ∈ A2.

Letting ε → 0, we conclude that π(v) ∈ A2 as well.

Recall that a subalgebra A ⊆ C is said to be Dirichlet if A + A∗ is norm dense
in C. This implies that E1(C) = E1(A) ∪ E1(A)∗. To see this, let φ ∈ E1(C). By
density, φ does not vanish on one of A or A∗ and hence is in either E1(A) or
E1(A)∗.

THEOREM 6.11. For i = 1, 2, let (Ci, Di) be regular C∗-inclusions and let Ai be
Dirichlet subalgebras with Di ⊆ Ai ⊆ Ci. Consider the following statements:

(i) A1 and A2 are isometrically isomorphic.
(ii) There exists a bounded isomorphism θ : A1 → A2 such that θ(D1) = D2.

(iii) E1(A1) and E1(A2) are isomorphic coordinate systems.
(iv) E1(C1) and E1(C2) are isomorphic twists and the isomorphism maps E1(A1) onto

E1(A2).
Then statement (n) implies statement (n + 1), n = 1, 2, 3.

If, in addition, (Ci, Di) are C∗-diagonals and Ai are regular, then the four state-
ments are equivalent.

Proof. That (i) implies (ii) is obvious. To show that (ii) implies (iii), apply
Theorem 6.3.

To show (iii) implies (iv) suppose γ : E1(A1) → E1(A2) is a continuous
isomorphism. We extend γ to a map, call it δ, on all of E1(C1) by mapping φ ∈
E1(A1)∗ = E1(A∗

1) to γ(φ∗)∗. By Lemma 6.9, δ is well-defined on E1(A1 ∩ A∗
1),

and hence well-defined on all of E1(C1).
Since the adjoint map is continuous, δ is a continuous homomorphism re-

stricted to E1(A1) or to E1(A∗
1). By Corollary 4.15, these are open sets in E1(C1),

and so δ is continuous on their union, E1(C1). Applying the same argument to
δ−1, we see that δ−1 is continuous as well.

The restriction of δ to E1(A∗
1) or to E1(A1) is a homomorphism. To show

that δ is a homomorphism, fix φ, ψ ∈ E1(A1). We claim that if φ∗ψ is defined,
then δ(φ∗ψ) = δ(φ∗)δ(ψ) and if φψ∗ is defined, then δ(φψ∗) = δ(φ)δ(ψ)∗. We
only show the first equality; the proof of the second is similar.
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As δ maps D̂1 to D̂2, we have, for φ ∈ E1(A1),

(6.2) δ(φφ∗) = γ(r(φ)) = r(γ(φ)) = γ(φ)γ(φ∗).

Let η = φ∗ψ. If η ∈ E1(A1), we have φη = φφ∗ψ = ψ, and hence γ(φ)γ(η)=
γ(ψ). Multiplying each side of this equality by γ(φ∗) = δ(φ)∗ and using (6.2)
yields δ(φ∗ψ) = δ(φ)∗δ(ψ). If η ∈ E1(A∗

1), then apply the previous argument to
η∗ = ψ∗φ and take adjoints to obtain the equation. Thus δ is a homomorphism
and part (iv) holds.

Finally, if (Ci, Di) are C∗-diagonals and (iv) holds, then Kumjian’s theorem
implies that there is an isomorphism Φ : C1 → C2 with Φ(D1) = D2. Since Φ is
induced by an isomorphism of twists mapping E1(A1) onto E1(A2), Lemma 6.10
shows that Φ(A1) = A2. Thus, we obtain (i) with Φ|A1

the isometric isomor-
phism.

REMARK 6.12. Theorem 6.11 is related to a result of Muhly, Qiu and Solel,
([25], Theorem 2.1). Their result, expressed in terms of eigenfunctionals, takes
the following form. When the Ci are nuclear and (Ci, Di) are C∗-diagonals, the
following are equivalent, for subalgebras Ai ⊆ (Ci, Di) so that Ai generates Ci as
C∗-algebras (with no Dirichlet hypothesis):

(i) there is an isometric isomorphism θ : A1 → A2 (necessarily, θ(D1) = D2);
(ii) there is a coordinate system isomorphism, γ : E1(A1) → E1(A2) which

extends to a coordinate system isomorphism γ′ : E1(C1) → E1(C2);
(iii) there is a ∗-isomorphism τ : C1 → C2 such that τ|A1

is an isomorphism of
A1 onto A2.
Theorem 6.11 extends the Muhly-Qiu-Solel result to not-necessarily-isometric di-
agonal preserving isomorphisms, assuming the Dirichlet condition instead of the
hypothesis in (ii) that γ extends to an isomorphism of E1(C1) onto E1(C2). Ex-
ample 6.13 shows that in the absence of the Dirichlet condition, isomorphisms of
coordinate systems need not extend to isomorphisms of the enveloping twists.
Thus, the hypothesis that γ extends in (ii) is essential.

Also, since Theorem 6.11 did not use the Spectral Theorem for Bimodules
([24], Theorem 4.1), we do not need the Ci to be nuclear. In Theorem 8.9, we prove
the full Muhly-Qiu-Solel result, without requiring nuclearity.

EXAMPLE 6.13. Without the Dirichlet hypothesis, an isomorphism of coor-
dinate systems need not induce an isometric isomorphism of the algebras. Let
(C, D) = (M4(C), D4), where D4 is the algebra of diagonal matrices.

Let A1 = A2 be the algebra

A :=




t11 0 t13 t14
0 t22 t23 t24
0 0 t33 0
0 0 0 t44

 : tij ∈ C

 .
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The automorphism
t11 0 t13 t14
0 t22 t23 t24
0 0 t33 0
0 0 0 t44

 7→


t11 0 t13 t14
0 t22 t23 −t24
0 0 t33 0
0 0 0 t44


is not isometric, and induces an automorphism of E1(A) which does not extend
to an automorphism of E1(C).

The Dirichlet condition can be removed if one assumes a continuous sec-
tion from R(Ci) into E1(Ci). Since TAF algebras always admit such sections, the
following result generalizes Theorem 7.5 of [37].

THEOREM 6.14. For i = 1, 2, let (Ci, Di) be C∗-diagonals and suppose that Ai ⊆
(Ci, Di) are norm closed subalgebras such that Ai generates Ci as a C∗-algebra. Consider
the following statements:

(i) A1 and A2 are isometrically isomorphic.
(ii) There exists a bounded isomorphism θ : A1 → A2 such that θ(D1) = D2.

(iii) R(A1) and R(A2) are isomorphic topological binary relations.
(iv) R(C1) and R(C2) are isomorphic topological equivalence relations, and the iso-

morphism maps R(A1) onto R(A2).
Then for n = 1, 2, 3, statement (n) implies statement (n + 1).

If, in addition, Ai are regular and there exist continuous sections hi : R(Ci) →
E1(Ci), then the statements are equivalent.

Proof. That (i)⇒(ii) is obvious and (ii)⇒(iii) follows as in the proof of Theo-
rem 6.11.

Suppose (iii) holds. By Proposition 4.21, the isomorphism of R(A1) onto
R(A2) extends uniquely to an isomorphism of R(C1) onto R(C2), so (iv) holds.

To complete the proof, we show that, when the Ai are regular and there
exist continuous sections hi : R(Ci) → E1(Ci), then (iv) implies (i). The existence
of the sections and (iv) gives a coordinate system isomorphism γ of E1(C1) and
E1(C2) such that γ|E1(A1) is an isomorphism of E1(A1) onto E1(A2). By Kumjian’s
theorem, there is a (regular) ∗-isomorphism π of (C1, D1) onto (C2, D2).

Finally, Lemma 6.10 implies π(A1) = A2.

REMARK 6.15. A modification of Example 6.13 shows that in general, there
may exist a section for R(A) which cannot be extended to a section of R(C). Thus,
one cannot replace the hypothesis of a section for R(Ci) with a hypothesis of a
section for R(Ai) in Theorem 6.14.

To drop the Dirichlet condition in Theorem 6.11 without assuming the ex-
istence of a continuous section, we would need to replace γ with a new isomor-
phism from E1(A1) to E1(A2) that could extend to the twist of C1, which would be
larger than E1(A1)∪ E1(A1)∗. In particular, while isometric bimodule maps on fi-
nite relations are always ∗-extendible (a key ingredient in [25]), this is not true for
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general bimodule maps ([8], Theorem 1.2, Proposition 1.4). Indeed, based on [8],
there are homological obstructions to be considered.

7. INVARIANCE UNDER GENERAL ISOMORPHISMS

In this section and the next, we come to the core of the paper, the study of
bounded isomorphisms of triangular algebras which need not map the diagonal
to the diagonal. The principal result of this section is Theorem 7.7, which shows
that such isomorphisms induce algebraic isomorphisms of the corresponding co-
ordinate systems. We would particularly like to know if this algebraic isomor-
phism is always continuous. We can prove that it is continuous in certain cases,
Theorem 7.11, extending results of Donsig-Hudson-Katsoulis.

7.1. STANDING ASSUMPTIONS FOR SECTIONS 7 AND 8. For i = 1, 2, let (Ci, Di)
be C∗-diagonals, and let Ai ⊆ (Ci, Di) be (norm-closed) triangular subalgebras.
Let Ei : Ci → Di be the unique conditional expectations. Suppose θ : A1 → A2 is
a bounded isomorphism.

Our first task is to show that θ induces an algebraic isomorphism of coor-
dinate systems, γ : E1(A1) → E1(A2). We have been unable to show that γ is
continuous in general. Since we do not assume θ(D1) = D2, it is not possible to
use Theorem 6.3, so we proceed along different lines.

DEFINITION 7.1. Define α : D1 → D2 by α(d) = E2(θ(d)).

PROPOSITION 7.2. The map α is a ∗-isomorphism of D1 onto D2.

Proof. Theorem 5.10 shows E2|A2 is a homomorphism; hence α is a homo-
morphism. Since any algebraic isomorphism of commutative C∗-algebras is a
∗-isomorphism, it suffices to show that α is bijective.

Since E1 is idempotent, D1 ∩ ker E1 = {0}, so A1 = D1 + ker E1|A1
is a

direct sum decomposition. By Proposition 5.11, θ(ker E1|A1
) = ker E2|A2 , so that

we have two direct sum decompositions of A2:

A2 = D2 + ker E2|A2 = θ(D1) + ker E2|A2 .

Therefore, ker E2|θ(D1) = ker α is trivial. If d ∈ D2 we may write d = x + y where
x ∈ θ(D1) and y ∈ ker E2. Then E2(x) = d, so α is onto.

Given Banach spaces X and Y, and a bounded linear map R : X → Y, the
double transpose map R## : X## → Y## is a norm-continuous extension of R
which is also σ(X##, X#)–σ(Y##, Y#) continuous. In light of our standing assump-
tions, θ## : A##

1 → A##
2 and α## : D##

1 → D##
2 are also isomorphisms. Similarly, the

E##
i are homomorphisms of A##

i onto D##
i . For notational ease, we will sometimes

identify the double transpose map with the original map. Thus we often write θ

or α instead of θ## or α##.
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REMARK 7.3. Notice that A2 may be regarded as a D1-bimodule in two
natural ways: for d, e ∈ D1 and x ∈ A2, define d ·α x ·α e := α(d)xα(e) and
d ·θ x ·θ e := θ(d)xθ(e). When these two modules are (boundedly) isomorphic,
methods similar to those used in the proof of Theorem 6.3 show there exists an
isomorphism of the coordinate systems E1(A1) and E1(A2). Unfortunately, we do
not know in general whether the α and θ module actions of D1 on A2 are isomor-
phic. However, there is enough structure present to show that these modules are
“virtually” isomorphic.

DEFINITION 7.4. Let G = U(D1) be the group of unitary elements of D1,
regarded as a discrete abelian group and fix, once and for all, an invariant mean
Λ on G.

Define elements S, T ∈ A##
2 by requiring that for every f ∈ A#

2,

f (S) = Λ
g∈G

f (θ(g)α(g−1)) and f (T) = Λ
g∈G

f (α(g)θ(g−1)).

Notice that S ∈ coσ{θ(g)α(g−1) : g ∈ G} and T ∈ coσ{α(g)θ(g−1) : g ∈
G}, where coσZ is the σ(A##

2 , A#
2)-closed convex hull of the set Z. (We implicitly

embed A2 into A##
2 using the canonical inclusion.)

We next collect some properties of S and T. Of particular interest to us is the
fact that they intertwine α(D1) and θ(D1).

PROPOSITION 7.5. For S and T as above, we have:
(i) For every d ∈ D1, Tθ(d) = α(d)T and Sα(d) = θ(d)S.

(ii) E##
2 (S) = I = E##

2 (T) and E##
1 (θ−1(S)) = I = E##

1 (θ−1(T)).
(iii) Given σ ∈ D̂1, let p = pσ (see Definition 5.1). Then

α(p)T=α(p)Tθ(p)=Tθ(p)=α(p)θ(p) and θ(p)S=θ(p)Sα(p)=Sα(p)=θ(p)α(p).

(iv) For all x ∈ A2 and for all φ ∈ E1(A1), φ(θ−1(STxST)) = φ(θ−1(x)).

Proof. If h ∈ G = U(D1), then Tθ(h) = α(h)T follows from the invariance of
Λ. Indeed, for every f ∈ A#

2 we have,

f (α(h)T) = Λg( f · α(h))(α(g)θ(g)−1) = Λg f (α(hg)θ(hg)−1θ(h))

= Λg f (α(g)θ(g−1)θ(h)) = Λg(θ(h) · f )(α(g)θ(g−1)) = f (Tθ(h)).

Since A#
2 separates points of A##

2 , we see that Tθ(h) = α(h)T for every h ∈ G. But
the span of G is norm dense in D1, which yields Tθ(d) = α(d)T for d ∈ D1. The
proof that θ(d)S = Sα(d) is similar.

To prove E##
1 (θ−1(S)) = I, first observe that weak* continuity of E##

1 (and

θ−1##) implies

E##
1 (θ−1(S)) ∈ E##

1 coσ{gθ−1(α(g−1))} = coσ{E1(gθ−1(α(g−1)))}.
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Modifying the proof of Proposition 7.2 yields α−1 = E1 ◦ θ−1 and, for each g ∈ G,
E1(gθ−1(α(g−1))) = I; the equality follows. The remaining equalities in part (ii)
have similar proofs.

For part (iii), the first two equalities follow from statement (i), as p is a
σ(A##

1 , A#
1)-limit of elements of D1. For the third equality, first observe that for g ∈

G, Theorem 5.3 gives α(p)α(g) = σ(g)α(p); similarly, θ(g)−1θ(p) = σ(g−1)θ(p).
Hence, α(p)α(g)θ(g)−1θ(p) = α(p)θ(p). Since T ∈ coσ{α(g)θ(g)−1 : g ∈ G}, we
find that

α(p)Tθ(p) ∈ coσ{α(p)α(g)θ(g)−1θ(p) : g ∈ G}.

This set is a singleton, so α(p)Tθ(p) = α(p)θ(p). The proofs of the equalities
involving S are similar.

For part (iv), fix φ ∈ E1(A1), and let q and p be the minimal projections in
D##

1 corresponding to r(φ) and s(φ), respectively. Part (i) implies that p and q
commute with θ−1(ST) and by part (ii), we have

r(φ)(θ−1(ST)) = r(φ)(E1(θ−1(ST))) = r(φ)(I) = 1.

Hence by Proposition 5.3, qθ−1(ST) = q. Likewise pθ−1(ST) = p. As, again by
Proposition 5.3, φ(a) = φ(qap), we have, as desired:

φ(θ−1(STxST))=φ(qθ−1(ST)θ−1(x)θ−1(ST))p?)=φ(qθ−1(x)p)=φ(θ−1(x)).

We now obtain a bijective mapping between the eigenfunctionals of A1 and
those of A2.

PROPOSITION 7.6. For φ ∈ E(A1), let

f = T · (φ ◦ θ−1) · S.

Then f is an eigenfunctional for A2 with r( f ) = r(φ) ◦ α−1 and s( f ) = s(φ) ◦ α−1.
Moreover, φ ◦ θ−1 = S · f · T.

Proof. For clarity, let ψ = φ ◦ θ−1. For all d, e ∈ D1 and x ∈ A2,

f (α(d)xα(e)) = ψ(Sα(d)xα(e)T) = ψ(θ(d)SxTθ(e)) = r(φ)(d)ψ(SxT)s(φ)(e)

= (r(φ) ◦ α−1)(α(d)) f (x)(s(φ) ◦ α−1)(α(e)),

showing f is an eigenfunctional with the claimed range and source.
The last equality follows from part (iv) of Proposition 7.5.

We now show the existence of an algebraic isomorphism between the coor-
dinate systems which is the non-diagonal preserving analog of Theorem 6.3.

THEOREM 7.7. The map γ : E1(A1) → E1(A2) given by

γ(φ) =
T · (φ ◦ θ−1) · S
‖T · (φ ◦ θ−1) · S‖

is an algebraic isomorphism of coordinate systems such that for every σ ∈ D̂1, γ(σ) =
σ ◦ α−1.
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Proof. The fact that γ is a bijection between E1(A1) and E1(A2) such that
for every φ ∈ E1(A1), r(γ(φ)) = r(φ) ◦ α−1 and s(γ(φ)) = s(φ) ◦ α−1 follows
immediately from Proposition 7.6, so we need only show γ is multiplicative on
composable elements.

Given φ ∈ E1(A1) with minimal partial isometry vφ (see Definition 5.1), we
first identify the minimal partial isometry for γ(φ). In fact, we claim that

(7.1) vγ(φ) =
Tθ(vφ)S
‖Tθ(vφ)S‖

.

To see this, first observe that part (iv) of Proposition 7.5 also holds for x ∈ A##
2 .

Thus, (T · (φ ◦ θ−1) · S)(Tθ(vφ)S) = φ(θ−1(STθ(vφ)ST)) = φ(vφ) = 1. Therefore,

γ(φ)(Tθ(vφ)S) > 0.

Moreover, if q = pr(φ) and p = ps(φ), then by part (iii) of Proposition 7.5,

Tθ(vφ)S = Tθ(q)θ(vφ)θ(p)S = α(p)θ(vφ)α(q).

Hence
Tθ(vφ)S
‖Tθ(vφ)S‖

is a minimal partial isometry in A##
2 on which γ(φ) takes a

positive value. Thus, equation (7.1) holds by Remark 5.2.
Now suppose φ1, φ2 ∈ E1(A1) are such that φ1φ2 is defined. Notice that

the minimal partial isometry for the product φ1φ2 is the product of the minimal
partial isometries for φ1 and φ2, that is, vφ1φ2 = vφ1 vφ2 . To show that γ(φ1φ2) =
γ(φ1)γ(φ2), it suffices to show that

(7.2) vγ(φ1φ2) = vγ(φ1)vγ(φ2).

To do this, we first show that for all σ ∈ D̂1, we have

(7.3) θ(pσ)α(pσ)θ(pσ) = θ(pσ).

Indeed, by Proposition 5.3,

pσθ−1(α(pσ))pσ = σ(θ−1(α(pσ)))pσ = σ((E1 ◦ θ−1)(α(pσ)))pσ

= σ(α−1(α(pσ)))pσ = σ(pσ)pσ = pσ.

Applying θ to the ends of this equality yields (7.3).
Noting that ps(φ1) = pr(φ2), we have

(Tθ(vφ1)S)(Tθ(vφ2)S)

= [α(pr(φ1))θ(vφ1)α(ps(φ1))][α(pr(φ2))θ(vφ2)α(ps(φ2))]

= [α(pr(φ1))θ(vφ1)θ(ps(φ1))α(ps(φ1))][α(pr(φ2))θ(pr(φ2))θ(vφ2)α(ps(φ2))]

= α(pr(φ1))θ(vφ1)[θ(ps(φ1))α(ps(φ1))α(pr(φ2))θ(pr(φ2))]θ(vφ2)α(ps(φ2))

= α(pr(φ1))θ(vφ1)θ(vφ2)α(ps(φ2)) = α(pr(φ1))θ(vφ1φ2)α(ps(φ2)) = Tθ(vφ1φ2)S.

This relation, together with equation (7.1), shows that equation (7.2) holds, and
the proof is complete.
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The continuity of the map γ appearing in Theorem 7.7 is a particularly vex-
ing issue; in general, we do not know whether it is continuous. Theorem 7.7 does
imply the restriction of γ to D̂ is continuous, a fact we will use in Example 7.13.

In the following corollary, we show that in some circumstances, γ is “nearly
continuous”, in the sense that it is possible to alter γ by multiplying by an appro-
priate T-valued cocycle to obtain a continuous isomorphism of coordinate sys-
tems. The key hypothesis, that α from Definition 7.1 extends to a ∗-isomorphism
of C∗-envelopes, is in part motivated by Theorem 8.9, which shows that an iso-
metric isomorphism θ between triangular algebras is ∗-extendible to their C∗-
envelopes, and in particular, α = θ|D1

is ∗-extendible to the envelopes.

COROLLARY 7.8. If there is a ∗-isomorphism π : C1 → C2 so that π|D1
= α,

where α = E2 ◦ θ|D1
, then the map δ : E1(A1) → E1(A2), defined by φ 7→ φ ◦π−1, is an

isomorphism of the coordinate systems. Moreover, there exists a cocycle c : E1(A1) → T
such that for every φ ∈ E1(A1),

δ(φ) = c(φ)γ(φ).

Proof. Clearly, φ 7→ φ ◦ π−1 is a bicontinuous isomorphism of E1(C1) onto
E1(C2). We must show that this map sends E1(A1) into E1(A2). Fix φ ∈ E1(A1)
and let γ be the map from Theorem 7.7. By Proposition 7.6,

r(φ ◦ π−1) = r(φ) ◦ π−1 = r(φ) ◦ α−1 = r(γ(φ)),

and similarly, s(φ ◦π−1) = s(γ(φ)). By Corollary 4.10, there is c(φ) ∈ T so that φ ◦
π−1 = c(φ)γ(φ), and so φ ◦ π−1 ∈ E1(A2). Since both γ and δ are multiplicative
on composable elements of E1(A1), so is c, whence c is a cocycle.

We now introduce a new class of algebras for which γ is continuous for
bounded isomorphisms between triangular algebras in the class. This class in-
cludes those algebras A ⊆ (C, D) where C admits a cover by monotone G-sets
with respect to A (see p. 57 of [26]). In the context of limit algebras, this class
includes limit algebras generated by their order-preserving normalizers (see [10],
[9]).

As the definition of the class does not require our standing assumptions for
the section, we relax them momentarily.

DEFINITION 7.9. Let (C, D) be a C∗-diagonal and A ⊆ (C, D) be a subalge-
bra (not necessarily triangular). We say a normalizer v ∈ A is algebra-preserving if
either vAv∗ ⊆ A or v∗Av ⊆ A.

This is related to the notion of order-preserving normalizers, which can be
described as those v ∈ ND(A) satisfying both vAv∗ ⊆ A and v∗Av ⊆ A.

As a trivial example of an algebra-preserving normalizer that is not order
preserving, let C be M4(C), D the diagonal matrices, and A the span of all upper-
triangular matrix units except e1,2. Then v = e1,3 + e2,4 normalizes D but is not
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order preserving, since ve3,4v∗ = e1,2 /∈ A. However, v is algebra preserving, since
v∗Av = v∗Dv ⊂ A.

LEMMA 7.10. Let (C, D) be a C∗-diagonaland let A ⊆ (C, D) be triangular. If
φ ∈ E1(A) and v ∈ A is an algebra-preserving normalizer with φ(v) 6= 0, then for
x, y ∈ A## ∩ ker E##,

φ(xv) = φ(vy) = φ(xvy) = 0.

Proof. By Remark 4.11 and the fact that ker E## ∩A## is a D-bimodule,

φ(xv) =
r(φ)(xvv∗)

[r(φ)(vv∗)]1/2 = 0, φ(vy) =
s(φ)(v∗vy)

[s(φ)(v∗v)]1/2 = 0,

as xvv∗, v∗vy ∈ ker E##.
For the last equality, assume first that vAv∗ ⊆ A. Then vA##v∗ ⊆ A## and,

as ker E## ∩A## is an ideal in A## (Theorem 5.10),

φ(xvy) =
r(φ)(x(vyv∗))
[r(φ)(vv∗)]1/2 =

r(φ)(E##(x(vyv∗)))
[r(φ)(vv∗)]1/2 = 0.

If v∗Av ⊆ A, then, similarly, φ(xvy) = s(φ)((v∗xv)y)/[s(φ)(v∗v)]1/2 shows
that φ(xvy) = 0.

We now reimpose the Standing Assumptions for Section 7; they remain in
force through the remainder of the section.

THEOREM 7.11. If φ ∈ E1(A1) and v ∈ A1 is an algebra-preserving normalizer
such that φ(v) 6= 0, then γ−1 is continuous at γ(φ).

In particular, if A1 and A2 are the closed span of their algebra-preserving normal-
izers, then γ is a homeomorphism.

Proof. Letting σ = s(φ), φ = λ[v, σ] for some λ ∈ T, by Theorem 4.7. With-
out loss of generality, we may replace v by λv.

Fix ψ ∈ E1(A1). By Proposition 7.5, θ−1(S) = I + X, θ−1(T) = I + Y where
X, Y ∈ ker E##

1 |A##
1

. Thus,

ψ(θ−1(Sθ(v)T)) = ψ(v + Xv + vY + XvY) = ψ(v),

by Lemma 7.10. Putting n(ψ) = ‖T · (ψ ◦ θ−1) · S‖−1, we can conclude that, for
all ψ ∈ E1(A1),

(7.4) γ(ψ)(θ(v)) = n(ψ)ψ(v).

Let (φλ) be a net in E1(A1) such that γ(φλ) → γ(φ) and let σλ = s(φλ). Then
s(γ(φλ)) → s(γ(φ)), and so, by Proposition 7.6, σλ → σ. Since γ(φλ)(θ(v)) →
γ(φ)(θ(v)) = n(φ)φ(v) > 0, by (7.4), we may assume that φλ(v) 6= 0 for all λ.
Thus, there exist tλ ∈ T such that φλ = tλ[v, σλ]. Using (7.4) and the convergence
of γ(φλ),

n(φλ)tλ[v, σλ](v) = γ(φλ)(θ(v)) → γ(φ)(θ(v)) = n(φ)φ(v) = n(φ)[v, σ](v).
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Since σλ → σ, [v, σλ](v) → [v, σ](v) 6= 0, and hence tλn(φλ) → n(φ). Taking
absolute values shows that n(φλ) → n(φ), and hence tλ → 1. Therefore, we have

φλ = tλ[v, σλ] → [v, σ] = φ.

COROLLARY 7.12. Suppose, in addition, that each Ai is Dirichlet and is the norm
closure of the span of its algebra-preserving normalizers. Then A1 and A2 are boundedly
isomorphic if and only if they are isometrically isomorphic.

Proof. If A1 and A2 are boundedly isomorphic, Theorem 7.11 shows E1(A1)
and E1(A2) are isomorphic coordinate systems. As the Ai are Dirichlet and regu-
lar by hypothesis, the result follows from an application of Theorem 6.11.

This corollary extends Theorem 2.3 of [11], which proves the correspond-
ing result for strongly maximal TAF algebras generated by their order-preserving
normalizers. The cited theorem does somewhat more, as it shows that algebraic
isomorphism implies isometric isomorphism.

In light of Theorem 7.7, it is natural to ask what implications can be drawn
from the existence of the algebraic isomorphism of coordinate systems. It has
been known for more than a decade that algebraic isomorphism of coordinate
systems does not imply isometric isomorphism ([18], Remark on page 120). It is
easily shown that the algebras in their example fail to be boundedly isomorphic
and the algebraic isomorphism of coordinates they exhibit is continuous on the
diagonals.

We give a somewhat different example, one in which the algebras are anti-
isomorphic, have no minimal projections, and, most importantly, continuity on
the diagonal can be exploited to show that the algebras are not boundedly iso-
morphic.

EXAMPLE 7.13. Let Mk, Dk, Tk be the algebra of 2k × 2k matrices and the sub-
algebras in Mk of diagonal and upper-triangular matrices, respectively. Where
necessary, we will equip an Mk with a matrix unit system {ei,j}. Let Ak (respec-
tively, Bk) be the permutation unitary in Mk that interchanges the first (respec-
tively, last) two entries of a vector in C2k

. We consider three embeddings from Mk
to Mk+1. First, we have πk that sends a matrix [aij] to the block matrix [aij I2] where
I2 is the 2× 2 identity matrix. Let αk = Ad Ak+1 ◦πk and βk = Ad Bk+1 ◦πk. Then
Ma = lim−→(Mk, αk) and Mb = lim−→(Mk, βk) are both the 2∞ UHF C∗-algebra. Since
αk|Dk = βk|Dk = πk|Dk , we have lim−→(Dk, αk|Dk ) = lim−→(Dk, αk|Dk ), which we de-
note D.

The operator algebras Ta = lim−→(Tk, αk|Tk ) and Tb = lim−→(Tk, βk|Tk ) are anti-
isomorphic. Indeed, if φk : Tk → Tk sends ei,j to e2k+1−j,2k+1−i, then βk+1 ◦ φk =
φk+1 ◦ αk, so the limit of the φk defines an anti-isomorphism between Ta and Tb.

Suppose that Ta and Tb were boundedly isomorphic. By Proposition 7.2, we
would have a ∗-isomorphism α : D → D and by Theorem 7.7, there would be an
algebraic isomorphism γ : E1(Ta) → E1(Tb). This induces δ : R(Ta) → R(Tb), an
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(algebraic) isomorphism of spectral relations, namely δ(|φ|) = |γ(φ)|. Although
δ need not be continuous, we know that on the diagonals of R(Ta) and R(Tb), δ

can be identified with α̂ : D̂ → D̂, the map induced by α, and so is continuous.
Moreover, by the range and source condition in Theorem 7.7, (σ, ρ) ∈ R(Ta) if
and only if (α̂(σ), α̂(ρ)) ∈ R(Tb).

Let f (respectively, l) be the element of D̂ that equals 1 on the e1,1 matrix unit
(respectively, e2k ,2k matrix unit) in each Dk. Now ( f , l) is in both R(Ta) and R(Tb).
Let Oa = {σ ∈ D̂ : ( f , σ) ∈ R(Ta)} and define Ob similarly. The existence of δ
implies that α̂ maps Oa onto Ob. We claim that this is impossible for a continuous
α. The essence of the following argument is that every element of Oa\{ f } has a
neighborhood N where it is maximal in N ∩ Oa, while no element of Ob\{l} has
such a neighborhood.

The basic neighborhoods for f are given by elements of D̂ that are nonzero
on a e1,1 matrix unit in some Dk. If we consider some σ ∈ Oa\{ f }, then there is
some k and some j ∈ {2, . . . , 2k} so that σ = ej,1 · f · e1,j. where e1,j is a matrix
unit in Mk. In particular, N := {ρ ∈ D̂ : ρ(ej,j) 6= 0} is a basic neighborhood of
σ. Every element of N ∩ Oa is smaller than σ in the ordering induced by R(Ta),
since N is given by conjugating a basic neighborhood of f by e1,j and conjugation
by e1,j reverses the diagonal ordering for pairs ( f , ψ), ψ ∈ Oa\{ f }. This last fact
follows from considering the image of e1,j in Ml , l > k.

On the other hand, if ρ ∈ Ob\{l}, then every neighborhood of ρ contains
elements τ ∈ Ob with (ρ, τ) ∈ R(Tb). This follows from repeating the argument
of the previous paragraph, observing that conjugation by e1,j preserves the R(Tb)-
ordering for pairs ( f , ψ).

Pick some σ ∈ Oa\{ f , l} and a neighborhood, N, of σ with all elements
of N ∩ Oa less than σ in the diagonal order. Now α̂ maps σ to an element of
Ob\{ f , l}, call it ρ. By the previous paragraph, every neighborhood of ρ, including
α̂(N), contains points of Ob greater than ρ in the R(Tb)-ordering. This contradicts
α̂ mapping R(Ta) onto R(Tb) and so Ta and Tb are not boundedly isomorphic.
In fact, by the automatic continuity result of [11], there is not even an algebraic
isomorphism between Ta and Tb.

We show there is an algebraic isomorphism from R(Ta) to R(Tb), and hence,
using the continuous section, between E1(Ta) and E1(Tb). It suffices to construct
a map h : D̂ → D̂ so that (ρ, τ) ∈ R(Ta) if and only if (h(ρ), h(τ)) ∈ R(Tb).

For u ∈ {a, b}, define

Xu := {(ρ, τ) ∈ R(Tu) : ρ = f } ∪ {(ρ, τ) ∈ R(Tu) : τ = l}.

Before defining h, we observe that R(Ta)\Xa = R(Tb)\Xb. To see this, first let
T̃k := (e1e∗1)⊥Tk(e2k e∗2k )⊥. If (ρ, τ) ∈ R(Ta)\Xa, there is some p ∈ N and some
matrix unit e ∈ T̃p such that ρ = e · τ · e∗. For k > p, αk and βk agree on the
image of e in T̃k. Thus, the image of e in Ta and the image of e in Tb induce the
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same partial homeomorphism of D̂. In particular, (ρ, τ) ∈ R(Tb)\Xb. The reverse
inclusion is similar.

Thus, each of Oa\{ f , l} and Ob\{ f , l} is ordered the same way by both R(Ta)
and R(Tb). In fact, we can show that each set is ordered like Q — for example,
given (ρ, τ) ∈ Oa\{ f , l} with ρ 6= τ, find, as above, an off-diagonal matrix unit e
and use the images of ee∗ and e∗e in a later matrix algebra to show there is η ∈ D̂
with (ρ, η), (η, τ) ∈ R(Ta) and η different from ρ and τ.

Define h to be the identity map everywhere except Oa\{ f , l} and Ob\{ f , l}.
Since these two sets have the same order type, there is a bijection g : Oa\{ f , l} →
Ob\{ f , l} so that (ρ, τ) ∈ Oa\{ f , l} if and only if (g(ρ), g(τ)) ∈ Ob\{ f , l}. As
Oa \ { f , l} and Ob \ { f , l} are disjoint sets, we define h on Oa\{ f , l} to be g and
on Ob\{ f , l} to be g−1. Using the observation above and the definitions of Oa and
Ob, it is straightforward to show that h has the required property.

8. STRUCTURE OF GENERAL ISOMORPHISMS

We now turn to the structure of isomorphisms of triangular algebras. First,
we build on the representation results from Section 5, obtaining Theorem 8.2,
which extends such an isomorphism to an isomorphism of CSL algebras. Af-
ter several results about isomorphisms of CSL algebras, we obtain an analogue
of a factorization result of Arveson-Josephson, Theorem 8.7. A main result of
the paper is Theorem 8.8, which shows that such an isomorphism is completely
bounded. Finally, we extend a result of Muhly-Qiu-Solel, Theorem 8.9, showing
that an isometric isomorphism extends to ∗-isomorphism of the C∗-diagonals.

Our standing assumptions are the same as those of the previous section.
We start with a technical lemma.

LEMMA 8.1. Suppose that C∗(Ai)=Ci. Given σ2∈D̂2, let σ1=σ2◦α∈D̂1, and let
(πi, Hi) be the (compatible) GNS representations of (Ci, Di) on Hi corresponding to σi.

If, for i = 1, 2, Pi is the support projection for πi, then θ(P1) = P2.

Proof. By Proposition 5.4, Pi ∈ D##
i and Pi = ∑

q∈Oi

q, where

Oi := {q ∈ D##
i : q = pρ for some ρ ∈ D̂i such that (σi, ρ) ∈ R(Ci)}.

Since Ai generates Ci, Theorem 4.21 shows that the equivalence relation gen-
erated by R(Ai) is R(Ci). By Theorem 7.7, we have (ρ, σ2) ∈ R(A2) if and only
if (ρ ◦ α, σ1) ∈ R(A1). Hence (ρ, σ2) ∈ R(C2) if and only if (ρ ◦ α, σ1) ∈ R(C1).
Theorem 7.7 also shows that for ρ1 ∈ D̂1, α(pρ1) = pρ1◦α−1 . Therefore, α(O1) = O2
and we obtain,

(8.1) P2 = ∑
p∈O1

α(p).



COORDINATES AND ISOMORPHISMS 405

Fix p ∈ O1. Since p is a minimal projection in C##
1 , it is a minimal idempotent

in A##
1 , so θ(p) is a minimal idempotent in A##

2 . As P2 is a central projection in C##
2 ,

θ(p)P2 is an idempotent in A##
2 and so θ(p)P2 is either θ(p) or 0. As done earlier,

we again use π̃i for the unique extension of πi to C##
i . Since

π̃2(E2(θ(p)P2)) = π̃2(α(p)) 6= 0,

we must have θ(p)P2 = θ(p).
The σ(A##

1 , A#
1)-σ(A##

2 , A#
2) continuity of θ yields

(8.2) θ(P1) = θ
(

∑
p∈O1

p
)

= ∑
p∈O1

θ(p) = ∑
p∈O1

P2θ(p) = θ(P1)P2.

Similar considerations show that for every p ∈ O1, θ−1(α(p))P1 = θ−1(α(p)) and

(8.3) θ−1(P2) = ∑
p∈O1

P1θ−1(α(p)) = P1θ−1(P2).

Applying θ to (8.3) and using (8.2) yields θ(P1) = P2.

The support projection of a direct sum of inequivalent representations of
a C∗-algebra is the sum of the support projections of the individual representa-
tions. Thus, Lemma 8.1 and Theorem 5.9 combine to produce the following result,
which connects our context to the theory of CSL algebras.

When the C∗-envelope of Ai is Ci, Theorem 4.21 shows that R(C1) and R(C2)
are isomorphic as topological equivalence relations. Thus, the assumption on X2
below implies that X2 also has exactly one element from each R(C2)-equivalence
class.

THEOREM 8.2. Suppose that C∗(Ai) = Ci. Let X2 ⊆ D̂2 contain exactly one
element from each R(C2) equivalence class and let X1 = {σ ◦ α : σ ∈ X2}. Let
πi =

⊕
σ∈Xi

πσ be the faithful, compatible representations of (Ci, Di) as constructed in

Theorem 5.9.
If θ′ : π1(A1) → π2(A2) is the map given by θ′(π1(a)) = π2(θ(a)), then θ′

extends uniquely to a (bounded ) isomorphism θ : π̃1(A##
1 ) → π̃2(A##

2 ).

Proof. Let Pi be the support projections of πi. Using Proposition 5.4 and
Lemma 8.1, we obtain Pi ∈ D##

i and θ(P1) = P2. By Theorem 5.9, ker π̃i|A##
i

=

P⊥i A##
i and so π̃i is faithful on PiA

##
i . As π̃i|PiA

##
i

has image π̃i(A##
i ), the map

θ : π̃1(A##
1 ) → π̃2(A##

2 ) given by π̃1(a) 7→ π̃2(θ(a)) is well defined.
Uniqueness follows from the weak* density of Ai in A##

i .

For a representation, π, of C2, we suspect that π̃(S) and π̃(T) are inverses of
each other whenever π is a compatible representation. The next two propositions
offer some evidence for this. Indeed, Theorem 8.4 proves it when π2 is the faithful
compatible atomic representations of Theorem 8.2.

PROPOSITION 8.3. If π is a compatible representation of C2 on H, then π̃(TS)=I.
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Proof. From Proposition 7.5, we have Ẽ2(π̃(S)) = Ẽ2(π̃(T)) = I. Proposi-
tion 7.5 also shows that π̃(TS) ∈ π(α(D1))′, so π̃(TS) ∈ π(D2)′′ since π(D2)′′ is
a MASA in π(C)′′. Since Ẽ2 is a homomorphism on π(A2) it is also a homomor-
phism on π̃(A##

2 ). Hence,

π̃(TS) = Ẽ2(π̃(TS)) = Ẽ2(π̃(T))Ẽ2(π̃(S)) = I.

THEOREM 8.4. For π2 as in Theorem 8.2, π̃2(S)−1 = π̃2(T).

Proof. We use the same notation as in Lemma 8.1, Theorem 8.2 and their
proofs. Fix σ2 ∈ D̂2. We claim that π̃σ2(S) is invertible and π̃σ2(S)−1 = π̃σ2(T).

Applying π̃σ2 to ∑
p∈O1

θ(p) = P2 (obtained from Lemma 8.1 and the first

equality in (8.2)) yields the important equality,

(8.4) ∑
p∈O1

π̃σ2(θ(p)) = IHσ2
.

By Proposition 7.5, Sα(p) = θ(p)α(p) for all p, and using (8.4) gives

π̃σ2(S) = ∑
p∈O1

π̃σ2(Sα(p)) = ∑
p∈O1

π̃σ2(θ(p)α(p)).

A similar calculation with T gives π̃σ2(T) = ∑
p∈O1

π̃σ2(α(p)θ(p)). Finally, we then

have
π̃σ2(ST) = ∑

p∈O1

π̃σ2(θ(p)) = IHσ2
.

Proposition 8.3 established π̃σ2(TS) = IHσ2
, and hence our claim holds.

As π2 =
⊕

σ2∈X2

πσ2 , the result follows.

We need two structural results for CSL algebras. The factorization result,
Lemma 8.6, is well known, and we only sketch its proof.

THEOREM 8.5 ([17], Theorem 2.1). Suppose L1 and L2 are CSLs on Hilbert
spaces H1 and H2 and that π : AlgL1 → AlgL2 is an algebra isomorphism. Then,
given a MASA M ⊆ B(H1) which is also contained in AlgL1, there exist an invertible
operator X ∈ B(H1, H2) and an automorphism β : AlgL1 → AlgL1 such that, for
every T ∈ AlgL1,

π(T) = Xβ(T)X−1 and β|M = IdM.

Gilfeather and Moore attribute this result to Ringrose in the nest algebra
case and to Hopenwasser for CSL algebras. However, Gilfeather and Moore show
that β is a bounded automorphism.

LEMMA 8.6. Suppose L1 and L2 are atomic CSLs on Hilbert spaces H1 and H2
and that XAlgL1X−1 = AlgL2 for an invertible operator X ∈ B(H1, H2). There exists
a unitary operator U ∈ B(H1, H2) and an invertible operator A ∈ AlgL1 such that
A−1 ∈ AlgL1 and X = UA.
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Proof. Regard Li as a commuting family of projections in B(Hi). Let Ai be
the set of minimal projections in L′′

i . By hypothesis, I = ∑
a∈Ai

a. Define µ : L1 →

L2 by µ(P) = [XP], where [XP] denotes the projection onto the range of XP.
Then µ is a complete lattice isomorphism. As each minimal projection in A1 has
the form PQ⊥ for some P, Q ∈ L1, we see that µ induces a map, µ′ : A1 → A2
given by µ′(PQ⊥) = µ(P)µ(Q)⊥. This map is well defined and bijective. Also,
for each P ∈ L1,

(8.5) P = ∑
{a∈A1 :a6P}

a, µ(P) = ∑
{a∈A1 :a6P}

µ′(a).

Since Li atomic and the isomorphism between AlgL1 and AlgL2 is given by
an invertible element X, dim aH1 = dim µ′(a)H2 for every a ∈ A1. For a ∈ A1, let
ua : H1 → H2 be a partial isometry with uau∗a = µ′(a) and u∗aua = a. Put

U = ∑
a∈A1

ua.

Then U is unitary and it follows from (8.5) that A := U∗X satisfies A, A−1 ∈
AlgL1.

The next two results are structural results for bounded isomorphisms of tri-
angular algebras. The first is an analog of a result of Arveson and Josephson ([2],
Theorem 4.10) appropriate to our setting. Briefly, Arveson and Josephson study
a variant of the crossed product algebra associated to a homeomorphism of a lo-
cally compact Hausdorff space. If the homeomorphism has no periodic points,
then results in [2] show easily that the resulting algebra is a triangular subalgebra
of a C∗-diagonal (see also Section 4 of [28]). Arveson and Josephson show that a
bounded isomorphism of these algebras factors into three maps, the first an iso-
metric map arising from a homeomorphism of the underlying spaces, the second
an isometric map arising from a diagonal unitary, and the third a weakly inner
automorphism, i.e., one implemented by an invertible in the ultraweak closure of
a suitable representation.

The main difference in the form of the Arveson-Josephson factorization and
the factorization in Theorem 8.7 below is that we do not know if the approxi-
mately inner part of our factorization carries A1 to itself, so we need to introduce
an algebra A3. We also remark that isomorphisms which fix the diagonal point-
wise are essentially cocycle automorphisms (see Definition 6.6).

THEOREM 8.7. Assume that C∗(Ai) = Ci. Let π : C1 → B(H) be the faithful
compatible representation of A1 constructed in Theorem 5.9, and let AlgL be the weak*
closure (in B(H)) of π(A1). Then θ factors as

θ = τ ◦Ad A ◦ β ◦ π|A1
,



408 ALLAN P. DONSIG AND DAVID R. PITTS

where β ∈ Aut(AlgL) with β(x) = x for x ∈ π(D1)′′, A ∈ AlgL with A invertible
and A−1 ∈ AlgL, and, finally, if A3 := (Ad A ◦ β)(π(A1)), then A3 ⊆ AlgL and
τ : A3 → A2 is an isometric isomorphism.

Proof. Apply Theorem 8.2 and Theorem 8.5 to obtain an invertible operator
X ∈ B(H1, H2) which implements a similarity between π̃1(A##

1 ) and π̃2(A##
2 ).

Factor X as UA where U is unitary and A, A−1 ∈ AlgL, as in Lemma 8.6. Take
τ = Ad U|A3 . The result follows from Theorem 8.5.

We come now to a main result.

THEOREM 8.8. Suppose that C∗(Ai) = Ci. If θ : A1 → A2 is a bounded isomor-
phism, then θ is completely bounded and ‖θ‖cb = ‖θ‖.

Proof. Using Theorem 8.2 (and its notation), we obtain a map θ : π̃1(A##
1 ) →

π̃2(A##
2 ). By Theorem 8.5, θ factors as θ = Ad X ◦ β, where X : Hπ1 → Hπ2 is a

bounded invertible operator and β is an automorphism of π̃1(A##
1 ) fixing π̃1(D##

1 )
pointwise. By Lemma 8.6, X = UA where A and A−1 both belong to π̃1(A##

1 ) and
U is a unitary operator. Then Ad A ◦ β is an automorphism of π̃1(A##

1 ) whose
norm is ‖θ‖.

By Corollary 2.5 and Theorem 2.6 of [8], ‖Ad A ◦ β‖cb = ‖Ad A ◦ β‖ = ‖θ‖.
Thus, ‖θ‖cb = ‖θ‖. Therefore, for θ′ as in Theorem 8.2, θ′ is completely bounded.
Since ‖θ′‖cb 6 ‖θ‖cb, we have ‖θ′‖cb = ‖θ‖. Noting that each πi is a complete
isometry of Ai onto its respective range completes the proof.

Finally, we use the universal property of C∗-envelopes to generalize a result
of Muhly, Qiu, and Solel, ([25], Theorem 1.1). Their result includes a correspond-
ing statement for anti-isomorphisms, which can be deduced from the statement
below by considering appropriate opposite algebras. Our generalization does not
require nuclearity of the Ci or the second countability of the D̂i, as we do not use
the spectral theorem for bimodules, ([24], Theorem 4.1).

This result also generalizes Corollary 6.11 for isometric θ from triangular
subdiagonal algebras to general triangular subalgebras.

THEOREM 8.9. For i = 1, 2, let Ai be a triangular subalgebra of the C∗-diagonal
(Ci, Di) and assume that Ai generates Ci as a C∗-algebra. If θ : A1 → A2 is an isometric
isomorphism, then there is a unique ∗-isomorphism π : C1 → C2 with π|A1

= θ.

Proof. By Proposition 4.21, we know that Ci is the C∗-envelope of Ai. Since θ
is completely isometric by Theorem 8.8, the universal property for C∗-envelopes
shows that there exist unique ∗-epimorphisms π12 : C2 → C1 and π21 : C1 → C2
such that

π12 ◦ i2 = i1 ◦ θ−1 and π21 ◦ i1 = i2 ◦ θ,
where, for k = 1, 2, ik is the inclusion mapping of Ak into Ck. Thus, π12 ◦π21 ◦ i1 =
Id|i1(A1), and hence π12 ◦ π21 = Id|C1

. Thus π21 is injective, and is the required
∗-isomorphism of C1 onto C2.
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REMARK 8.10. In Theorems 8.2, 8.7, 8.8 and 8.9, we require that Ci is the C∗-
envelope of Ai, which is somewhat unsatisfying, as we would prefer conditions
in terms of Ai alone. The hypothesis that C∗(Ai) = Ci could be removed if we
knew that every C∗-algebraB ⊆ (C, D) is regular, for then (C∗(Ai), Di) would
again be a C∗-diagonal.

9. BOUNDED ISOMORPHISM TO ∗-EXTENDIBLE ISOMORPHISM

Roughly speaking, Theorem 8.9 states that an isometric isomorphism of tri-
angular algebras is ∗-extendible. Clearly a bounded, non-isometric isomorphism
between triangular algebras cannot be extended to a ∗-isomorphism of the C∗-
envelopes, but it still may be the case that the C∗-envelopes of the triangular
algebras are ∗-isomorphic.

QUESTION 9.1. Suppose Ai ⊆ (Ci, Di) are triangular algebras such that
C∗(Ai) = Ci. If A1 and A2 are boundedly isomorphic, are C1 and C2 ∗-isomorphic?

In view of Theorems 6.14 and 7.7, one might expect an affirmative answer
when there exists a continuous section of R(Ci) into E1(Ci), since R(Ai) generates
R(Ci) by Theorem 4.21. However, Theorem 7.7 only implies an algebraic isomor-
phism of R(A1) onto R(A2); to apply Theorem 6.14, we need to know that the
isomorphism of R(A1) onto R(A2) is continuous. Establishing the continuity of
the map γ from Theorem 7.7 would immediately do this.

In this section, we provide an affirmative answer to Question 9.1 for the
class of triangular limit algebras. Perhaps surprisingly, our proof of this result
uses K-theory. We do not know whether the isomorphism obtained satisfies the
hypotheses of Corollary 7.8, so we cannot use that corollary to establish the exis-
tence of a continuous mapping between the coordinate systems or spectral rela-
tions of the triangular limit algebras.

We start with a theorem about Murray-von Neumann equivalence. The
proof uses the ideas developed in the previous section. Recall that for any Ba-
nach algebra B, two idempotents e, f ∈ B are algebraically equivalent if there exist
x, y ∈ B such that xy = e and yx = f .

THEOREM 9.2. For i = 1, 2, suppose (Ci, Di) are C∗-diagonals, Ai ⊆ Ci are
triangular subalgebras, and θ : A1 → A2 is a bounded isomorphism. If u ∈ A1 is a
partial isometry intertwiner, then θ(uu∗) and θ(u∗u) are algebraically equivalent in C2.

To prove the theorem, we need the following well-known result. We give a
proof to be self-contained.

LEMMA 9.3. Let C ⊆ B(H) be a concrete unital C∗-algebra. If e is an idempotent
in C, then the projection onto the range of e is Pe := (ee∗ + (1− e)∗(1− e))−1ee∗ and
so belongs to C. Moreover, if z = I − eP⊥e , then z is an invertible element of C and
zPez−1 = e.
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Suppose e and f are idempotents in C and there exists an element x ∈ C so that
xe = x = f x and, as a map from eH to f H, x is invertible. If x = v|x| is the polar
decomposition for x, then v ∈ C.

Proof. Let p be the orthogonal projection onto the range of e. Then pe = e
and ep = p, so that e = p + pep⊥. Thus ee∗ + (1 − e)∗(1 − e) = I + pep⊥e∗p +
p⊥e∗pep⊥ > I, so that ee∗ + (1 − e)∗(1 − e) is an invertible element of C. The
product of ee∗ with (1 − e)∗(1 − e) is zero, so a computation shows that Pe :=
(ee∗ + (1 − e)∗(1 − e))−1ee∗ is a self-adjoint idempotent satisfying Pee = e and
ePe = Pe. Hence Pe is a projection with the same range as e, so Pe = p.

A calculation shows that z−1 = I + eP⊥e and zPe = Pe = ez.
Turning to x, since |x| is invertible from eH to eH, we find |x|+ (1− Pe) is an

invertible operator on H. As v∗v is the projection onto eH = |x|H, v(1− Pe) = 0.
Thus, v = x(|x|+ (1− Pe))−1 ∈ C.

Proof of Theorem 9.2. By Theorem 8.2, there exists an isomorphism θ between
the atomic CSL algebras π̃1(A##

1 ) and π̃2(A##
2 ). Invoking Theorem 8.5, we can

factor θ as Ad X ◦ β where β is an automorphism of π̃1(A##
1 ) that fixes π(D1)′′

pointwise and X is invertible.
For ease of notation, identify Ci with its image πi(Ci); in particular, we write

u instead of π1(u), etc.
Since β fixes D′′

1 and u is a partial isometry intertwiner, for every d ∈ D1,
we have β(u)d = udu∗β(u); and hence u∗β(u) ∈ D′

1 = D′′
1 . Let r = u∗β−1(u)u∗.

We claim that

(9.1) rβ(u) = u∗u and β(u)r = uu∗.

Indeed, rβ(u) = u∗β−1(u)u∗β(u) = u∗β−1(uu∗β(u)) = u∗β−1(β(u)) = u∗u. The
other equality is similar. We have Xu∗uX−1 = Xβ(u∗u)X−1 = θ(u∗u), and simi-
larly, Xuu∗X−1 = θ(uu∗). Thus (9.1) yields,

(XrX−1)θ(u) = θ(u∗u) and θ(u)(XrX−1) = θ(uu∗),

so that θ(u) is invertible as an operator from the range of θ(u∗u) onto the range
of θ(uu∗).

Invoking the second part of Proposition 9.3, θ(u) = v|θ(u)| with v ∈ C2.
Thus, the range projections of θ(u∗u) and θ(uu∗) are algebraically equivalent,
and hence θ(u∗u) and θ(uu∗) are algebraically equivalent in C2.

REMARK 9.4. Uniqueness of inverses shows that actually XrX−1 ∈ C2.

DEFINITION 9.5. For n ∈ N, let (Cn, Dn) be a C∗-diagonal, where Cn is a uni-
tal finite dimensional C∗-algebra, and suppose each αn : Cn → Cn+1 is a regular ∗-
monomorphism. Theorem 4.23 shows that the inductive limit, (lim−→Cn, lim−→Dn) is
a C∗-diagonal, which we call an AF-C∗-diagonal. The MASA lim−→D is often called a
canonical MASA. A limit algebra is a norm-closed subalgebra A ⊆ (lim−→Cn, lim−→Dn).
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We reprise some of the results on limit algebras we require. For a more
detailed exposition, see [37] or the introduction to [12].

Let (C, D) = (lim−→Cn, lim−→Dn) be an AF C∗-diagonal, and let A ⊆ (C, D) be a
limit algebra. For v ∈ ND(C), there is some i so that we can write v = dw where

d ∈ D and w ∈ NDi
(Ci). We should also point out that, if v ∈

∞⋃
k=1

NDk
(Ck), the

sets S(v) and S(v∗) are closed and open, so by Propositions 3.4 and 3.3, v is also
an intertwiner. Also, Ak := Ck ∩A is a finite-dimensional CSL algebra in Ck, and
A is the closed union of the Ak.

The C∗-subalgebra B of C generated by A is again an AF-algebra contain-
ing D, and (B, D) is again an AF-C∗-diagonal. By Proposition 4.21, B is the C∗-
envelope of A. Thus by replacing C with B if necessary, we may, and shall, always
assume that A generates C as a C∗-algebra.

The spectrum, or fundamental relation, of A, was first defined in [33], as
pairs (ρ, σ) ∈ D̂× D̂ for which there is a partial isometry normalizer v ∈ A with
ρ = v · σ · v∗. In our notation, this is R(A). The spectrum can also be described
by picking systems of matrix units for each Cn so that matrix units in Cn are sums
of matrix units in Cn+1 and then considering those elements of A# that are either
0 or 1 on all matrix units. These elements of A# are eigenfunctionals and this
description provides a continuous section from R(A) to E1(A).

We require a technical result on normalizing idempotents in a triangular
subalgebra of a finite dimensional C∗-diagonal. The method is similar to that of
Proposition 7.5, and is in fact what led to the constructions of S and T.

LEMMA 9.6. Suppose that (C, D) is a C∗-diagonal with C finite dimensional, and
A ⊆ (C, D) is triangular. Let B ⊆ A be a (necessarily finite) Boolean algebra of commut-
ing idempotents. Then there exists an invertible element A ∈ A such that ABA−1 ⊆ D

is a Boolean algebra of idempotents.

Proof. Let G = {I − 2e : e ∈ B}; then G is a finite group whose elements are
all square roots of the identity. Clearly G is in bijective correspondence with B.
Define

S =
1
|G| ∑

g∈G
E(g)g−1.

A calculation shows that for any g ∈ G, E(g)S = Sg, and we have E(S) = I. Thus,
S = I + Y where Y ∈ A is nilpotent, and we conclude that S is invertible. Then
for every e ∈ B, SeS−1 = E(e), and we are done.

COROLLARY 9.7. Suppose (C, D) is an AF C∗-diagonal and A ⊆ (C, D) is a
triangular subalgebra. If e ∈ A is an idempotent, then there exist A ∈ A such that
AeA−1 = E(e).

Proof. Write (C, D) = lim−→(Cn, Dn) where (Cn, Dn) are finite dimensional C∗-
diagonals, and let An = Cn ∩ A, so that A = lim−→An. By Proposition 4.5.1 of
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[3], there exists n ∈ N, an idempotent f ∈ An and an invertible element X ∈
A so that XeX−1 = f . Lemma 9.6 (applied to {0, e, I − e, I}) shows that there
exists S ∈ An so that S f S−1 = E( f ). Thus (SX)e(SX)−1 = E( f ). Since E|A is a
homomorphism, applying E to the previous equality yields E(e) = E( f ), and the
proof is complete.

REMARK 9.8. Let ι : D → A be the inclusion map of D into the triangu-
lar limit algebra A. As in [31], Corollary 9.7 implies ι∗ : K0(D) → K0(A) is an
isomorphism of scaled dimension groups and ι−1

∗ = E∗.

We now show that an isomorphism of triangular limit algebras implies the
existence of a ∗-isomorphism of the C∗-envelopes.

THEOREM 9.9. Suppose θ : A1 → A2 is an algebra isomorphism of the triangular
limit algebras Ai. For i = 1, 2, let Ci be the C∗-envelope of Ai and let hi : Di → Ai and
ki : Ai → Ci be the inclusion maps. Then there exists a ∗-isomorphism τ : C1 → C2 such
that the following diagram of scaled dimension groups commutes:

(9.2)

K0(D1)
h1∗−−−−→ K0(A1)

k1∗−−−−→ K0(C1)yα∗

yθ∗

yτ∗

K0(D2)
h2∗−−−−→ K0(A2)

k2∗−−−−→ K0(C2)

.

Proof. Recall from [11] that algebraic isomorphisms of limit algebras are nec-
essarily bounded.

That θ∗ ◦ h1∗ = h2∗ ◦ α∗ follows from the fact that α = E2 ◦ θ|D1
and Re-

mark 9.8. For j = 1, 2, let ιj = k j ◦ hj be the inclusion mapping of Dj into Cj. To
complete the proof, we shall show the existence of τ∗ : K0(C1) → K0(C2) so that
τ∗ ◦ ι1∗ = ι2∗ ◦ α∗.

For j = 1, 2, write Cj = lim−→k(Cjk, Djk) where (Cjk, Djk) are finite dimensional
C∗-inclusions. Without loss of generality, we may assume that Ajk := Aj ∩ Cjk
satisfies C∗(Ajk) = Cjk. Any projection p ∈ C1 is algebraically equivalent to a
projection in C1k for some k, so p is algebraically equivalent to a projection p′ ∈
D1k. It follows that the induced mapping of scaled dimension groups, (ιj)∗ :
K0(Dj) → K0(Cj) is onto.

We claim that if p and q are projections in D1 which are algebraically equiv-
alent in C1, then α(p) and α(q) are algebraically equivalent in C2, and we modify
ideas of Lemma 2.2 of [36] for this. We may assume p, q ∈ D1k for some k, and are
algebraically equivalent in C1k. In fact, we shall show that they are equivalent via
an element of ND1k

(C1k).
Since p and q are algebraically equivalent, they have the same center-valued

trace, and hence there exists a positive integer r and minimal projections pi, qi
belonging to D1k so that p = p1 + · · · + pr, q = q1 + · · · + qr. By relabeling if
necessary, we may assume that for each i with 1 6 i 6 r, pi and qi are algebraically
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equivalent. Let wi ∈ C1k be a partial isometry so that qiwi pi = wi, w∗
i wi = pi and

wiw∗
i = qi. Since pi and qi are minimal projections in C1k, wi are minimal partial

isometries in C1k. Moreover, w =
r
∑

i=1
wi ∈ ND1k

(C1k) satisfies w∗w = p and

ww∗ = q.
Since C∗(A1k) = C1k, we can write wi = vi1 vi2 · · · vil as a finite product of

partial isometries, with each vij a normalizer of D1k and belonging to either A1k
or A∗

1k. Theorem 9.2 shows that α(v∗ij
vij ) and α(vij v

∗
ij
) are algebraically equivalent

in C2. Thus, α(pi) and α(qi) are equivalent in C2 also, whence α(p) and α(q) are
algebraically equivalent in C2 as desired.

Thus, if p ∈ C1 is a projection, we may define τ∗([p]) = (ι2∗ ◦ α∗)([p′]),
where p′ ∈ D1 is any projection in D1 with ι1∗([p′]) = [p]. The previous para-
graph shows τ∗ is well-defined, and it determines an isomorphism of the scaled
dimension groups K0(C1) and K0(C2) satisfying (9.9).

An application of Elliott’s Theorem now completes the proof.

We would very much like to know whether it is possible to choose τ in the
conclusion of Theorem 9.9 so that τ|D1

= α. When this is the case, Corollary 7.8
implies the existence of a continuous isomorphism of coordinate systems, and
hence spectra. The next example shows that more than the K-theoretic data pro-
vided by the conclusion of Theorem 9.9 is required to prove the existence of such
a ∗-isomorphism.

EXAMPLE 9.10. Suppose, for j = 1, 2, that (Cj, Dj), are AF C∗-diagonals and
ij : Dj → Cj are the natural inclusions. Given an isomorphism α : D1 → D2
with an isomorphism of scaled dimension groups, h : K0(C1) → K0(C2) with
i2∗ ◦ α∗ = h ◦ i1∗, there need not exist a ∗-isomorphism τ : C1 → C2 with τ|D1

= α.
To see this, we use two well-known direct systems for triangular AF alge-

bras, the refinement system and refinement with twist system. Define σk : M2k →
M2k+1 by sending a matrix A = [aij] to σk(A) = [aij ⊗ I2], i.e., replacing each
entry of A with the corresponding multiple of a 2 × 2 identity matrix. Define
φk : M2k → M2k+1 to be Ad Uk ◦ σk, where Uk is the 2k+1 × 2k+1 permutation
unitary which is the direct sum of a 2k+1 − 2 identity matrix and

[
0 1
1 0

]
.

Let C1 = lim−→(M2k , σk) and C2 = lim−→(M2k , φk). Let D1 and D2 be the direct
limits of the diagonal matrices in each direct system. Since σk and φk agree on
D2k , the direct limit of the identity maps id : D2k → D2k defines an isomorphism,
α, from D1 to D2. Now, C1 and C2 are isomorphic, as they are UHF C∗-algebras
with the same “supernatural” number, 2∞. Further, K0(Cj) can be identified with
G = {k/2n : k ∈ Z, n ∈ N}, with the usual order and scale G ∩ [0, 1]. With this
identification, ij∗ is the usual trace from K0(Dj) into G ⊂ R. Since α is the identity
on K0(Dj), we have i2∗◦α∗= i1∗. Thus, we can take h to be the identity map on G.

It remains to show that there is no ∗-isomorphism τ : C1 → C2 with τ|D1
=

α. We argue by contradiction, so assume such a τ exists.
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We may build an intertwining diagram as follows. For brevity, let Ci be
M2i , σi,j denote σi ◦ σi+1 ◦ · · · ◦ σj−1, and define φi,j similarly. By Theorem 2.7 of
[5], there are sequences (mi) and (ni) and ∗-monomorphisms (ψi) and (ηi) so that
the following diagram commutes:

C1
σ1,m1−−−−→ Cm1

σm1,m2−−−−→ Cm2

σm2,m3−−−−→ Cm3 −−−−→ · · ·C1

↘ ψ1

xη1 ↘ ψ2

xη2 ↘ ψ3

xη3 ↘ ψ4

yτ

C1
φ1,n1−−−−→ Cn1

φn1,n2−−−−→ Cn2

φn2,n3−−−−→ Cn3 −−−−→ · · ·C2

.

Since τ maps D1 onto D2, we can use this diagram to show that each ψk and ηk
are restrictions of α and α−1, respectively, and so are the identity map at the level
of matrix algebras.

To obtain the contradiction, first fix Ck = M2k and observe that if e is the
(1, 1) matrix unit for Ck and f the (2k, 2k) matrix unit in Ck, then for any l < k,
eσl,k(Cl) f = 0 while eφl,k(Cl) f 6= 0. Now consider the two maps λ = φn1,n3

and µ = ψ3 ◦ σm1,m2 ◦ η1 from Cn1 into Cn3 . Letting e and f be the (1, 1) and
(2n3 , 2n3) matrix units in Cn3 , the observation implies that eλ(Cn1) f 6= 0. To see
that eµ(Cn1) f = 0, let e′ and f ′ be the (1, 1) and (2m2 , 2m2) matrix units in Cm2 and
observe that e′σm1,m2(η1(Cn1)) f ′ = 0 by the observation. Applying φ3 and noting
that e, f are subprojections of φ3(e′),φ3( f ′) respectively completes the argument.

Thus, no such diagram exists, and hence no such τ exists.
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ADDED IN PROOFS. Using norming algebras, the second author has recently given a
conceptually simple proof of the generalization of Theorem 8.9 ([32], Theorem 2.16).


