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ABSTRACT. Let H be an infinite-dimensional separable Hilbert space, B(H)
the algebra of all bounded linear operators on H, and ¢ : B(H) — B(H) a bi-
jective linear map such that ¢(A) and ¢(B) are similar for every pair of similar
operators A, B € B(H). Then there exist a nonzero complex number ¢ and an
invertible operator T € B(H) such that either ¢(A) = cTAT~!, A € B(H), or
¢(A) = cTA'T™1, A € B(H). Here, At denotes the transpose of A with respect
to some fixed orthonormal basis in H.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The problem of characterizing linear maps on matrix algebras preserving
certain properties, subsets or relations has attracted the attention of many math-
ematicians in the last few decades [8], [9], [13]. Some of these results have been
recently extended to the infinite-dimensional case.

In this paper we will deal with similarity preserving maps. By the results of
Hiai [4] and Lim [10], a linear map ¢ defined on the algebra of all n x n matrices
preserving similarity, that is, $(A) and ¢(B) are similar whenever A and B are
similar, must be either of the form A — cTAT~! 4 d(tr A)I, or of the form A —
cTA'T~! +d(tr A)I for some complex numbers c,d and some invertible matrix
T. Here, tr A denotes the trace of A. A more difficult infinite-dimensional case
was treated by several authors [5], [6], [7], [12]. The best result so far is due to
Petek [12] who proved that if H is an infinite-dimensional Hilbert space, B(H) the
algebra of all bounded linear operators on H, and ¢ : B(H) — B(H) a surjective
linear map such that for every pair A,B € B(H) the operators ¢(A) and ¢(B)
are similar if and only if A and B are similar, then there exist a nonzero complex
number ¢ and an invertible operator T € B(H) such that either ¢(A) = cTAT},
A € B(H), or ¢(A) = cTA'T™!, A € B(H). Let us mention that for general
Banach spaces the problem of characterizing similarity preserving linear maps
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seems to be more difficult. Namely, there exist Banach spaces X such that there
are nonzero multiplicative linear functionals f on B(X) [11]. Here, B(X) denotes
the algebra of all bounded linear operators on X. If X is such a Banach space,
then the bijective linear map ¢ : B(X) — B(X) defined by ¢(A) = A+ f(A)I has
many preserving properties. Among others, every such map preserves similarity
in both directions.

It is natural to ask whether we can get the same conclusion as in the result
of Petek under the weaker assumption of preserving similarity in one direction
only. The aim of this paper is to show that the answer is in the affirmative for
infinite-dimensional separable Hilbert spaces.

THEOREM 1.1. Let H be an infinite-dimensional separable Hilbert space. Assume
that ¢ : B(H) — B(H) is a bijective linear map such that ¢(A) and ¢(B) are similar for
every pair of similar operators A, B € B(H). Then there exist a nonzero complex number
c and an invertible operator T € B(H) such that either

Pp(A) =cTAT™!, AeB(H), or ¢(A)=cTA'T!, A e B(H).

Here, At denotes the transpose of A with respect to an arbitrary, but fixed orthonormal
basis in H.

It turns out that the problem of characterizing linear maps preserving simi-
larity in one direction only is much more difficult than the problem of describing
linear maps preserving this relation in both directions. Fortunately, Davidson
and Marcoux [3] have recently obtained a result on linear spans of similarity or-
bits of bounded linear operators acting on a separable Hilbert space which is of
great help in solving our problem. They investigated the problem whether every
A € B(H) can be expressed as a linear combination of operators that are simi-
lar to a single given operator C € B(H). Of course, this is impossible if C is of
the form scalar plus compact, as the space of such operators is invariant under
similarity. Davidson and Marcoux proved the surprising result that for all other
operators C the answer to their question is positive. More precisely, they proved
that if C € B(H) is not of the form Al 4+ K for some A € C and some compact
operator K € B(H), then every A € B(H) can be written as a linear combination
of at most 6 operators similar to C. Let us remark that we need the separability
condition in our main result because the proof depends on the result of Davidson
and Marcoux. We conjecture that the result holds true without this assumption.

2. NOTATION AND PRELIMINARY RESULTS

Let H be a separable complex Hilbert space. By B(H), K(H), F(H), and
Fy(H) we denote the algebra of all bounded linear operators on H, the ideal of all
compact operators, the ideal of all finite rank operators, and the subspace of all
trace zero finite rank operators, respectively. We write A ~ B when A, B € B(H)
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are similar. For x,y € H we denote by y*x the inner product of x and y. By x*
we denote the orthogonal complement of the vector x. If x,y € H are nonzero
vectors, then xy* stands for the rank one operator defined by (xy*)z = (y*z)x,
z € H. Note that every rank one operator can be expressed in this way and that
xy* is an idempotent if and only if y*x = 1. Further, xy* is a square-zero operator
(nilpotent of rank one) if and only if y*x = 0.

LEMMA 2.1. Let A € B(H) be an operator that is not of the form scalar plus finite
rank. Then for every positive integer n there exist vectors x1,...,x, € H such that the
set of vectors x1,...,Xn, AX1, ..., Axy is linearly independent.

Proof. We will prove the statement by induction on n. In the case n = 1
the statement follows from the fact that A is not a scalar operator. Assume that
we have already found vectors x1,...,x, € H such that x1,...,x,, Axq,..., Axy
are linearly independent. Assume also that for every y € H the set of vectors
X1, Xn, Y, Axq, ..., Axy, Ay is linearly dependent. In other words, for every y €
H the vectors y and Ay are linearly dependent modulo the subspace spanned by
X1, Xn, Axq, ..., Axy. It follows from [1], [2] that there exist complex numbers
A, i, not both of them zero, such that AA + uI = F for some finite rank operator F.
Clearly, A cannot be zero. This contradiction completes the proof of the induction
step. 1

LEMMA 2.2. Let A € B(H), A ¢ CI, be of the form scalar plus compact. Then
there exist trace zero operators By, By € F(H) such that:
(i) By and By are linearly independent, and
(i) A+ B~ A k=12

Proof. Every compact operator has a nontrivial invariant subspace. Thus,
there exists a direct sum decomposition H = H; @ Hj such that with respect to
this decomposition A has a matrix representation

A1 Ap
A=l 4

At least one of the subspaces Hy and H,, say Hj, has dimension greater than one.
We may further assume that A; # 0. Indeed, if Ay = 0, then

I M|[A 0]l -M| _ [AT MA3;—AM
0 I||0 AzJ[0 I | |O As '

If MA3 — A1M = 0 for every bounded linear operator M : Hy — Hj, then A; =

Al and A3 = Al for some A, and consequently, A = Al, a contradiction.

Thus we may and we will assume that A, # 0. Let N : Hj — Hj be any
nilpotent of rank one. Then

I+N 0] [AL A][I-N 0] _[A1 4], [NAI=AIN-NAIN NA
0 I|l|0 As]| o I|T|0 A 0 0|
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Clearly, NA; — AN — NA1N is a trace zero operator of rank at most two. Since
dim H; > 1 and A, # 0 we can find two nilpotents N1, N, : H; — Hj of rank one
such that Ny Ay and Ny A; are linearly independent. &

LEMMA 2.3. Let A € B(H) be any non-scalar operator and w any complex num-
ber. Then there exists an idempotent P € B(H) of rank one such that « is an eigenvalue
of A+2P.

Proof. As A ¢ CI we can find x € H such that x and Ax are linearly inde-
pendent. Define P € B(H) by

Px = %x— %Ax, PAx = zx(% —1)x+ (1— %)Ax,

and

Pz=0
for every z € {x, Ax}*. Clearly, P is an idempotent of rank one and (A + 2P)x =
ax. 1

REMARK 2.4. The analogue statement with A — 2P instead of A + 2P can be
proved in the same way:.

LEMMA 2.5. Let ¢ : B(H) — B(H) be a bijective linear map preserving similar-
ity. Assume that there exists A € B(H) such that A ¢ CI+ F(H) and $(A) = AI+F
for some A € C and some finite rank operator F. Denote r = rank F. Then for every
finite rank square-zero operator B € B(H) we have rank ¢(B) < 3r.

Proof. Let k be any positive integer. By Lemma 2.1 there exist vectors x, .. .,
xx € H such that the set of vectors x1,...,xx, Axy,..., Axg is linearly indepen-
dent. Let Hj be the linear span of x1, ..., x; and H the orthogonal complement

of Hl- If
A1 Az
A= [As AJ

is the matrix representation of A with respect to the decomposition H = Hy @ Hy,
then Aj is of rank k. Let

L 41T a4 o

—3A; 0 0 I 0 I
[0 24,1 [31 0 i1 0
b= [—§A3 0 ] B {o I} Alo 1| =4

The operator
0 0
2C-D =
[-%Aa 0]

is a square-zero operator of rank k. Furthermore, ¢(2C — D) = (2TFT~! + 2AI —
2F —2AI) — (SFS™! — F) = 2TFT~! — SFS~! — F is of rank at most 3r. Since all
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square-zero operators of rank k are similar and since k was an arbitrary positive
integer, we are done. I

3. LINEAR PRESERVERS OF NILPOTENTS OF RANK ONE

This section is devoted to the study of linear maps preserving nilpotents
of rank one. The proof is quite standard in the study of linear preservers. We
include it for the sake of completeness.

PROPOSITION 3.1. Let H be a separable Hilbert space. Let ¢ : B(H) — B(H)
be an injective linear map such that $(N) is a nilpotent of rank one for every rank one
nilpotent operator N € B(H). Then either:

(i) there exist a nonzero x € H and an injective conjugate-linear map t : Fy(H) —

xt such that p(A) = x(t(A))* for every A € Fy(H), or

(ii) there exist a nonzero y € H and an injective linear map & : Fo(H) — y* such
that (A) = 6(A)y* for every A € Fy(H), or

(ii) there exist linear injective maps T,S : H — H such that ¢(xy*) = (Tx)(Sy)*
for every rank one nilpotent operator xy*, or

(iv) there exist conjugate-linear injective maps T,S : H — H such that ¢(xy*) =
(Ty)(Sx)* for every rank one nilpotent operator xy*.

REMARK 3.2. Consider the third possibility above. For every pair of or-
thogonal vectors x,y we have Tx L Sy since ¢ preserves nilpotents of rank one.
Thus, y*x = 0 yields (Sy)*(Tx) = 0. The linear maps T and S may be dis-
continuous. For example, decompose H into an orthogonal sum of subspaces
H = K& L with K and L both isomorphic to H and choose T,S : H — H to be
any injective linear unbounded maps with images in K and L, respectively. De-
fine ¢p(xy*) = (Tx)(Sy)* for every rank one nilpotent xy* € B(H). The map ¢ is
well-defined on the set of all nilpotents of rank one and can be uniquely extended
to a linear map on Fy(H). Using Zorn’s lemma this map can be further extended
to an injective linear map ¢ : B(H) — B(H). Of course, the obtained extension
preserves rank one nilpotents.

However, if we assume in addition that T and S are bijective, then they
must be continuous and S is the adjoint of some scalar multiple of the inverse of
T which further yields that ¢(A) = cTAT ! for every A € Fy(H). Indeed, choose
u,v € H such that v*u = 1 and define a complex number ¢ by ¢ = (Sv)*(Tu).
Consider z,w € H such that w*z = 1 and w*u = 0 and v*z = 0. Then (u —
z)(v + w)* is square-zero, and hence, (S(v + w))*(Tu — Tz) = 0, which, because
of (Sw)*(Tu) = 0and (Sv)*(Tz) = 0, implies that (Sw)*(Tz) = (Sv)*(Tu) = c.

Let now x,y € H be arbitrary vectors with y*x = 1. We want to show
that (Sy)*(Tx) = c. To do this we choose s € H such that v*s = y*s = 0 and
s & span{x,u}. We further choose t € H with t*s = 1 and *u = t*x = 0. As
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before we prove that (Sv)*(Tu) = (St)*(Ts) and (Sy)*(Tx) = (St)*(Ts) which
yields the desired equality (Sy)*(Tx) = c.
By linearity we have

(3.1) (Sy)*(Tx) =cy*x

for every pair of vectors x,y € H. Surjectivity of linear operators T and S implies
that ¢ is a nonzero complex number. If a sequence of vectors (x,) tends to zero
and Tx;, — u, then by (3.1), u = 0, and hence T is bounded. The same is true
for S. Moreover, S*T = cI. From here we conclude that ¢(xy*) = cTxy*T~! for
every nilpotent xy* of rank one. By linearity we have ¢(A) = cTAT! for every
A€ Fo(H )

Similarly, if we have the fourth possibility above and if we assume in ad-
dition that T and S are bijective, then ¢(A) = cRA'R™! for every A € Fy(H).
Here, ¢ is a nonzero complex number, At denotes the transpose of A with respect
to some fixed orthonormal basis, and R is a bounded bijective linear operator.
Indeed, choose an orthonormal basis (ex) in H and define a conjugate-linear in-

volution | : H — H by J(¥72 1 Akex) = § Axer. Then (xy*)t = (Jy)(Jx)*, where
k=1

the transpose is defined with respect to the chosen orthonormal basis. Thus, we
have ¢((xy*)t) = ¢((Jy)(Jx)*) = (T]x)(SJy)* for every rank one nilpotent xy*.
Hence, the map A — ¢(A") is of the third type above with linear maps T] and S]
instead of T and S, respectively. Therefore, we have ¢(A') = cRAR™! for every
A € Fy(H). Here, R = T] is a bounded linear bijective operator and c is a nonzero
complex number. It follows that ¢(A) = cRA'R™1, A € Fy(H).

Proof of Proposition 3.1. For every pair of nonzero vectors x,y € H define
Ly = {xu* :u € H and u*x = 0} and R, = {zy* : z € H and y*z = 0}. Each
of Ly and Ry is a linear subspace of B(H) consisting of nilpotents of rank at most
one. Note that if a sum of two rank one operators ujwj + upwj is of rank at most
one then u; and u; are linearly dependent, or w; and w are linearly dependent.
Thus, every linear space of nilpotent operators of rank at most one is contained
either in L, for some nonzero x € H, or in Ry for some nonzero y € H. This
implies that for every nonzero x € H, ¢(Ly) is contained in L, for some nonzero
z € H or in R, for some nonzero y € H.

Choose a nonzero x € H. Then we have either ¢(L,) C L, for some nonzero
z € H,or ¢(Lyx) C Ry for some nonzero y € H. We will consider only one of these
two cases, say the second one. We will prove that for every nonzero u € H there
exists a nonzero w € H such that ¢(L,) C Ry. Assume that there is a nonzero
u € H such that this is not true. Then u and x are linearly independent and
¢(Ly) C L, for some nonzero v € H. We can find linearly independent vectors
21,22 € H such that z;x = zju = 0, k = 1,2. We know that there exist nonzero
vectors s, t, p, g € H such that

¢(xz1) =sy", ¢(xzp) =ty", and P(uzy) =op*, ¢P(uz;) =oq",
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Moreover, by injectivity of ¢, s and ¢ are linearly independent and p and g are
linearly independent. Since xzj + uzj is a nilpotent of rank one, the operator
sy* + vp* is of rank one. Consequently, s and v are linearly dependent or y and
p are linearly dependent. Similarly, ¥ and q are linearly dependent or t and v are
linearly dependent. Assume that s and v are linearly dependent (the case when
t and v are linearly dependent can be treated in the same way). Then, after ab-
sorbing a constant in vp* and v4* we may assume that v = s. Because s and t are
linearly independent, we have necessarily that y and g are linearly dependent.
Consequently, ¢(uz;) = Asy* for some nonzero scalar A, contradicting the fact
that xz] and uz} are linearly independent. Hence, s and v must be linearly inde-
pendent, and the same is true for t and v. But then both pairs p,y and g,y are
linearly dependent, contradicting the fact that p and g are linearly independent.

We have proved that for every nonzero x € H there is a nonzero y € H
such that ¢(Ly) C Ry. If there exists a nonzero y € H such that ¢(Ly) C Ry for
every nonzero x € H, then because every finite rank trace zero operator is a linear
combination of nilpotents of rank one, we have ¢(Fo(H)) C Ry. In this case the
second possibility in our proposition holds true.

So, we may assume that there exist nonzero vectors x; and x; such that
¢(Ly,) C Ry, and ¢(Ly,) C Ry, and y; and y; are linearly independent. It
then follows that for every pair of linearly independent vectors uj,u, € H we
have ¢(Ly,) C Ry, and ¢(Ly,) C R, where z; and z; are linearly independent.
Indeed, assume on the contrary that ¢(L,,) C R; and ¢(Ly,) C R, for some
nonzero z € H. Consider first the case that x1, x», u1, and up are linearly in-
dependent. Choose a nonzero v € {xy,xp,u1,us}+. We have ¢(x1v*) = w1Y3,
P(x20%) = woy;, ¢(u1v*) = wiz*, and ¢(upv*) = wyz*. Because (x1 + x2)v* is
a nilpotent of rank one, wyy] + woy; is of rank one, and therefore, w; and w»
are linearly dependent. Also, (x1 + u1)v* is a nilpotent of rank one, and conse-
quently, wyy; + w3z* is of rank one. Similarly, woy; + wyz* is of rank one. If z
and y; are linearly dependent, then z and y, must be linearly independent which
yields that wy and w are linearly dependent. It follows that ¢(u0*) = pw;y;j for
some nonzero y € C. Thus, the rank one nilpotent (x; — y~1u;)v* is mapped into
the zero operator, a contradiction. In the same way we prove that z and y, are
linearly independent. Hence, all vectors wy, w2, w3, w4 belong to the same one-
dimensional subspace of H. In particular w; = Tw;3 for some nonzero T € C,
and consequently, ¢((tuq — up)v*) = 0, a contradiction. If x1, xp, u1, and u; are
linearly dependent, then we can find u3 and u4 such that x;, xp, u3, and uy are
linearly independent and u1, uy, u3, and u4 are linearly independent. Now we
use the previous argument first for the vectors x1, xp, u3, and 14 and then for the
vectors u1, Uy, u3, and uy to conclude that ¢(L,,) C Rz, and ¢(Ly,) C R;, with z;
and z, being linearly independent.

For every nonzero x € H there exists a nonzero y € H and a mapping
Ty : x+ — y* such that ¢(xv*) = (Tyv)y*. From linearity of ¢ it follows that Ty is
conjugate-linear. Moreover, Ty is injective.
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Let x and z be two arbitrary nonzero vectors from H. We will show that
the restrictions of Ty and T; to {x,z}* differ only in a multiplicative constant.
There is nothing to prove if x and z are linearly dependent. So, assume that they
are linearly independent. We have ¢(xv*) = (Tyv)y* and ¢(zv*) = (Tv)u*,
v € {x,z}*. Here, y and u are linearly independent vectors. Since (x + z)v* is
a rank one nilpotent, v € {x,z}i, Tyv and T,v are linearly dependent for every
v € {x,z}*. Because Ty and T, are injective, we have Tyv = ¢T,v, v € {x,z}*, for
some nonzero ¢ € C.

Choose linearly independent x,z € H. We have ¢(xv*) = (Tyv)y*, v € x*,
and ¢(zv*) = (T.v)u*, v € z*-. By absorbing a constant we may assume that
Ty = T on {x,z}*. Define a conjugate-linear map T : H — H by

To — {Txv : vexi,'
T,o : vez
Let u € H be any nonzero vector. By absorbing a constant we may and we will
assume that the restrictions of T, and Ty to the subspace {u, Jc}L coincide. Hence,
the restriction of T}, to the subspace {u, x}* coincides with the restriction of T to
this subspace.

We want to prove that T}, is the restriction of T to ut. There is nothing to
prove if u and x are linearly dependent. So, assume they are not.

We start with the case when u ¢ span {x,z}. Then we have u* = {u, x}*+ +
{u,z}*. We know that the restriction of T, to the subspace {u,z}* coincides with
the restriction of #T to this subspace. Here 7 is some nonzero complex number
and all we have to do is to show that 7 = 1. To this end we choose a nonzero v
orthogonal to u, x, z. We have T,v = Tv and T,,v = #Tv. Hence, 7 = 1, as desired.

In the case when u € span {x,z} we choose w € H such that x, z, w as well
as x, u, w are linearly independent. By the previous step we know that T, is the
restriction of T to wL. As before we prove that the restrictions of T, and T, to the
orthogonal complement of u, w coincide. This yields the desired conclusion that
T, is the restriction of T to u=.

We can now conclude that for every nonzero x € H there exists a nonzero
y € H such that

P(xv*) = (To)y*, vext.
The mapping x — y is obviously conjugate-linear and injective. Setting Sx = y
we complete the proof. 1

4. PROOF OF THE MAIN RESULT

This section is devoted to the proof of our main theorem. So, assume that
¢ : B(H) — B(H) is a bijective linear map such that ¢(A) ~ ¢(B) whenever A ~
B. Let us first prove that ¢(I) = ul for some nonzero u € C. By surjectivity there
exists A € B(H) such that ¢(A) = I. We have to show that A is a scalar operator.
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If not, then it is easy to find B # A such that A ~ B. Then ¢(A) = I ~ ¢(B), and
consequently, ¢(B) = I, contradicting the injectivity of ¢.

Next we will show that ¢ maps nilpotents of rank one into nilpotents of rank
one. Choose a rank one operator B € B(H) and let A € B(H) be the operator with
¢(A) = B. Clearly, A is not a scalar operator. Thus, we can find a vector x such
that x and Ax are linearly independent. Consequently, there exists y € H such
that y*x = 0and y*Ax = 1. Set N = xy*. Then N?> = 0 and NAN = N. For every
A € Cwehave p((I+AN)A(I—AN)) = RABR/{1 for some invertible Ry € B(H).
Thus

¢p(A—(I+AN)A(I-AN))—B
is of rank one for every complex A. Hence
rank (A2¢(N) + Ap(AN — NA) — B) = 1.

Dividing by A2, sending A to infinity, and applying the fact that the set of all
operators of rank at most one is closed, we arrive at rank $(N) = 1. Moreover,
N ~ 2N, and therefore, $(N) ~ 2¢(N). As ¢(N) is of rank one, it has to be
nilpotent. Since all nilpotents of rank one are similar, we conclude that ¢ maps
nilpotents of rank one into nilpotents of rank one. It follows that

¢(Fo(H)) C Fo(H).

Using the result of Davidson and Marcoux we will prove now that if A €
B(H) is not of the form scalar plus compact, then ¢(A) is not of the form scalar
plus compact as well. Indeed, assume on the contrary that ¢$(A) = AI + K for
some scalar A and some compact operator K. Let B € B(H) be any operator.
We then know that B = y1Bj + - - - + ygBg for some scalars i, ..., 4g and some
operators By, ..., Bg that are all similar to A. It follows that ¢(B) has the form
scalar plus compact. As B € B(H) was an arbitrary operator, this contradicts the
surjectivity of ¢.

Next we will prove an analogous statement for finite rank operators. More
precisely, if A € B(H) is not of the form scalar plus finite rank, then ¢(A) is not of
the form scalar plus finite rank as well. Assume on the contrary that there exists
A € B(H) such that A ¢ CI + F(H) and ¢(A) = Al + F for some A € C and
some finite rank operator F. Then, by Lemma 2.5, there exists an integer M such
that for every finite rank square-zero operator B € B(H) we have rank ¢(B) < M.
We know that ¢ maps the set of nilpotents of rank one into itself. Thus, we can
apply Proposition 3.1. Assume that we have the third possibility. Using the Jor-
dan canonical form we see that every square-zero operator B of rank m, where
m is any positive integer larger than M, can be written as B = % xry; where

k=1
X1,--+, Xk, Y1, - - -, Yk are linearly independent and y;x, = 0, k = 1,...,m. But

m
then, since T and S are injective, the operator ¢(B) = Y (Txx)(Syx)* is of rank
k=1
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m > M, a contradiction. In a similar way we prove that the fourth possibil-
ity cannot occur. So, we have either the first, or the second possibility. We will
consider just the first one since the proof in the second case goes through in al-
most the same way. Thus, there are a nonzero x € H and a conjugate-linear map
T : Fo(H) — x* such that ¢(C) = x(7(C))* for every C € Fy(H). Letz € H
be a vector linearly independent of x. Choose a nonzero v € H. By surjectivity,
there exists D € B(H) such that ¢(D) = zv*. According to the previous step, D
must be a scalar plus compact and of course, D is not a scalar operator. Apply-
ing Lemma 2.2 we can find linearly independent Ny, N, € Fy(H) such that both
D + Nj and D + N, are similar to D. It follows that zo* + x(T(N7))* ~ zv*. Now,
since zv* 4+ x(T(N1))* is of rank one and because z and x are linearly indepen-
dent, the vectors v and 7(Nj) must be linearly dependent. In the same way we
prove that v and T(N,) are linearly dependent. But then ¢(Nj) and ¢(N) are
linearly dependent, contradicting the bijectivity of ¢. We have proved that the set
of operators that are not of the form scalar plus finite rank is invariant under ¢.
We have

¢(Fo(H)) C Fp(H) C F(H) c F(H)+CI Cc ¢(F(H) +ClI),

the last inclusion being just a reformulation of the previous step. Let P be any
projection of rank one. Then F(H) = Fy(H) ® CP. Indeed, let C € F(H). Then
C = ({trC)P+ (C— (trC)P) and (C — (trC)P) is a trace zero operator. Hence,
Fy(H) is a subspace of codimension 1 in F(H). Also, F(H) is of codimension 1
in F(H) + CI. By bijectivity, ¢(Fy(H)) is of codimension 2 in ¢(F(H) + CI). It
follows that

¢(Fy(H)) = Fy(H) and ¢(F(H) + CI) = F(H) + CL.

We apply Proposition 3.1 once again. Because ¢(Fy(H)) = Fo(H) we have
either the third or the fourth possibility with T and S bijective. Thus, by the
remark following Proposition 3.1, we have either ¢(A) = cTAT ™!, A € Fy(H), or
P(A) = cTA'T™1, A € Fy(H). Composing ¢ with a similarity transformation and
the transposition, if necessary, and then multiplying it by ¢!, we may assume
that

$p(A)=A

for every finite rank trace zero operator A.

An operator A € B(H) is called an involution if A% = I. If A is an involution
then H = Ker (A — I) @ Ker (A + I). We will say that an involution is infinite
if both the eigenspaces corresponding to the eigenvalues 1 and —1 are infinite-
dimensional. Any two infinite involutions are similar. In the next step we will
show that for every infinite involution A we have ¢(A) = A+ Al forsome A € C.

Assume for a moment that we have already done this. By the result of
Davidson and Marcoux every A € B(H) is a linear combination of at most 6 infi-
nite involutions. It follows that for every A € B(H) we have ¢(A) = A+ f(A)I,
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where f : B(H) — C is a linear functional. The Hilbert space H can be identified
with H® H. Let N € B(H ® H) be a square-zero operator

0 IT [21 o] [o I|[3I ©
v=lo o <[5 1] lo o] [5 V]2

Thus, ¢(N) = N + f(N)I ~ 2N +2f(N)I = ¢(2N), and consequently, f(N) =
0, which further implies that ¢(N) = N. Applying the result of Davidson and
Marcoux once again we see that every A € B(H) is a linear combination of at
most 6 operators similar to N. It follows that ¢(A) = A for every A € B(H), as
desired.

So, it remains to prove that every infinite involution A is mapped by ¢ into
a sum of itself and a scalar operator. Denote by H; the eigenspace of A cor-
responding to the eigenvalue 1 and by H_; the eigenspace of A corresponding
to the eigenvalue —1. Clearly, H is a (not necessarily orthogonal) direct sum
of Hy and H_;. We will first prove that both H; and H_; are invariant un-
der ¢(A). In order to see that Hj is invariant under ¢(A) we choose nonzero
vectors x € Hj and y € Hj. We have to show that y*¢(A)x = 0. Clearly,
xy* is a nilpotent of rank one. Further, xy*A = —xy*. Indeed, for z € H;
we have (xy*A)z = (xy*)z = (y*z)x = 0 = (—xy*)z. And if z € H_4, then
(xy*)Az = —(xy*)z, as desired. Obviously, Axy* = xy*. Consequently,

(I + %axy*) (A + zxxy*) (I - %zxxy*) =A

for every o € C. Thus, ¢(A) ~ ¢(A) + axy*, « € C. Assume that y*¢p(A)x # 0.
Then the function

1 1
Ao Y AL = @(A) % = 5y (A + 23y (A -, Al > $(A)]],

is not identically equal to zero (note that we have used the fact that y*x = 0).
Hence, we can find A € C, |A] > ||¢(A)]|, such that

. _ 1
v (M - g(A) x = -
for some nonzero complex a. It follows that
(¢(A) +axy’ = AD(A = ¢p(A)"'x = —x +ax(y" (AL - ¢(A))"1x) =0,

and consequently, A is an eigenvalue of ¢(A) + axy*. But then it has to be an
eigenvalue of ¢(A), contradicting the fact that |A| > ||¢(A)||. In almost the same
way we prove that H_; is invariant under ¢(A) as well. Hence, with respect to
the direct sum decomposition H = H; @ H_1, the operator ¢(A) has the matrix
representation

We know that
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whenever P € B(H;) and Q € B(H_1) are idempotent operators of rank one.

Obviously,
—2P 0
A+ [ 0 ZQ} ~ A.
It follows that
[¢<A)1 2P 0 } N [¢<A)1 0 }
0 ¢(A)1+2Q 0 $(A)
whenever P € B(H;) and Q € B(H_1) are idempotent operators of rank one.
According to Lemma 2.3 both ¢(A); and ¢(A)_q are scalars operators. From
AL O Al —2P 0
o =[o ]~ [0 e
we get that A — 2 = u. Hence

P(A) = [0 —I] +(A=1)L.
This completes the proof.
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