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ABSTRACT. We study the spectral radius algebras associated to compact oper-
ators and we give some sufficient conditions for membership in them. Since it
is known that each such algebra has an invariant subspace this leads to some
new invariant subspace theorems. We will also compare our method with
several well known approaches to the invariant subspace problem.

KEYWORDS: Invariant subspaces, compact operators, spectral radius algebras.

MSC (2000): Primary 47A65; Secondary 47A62, 47B49.

1. INTRODUCTION AND PRELIMINARIES

Let H be a complex Hilbert space, and L(H) be the algebra of all bounded
linear operators on H. If T is an operator in L(H) and M is a closed subspace
of H then M is invariant for T if TM ⊂ M and it is nontrivial if it is different
from the zero subspace and H. The question whether every operator in L(H)
has a nontrivial invariant subspace (n. i. s.) is known as the invariant subspace
problem.

If K is a compact operator, a celebrated result of Lomonosov [12] asserts
that all operators that commute with K possess a common invariant subspace. In
other words, the algebra {K}′, the commutant of K, has a n. i. s. In [10], using this
result, we have shown that there exists a larger algebra BK that has a n. i. s. We
call such an algebra a spectral radius algebra or an SR-algebra. An SR-algebra can
be associated to any operator A but in what follows we will consider only com-
pact operators K. The algebra BK always contains the commutant of K, with the
inclusion proper whenever K is not quasinilpotent. The case when the spectral
radius r(K) = 0 remains open, although we have shown in [1] that the inclu-
sion is proper when K is the Volterra operator on L2(0, 1). Since BK is in many
cases strictly bigger than {K}′ and it has a n. i. s. it is of interest to find which
operators belong to it. As we have shown in [10], if λ is a complex number and
|λ| 6 1, then every operator T that satisfies KT = λTK belongs to BK. Follow-
ing the terminology established in [10] and subsequent papers [1], [3], [2], we
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call such an operator T an extended eigenvector of K corresponding to the extended
eigenvalue λ. It is sometimes convenient to consider only the nontrivial case, i.e.,
when λ 6= 1. In this paper, though, we will consider λ = 1 as an extended eigen-
value. The fact that extended eigenvectors of a compact operator have n. i. s. was
originally proved in [4]. (Of course, when λ = 1 it is contained in the Lomono-
sov’s theorem.) Our approach, however, has as an immediate consequence that if
X1, X2, . . . , Xn are extended eigenvectors of K corresponding to extended eigen-
values λ1, λ2, . . . , λn respectively, then X1 + X2 + · · ·+ Xn ∈ BK and, hence, has a
n. i. s. On the other hand, a rather elementary example will show that BK is not a
span of extended eigenvectors. Therefore, it is of interest to learn more about the
structure of BK and, in particular, decide which operators (if any) do not belong
to any SR-algebra associated to a compact operator.

Although the study of BA can be used to establish the existence of invariant
subspaces when A is not compact (cf. [2]), in this paper we will concentrate on
the case of SR-algebras associated to a compact operator. Nevertheless, many of
the results remain true when K is not compact. In addition, it will be convenient
to assume that K is a quasi-affinity (meaning, an operator with a zero kernel and a
dense range). In this framework we will establish some sufficient conditions for
membership in BK and the relationship between these conditions. In particular,
given a compact operator K and a complex number λ, |λ| 6 1, we will consider
the map Fλ defined on L(H) by Fλ(T) = KT − λTK. Clearly, if T ∈ Ker Fλ then T
is an extended eigenvector for K, so T ∈ BK. Our main result (Theorem 3.1 below)
is that, if λ1, λ2, . . . , λn are distinct complex numbers with |λi| 6 1, 1 6 i 6 n,
and if T ∈ Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn ) then T ∈ BK. In addition, we will explore
the connection between the membership of T in Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn ) and T
being a sum of extended eigenvectors of K (see Theorem 3.8 below).

Finally, we recall the full strength of the Lomonosov’s result. We will say
that an operator T has the Lomonosov property relative to K (notation: T ∈ Lom (K))
if there is an operator A that is not a scalar multiple of the identity and such that A
commutes with both T and K. Lomonosov’s theorem asserts that if T ∈ Lom (K)
for a nonzero compact operator K then T has a n. i. s. We will show that Lom (K)
cannot be compared with BK. Namely, neither one need be a subset of the other.
Therefore, the study of SR-algebras is not merely a recycling of the Lomonosov’s
theorem, but a genuinely different approach to the invariant subspace problem.

2. THE SPECTRAL RADIUS ALGEBRA

In this section we will briefly review some basic facts about spectral radius
algebras. Interested readers can find more details in [10].
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If A ∈ L(H) and m > 1, we define

(2.1) Rm(A) = Rm :=
( ∞

∑
n=0

d2n
m A∗ n An

)1/2
where dm =

1
1
m + r(A)

.

Since dm ↑ 1/r(A) (or dm → ∞ if r(A) = 0), the sum in (2.1) is norm conver-
gent and the operators Rm are well defined, positive, and invertible. The spec-
tral radius algebra BA consists of all operators T ∈ L(H) with the property that
sup
m∈N

‖RmTR−1
m ‖ < ∞. The name comes from the fact that was proved in [7]:

lim
m→∞

‖Rm AR−1
m ‖ = r(A). The following result from [10] justifies our interest in

SR-algebras.

THEOREM 2.1. Let K be a compact operator. Then BK has a n. i. s.

In general, it is very hard to verify that an operator belongs to an SR-algebra
using the definition above. In most cases both Rm and, especially, R−1

m are very
hard to compute. Instead, we will be using the following test that has appeared
in the proof of Proposition 2.3 in [10].

PROPOSITION 2.2. Let A be an operator in L(H). Then T ∈ BA if and only
if there exists M > 0 such that, for all x ∈ H and m ∈ N, ∑

n>0
d2n

m ‖AnTx‖2 6

M ∑
n>0

d2n
m ‖Anx‖2.

As a consequence, if ‖AnTx‖ 6 M‖Anx‖ for all n and x then T ∈ BA.
In particular, this is the case when T commutes with A or if T is an extended
eigenvector of A corresponding to an extended eigenvalue of modulus at most 1.
Since BA is an algebra, if AXi = λiXAi and |λi| 6 1, 1 6 i 6 n, then X1 + X2 +
· · · + Xn ∈ BA. This immediately raises the question whether every operator
in BA can be represented as a finite or infinite sum of extended eigenvectors.
The following two examples show that the answer can be negative as well as
affirmative, even when A is compact.

EXAMPLE 2.3. Let H = C⊕ L2(0, 1), and let K be an operator on H defined
(relative to this decomposition) by the matrix

(
1 0
0 V

)
, where V is the Volterra oper-

ator. (Any compact operator with empty point spectrum will do.) It is easy to see
that, if X =

(
A B
C D

)
and λ ∈ C, then KX = λXK implies that the operators VC and

λC (mapping C to L2(0, 1)) must be equal. Since V − λ is injective for all λ ∈ C,
C must map every complex number to the zero function in L2(0, 1). In particular,
if {en}∞

n=1 is any orthonormal basis for L2(0, 1), relative to that basis the matrix
of C (consisting of a single column) must have all entries equal to 0. Therefore, if
C = (1, 0, 0, . . . )tr and T =

( 0 0
C 0

)
, then T cannot be in the span of extended eigen-

vectors. On the other hand, T ∈ BK. Indeed, in view of Proposition 2.2 it suffices
to show that, for all x and n, ‖KnTx‖ 6 ‖Knx‖. If we write x = α⊕ f (with α ∈ C
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and f ∈ L2(0, 1)) then the last inequality becomes ‖VnCα‖ 6 ‖α⊕Vn f ‖ which is
obvious.

EXAMPLE 2.4. Let H = C2 and let A =
(

1 0
0 2

)
. Then BA consists of all upper

triangular matrices in L(H). On the other hand,
(

1 0
0 0

)
,
(

0 0
0 1

)
, and

(
0 1
0 0

)
are all

extended eigenvectors of A: the first two commute with A while the last corre-
sponds to the extended eigenvalue λ = 1/2. Thus, BA is the span of extended
eigenvectors of A.

As mentioned in the introduction, a spectral radius algebra BK can be quite
different from the collection Lom (K) of operators that possess the Lomonosov
property relative to K. In fact, we will also consider a strengthening of the Lomo-
nosov’s theorem (cf. [13]). We start with an example that shows that it is possible
for an operator to be in Lom (K) but not in BK, for a given compact operator K.

EXAMPLE 2.5. Let G be a proper, infinite dimensional subspace of H and
write H = G ⊕ G⊥. Relative to this decomposition let A = 1⊕ 0 and let K be any
compact operator that commutes with A. Then K = K1 ⊕ K2, where K1 and K2
are compact operators. Suppose that r(K1) > r(K2). (The case r(K1) 6 r(K2) can
be handled in a similar way.) Since K1 is compact, BK1 has a n. i. s. so BK1 6= L(G).
Let Z be an operator in L(G) that is not in BK1 , and define T = Z ⊕ 0. Since
r(K1) > r(K2), dm(K1) = dm(K), and it is not hard to see, using Proposition 2.2,
that T /∈ BK. On the other hand A clearly commutes with both K and T, so
T ∈ Lom (K).

In order to state the mentioned improvement of the Lomonosov’s theorem
we recall that a subalgebraA of L(H) has the Pearcy-Salinas Property (PS) if there
is a net {Aα} in A such that Aα → A 6= 0 in the weak operator topology and such
that ‖π(Aα)‖ → 0. (Here, π denotes the projection onto the Calkin algebra.) The
result of [13] can be summarized in the following form.

THEOREM 2.6. If A is a weakly closed proper subalgebra of L(H) and if A has the
PS Property then A has a n. i. s.

Clearly, if A contains a compact operator K then it has the PS Property (just
take Aα = K). In particular, BK always has the PS Property. However, the hard
part is demonstrating that it is not weakly dense. Therefore, Theorem 2.6 is most
effective when A is known to be a proper subalgebra of L(H), which naturally
leads to A = {A}′. Some sufficient conditions for {A}′ to possess the PS Property
can be found in [13]. We will write T ∈ PS(A) if T commutes with A and {A}′
has the PS Property. Once again, Example 2.5 demonstrates that it is possible that
{A}′ has the PS Property (just take Aα = K) and T ∈ {A}′ but T /∈ BK. On the
other hand, there are operators that do not satisfy the hypotheses of either of the
two theorems of Lomonosov. In particular, if T is a so-called quasi-analytic shift
(cf. [15]) then it neither belongs to Lom (K) for any compact K nor it commutes
with any operator A such that {A}′ has the PS Property. The former was proved



SPECTRAL RADIUS ALGEBRAS 141

in [9], the latter in [8]. Yet, every weighted shift T satisfies KT = λTK if K =
diag (1, λ, λ2, . . . ). When |λ| < 1, K is compact and T ∈ BK.

This discussion shows that, regarding our understanding of these classes,
there is a lack of symmetry. On one hand, every quasi-analytic weighted shift
belongs to some SR-algebra BK but not to any Lom (K) nor any PS(A). On the
other hand, we were unable to find an example of the other type, i.e., an operator
T such that either T ∈ Lom (K) for some compact operator K or T ∈ PS(A) for
some A but T /∈ BK for any compact operator K.

PROBLEM 2.7. Is there an operator T such that either T ∈ Lom (K) or T ∈
PS(A) but T belongs to no BK?

In fact, it is an open question whether there is an operator T that belongs to
no BK. Until this is settled it is possible that Theorem 2.1 contains an affirmative
answer to the invariant subspace problem.

PROBLEM 2.8. Does every operator belong to an SR-algebra associated to a
compact operator?

3. SOME CONDITIONS FOR THE MEMBERSHIP IN BK

As mentioned in the introduction, we define Fλ(T) = KT − λTK, as in [3].
One knows that if T ∈ Ker Fλ then T is in BK. The main result of this paper is a
generalization of this fact.

THEOREM 3.1. Let λ1, λ2, . . . , λn be distinct complex numbers such that |λi| 6
1, 1 6 i 6 n. Suppose that K is a compact operator such that r(K) > 0. If Fλ1 ◦ Fλ2 ◦
· · · ◦ Fλn (T) = 0 then T ∈ BK. Consequently, T has a n. i. s.

Proof. The idea of the proof can be clearly seen in the case n = 2 so we
prove this case. Let |λ|, |µ| 6 1 and Fλ ◦ Fµ(T) = 0. A calculation shows that
K2T = (λ + µ)KTK − λµTK2. Furthermore, if α1 = λ + µ, β1 = −λµ, and if we
define recursively αn+1 = α1αn + βn and βn+1 = β1αn then Kn+1T = αnKTKn +
βnTKn+1. Moreover, it is not hard to find that αn is of the form C1λn + C2µn so
both sequences {αn} and {βn} are bounded. It follows that there is M > 0 such
that, for all n and x, ‖Kn+1Tx‖ 6 M‖Knx‖. Consequently,

∑
n>0

d2n
m ‖KnTx‖2 = ‖Tx‖2 + ∑

n>1
d2n

m ‖KnTx‖2 = ‖Tx‖2 + ∑
n>0

d2n+2
m ‖Kn+1Tx‖2

6 ‖Tx‖2 + ∑
n>0

d2n
m d2

m M‖Knx‖2 = ‖Tx‖2 + Md2
m ∑

n>0
d2n

m ‖Knx‖2.

Given that r(K) > 0 we have that dm < 1/r(K) so

∑
n>0

d2n
m ‖KnTx‖2 6

(
1 +

M
r(K)2

)
∑
n>0

d2n
m ‖Knx‖2,
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and the proof is complete.

In the proof above, if λ = µ then αn = (C1 + C2n)λn which is still bounded
when |λ| < 1. When λ = µ and |λ| = 1 the theorem is not true any more, as the
following example shows.

EXAMPLE 3.2. Let H = C2 ⊕C2 and let |λ| = 1. Define operators T and K
in L(H) as T =

(
0 1
0 0

)
, K =

(
K1 0
0 1

)
, where K1 =

(
λ 1
0 λ

)
. It is not hard to see that,

if x = (0, 0, 0, 1)tr, then ‖KnTx‖ =
√

n2 + 1 and ‖Knx‖ = 1. If T belonged to BK,
Proposition 2.2 would imply that there is M > 0 so that ∑

n
d2n

m (n2 + 1) 6 M ∑
n

d2n
m

for all m. Since the left hand side dominates ∑
n

d2n
m n = d2

m/(1− d2
m)2 and the right

hand side is 1/(1− d2
m), and since dm → 1/r(K) = 1, it is easy to see that T /∈ BK.

However, Fλ ◦ Fλ(T) = 0. Indeed, a calculation shows that Fλ ◦ Fλ(T) =(
0 K2

1−2λK1+λ2

0 0

)
and K2

1 − 2λK1 + λ2 = (K1 − λ)2 = 0.

One knows that, if K is a compact operator and KT = λTK, then T has a
n. i. s. regardless of the complex number λ. From the viewpoint of the spectral
algebras this is a consequence of the fact that, if |λ| 6 1, then T ∈ BK while, if
|λ| > 1, then T∗ ∈ BK∗ . A similar argument leads to the following corollary.

COROLLARY 3.3. Let λ1, λ2, . . . , λn be distinct complex numbers with the prop-
erty that |λi| > 1, 1 6 i 6 n. Suppose that K is a compact operator such that r(K) > 0.
If Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0 then T∗ ∈ BK∗ . Consequently, T has a n. i. s.

When the complex numbers λ1, λ2, . . . are not all on the same side of the
unit circle, Theorem 3.1 ceases to be true. More precisely, it is possible for an
operator T to satisfy Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0 with neither T ∈ BK nor T∗ ∈ BK∗ .

EXAMPLE 3.4. Let K =
(

1 0
0 2

)
acting on C2, and let X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

then KX = (1/2)XK, KY = 2YK, and it is easy to see that, if T = X + Y, F2 ◦
F1/2(T) = 0. On the other hand, T∗ = T /∈ BK = BK∗ . Indeed, the only invariant
subspaces of K are C⊕ (0) and (0)⊕C, none of which is invariant for T.

The assumption r(K) > 0 in Theorem 3.1 is essential. Of course, Ker Fλ ⊂
BK if |λ| 6 1 but, if n > 2, the theorem is no longer true. The following example
shows why.

EXAMPLE 3.5. Let {en} be an orthonormal basis for H and let K = e3 ⊗ e1,
T = e1 ⊗ e2. Then, K2 = TK = 0 so, for any complex numbers λ and µ, Fλ ◦
Fµ(T) = 0. However, T /∈ BK. Indeed, K2 = 0 so R2

m = 1 + m2e1 ⊗ e1. Relative
to the decomposition H = H1 ⊕H⊥

1 , where H1 is the one dimensional subspace
spanned by e1,

Rm =
(√

1 + m2 0
0 1

)
, and T =

(
0 Z
0 0

)
,
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where Z = (1 0 0 · · · ). An easy calculation shows that ‖RmTR−1
m ‖ =

√
1 + m2 →

∞ so T /∈ BK.

Theorem 3.1 shows that, if Fλ(T) belongs to Ker Fµ for some µ 6= λ and
|λ|, |µ| 6 1, then T ∈ BK. In other words, if Fλ(T) is an extended eigenvector
for K then T ∈ BK. Since BK contains more than just extended eigenvectors it is
natural to ask the following question.

PROBLEM 3.6. Is it true that if |λ| < 1 and Fλ(T) ∈ BK then T ∈ BK?

It is easy to see that, if T is a sum of extended eigenvectors of K, then T sat-
isfies the hypothesis of Theorem 3.1. Example 2.3 shows that not every member
of BK need be of such form. This leads to a natural question: which operators can
be written as finite sums of extended eigenvectors of K? Before we can answer
that, we need a technical result.

PROPOSITION 3.7. Let A be an operator in L(H) and let λ1, λ2, . . . , λn be com-
plex numbers. For any T,

Fλn ◦ Fλn−1 ◦ · · · ◦ Fλ1(T) = KnT + β1Kn−1TK + · · ·+ βn−1KTKn−1 + βnTKn

where the roots of the polynomial pn(z) = zn + β1zn−1 + · · ·+ βn−1z + βn are precisely
λ1, λ2, . . . , λn.

Proof. We will prove the result by induction on n. The case n = 1 is obvious.
Suppose that the proposition is true for n− 1. Then

Fλn ◦ Fλn−1 ◦ · · · ◦ Fλ1(T)

= K[Fλn−1 ◦ · · · ◦ Fλ1(T)]− λn[Fλn−1 ◦ · · · ◦ Fλ1(T)]K

= K[Kn−1T + β1Kn−2TK + · · ·+ βn−2KTKn−2 + βn−1TKn−1]

− λn[Kn−1T + β1Kn−2TK + · · ·+ βn−2KTKn−2 + βn−1TKn−1]K

= KnT + (β1 − λn)Kn−1TK + · · ·+ (βn−1 − λnβn−2)KTKn−1 − λnβn−1TKn.

So, it remains to prove that the zeros of q(z) = zn + (β1 − λn)zn−1 + · · · +
(βn−1 − λnβn−2)z − λnβn−1 are precisely the numbers λ1, λ2, . . . , λn. Clearly,
q(z) = zpn−1(z) − λn pn−1(z) = (z − λn)pn−1(z) and the assertion follows by
induction.

Now we can establish a necessary and sufficient condition for an operator
to be a finite sum of extended eigenvectors of K. In order to state this result we
introduce classes Sn. Given a positive integer n and a compact operator K, we
will say that T ∈ Sn if there is an operator S = Sn such that KnT = SKn.

THEOREM 3.8. Let K be a compact quasi-affinity, let λ1, λ2, . . . , λn ∈ C be dis-
tinct, and let T ∈ L(H). Then there exist operators Xi ∈ Ker Fλi such that T = ∑

i
Xi if

and only if Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0 and T ∈ S1 ∩ · · · ∩ Sn−1.
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Proof. If T = ∑
i

Xi then Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0 is obvious. Also, T ∈ Sm

for all m, with Sm = ∑
i

λm
i Xi. Therefore, we concentrate on the opposite implica-

tion.
Suppose that Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0. It follows from Proposition 3.7 that

KnT + β1Kn−1TK + β2Kn−2TK2 + · · · + βnTKn = 0, where λ1, λ2, . . . , λn are the
roots of the polynomial pn(z) = zn + β1zn−1 + β2zn−2 + · · ·+ βn.

Let V = (vij) be the n × n Vandermonde matrix, vij = λi
j, which is clearly

invertible. If K jT = SjK j we define operators X1, X2, . . . , Xn by

(3.1) V


X1
X2
...

Xn

 =


S1
S2
...

Sn−1
−β1Sn−1 − β2Sn−2 − · · · − βn−1S1 − βnT

 .

In order to show that T = ∑
i

Xi we multiply (3.1) from the left by an elemen-

tary matrix that induces the row operation which replaces Rn (row n) by Rn +
β1Rn−1 + · · ·+ βn−1R1. We obtain

λ1 λ2 . . . λn
λ2

1 λ2
2 . . . λ2

n
...

...
...

f (λ1) f (λ1) . . . f (λn)




X1
X2
...

Xn

 =


S1
S2
...

Sn−1
−βnT


where f (z) = p(z)− βn, so f (λi) = −βn. It follows that ∑

i
Xi = T.

Next, we notice that ∑
i

λ
j
i Xi = Sj, 1 6 j 6 n − 1, so ∑

i
λ

j
i XiK j = SjK j =

K jT = K j ∑
i

Xi holds for 1 6 j 6 n− 1. In fact, it holds for j = n as well. Indeed,

Kn ∑
i

Xi = KnT = −β1Kn−1TK − β2Kn−2TK2 − · · · − βnTKn = −β1Sn−1Kn−1 −

β2Sn−2Kn − · · ·− βnTKn and it is easy to see that this expression equals ∑
i

λn
i XiKn,

by considering the bottom rows in (3.1). Now, let 1 6 j 6 n− 1. Then K ∑
i

λ
j
i XiK j =

K j+1 ∑
i

Xi = ∑
i

λ
j+1
i XiK j+1. Moreover, the equality K ∑

i
λ

j
i XiK j = ∑ λ

j+1
i XiK j+1 is

true when j = 0, since it becomes KTKn = S1Kn−1, and KT = S1K. Using the fact
that K has a dense range, these equalities can be organized in a matricial form as

1 1 . . . 1
λ1 λ2 . . . λn
. . .

λn−1
1 λn−1

2 . . . λn−1
n




KX1 − λ1X1K
KX2 − λ2X2K

KXn − λnXnK

 = 0.
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In view of the invertibility of the Vandermonde matrix on the left it follows that
KXi = λiXiK, 1 6 i 6 n, and the theorem is proved.

Once again the assumption that λi 6= λj for i 6= j is essential. Namely,
Theorem 3.8 can be restated as

(3.2)
n∨

i=1

Ker Fλi = Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn ) ∩ S1 ∩ · · · ∩ Sn−1.

When λi = λj for some i 6= j the equality fails. Without loss of generality

let λn−1 = λn. The left hand side of (3.2) collapses to
n−1∨
i=1

Ker Fλi which, by

Theorem 3.8, equals Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn−1) ∩ S1 ∩ · · · ∩ Sn−2. This is still
a subset of the right hand side in (3.2) because Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn−1) ⊂
Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn−1 ◦ Fλn ) and, if T ∈ Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn−1) ∩ S1 ∩
· · · ∩ Sn−2, then T ∈ Sn−1. Indeed, if Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn−1(T) = 0 then, us-

ing Proposition 3.7, Kn−1T = (−1)
n−1
∑

i=1
βiKn−1−iTKi =

n−1
∑

i=1
(−βi)Sn−1−iKn−1 =( n−1

∑
i=1

(−1βi)Sn−1−i

)
Kn−1 so T ∈ Sn−1. However, the following example shows

that the inclusion can be proper.

EXAMPLE 3.9. Let H, T, and K be as in Example 3.2. Then Fλ ◦ Fλ(T) = 0.
Also, if S =

(
0 K1
0 0

)
then KT = SK so T ∈ S1. Consequently, T belongs to the

right side of (3.2). It does not belong to the left side, though, since Fλ(T) 6= 0.

In fact, a little more can be said. If T belongs to the right side of (3.2) and if T
is a sum of extended eigenvectors of K, then the appropriate eigenvalues must be
some of those that appear on the right side. In order to prove this we start with a
result which may be of independent interest.

PROPOSITION 3.10. Extended eigenvectors corresponding to different extended
eigenvalues of an operator with a dense range are linearly independent.

Proof. We prove this by induction on n. The case n = 1 is obvious. Let

the statement be true for n − 1, and suppose that, to the contrary, Xn =
n−1
∑

i=1
Xi,

where KXi = λiXiK, 1 6 i 6 n. Then λnXnK = KXn = K
n−1
∑

i=1
Xi =

n−1
∑

i=1
λiXiK, so

λnXn =
n−1
∑

i=1
λiXi. Since Xn =

n−1
∑

i=1
Xi, we obtain

n−1
∑

i=1
(λn − λi)Xi = 0, and by the

induction hypothesis λn = λi which is a contradiction.

Now we can prove the promised fact about the extended eigenvalues.

PROPOSITION 3.11. Suppose that K is a compact operator with a dense range,
Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0, and T is a sum of extended eigenvectors Xi, 1 6 i 6 m,
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corresponding to distinct extended eigenvalues µi. Then the set {µi}m
i=1 is a subset of

{λi}n
i=1.

Proof. By Proposition 3.7, ∑ βiKiTKn−i = 0 so ∑ βiKi(∑ Xj)Kn−i = 0. Notice
that KiXj = µi

jXjKi so ∑
i,j

βiµ
i
jXjKn = 0. Since K has a dense range we have that

∑
i,j

βiµ
i
jXj = 0. By Proposition 3.10, ∑

i
βiµ

i
j = 0, 1 6 j 6 m, hence each µj is a root

of p(z). Consequently, each µj is in the set of roots of p(z), {λ1, λ2, . . . , λn}.

Using the theorem of Douglas in [5] it is easy to see that T ∈ Sn if and only
if T∗ leaves the range of K∗n invariant. Thus, these classes are all different. In
the presence of the additional condition that T is in the kernel of Fλ1 ◦ Fλ2 ◦ · · · ◦
Fλn the situation is somewhat different. Namely, we have seen in the discussion
following the proof of Theorem 3.8 that, if T ∈ Ker (Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn ) ∩ S1 ∩
· · · ∩ Sn−1, then T ∈ Sn. Nevertheless, the following example shows that it is
unlikely that the assumption T ∈ S1 ∩ · · · ∩ Sn−1 in Theorem 3.8 can be relaxed.

EXAMPLE 3.12. Let H = C2, H1 = H ⊕ H ⊕ H, and H2 = H1 ⊕ H1. We
define operators A, B, C, D ∈ L(H) as A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
, C =

(
0 0
1 0

)
, and

D =
(

0 1
0 0

)
, the operators K1, K2 ∈ L(H1) as

K1 =

0 C 0
0 0 D
0 0 0

 , K2 =

0 A B
0 0 0
0 0 0

 ,

and K, T ∈ L(H2) as K =
(

K1 0
0 K2

)
, T =

(
0 1
0 0

)
. First we notice that, if Z ∈ L(H1)

is defined as

Z =

C 0 0
D 0 0
0 0 0

 ,

then ZK2 = K1 and T ∈ S1 with S1 =
(

0 Z
0 0

)
. On the other hand, K2

2 = 0 so

K2 =
(

K2
1 0

0 0

)
. Therefore, for any R ∈ L(H2), RK2 is of the form

( ∗ 0
∗ 0

)
. Since

K2T =
(

0 K2
1

0 0

)
and K2

1 6= 0 it follows that T /∈ S2. The verification that T ∈
Ker (Fλ ◦ Fµ ◦ Fν) for any complex numbers λ, µ, ν is based on Proposition 3.7,
since K3T = K2TK = KTK2 = TK3 = 0.

Notice that the operator K in Example 3.12 is not a quasi-affinity. We leave
open the question whether the presence of this additional hypothesis might force
some of the classes Sn to be equal.

PROBLEM 3.13. Is it true that, if K is a compact quasi-affinity, Fλ ◦ Fµ ◦
Fν(T) = 0, and T ∈ S1 implies T ∈ S2?

Finally, we turn our attention to the assumption that K is a quasi-affinity
in Theorem 3.8. We chose to state it this way, but it is clear from the proof that
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we only need the range of K to be dense in H. When the range is not dense,
the situation is quite different. For example, if K̃ = K ⊕ 0 and T̃ = 0 ⊕ T then
K̃T̃ = λT̃K̃(= 0) for any λ. Thus, one extended eigenvector may correspond to
more than one extended eigenvalue. Since we were unable to settle this case, we
leave it open.

PROBLEM 3.14. Does Theorem 3.8 remain true if the range of K is not dense?

Based on Theorem 3.8, it seems likely that there is an operator T such that
Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0, but T is not a sum of extended eigenvectors of K.
However we were unable to provide an example that would illustrate such a
phenomenon. Thus, we leave open the following question.

PROBLEM 3.15. Are there a compact quasi-affinity K, distinct complex num-
bers λ1, λ2, . . . , λn, and an operator T that satisfies Fλ1 ◦ Fλ2 ◦ · · · ◦ Fλn (T) = 0
without being a sum of extended eigenvectors of K?
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