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ABSTRACT. S. Artstein, K. Ball, F. Barthe, and A. Naor have shown (cf. [1]) that
if (Xj)∞

j=1 are i.i.d. random variables, then the entropy of X1+···+Xn√
n ,

H
(

X1+···+Xn√
n

)
, increases as n increases. The free analogue was recently proven

by D. Shlyakhtenko in [2]. That is, if (xj)∞
j=1 are freely independent, identically

distributed, self-adjoint elements in a noncommutative probability space, then

the free entropy of x1+···+xn√
n , χ

(
x1+···+xn√

n

)
, increases as n increases. In this pa-

per we prove that if H(X1) > −∞ (χ(x1) > −∞, respectively), and if the
entropy (the free entropy, respectively) is not a strictly increasing function of
n, then X1 (x1, respectively) must be Gaussian (semicircular, respectively).
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INTRODUCTION

Shannon’s entropy of a (classical) random variable X with Lebesgue absolutely
continuous distribution dµX(x) = ρ(x)dx, is given by

(0.1) H(X) = −
∫
R

ρ(x) log ρ(x)dx,

whenever the integral exists. If the integral does not exist, or if the distribution of
X is not Lebesgue absolutely continuous, then H(X) = −∞.

The entropy can also be written in terms of score functions and of Fisher
information. Take a standard Gaussian random variable G such that X and G are
independent. Let

X(t) = X +
√

tG, t > 0,
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and let j(X(t)) =
(

∂
∂x
)∗(1) ∈ L2(µX(t)) denote the score function of X(t) (cf. Sec-

tion 3 of [2]). Then

(0.2) H(X) =
1
2

∞∫
0

[ 1
1 + t

− ‖j(X(t))‖2
2

]
dt +

1
2

log(2πe).

The quantity ‖j(X(t))‖2
2 is called the Fisher information of X(t) and is denoted by

F(X(t)). Among all random variables with a given variance, the Gaussians are
the (unique) ones with the smallest Fisher information and the largest entropy.

A.J. Stam (cf. [3]) was the first to rigorously show that if X1 and X2 are
independent random variables of the same variance, with H(X1), H(X2) > −∞,
then for all t ∈ [0, 1],

H(
√

tX1 +
√

1− tX2) > tH(X1) + (1− t)H(X2),

with equality if and only if X1 and X2 are Gaussian. It follows that if (Xj)∞
j=1 is a

sequence of i.i.d. random variables with finite entropy, then

n 7→ H
(

X1+···+X2n

2n/2

)
is an increasing function of n, and if it is not strictly increasing, then X1 is neces-
sarily Gaussian.

Knowing about Stam’s result, it seems natural to ask whether the map

n 7→ H
(

X1+···+Xn√
n

)
is monotonically increasing as well, or even simpler: Is H

(
X1+X2+X3√

3

)
> H

(
X1+X2√

2

)
?

Surprisingly enough, it took more than 40 years for someone to answer these
questions. Both questions were answered in the affirmative in [1] in 2004.

In this paper we extend Stam’s result by showing that if H(X1) > −∞ and
if for some n ∈ N,

H
(

X1+···+Xn+1√
n+1

)
= H

(
X1+···+Xn√

n

)
,

then X1 is necessarily Gaussian (Theorem 2.1).
Free entropy, which is the proper free analogue of Shannon’s entropy, was

defined by Voiculescu in [5]. If x is a self-adjoint element in a finite von Neumann
algebra M with faithful normal tracial state τ and if µx ∈ Prob(R) denotes the
distribution of x with respect to τ, then the free entropy of x, χ(x) ∈ [−∞, ∞[, is
given by

χ(x) =
∫ ∫

log |s− t|dµx(s)dµx(t) +
3
4

+
1
2

log(2π).

Exactly as in the classical case, χ(x) may be written in terms of the free analogue
of the score function (the conjugate variable) and the free Fisher information. That
is, if s is a (0,1)-semicircular element which is freely independent of x and if we let

x(t) = x +
√

ts, t > 0,



SEMICIRCULARITY, GAUSSIANITY AND MONOTONICITY OF ENTROPY 127

then

(0.3) χ(x) =
1
2

∞∫
0

[ 1
1 + t

−Φ(x(t))
]
dt +

1
2

log(2πe),

where Φ(x(t)) is the free Fisher information of x(t). In [6] Voiculescu defines for a
(non-scalar) self-adjoint variable y in (M, τ) a derivation ∂y :C[y]→C[y]⊗C[y] by

∂y(1) = 0 and ∂y(y) = 1⊗ 1.

Then the conjugate variable of y, if it exists, is the unique vectorJ (y)∈L2(W∗(y))
satisfying that for all k ∈ N,

(0.4) 〈J (y), yk〉 = 〈1⊗ 1, ∂y(yk)〉.

That is, J (y) = (∂y)∗(1⊗ 1). The conjugate variable is the free analogue of the
score function, and the free Fisher information of y is exactly ‖J (y)‖2

2, so that

(0.5) χ(x) =
1
2

∞∫
0

[ 1
1 + t

− ‖J (x(t))‖2
2

]
dt +

1
2

log(2πe).

Note that if J (y) = y, then the moments of y are determined by (0.4), and
it is not hard to see that y is necessarily (0,1)-semicircular.

In [2] D. Shlyakhtenko showed that if (xj)∞
j=1 are freely independent, iden-

tically distributed self-adjoint elements in (M, τ), then the map

n 7→ χ
(

x1+···+xn√
n

)
is monotonically increasing in n. In fact, the method used in [2] applies to the
classical case as well. In this paper we will dig into the proof of the inequality

(0.6) χ
(

x1+···+xn+1√
n+1

)
> χ

(
x1+···+xn√

n

)
and find out what it means for all of the estimates obtained in the course of the
proof to be equalities. We conclude that if χ(x1) > −∞ and if (0.6) is an equality
for some n, then x1 is necessarily semicircular. With a few modifications, our
method applies to the classical case as well.

1. THE FREE CASE

Recall that the (0, 1)-semicircle law is the Lebesgue absolutely continuous proba-
bility measure on R with density

dσ0,1(t) =
1

2π

√
4− t2 1[−2,2](t) dt.
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More generally, for µ, γ ∈ R with γ > 0, the (µ, γ)-semicircle law is the Lebesgue
absolutely continuous probability measure on R with density

dσµ,γ(t) =
1

2πγ

√
4γ− (t− µ)2 1[µ−2

√
γ,µ+2

√
γ](t) dt.

The parameters µ and γ refer to the first moment and the variance of σµ,γ, respec-
tively.

Throughout this section, M denotes a finite von Neumann algebra with
faithful, normal, tracial state τ. We are going to prove:

THEOREM 1.1. Let n ∈ N and let x1, . . . , xn+1 be freely independent, identically
distributed self-adjoint elements in (M, τ). Then

(1.1) χ
( x1 + · · ·+ xn+1√

n + 1

)
> χ

( x1 + · · ·+ xn√
n

)
.

Moreover, if χ(x1) > −∞, then equality holds in (1.1) if and only if x1 is semicircular.

Monotonicity of free entropy was already proven in [2]. Likewise, most of the
results stated in this section consist of two parts: An inequality which was proven
in [2] or in [1] and a second part which was proven by us.

PROPOSITION 1.2. Let n ∈ N and let x1, . . . , xn+1 be freely independent self-
adjoint elements in (M, τ) with τ(xj) = 0 and ‖xj‖2 = ‖x1‖2, 1 6 j 6 n + 1. Let

a1, . . . , an+1 ∈ R with ∑
j

a2
j = 1, and let b1, . . . , bn+1 ∈ R such that ∑

j
bj

√
1− a2

j = 1.

Then

(1.2) Φ
( n+1

∑
j=1

ajxj

)
6 n

n+1

∑
j=1

b2
j Φ
(

1√
1−a2

j
∑
i 6=j

aixi

)
.

Moreover, if Φ
(

∑
i 6=j

aixi

)
is finite for all j, then equality in (1.2) implies that

(1.3) J
(

1
‖x1‖2

n+1

∑
j=1

ajxj

)
= 1
‖x1‖2

n+1

∑
j=1

ajxj,

so that
n+1
∑

j=1
ajxj is (0, ‖x1‖2

2)-semicircular.

LEMMA 1.3. Let P1, . . . , Pm be commuting projections on a Hilbert space H. If
ξ1, . . . , ξm ∈ H satisfy that for all 1 6 i 6 m,

P1P2 · · · Pmξi = 0,

then

(1.4) ‖P1ξ1 + · · ·+ Pmξm‖2 6 (m− 1)
m

∑
i=1
‖ξi‖2.
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Moreover, if equality holds in (1.4), then ξi ∈
⊕
j 6=i
Hj, where

Hj := {ξ ∈ H : Pkξ = ξ, k 6= j, Pjξ = 0} =
( ⋂

k 6=j

Pk(H)
)
∩ P⊥j (H).

Proof. The inequality (1.4) is the content of Lemma 5 in [1]. The starting
point of their proof is to write each ξi as an orthogonal sum,

ξi = ∑
ε∈{0,1}m\(1,1,...,1)

ξ i
ε,

where for ε ∈ {0, 1}m \ (1, 1, . . . , 1),

ξ i
ε ∈ Hε := {ξ ∈ H : Pjξ = ε jξ, 1 6 j 6 m}.

Then
P1ξ1 + · · ·+ Pmξm = ∑

ε∈{0,1}m\(1,1,...,1)
∑

εi=1
Piξ

i
ε,

and

‖P1ξ1 + · · ·+ Pmξm‖2 = ∑
ε∈{0,1}m\(1,1,...,1)

∥∥∥ ∑
εi=1

Piξ
i
ε

∥∥∥2
.

For fixed ε 6= (1, 1, . . . , 1) there can be at most m− 1 i’s for which εi = 1. Thus, by
the Cauchy-Schwarz inequality,

(1.5)
∥∥∥ ∑

εi=1
Piξ

i
ε

∥∥∥2
6
(

∑
εi=1
‖Piξ

i
ε‖
)2

6 (m− 1) ∑
εi=1
‖Piξ

i
ε‖2,

with the second inequality being an equality if and only if the vector (‖Piξ
i
ε‖)εi=1

(= (‖ξ i
ε‖)εi=1) has m− 1 coordinates and is parallel to the vector v = (1, 1, . . . , 1)

∈ Rm−1. In particular, if the second inequality in (1.5) is an equality for some
ε ∈ {0, 1}m with more than one coordinate which is zero, then (‖Piξ

i
ε‖)m

i=1 must
consist of zeros only. It follows now that

‖P1ξ1 + · · ·+ Pmξm‖2 6 (m− 1) ∑
ε∈{0,1}m\(1,1,...,1)

∑
εi=1
‖Piξ

i
ε‖2(1.6)

= (m− 1) ∑
ε∈{0,1}m\(1,1,...,1)

m

∑
i=1
‖Piξ

i
ε‖2(1.7)

6 (m− 1)
m

∑
i=1

∑
ε∈{0,1}m\(1,1,...,1)

‖ξ i
ε‖2(1.8)

= (m− 1)
m

∑
i=1
‖ξi‖2.(1.9)

Moreover, equality in (1.4) implies that all the inequalities (1.5), (1.6) and (1.9) are
equalities. Hence,

(i) ξ i
ε = Piξ

i
ε for all ε 6= (1, 1, . . . , 1) and all 1 6 i 6 m (cf. (1.7) and (1.8)), and
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(ii) by the Cauchy-Schwarz argument, for all ε ∈ {0, 1}m with more than one

coordinate which is zero, ‖ξ i
ε‖

(i)
= ‖Piξ

i
ε‖ = 0 for all i.

Thus, if equality holds in (1.4), then ξi∈Pi(H) and ξi∈
⊕
j 6=i
Hj, as claimed.

Proof of Proposition 1.2. (1.2) is the content of Lemma 2 in [2]. Now, assume

that equality holds in (1.2) and that Φ
(

∑
i 6=j

aixi

)
is finite for all j. We are going to

"backtrack" the proof of Lemma 2 in [2] to show that (1.3) holds. We will assume
that ‖xj‖2 = 1 for all j. With

ξ j = bjJ
(

1√
1−a2

j
∑
i 6=j

aixi

)
, 1 6 j 6 n + 1,

equality in (1.2) implies (cf. the proof of Lemma 2 in [2]) that

(1.10) Φ
( n+1

∑
j=1

ajxj

)
=
∥∥∥ n+1

∑
j=1

ξ j

∥∥∥2

2
= n

n+1

∑
j=1
‖ξ j‖2

2.

Let M = W∗(x1, . . . , xn+1). We now apply Lemma 1.3 to the projections E1, . . . ,
En+1 ∈ B(L2(M)) introduced in proof of Lemma 2 in [2]. That is, Ej is the pro-
jection onto L2(W∗(x1, . . . , x̂j, . . . , xn+1)). Note that the subspace Hj defined in
Lemma 1.3, Hj = {ξ ∈ L2(M) : Ekξ = ξ, k 6= j , Ejξ = 0}, is in this case exactly
L2(W∗(xj)). Thus, the second identity in (1.10) and the fact that ξ j⊥C1, implies
that

(1.11) ξ j ∈
⊕
i 6=j

(L2(W∗(xi))	C1).

With E : L2(M) → L2(M) the projection onto L2
(

W∗
(

∑
j

ajxj

))
we have (cf.

proof of Lemma 2 in [2]):

(1.12) J
( n+1

∑
j=1

ajxj

)
= E

( n+1

∑
j=1

ξ j

)
.

The first identity in (1.10) then implies that E
( n+1

∑
j=1

ξ j

)
=

n+1
∑

j=1
ξ j, and so

J
( n+1

∑
j=1

ajxj

)
=

n+1

∑
j=1

ξ j ∈
n+1⊕
i=1

(L2(W∗(xi))	C1).

Now choose elements ηj ∈ L2(W∗(xj))	C1, 1 6 j 6 n + 1, such that

(1.13) J
( n+1

∑
j=1

ajxj

)
=

n+1

∑
j=1

ηj.
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Then

0 =
[ n+1

∑
i=1

aixi,
n+1

∑
j=1

ηj

]
= ∑

i 6=j

(
aixiηj − ηiajxj

)
.

A standard application of freeness shows that for (i, j) 6= (k, l), the terms aixiηj −
ηiajxj and akxkηl − ηkal xl are perpendicular elements of L2(M). Thus, the above
identity implies that for all i 6= j,

(1.14) aixiηj = ajηixj.

With L2(W∗(xj))0 = L2(W∗(xj)) 	 C1, 1 6 j 6 n + 1, consider the free
product of Hilbert spaces

C1⊕
(⊕

p>1

( ⊕
16i1,...,ip6n+1, i1 6=i2 6=···6=ip

L2(W∗(xi1))
0⊗L2(W∗(xi2))

0⊗· · ·⊗L2(W∗(xip))
0
))

,

and notice that xi ∈ L2(W∗(xi))0 and ηj ∈ L2(W∗(xj))0. It follows from unique
decomposition within the free product that there is only one way that (1.14) can
be fulfilled, namely when ηj is proportional to xj. That is, there exist c1, . . . , cn+1 ∈
R such that ηj = cjxj and hence,

(1.15) J
( n+1

∑
j=1

ajxj

)
=

n+1

∑
j=1

cjxj.

We can assume that a1, . . . , an+1 > 0, and then by (1.14), cj =
c1aj
a1

, 1 6 j 6 n + 1.

In particular, all the cj’s have the same sign. Taking inner product with
n+1
∑

j=1
ajxj in

(1.15), we find that

(1.16)
n+1

∑
j=1

ajcj = 1,

so that the cj’s must be positive. Also, since ∑
j

a2
j = 1, we have that ∑

j
c2

j > 1. But

n+1

∑
j=1

c2
j =

c2
1

a2
1

,

and so c1 > a1, and in general, cj > aj. Then by (1.16), cj = aj, and (1.3) holds.

As mentioned in the introduction, this implies that
n+1
∑

j=1
ajxj is (0,1)-semicircular

(when ‖x1‖2 = 1).
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COROLLARY 1.4. Let x1, . . . , xn+1 be as in Proposition 1.2 and let a1, . . . , an+1 ∈
R with ∑

j
a2

j = 1. Then

(1.17) χ
( n+1

∑
j=1

ajxj

)
>

n+1

∑
j=1

1− a2
j

n
χ
(

1√
1−a2

j
∑
i 6=j

aixi

)
.

Moreover, if χ
(

∑
i 6=j

aixi

)
> −∞ for all j, then equality in (1.17) implies that ∑

j
ajxj is

semicircular.

Proof. The inequality (1.17) was proven by D. Shlyakhtenko in Theorem 2

of [2]. Now, assume that χ
(

∑
i 6=j

aixi

)
> −∞ for all j and that

χ
( n+1

∑
j=1

ajxj

)
=

n+1

∑
j=1

1− a2
j

n
χ
(

1√
1−a2

j
∑
i 6=j

aixi

)
.

Take (0,1)-semicirculars s1, . . . , sn+1 such that x1, . . . , xn+1, s1, . . . , sn+1 are free,
and put x(t)

j = xj +
√

t sj. Then by assumption,

(1.18)
∞∫

0

[ n+1

∑
j=1

1− a2
j

n
Φ
(

1√
1−a2

j
∑
i 6=j

aix
(t)
i

)
−Φ

( n+1

∑
j=1

ajx
(t)
j

)]
dt = 0.

Applying Proposition 1.2 with bj = 1
n

√
1− a2

j , we see that the integrand in (1.18)
is positive. Thus, (1.18) can only be fulfilled if for a.e. t > 0,

(1.19)
n+1

∑
j=1

1− a2
j

n
Φ
(

1√
1−a2

j
∑
i 6=j

aix
(t)
i

)
= Φ

( n+1

∑
j=1

ajx
(t)
j

)
.

In fact, since both sides of (1.19) are right continuous functions of t (cf. [6]), we

have equality for all t > 0. Then by Proposition 1.2,
n+1
∑

j=1
ajx

(t)
j is semicircular. By

additivity of theR-transform, this can only happen if
n+1
∑

j=1
ajxj is semicircular.

Proof of Theorem 1.1. The inequality (1.1) was proven by D. Shlyakhtenko in
[2]. Now, assume that χ(x1) > −∞ and that

χ
( x1 + · · ·+ xn+1√

n + 1

)
= χ

( x1 + · · ·+ xn√
n

)
.

If we replace xj by
xj−τ(xj)
‖xj−τ(xj)‖2

, we will still have equality. Hence, we will assume

that τ(xj) = 0 and that ‖xj‖2 = 1. Now,

χ
( x1 + · · ·+ xn+1√

n + 1

)
=

1
n + 1

n+1

∑
j=1

χ
( 1√

n ∑
i 6=j

xi

)
,
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and by application of Corollary 1.4 with aj = 1√
n+1

, x1+···+xn+1√
n+1

must be semi-
circular. Additivity of the R-transform tells us that this can only happen if x1 is
semicircular.

We would like to thank Serban Belinschi for pointing out to us the following
consequence of Theorem 1.1:

COROLLARY 1.5. Among the freely stable compactly supported probability mea-
sures on R, the semicirle laws are the only ones with finite free entropy.

Proof. By definition, a compactly supported probability measure µ on R is
freely stable if for all n ∈ N, there exist an > 0, bn ∈ R, such that if x1, . . . , xn
are freely independent self-adjoint elements which are distributed according to
µ, then

1
an

(x1 + · · ·+ xn) + bn

has distribution µ. Note that the set of freely stable laws is invariant under trans-
formations by the affine maps (φs,r)s∈R,r>0, where

φs,r(t) =
t− s

r
, t ∈ R.

Also, by p. 27 in [4], the semicirle laws are freely stable.
Suppose now that µ is a freely stable compactly supported probability mea-

sure on R. By the above remarks, we can assume that µ has first moment 0 and
variance 1.

Let x1, x2 be freely independent self-adjoint elements in distributed accord-
ing to µ. Since µ is freely stable, x1+x2√

2
has distribution µ as well (by the assump-

tions on µ, a2 =
√

2 and b2 = 0). But then

χ
( x1 + x2√

2

)
= χ(x1),

and by Theorem 1.1, either χ(x1) = −∞, or x1 is semicircular.

2. THE CLASSICAL CASE

In this section we are going to prove the classical analogue of Theorem 1.1:

THEOREM 2.1. Let n ∈ N, and let X1, . . . , Xn+1 be i.i.d. random variables. Then

(2.1) H
(X1 + · · ·+ Xn+1√

n + 1

)
> H

(X1 + · · ·+ Xn√
n

)
.

Moreover, if H(X1) > −∞ and if (2.1) is an equality, then X1 is Gaussian.
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LEMMA 2.2. Let n ∈ N. Then for every m ∈ N, the m’th Hermite polynomial,
Hm, satisfies:

nm/2H
(x1+· · ·+xn√

n

)
= ∑

k1,...,kn>0, ∑
j

kj=m

m!
k1!k2!· · ·kn!

Hk1(x1)Hk2(x2)· · ·Hkn(xn).(2.2)

Sketch of proof. (2.2) holds for m = 0 (H0 = 1) and for m = 1 (H1(x) = 2x).
Now, for general m ∈ N,

Hm+1(x) = 2xHm(x)− 2mHm−1(x).

(2.2) then follows by induction over m.

LEMMA 2.3. Let µ ∈ Prob(R) be absolutely continuous with respect to Lebesgue
measure, and let σt ∈ Prob(R) denote the Gaussian distribution with mean 0 and vari-
ance t. Then if µ((−∞, 0]) 6= 0 and µ([0, ∞)) 6= 0, the following inclusion holds:

(2.3) L2(R, µ ∗ σt) ⊆ L2(R, σt).

Proof. Let f ∈ L1(R) denote the density of µ with respect to Lebesgue mea-
sure. Then the density of µ ∗ σt is given by

d(µ ∗ σt)
ds

(s) =
1√
2πt

( ∞∫
−∞

f (u) · e−u2/2t · esu/tdu
)
· e−s2/2t = φ(s) · dσt

ds
(s),

where

(2.4) φ(s) =
∞∫
−∞

f (u) · e−u2/2t · esu/tdu.

It follows that if φ is bounded away from 0, then (2.3) holds. For s > 0 we

have that φ(s) >
∞∫
0

f (u) · e−u2/2t · esu/tdu >
∞∫
0

f (u) · e−u2/2tdu, and similarly

for s 6 0 : φ(s) >
0∫
−∞

f (u) · e−u2/2tdu. Since
0∫
−∞

f (u)du > 0 and
∞∫
0

f (u)du > 0,

both of the integrals
∞∫
0

f (u) · e−u2/2tdu and
0∫
−∞

f (u) · e−u2/2tdu are strictly posi-

tive. This completes the proof.

Proof of Theorem 2.1. The inequality (2.1) was proven in [1]. Now, suppose
H(X1) > −∞ and that (2.1) is an equality. We can assume that X1 has first mo-
ment 0 and second moment 1. Take Gaussian random variables G1, . . . , Gn+1 of
mean 0 and variance 1 such that X1, . . . , Xn+1, G1, . . . , Gn, Gn+1 are independent.
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Then with X(t)
j = Xj +

√
t Gj, we have

H
(

X1+···+Xn+1√
n+1

)
=

1
2

∞∫
0

[ 1
1 + t

−
∥∥∥j
(X(t)

1 +···+X(t)
n+1√

n+1

)∥∥∥2

2

]
dt +

1
2

log(2πe),(2.5)

where

(2.6) j
(X(t)

1 +···+X(t)
n+1√

n+1

)
=
( d

dx

)∗
(1) ∈ L2

(
R, µ

X(t)
1 +···+X(t)

n+1√
n+1

)
is the score function. Since X1 has mean 0 and finite entropy, µX1 and µ X1+···+Xn+1√

n+1

satisfy the conditions of Lemma 2.3.

For t > 0, define f (t) ∈ L2
(
Rn+1,

n+1⊗
j=1

µ
X(t)

j

)
by

f (t)(x1, . . . , xn+1) = j
(X(t)

1 +···+X(t)
n+1√

n+1

)(
x1+···+xn+1√

n+1

)
.

As in the free case (cf. (1.13)) equality in (2.1) implies that for each t > 0 there
exists a function g(t) ∈ L2(µ

X(t)
1

) such that
∫

g(t)dµ
X(t)

1
= 0 and

(2.7) f (t)(x1, . . . , xn+1) =
n+1

∑
j=1

g(t)(xj).

Because of Lemma 2.3 we can now write things in terms of the Hermite polyno-
mials (Hm)∞

m=0. That is, there exist scalars (αm)∞
m=1 and (βm)∞

m=1 such that

f (1)(x1, . . . , xn+1) =
∞

∑
m=1

αmHm

(
x1+···+xn+1√

n+1

)
, and g(1)(x) =

∞

∑
m=1

βm Hm(x).

By Lemma 2.2, this implies that
n+1

∑
j=1

∞

∑
m=1

βmHm(xj) =(2.8)

∞

∑
m=1

αm

(n+1)m/2 ∑
k1,. . . ,kn+1 >0,

∑
j

k j = m

m!
k1!k2!· · ·kn+1!

Hk1(x1)Hk2(x2)· · ·Hkn+1(xn+1).

The functions (Hk1(x1)Hk2(x2) · · ·Hkn+1(xn+1))k1,...,kn+1>0 are mutually perpen-

dicular in L2
(

Rn+1,
n+1⊗
j=1

σ1

)
. Fix m > 2, and take k1, . . . , kn+1 with ∑

j
k j = m

and k j > 1 for at least two j’s. Then take inner product with Hk1(x1)Hk2(x2) · · ·
Hkn+1(xn+1) on both sides of (2.8) to see that αm must be zero. That is,

j
(X(1)

1 +···+X(1)
n+1√

n+1

)(
x1+···+xn+1√

n+1

)
= α1H1

(
x1+···+xn+1√

n+1

)
= 2α1

x1+···+xn+1√
n+1

.
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Since the score function of a random variable X, j(X), satisfies 〈j(X), X〉L2(µX) =
1, we have that α1 = 1

2 , and so

j
(X(1)

1 +···+X(1)
n+1√

n+1

)(
x1+···+xn+1√

n+1

)
= x1+···+xn+1√

n+1
.

Then
X(1)

1 +···+X(1)
n+1√

n+1
has Fisher information 1, implying that it is standard Gaussian.

As in the free case, using additivity of the logarithm of the Fourier transform, this
can only happen if X1 is Gaussian.
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