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1. INTRODUCTION

Let L2(Γ2) be the Lebesgue space and H2(Γ2) the Hardy space over Γ2 =
{(z, w) : |z| = |w| = 1}, and D be the open unit disk. A closed subspace M of
L2(Γ2) is called invariant if zM ⊂ M and wM ⊂ M. We denote by Rz = Rz,M
and Rw = Rw,M the operators on M defined by Rz f = PMz f and Rw f = PMw f
for f ∈ M, where PM is the orthogonal projection from L2(Γ2) onto M. As usual,
write [R∗z , Rw] = R∗z Rw − RwR∗z , where R∗z is the adjoint operator of Rz on M.
One easily sees that [R∗z , Rw] = 0 if and only if w(M 	 zM) ⊂ M 	 zM. For an
invariant subspace M of H2(Γ2), Mandrekar [7] showed that [R∗z , Rw] = 0 if and
only if M is the Beurling type, that is, M = ϕH2(Γ2) for an inner function ϕ.
Generally, in [8] Nakazi described all invariant subspaces M of L2(Γ2) on which
[R∗z , Rw] = 0.

The problem discussed in this paper comes from Nakazi’s conjecture: if
[R∗z , Rw] = [R∗z , Rw]∗, then [R∗z , Rw] = 0. In [5], Ohno and the first author showed
that both [R∗z , Rw] = [R∗z , Rw]∗ and [R∗z , Rw] 6= 0 hold if and only if

(1.1) M = ϕ
(

H2(Γ2)⊕ 1
w− rz

H2(Γz)
)

,

where ϕ is a unimodular function on Γ2, r is a real number with 0 < r < 1, and
H2(Γz) is the Hardy space on the unit circle Γ with variable z. In [4], the authors
pointed out that there exists an inner function ϕ on Γ2 such that M ⊂ H2(Γ2)
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and rank [R∗z , Rw] = 1 for M given in (1.1), and gave some examples of invariant
subspaces in H2(Γ2) with rank [R∗z , Rw] = 1.

Since [R∗z , Rw] = 0 on zM, generally a cross commutator [R∗z , Rw] is small.
In Theorem 2.3 of [12], Yang showed that for an invariant subspace M of H2(Γ2),
[R∗z , Rw] is Hilbert–Schmidt under a mild condition on M. To understand the
smallness of [R∗z , Rw], it is important to study when rank [R∗z , Rw] = 1.

If M is an invariant subspace of H2(Γ2) with rank [R∗z , Rw] = 1, there exists
a non-zero function f ∈ M	 zM such that w f /∈ M	 zM and

w((M	 zM)	C · f ) ⊂ M	 zM.

It is known that R∗w f ∈ M 	 zM. In this paper, we concentrated on the case of
span{R∗nw f : n > 0} = C · f , where span denotes the closed linear span. Under
this condition, the function f is connected to non-extreme points in ball H∞(Γz),
the closed unit ball of H∞(Γz). In Section 2, we prove that

f =
cϕH(z)

w− G(z)
a.e. on Γ2, c ∈ C with c 6= 0,

where ϕ is an inner function on Γ2 and functions G(z), H(z) in ball H∞(Γz) satisfy
the following conditions;

(i) G(z) is a non-extreme point in ball H∞(Γz);
(ii) |H(z)|2 = 1− |G(z)|2 a.e. on Γz.

So, f has a special form.
Conversely, suppose that the functions G(z), H(z) in ball H∞(Γz) satisfy (i)–

(ii), and either G(z) or H(z) is not constant. If there is an inner function ϕ satisfy-
ing

(1.2)
ϕH(z)

w− G(z)
∈ H2(Γ2),

then

M = ϕH2(Γ2)⊕ ϕH(z)
w− G(z)

H2(Γz)

is an invariant subspace of H2(Γ2) and rank [R∗z , Rw] = 1. It is a big problem
whether there is an inner function ϕ satisfying (1.2) or not. When G(z) is a func-
tion in the disk algebra, we prove the existence of an inner function ϕ satisfying
(1.2).

In [6], deLeeuw and Rudin proved that for a function G(z) in ball H∞(Γz),
G(z) is a non-extreme point of ball H∞(Γz) if and only if

−∞ <

2π∫
0

log(1− |G(eiθ)|) dθ

2π
,

see also pp. 138–139 in [3]. In this case, there exists a function H1(z) ∈ H∞(Γz)
satisfying |H1(z)| = 1 − |G(z)| a.e. on Γz. Let f1 = H1(z)/(w− G(z)). Then
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f1 ∈ L∞(Γ2) \ H∞(Γ2) and

(w− G(z)) f1 = H1(z) ∈ H∞(Γz).

For an invariant subspace M of H2(Γ2), write

M(M) = { f ∈ L∞(Γ2) : f M ⊂ H2(Γ2)}.

Trivially H∞(Γ2) ⊂ M(M). As seen in the above, H∞(Γ2) $M([w− G(z)]) for
a non-extreme point G(z) in ball H∞(Γz), where [w− G(z)] is the invariant sub-
space of H2(Γ2) generated by a single function w− G(z). K. Takahashi (unpub-
lished) proved that for a function G(z) in ball H∞(Γz),M([w−G(z)]) = H∞(Γ2)
if and only if G(z) is an extreme point in ball H∞(Γz), see p. 495 in [9].

If a function G(z) in ball H∞(Γz) is a non-extreme point, there exists also a
function H2(z) in ball H∞(Γz) satisfying |H2(z)|2 = 1− |G(z)|2 a.e. on Γz. The
function H2(z)/(w− G(z)) is discussed in Section 2, so Takahashi’s theorem is
very close to our subject. Since we can not find its proof in references, in Section 3
we include an independent proof.

In [11], from another view point, Sarason studied the difference between
extreme and non-extreme points in ball H∞(Γz).

2. RANK-ONE COMMUTATORS

We start from the following lemma. Through this paper, we use the follow-
ing facts in the sequel:

(i) ker R∗z = M	 zM;
(ii) [R∗z , Rw] = R∗z Rw on M	 zM;

(iii) [R∗z , Rw] = 0 on zM.

LEMMA 2.1. Let M be an invariant subspace of L2(Γ2). Then rank [R∗z , Rw] = 1
if and only if there exists a non-zero function f in M 	 zM such that w f /∈ M 	 zM
and wE ⊂ M	 zM, where E = (M	 zM)	C · f .

Proof. Suppose that rank [R∗z , Rw] = 1. Then there exist functions f , η ∈ M
satisfying f 6= 0, η 6= 0, and

(2.1) [R∗z , Rw]h = (η ⊗ f )h = 〈h, f 〉η

for every h ∈ M. Write f = f1 ⊕ f2, where f1 ∈ M	 zM and f2 ∈ zM. We have
0 = [R∗z , Rw] f2 = ‖ f2‖2η. Thus f ∈ M	 zM. Since

R∗z w f = R∗z Rw f = [R∗z , Rw] f = ‖ f ‖2η 6= 0,

we have w f /∈ M	 zM. By (2.1), [R∗z , Rw] = 0 on E. Hence wE ⊂ M	 zM.
Conversely, suppose that there exists a non-zero function f ∈ M	 zM such

that w f /∈ M	 zM and wE ⊂ M	 zM. One easily sees that

[R∗z , Rw]M = [R∗z , Rw](M	 zM) = C · R∗z Rw f 6= {0}.
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Thus rank [R∗z , Rw] = 1.

Now, we assume that M is an invariant subspace of H2(Γ2) satisfying
rank [R∗z , Rw] = 1. By Lemma 2.1, there exists a non-zero function f ∈ M	 zM
such that w f /∈ M	 zM and

(2.2) wE ⊂ M	 zM,

where E = (M	 zM)	C · f . One easily sees that R∗w(M	 zM) ⊂ M	 zM. Let

(2.3) E0 = span{R∗nw f : n > 0}.

Then E0 ⊂ M 	 zM. Let h ∈ (M 	 zM)	 E0. Then h ⊥ R∗nw f for every n > 0.
Hence wh ⊥ R∗nw f for every n > 0. By (2.2), wh ∈ (M	 zM)	 E0. So

(2.4) w((M	 zM)	 E0) ⊂ (M	 zM)	 E0.

Let E1 = (M	 zM)	 E0. Here we assume that E1 6= {0}. By the Wold decom-
position theorem,

M =
∞

∑
n=0

⊕
zn(M	 zM) =

( ∞

∑
n=0

⊕
znE1

)
⊕
( ∞

∑
n=0

⊕
znE0

)
.

By (2.4), wE1 ⊂ E1, so that

M1 :=
∞

∑
n=0

⊕
znE1

is an invariant subspace of H2(Γ2) with [R∗z,M1
, Rw,M1 ] = 0. By the Mandrekar

theorem [7], M1 = ϕH2(Γ2) for some inner function ϕ. Thus we get

wϕM = wH2(Γ2)⊕ wϕ
( ∞

∑
n=0

⊕
znE0

)
and

(2.5) wϕM	 zwϕM = wH2(Γw)⊕ wϕE0.

Note that wϕM is an invariant subspace of L2(Γ2). In this section, we shall study
the case of dim E0 = 1.

THEOREM 2.2. Let F ∈ L2(Γ2) with F 6= 0, and M be an invariant subspace of
L2(Γ2) generated by wH2(Γw) and F. Then

M	 zM = wH2(Γw)⊕C · F

if and only if there exist functions G(z), H(z) in ball H∞(Γz) satisfying the following
conditions:

(i) G(z) is a non-extreme point in ball H∞(Γz);
(ii) |H(z)|2 = 1− |G(z)|2 a.e. on Γ2;

(iii) F(z, w) = cH(z)/(1− G(z)w) a.e. on Γ2, c ∈ C with c 6= 0.
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Proof. Suppose that M	 zM = wH2(Γw)⊕C · F. Then

(2.6) M =
∞

∑
n=0

⊕
zn(M	 zM) = wH2(Γ2)⊕ FH2(Γz).

Since F ⊥ wH2(Γ2), we have wF = w f (z) + FG(z) for some functions f (z), G(z)
∈ H2(Γz). Then (w− G(z))F = w f (z). We note that f (z) 6= 0. We shall prove
that

(2.7) G(D) ∩ ∂D = ∅.

To prove this by contradiction, suppose that |G(z1)| = 1 for some z1 ∈ D. If G(z)
is constant, say G(z) = eiθ1 , then

w f (z)
w− eiθ1

= F ∈ L2(Γ2).

Since 1/(w− eiθ1) /∈ L2(Γw), f (z) = 0, and this is a contradiction. Hence G(z) is
non-constant, so that G(z) is an open mapping. Since |G(z1)| = 1 and z1 ∈ D,
G(D) contains an open subarc I of ∂D = Γ with G(z1) ∈ I. So, there exists a
curve J in D such that z1 ∈ J and |G(z)| = 1 on J. By (2.6),

F ∈
∞

∑
n=0

⊕
znL2(Γw).

Hence F(z, eit) ∈ H2(Γz) for almost every eit ∈ Γw, so that

f (z)
1− G(z)e−it ∈ H2(Γz)

for almost all eit ∈ Γw. Since |G(z)| = 1 on J, we get f (z) = 0 on J. Hence
f (z) = 0, and this is a contradiction. Thus we get (2.7).

Since F ∈ L2(Γ2), F(eis, w) ∈ L2(Γw) for almost all eis ∈ Γz. If |G(z)| = 1
on some subset E of Γz with dθ(E) > 0, then there exists a point eis ∈ E such that
f (eis) 6= 0 and F(eis, w) ∈ L2(Γw). Since F = w f (z)/(w− G(z)),

w
w− G(eis)

∈ L2(Γw).

Since |G(eis)| = 1, this leads to a contradiction. Thus we get

(2.8) |G(z)| 6= 1 a.e. on Γz.

By (2.7), either G(D) ⊂ D or G(D) ∩ D = ∅. Suppose that G(D) ∩ D = ∅.
Then 1/G(z) ∈ H∞(Γz), by (2.8) |1/G(z)| < 1 a.e. on Γz, and

F =
w f (z)

G(z)
( w

G(z) − 1
) = −

∞

∑
n=0

f (z)
G(z)n+1 wn+1 a.e. on Γ2.
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By (2.6), F ⊥ wH2(Γ2), hence f (z) = 0, and this is a contradiction. Thus we get
G(D) ⊂ D and |G(z)| < 1 a.e. on Γz. Therefore

F =
f (z)

1− G(z)w
=

∞

∑
n=0

f (z)G(z)nwn a.e. on Γ2.

Since F ∈ L2(Γ2),

∞ > ‖F‖2 =
∞

∑
n=0
‖ f (z)G(z)n‖2 =

2π∫
0

| f (eiθ)|2
1− |G(eiθ)|2

dθ

2π
.

Hence
| f (z)|2

1− |G(z)|2 ∈ L1(Γz).

Since zkF ⊥ F for every k > 1,

0 = 〈zkF, F〉 =
2π∫
0

| f (eiθ)|2
1− |G(eiθ)|2

eikθ dθ

2π
.

This shows that
| f (eiθ)|2

1− |G(eiθ)|2
= a

for some constant a > 0. Therefore f (z) = cH(z) for some function H(z) in
ball H∞(Γz) with |H(eiθ)|2 = 1− |G(eiθ)|2 a.e. on Γz, and G(z) is not an extreme
point in ball H∞(Γz).

Next, suppose that conditions (i)–(iii) hold. Note that F 6= 0. We shall prove
that M	 zM = wH2(Γw)⊕C · F. By (i) and (iii)

F(z, w) = c
∞

∑
n=0

H(z)Gn(z)wn a.e. on Γ2,

so that zkF ⊥ wH2(Γ2) for every k > 0. By (iii), wF = cwH(z) + G(z)F. This
shows that M = wH2(Γ2)⊕ FH∞(Γz). Since F ∈ L2(Γ2),

|H(z)|2
1− |G(z)|2 ∈ L1(Γz).

By (ii), we have

〈zkF, F〉 =
2π∫
0

|H(eiθ)|2
1− |G(eiθ)|2

eikθ dθ

2π
= 0

for every k > 1. Hence M = wH2(Γ2)⊕ FH2(Γz) and

M	 zM = wH2(Γw)⊕C · F.

This completes the proof.
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COROLLARY 2.3. Let M be an invariant subspace of L2(Γ2) satisfying M 	
zM = wH2(Γw)⊕C · F for some function F ∈ L2(Γ2) with F 6= 0. Then rank [R∗z , Rw]
= 1 if and only if F 6= a/(1− bw) for every a ∈ C and b ∈ D.

Proof. By Theorem 2.2,

F =
cH(z)

1− G(z)w
, c 6= 0,

where G(z) ∈ ball H∞(Γz) is a non-extreme point and H(z) ∈ ball H∞(Γz) with
|H(z)|2 = 1− |G(z)|2. We have

wF =
cwH(z)

1− G(z)w
= cwH(z) +

cG(z)H(z)
1− G(z)w

= cwH(z) + G(z)F.

Hence wF /∈ M 	 zM if and only if either H(z) or G(z) is not constant, that
is, F 6= a/(1 − bw) for every a ∈ C and b ∈ D. By Lemma 2.1, we get the
assertion.

Replacing the variable w by w in Theorem 2.2, we have the following.

COROLLARY 2.4. Let F ∈ H2(Γ2) with F 6= 0, and N be the smallest closed sub-
space of H2(Γ2) satisfying F ∈ N, zN ⊂ N, and T∗wN ⊂ N, where T∗w f = PH2(Γ2)w f
for f ∈ H2(Γ2). Then N 	 zN = C · F if and only if there exist functions G(z), H(z)
in ball H∞(Γz) satisfying the following conditions:

(i) G(z) is a non-extreme point in ball H∞(Γz);
(ii) |H(z)|2 = 1− |G(z)|2 a.e. on Γ2;

(iii) F(z, w) = cH(z)/(1− G(z)w) a.e. on Γ2, c ∈ C with c 6= 0.

One easily sees the following lemma.

LEMMA 2.5. Let M1 and M2 be invariant subspaces of L2(Γ2). If M2 = ϕM1 for
some unimodular function ϕ on Γ2, then rank [R∗z,M1

, Rw,M1 ] = rank [R∗z,M2
, Rw,M2 ].

Now we study invariant subspaces in H2(Γ2).

THEOREM 2.6. Let M be an invariant subspace of H2(Γ2) satisfying rank[R∗z , Rw]
= 1. Let [R∗z , Rw] = η ⊗ f for functions f , η ∈ M with f 6= 0 and η 6= 0. Suppose that
span{R∗nw f : n > 0} = C · f . Then there exist functions G(z), H(z) in ball H∞(Γz)
and an inner function ϕ on Γ2 satisfying the following conditions:

(i) G(z) is a non-extreme point in ball H∞(Γz);
(ii) |H(z)|2 = 1− |G(z)|2 a.e. on Γ2;

(iii) f = cϕH(z)/(w− G(z)) a.e. on Γ2, c ∈ C with c 6= 0.
Moreover,

M = ϕH2(Γ2)⊕ ϕH(z)
w− G(z)

H2(Γz).
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Conversely, suppose that G(z), H(z) ∈ H∞(Γz) satisfy conditions (i) and (ii), and
there exists an inner function ϕ such that

ϕH(z)
w− G(z)

∈ H2(Γ2).

Moreover suppose that either H(z) or G(z) is not constant. Then

M = ϕH2(Γ2)⊕ ϕH(z)
w− G(z)

H2(Γz)

is an invariant subspace of H2(Γ2) and rank [R∗z , Rw] = 1.

Proof. We shall prove the first assertion. By the argument below Lemma 2.1,
see (2.3) and (2.5), there exists an inner function ϕ satisfying

wϕM	 zwϕM = wH2(Γw)⊕C · wϕ f .

By Theorem 2.2, there exist functions G(z), H(z) in ball H∞(Γz) satisfying (i), (ii),
and

wϕ f =
cH(z)

1− G(z)w
, c 6= 0.

Hence

f =
cϕH(z)

w− G(z)
and

M =
∞

∑
n=0

⊕
zn(M	 zM) = ϕH2(Γ2)⊕ ϕH(z)

w− G(z)
H2(Γz).

Next, we shall prove the second assertion. Let M1 be the invariant sub-
space of L2(Γ2) generated by wH2(Γw) and a function H(z)/(1−G(z)w). By The-
orem 2.2,

M1 	 zM1 = wH2(Γw)⊕C · H(z)
1− G(z)w

.

By Corollary 2.3, rank [R∗z,M1
, Rw,M1 ] = 1. We have

wϕM1 	 zwϕM1 = ϕH2(Γw)⊕C · ϕH(z)
w− G(z)

,

so that

wϕM1 = ϕH2(Γ2)⊕ ϕH(z)
w− G(z)

H2(Γz) = M.

Hence M is an invariant subspace of H2(Γ2), and by Lemma 2.5, rank [R∗z , Rw] =
1.

Let G(z) ∈ ball H∞(Γz) be a non-extreme point. Then there exists an outer
function H0(z) in ball H∞(Γz) such that

|H0(z)|2 = 1− |G(z)|2 a.e. on Γz.
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Let

F(z, w) =
H0(z)

w− G(z)
on Γ2.

Then

‖F‖2 =
2π∫
0

|H0(eiθ)|2
1− |G(eiθ)|2

dθ

2π
= 1,

so that F ∈ L2(Γ2). Here we have a problem; for which G(z), is there an inner
function ϕ on Γ2 satisfying

ϕF =
ϕH0(z)

w− G(z)
∈ H2(Γ2) ?

We denote by H(D2) the space of analytic functions in the bidisk D2. The
space A(D2) is the class of all continuous functions on the closure D2 of D2 whose
restriction to D2 is analytic there. This is a so-called polydisk algebra. Similarly
we can define the disk algebra A(D). Let N(D2) be the class of all functions
f ∈ H(D2) which satisfy

sup
06r<1

2π∫
0

2π∫
0

log+ | fr(eis, eit)| dsdt
(2π)2 < ∞,

where fr(z, w) = f (rz, rw). We denote by N∗(D2) the class of functions f ∈
N(D2) for which the functions log+ | fr| form a uniformly integrable family. For
each f ∈ N(D2) with f 6= 0, log | f | has a least 2-harmonic majorant which is
denoted by u( f ). By Theorem 3.3.5 of [10], every f in N(D2) has radial limit f ∗

a.e. on Γ2. Moreover there is a real singular measure σf on Γ2 determined by f
such that u( f ) is given by

u( f )(Z) = PZ(log | f ∗|+ dσf ), Z ∈ D2,

where PZ denotes the Poisson integral. In particular, f ∈ N∗(D2) if and only if
dσf 6 0. The following lemma is proved in Theorem 5.4.5 of [10].

LEMMA 2.7. Suppose that f ∈ H∞(Γ2), f 6= 0, and | f | is upper semi-continuous
on Γ2. Then for some function h ∈ H(D2) with |h| > 0 on D2, f h is an inner function.

We need the following lemma.

LEMMA 2.8. Let G(z) ∈ ball H∞(Γz) and h ∈ H(D2). If (w− G(z))h = g ∈
N∗(D2), then h ∈ N∗(D2).

Proof. We follow the proof given by Chen and Guo in Proposition 4.1.1 of
[1]. By the assumption, we have h ∈ N(D2). Write F(z, w) = w − G(z). For
λ = (λ1, λ2) ∈ Γ2, let Fλ(ζ) = F(λ1ζ, λ2ζ) for ζ ∈ D. Then

Fλ(ζ) = λ2ζ − G(λ1ζ).
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We shall prove that Fλ(ζ) has no singular inner factor. If ‖G‖∞ < 1, clearly
Fλ(ζ) has no singular inner factor. So, we assume that ‖G‖∞ = 1. We have

λ2ζ − Fλ(ζ) = G(λ1ζ) ∈ ball H∞(Γz) and |λ2ζ − Fλ(ζ)| 6 1 a.e. on Γ.

Hence
Re λ2ζFλ(ζ) > 0 a.e. on Γ.

Let

f (ζ) =
λ2Fλ(ζ)

ζ
, ζ ∈ D \ {0}.

Then f (ζ) is analytic in D \ {0}. Let I be an open arc in Γ. We may assume that
f (ζ) has nontangential limits at the end points eiθ1 , eiθ2 of I and that Re f (eiθj) >
0, j = 1, 2. Let J be a circular arc in D jointing eiθ1 to eiθ2 . We may further assume
that inf

J
| f (ζ)| > 0. Let U be the domain bounded by I ∪ J, and let τ be a conformal

mapping from D onto U. We may assume that 0 /∈ U. Then f ◦ τ ∈ H∞(Γ) and
Re f ◦ τ > 0 a.e. on τ−1(I). By pp. 96–97 in [2],

lim
r→1

∫
I1

log |Fr(eiθ)| dθ

2π
= lim

r→1

∫
I1

log | f (reiθ)| dθ

2π
=
∫
I1

log | f (eiθ)| dθ

2π

=
∫
I1

log |Fλ(eiθ)| dθ

2π

for any compact subarc I1 of I, which means that the inner factor of Fλ(ζ) has no
singularities on I. Hence Fλ(ζ) has no singular inner factor.

Since Fλ(ζ) has no singular inner factor for every λ ∈ Γ2, by Theorem 3.3.6
of [10] we have dσF = 0. Since g = hF, dσg = dσh + dσF. Since g ∈ N∗(D2),
dσg 6 0. Thus we get dσh 6 0, and then h ∈ N∗(D2).

Suppose that G(z) ∈ A(D)∩ ball H∞(Γz). By Lemma 2.7, there is a function
h ∈ H(D2) such that (w− G(z))h is an inner function. Write ϕ = (w− G(z))h.
Let ψ(z) be a non-constant inner function. Then

ϕ(ψ(z), w) = (w− (G ◦ ψ)(z))h(ψ(z), w).

Note that ϕ(ψ(z), w) is inner and (G ◦ ψ)(z) ∈ ball H∞(Γz). By Lemma 2.8,
h(ψ(z), w)∈N∗(D2). Suppose that (G ◦ψ)(z) is a non-extreme point in ballH∞(Γz).
Note that if G(z) is non-extreme, then so is (G ◦ ψ)(z). Then there exists an outer
function H0(z) in ball H∞(Γz) satisfying

|H0(z)|2 = 1− |(G ◦ ψ)(z)|2 a.e. on Γz.

Then
H0(z)

w− (G ◦ ψ)(z)
∈ L2(Γ2).
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Hence

ϕ(ψ(z), w)H0(z)
w− (G ◦ ψ)(z)

= H0(z)h(ψ(z), w) ∈ N∗(D2) ∩ L2(Γ2) = H2(Γ2).

Combining with Theorem 2.6, we have the following theorem. A similar discus-
sion is given in [4].

We denote byA(D) the set of all (G◦ψ)(z), where G(z)∈A(D)∩ball H∞(Γz)
and ψ(z) are non-constant inner functions. Then A(D) ⊂ A(D) ⊂ ball H∞(Γz).

THEOREM 2.9. Let G(z) ∈ A(D). Suppose that G(z) is not an extreme point in
ball H∞(Γz). Let H0(z) ∈ H∞(Γz) be an outer function with |H0(z)|2 = 1− |G(z)|2
a.e. on Γz. Let H(z) ∈ ball H∞(Γz) with |H(z)| = |H0(z)| a.e. on Γz. Assume that
either G(z) or H(z) is non-constant. Then there exists an inner function ϕ on Γ2 such
that

ϕH0(z)
w− G(z)

∈ H2(Γ2) and M = ϕH2(Γ2)⊕ ϕH(z)
w− G(z)

H2(Γz)

is an invariant subspace of H2(Γ2) and rank [R∗z , Rw] = 1.

3. TAKAHASHI’S THEOREM

We prove an H2(Γ2)-version of Takahashi’s theorem.

THEOREM 3.1. Let g(z) be a function in ball H∞(Γz). Then g(z) is a non-extreme
point in ball H∞(Γz) if and only if there is a function F in L2(Γ2) \ H2(Γ2) such that
(w− g(z))F ∈ H2(Γ2).

Proof. Suppose that g(z) is not an extreme point in ball H∞(Γz). Then there
exists a function h(z) in H∞(Γz) with |h(z)| = 1− |g(z)| a.e. on Γz. Let

F(z, w) =
h(z)

w− g(z)
.

Then (w− g(z))F ∈ H∞(Γ2). Since∣∣∣ h(z)
w− g(z)

∣∣∣ 6 |h(z)|
1− |g(z)| = 1 a.e. on Γz,

we have F ∈ L∞(Γ2). Since

F(z, w) =
∞

∑
n=0

h(z)gn(z)w(n+1) a.e. on Γz,

F(z, w) ∈ H∞(Γ2) if and only if h(z) = 0. Since |h(z)| > 0 a.e. on Γz, F /∈ H∞(Γ2).
Next, suppose that (w − g(z))F ∈ H2(Γ2) for some F ∈ L2(Γ2) \ H2(Γ2).

We have (ξ− g(z))F(z, ξ) ∈ H2(Γz) for almost all ξ ∈ Γw. Since ξ− g(z) ∈ H2(Γz)
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is outer for all ξ ∈ Γw, F(z, ξ) ∈ H2(Γz) for almost all ξ ∈ Γw. This implies that

F ∈
∞

∑
n=−∞

⊕
wn H2(Γz).

Write

F =
∞

∑
n=−∞

fn(z)wn, fn(z) ∈ H2(Γz).

Since (w− g(z))F ∈ H2(Γ2), fn−1(z)− g(z) fn(z) = 0 for every n 6 −1. Hence

f−k(z) = f−1(z)gk−1(z), k > 1.

Write

F′(z, w) =
−1

∑
n=−∞

fn(z)wn.

Then F′(z, w) =
∞
∑

k=1
f−k(z)wk = f−1(z)

∞
∑

k=1
g(z)k−1wk. Since F 6∈ H2(Γ2), we have

f−1(z) 6= 0. Since F′ ∈ L2(Γ2),

∞ > ‖F′‖2 =
2π∫
0

| f−1(eiθ)|2
∞

∑
k=1
|g(eiθ)|2(k−1) dθ

2π
.

Hence |g| < 1 a.e. on Γ. Thus we get
2π∫
0

| f−1(eiθ)|2
1− |g(eiθ)|2

dθ

2π
< ∞.

Let

G(eiθ) =
| f−1(eiθ)|2

1− |g(eiθ)|2
.

Then G ∈ L1(Γz) and
2π∫
0

log G(eiθ)
dθ

2π
+

2π∫
0

log(1− |g(eiθ)|2) dθ

2π
= 2

2π∫
0

log | f−1(eiθ)| dθ

2π
.

We have
2π∫
0

log G(eiθ) dθ
2π < ∞. Since f−1(z) ∈ H2(Γz), by Jensen’s inequality, see

p. 52 in [3],

−∞ <

2π∫
0

log | f−1(eiθ)| dθ

2π
.

Hence
2π∫
0

log(1− |g(eiθ)|2) dθ

2π
> −∞.

Therefore g(z) is not an extreme point in ball H∞(Γz).
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