RANK-ONE COMMUTATORS ON INVARIANT SUBSPACES OF THE HARDY SPACE ON THE BIDISK. II

KEI JI IZUCHI AND KOU HEI IZUCHI

Communicated by William Arveson

Abstract. As a continuation of the previous paper, we still study invariant subspaces of $H^{2}\left(\Gamma^{2}\right)$ with rank $\left[R_{z}^{*}, R_{w}\right]=1$.

KEYWORDS: Invariant subspace, Hardy space, cross commutator, rank-one operator.
MSC (2000): Primary 47A15; Secondary 32A35.

1. INTRODUCTION

Let $L^{2}\left(\Gamma^{2}\right)$ be the Lebesgue space and $H^{2}\left(\Gamma^{2}\right)$ the Hardy space over $\Gamma^{2}=$ $\{(z, w):|z|=|w|=1\}$, and D be the open unit disk. A closed subspace M of $L^{2}\left(\Gamma^{2}\right)$ is called invariant if $z M \subset M$ and $w M \subset M$. We denote by $R_{z}=R_{z, M}$ and $R_{w}=R_{w, M}$ the operators on M defined by $R_{z} f=P_{M} z f$ and $R_{w} f=P_{M} w f$ for $f \in M$, where P_{M} is the orthogonal projection from $L^{2}\left(\Gamma^{2}\right)$ onto M. As usual, write $\left[R_{z}^{*}, R_{w}\right]=R_{z}^{*} R_{w}-R_{w} R_{z}^{*}$, where R_{z}^{*} is the adjoint operator of R_{z} on M. One easily sees that $\left[R_{z}^{*}, R_{w}\right]=0$ if and only if $w(M \ominus z M) \subset M \ominus z M$. For an invariant subspace M of $H^{2}\left(\Gamma^{2}\right)$, Mandrekar [7] showed that $\left[R_{z}^{*}, R_{w}\right]=0$ if and only if M is the Beurling type, that is, $M=\varphi H^{2}\left(\Gamma^{2}\right)$ for an inner function φ. Generally, in [8] Nakazi described all invariant subspaces M of $L^{2}\left(\Gamma^{2}\right)$ on which $\left[R_{z}^{*}, R_{w}\right]=0$.

The problem discussed in this paper comes from Nakazi's conjecture: if $\left[R_{z}^{*}, R_{w}\right]=\left[R_{z}^{*}, R_{w}\right]^{*}$, then $\left[R_{z}^{*}, R_{w}\right]=0$. In [5], Ohno and the first author showed that both $\left[R_{z}^{*}, R_{w}\right]=\left[R_{z}^{*}, R_{w}\right]^{*}$ and $\left[R_{z}^{*}, R_{w}\right] \neq 0$ hold if and only if

$$
\begin{equation*}
M=\varphi\left(H^{2}\left(\Gamma^{2}\right) \oplus \frac{1}{w-r z} H^{2}\left(\Gamma_{z}\right)\right) \tag{1.1}
\end{equation*}
$$

where φ is a unimodular function on Γ^{2}, r is a real number with $0<r<1$, and $H^{2}\left(\Gamma_{z}\right)$ is the Hardy space on the unit circle Γ with variable z. In [4], the authors pointed out that there exists an inner function φ on Γ^{2} such that $M \subset H^{2}\left(\Gamma^{2}\right)$
and $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$ for M given in (1.1), and gave some examples of invariant subspaces in $H^{2}\left(\Gamma^{2}\right)$ with $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$.

Since $\left[R_{z}^{*}, R_{w}\right]=0$ on $z M$, generally a cross commutator $\left[R_{z}^{*}, R_{w}\right]$ is small. In Theorem 2.3 of [12], Yang showed that for an invariant subspace M of $H^{2}\left(\Gamma^{2}\right)$, [R_{z}^{*}, R_{w}] is Hilbert-Schmidt under a mild condition on M. To understand the smallness of $\left[R_{z}^{*}, R_{w}\right]$, it is important to study when $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$.

If M is an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ with $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$, there exists a non-zero function $f \in M \ominus z M$ such that $w f \notin M \ominus z M$ and

$$
w((M \ominus z M) \ominus \mathbb{C} \cdot f) \subset M \ominus z M
$$

It is known that $R_{w}^{*} f \in M \ominus z M$. In this paper, we concentrated on the case of $\overline{\operatorname{span}}\left\{R_{w}^{* n} f: n \geqslant 0\right\}=\mathbb{C} \cdot f$, where $\overline{\text { span }}$ denotes the closed linear span. Under this condition, the function f is connected to non-extreme points in ball $H^{\infty}\left(\Gamma_{z}\right)$, the closed unit ball of $H^{\infty}\left(\Gamma_{z}\right)$. In Section 2, we prove that

$$
f=\frac{c \varphi H(z)}{w-G(z)} \quad \text { a.e. on } \Gamma^{2}, \quad c \in \mathbb{C} \text { with } c \neq 0
$$

where φ is an inner function on Γ^{2} and functions $G(z), H(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfy the following conditions;
(i) $G(z)$ is a non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$;
(ii) $|H(z)|^{2}=1-|G(z)|^{2}$ a.e. on Γ_{z}.

So, f has a special form.
Conversely, suppose that the functions $G(z), H(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfy (i)(ii), and either $G(z)$ or $H(z)$ is not constant. If there is an inner function φ satisfying

$$
\begin{equation*}
\frac{\varphi H(z)}{w-G(z)} \in H^{2}\left(\Gamma^{2}\right) \tag{1.2}
\end{equation*}
$$

then

$$
M=\varphi H^{2}\left(\Gamma^{2}\right) \oplus \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right)
$$

is an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ and $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$. It is a big problem whether there is an inner function φ satisfying (1.2) or not. When $G(z)$ is a function in the disk algebra, we prove the existence of an inner function φ satisfying (1.2).

In [6], deLeeuw and Rudin proved that for a function $G(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$, $G(z)$ is a non-extreme point of ball $H^{\infty}\left(\Gamma_{z}\right)$ if and only if

$$
-\infty<\int_{0}^{2 \pi} \log \left(1-\left|G\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|\right) \frac{\mathrm{d} \theta}{2 \pi^{\prime}}
$$

see also pp. 138-139 in [3]. In this case, there exists a function $H_{1}(z) \in H^{\infty}\left(\Gamma_{z}\right)$ satisfying $\left|H_{1}(z)\right|=1-|G(z)|$ a.e. on Γ_{z}. Let $f_{1}=H_{1}(z) /(w-G(z))$. Then
$f_{1} \in L^{\infty}\left(\Gamma^{2}\right) \backslash H^{\infty}\left(\Gamma^{2}\right)$ and

$$
(w-G(z)) f_{1}=H_{1}(z) \in H^{\infty}\left(\Gamma_{z}\right)
$$

For an invariant subspace M of $H^{2}\left(\Gamma^{2}\right)$, write

$$
\mathcal{M}(M)=\left\{f \in L^{\infty}\left(\Gamma^{2}\right): f M \subset H^{2}\left(\Gamma^{2}\right)\right\}
$$

Trivially $H^{\infty}\left(\Gamma^{2}\right) \subset \mathcal{M}(M)$. As seen in the above, $H^{\infty}\left(\Gamma^{2}\right) \varsubsetneqq \mathcal{M}([w-G(z)])$ for a non-extreme point $G(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$, where $[w-G(z)]$ is the invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ generated by a single function $w-G(z)$. K. Takahashi (unpublished) proved that for a function $G(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right), \mathcal{M}([w-G(z)])=H^{\infty}\left(\Gamma^{2}\right)$ if and only if $G(z)$ is an extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$, see p. 495 in [9].

If a function $G(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ is a non-extreme point, there exists also a function $H_{2}(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfying $\left|H_{2}(z)\right|^{2}=1-|G(z)|^{2}$ a.e. on Γ_{z}. The function $H_{2}(z) /(w-G(z))$ is discussed in Section 2, so Takahashi's theorem is very close to our subject. Since we can not find its proof in references, in Section 3 we include an independent proof.

In [11], from another view point, Sarason studied the difference between extreme and non-extreme points in ball $H^{\infty}\left(\Gamma_{z}\right)$.

2. RANK-ONE COMMUTATORS

We start from the following lemma. Through this paper, we use the following facts in the sequel:
(i) $\operatorname{ker} R_{z}^{*}=M \ominus z M$;
(ii) $\left[R_{z}^{*}, R_{w}\right]=R_{z}^{*} R_{w}$ on $M \ominus z M$;
(iii) $\left[R_{z}^{*}, R_{w}\right]=0$ on $z M$.

Lemma 2.1. Let M be an invariant subspace of $L^{2}\left(\Gamma^{2}\right)$. Then $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$ if and only if there exists a non-zero function f in $M \ominus z M$ such that $w f \notin M \ominus z M$ and $w E \subset M \ominus z M$, where $E=(M \ominus z M) \ominus \mathbb{C} \cdot f$.

Proof. Suppose that $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$. Then there exist functions $f, \eta \in M$ satisfying $f \neq 0, \eta \neq 0$, and

$$
\begin{equation*}
\left[R_{z}^{*}, R_{w}\right] h=(\eta \otimes f) h=\langle h, f\rangle \eta \tag{2.1}
\end{equation*}
$$

for every $h \in M$. Write $f=f_{1} \oplus f_{2}$, where $f_{1} \in M \ominus z M$ and $f_{2} \in z M$. We have $0=\left[R_{z}^{*}, R_{w}\right] f_{2}=\left\|f_{2}\right\|^{2} \eta$. Thus $f \in M \ominus z M$. Since

$$
R_{z}^{*} w f=R_{z}^{*} R_{w} f=\left[R_{z}^{*}, R_{w}\right] f=\|f\|^{2} \eta \neq 0
$$

we have $w f \notin M \ominus z M$. By (2.1), $\left[R_{z}^{*}, R_{w}\right]=0$ on E. Hence $w E \subset M \ominus z M$.
Conversely, suppose that there exists a non-zero function $f \in M \ominus z M$ such that $w f \notin M \ominus z M$ and $w E \subset M \ominus z M$. One easily sees that

$$
\left[R_{z}^{*}, R_{w}\right] M=\left[R_{z}^{*}, R_{w}\right](M \ominus z M)=\mathbb{C} \cdot R_{z}^{*} R_{w} f \neq\{0\}
$$

Thus rank $\left[R_{z}^{*}, R_{w}\right]=1$.
Now, we assume that M is an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ satisfying $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$. By Lemma 2.1, there exists a non-zero function $f \in M \ominus z M$ such that $w f \notin M \ominus z M$ and

$$
\begin{equation*}
w E \subset M \ominus z M \tag{2.2}
\end{equation*}
$$

where $E=(M \ominus z M) \ominus \mathbb{C} \cdot f$. One easily sees that $R_{w}^{*}(M \ominus z M) \subset M \ominus z M$. Let

$$
\begin{equation*}
E_{0}=\overline{\operatorname{span}}\left\{R_{w}^{* n} f: n \geqslant 0\right\} \tag{2.3}
\end{equation*}
$$

Then $E_{0} \subset M \ominus z M$. Let $h \in(M \ominus z M) \ominus E_{0}$. Then $h \perp R_{w}^{* n} f$ for every $n \geqslant 0$. Hence $w h \perp R_{w}^{* n} f$ for every $n \geqslant 0$. By (2.2), wh $\in(M \ominus z M) \ominus E_{0}$. So

$$
\begin{equation*}
w\left((M \ominus z M) \ominus E_{0}\right) \subset(M \ominus z M) \ominus E_{0} \tag{2.4}
\end{equation*}
$$

Let $E_{1}=(M \ominus z M) \ominus E_{0}$. Here we assume that $E_{1} \neq\{0\}$. By the Wold decomposition theorem,

$$
M=\sum_{n=0}^{\infty} \bigoplus z^{n}(M \ominus z M)=\left(\sum_{n=0}^{\infty} \bigoplus z^{n} E_{1}\right) \oplus\left(\sum_{n=0}^{\infty} \bigoplus z^{n} E_{0}\right)
$$

By (2.4), $w E_{1} \subset E_{1}$, so that

$$
M_{1}:=\sum_{n=0}^{\infty} \bigoplus z^{n} E_{1}
$$

is an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ with $\left[R_{z, M_{1}}^{*}, R_{w, M_{1}}\right]=0$. By the Mandrekar theorem [7], $M_{1}=\varphi H^{2}\left(\Gamma^{2}\right)$ for some inner function φ. Thus we get

$$
w \bar{\varphi} M=w H^{2}\left(\Gamma^{2}\right) \oplus w \bar{\varphi}\left(\sum_{n=0}^{\infty} \bigoplus z^{n} E_{0}\right)
$$

and

$$
\begin{equation*}
w \bar{\varphi} M \ominus z w \bar{\varphi} M=w H^{2}\left(\Gamma_{w}\right) \oplus w \bar{\varphi} E_{0} \tag{2.5}
\end{equation*}
$$

Note that $w \bar{\varphi} M$ is an invariant subspace of $L^{2}\left(\Gamma^{2}\right)$. In this section, we shall study the case of $\operatorname{dim} E_{0}=1$.

THEOREM 2.2. Let $F \in L^{2}\left(\Gamma^{2}\right)$ with $F \neq 0$, and M be an invariant subspace of $L^{2}\left(\Gamma^{2}\right)$ generated by $w H^{2}\left(\Gamma_{w}\right)$ and F. Then

$$
M \ominus z M=w H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot F
$$

if and only if there exist functions $G(z), H(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfying the following conditions:
(i) $G(z)$ is a non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$;
(ii) $|H(z)|^{2}=1-|G(z)|^{2}$ a.e. on Γ^{2};
(iii) $F(z, w)=c H(z) /(1-G(z) \bar{w})$ a.e. on $\Gamma^{2}, c \in \mathbb{C}$ with $c \neq 0$.

Proof. Suppose that $M \ominus z M=w H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot F$. Then

$$
\begin{equation*}
M=\sum_{n=0}^{\infty} \bigoplus z^{n}(M \ominus z M)=w H^{2}\left(\Gamma^{2}\right) \oplus F H^{2}\left(\Gamma_{z}\right) \tag{2.6}
\end{equation*}
$$

Since $F \perp w H^{2}\left(\Gamma^{2}\right)$, we have $w F=w f(z)+F G(z)$ for some functions $f(z), G(z)$ $\in H^{2}\left(\Gamma_{z}\right)$. Then $(w-G(z)) F=w f(z)$. We note that $f(z) \neq 0$. We shall prove that

$$
\begin{equation*}
G(D) \cap \partial D=\varnothing . \tag{2.7}
\end{equation*}
$$

To prove this by contradiction, suppose that $\left|G\left(z_{1}\right)\right|=1$ for some $z_{1} \in D$. If $G(z)$ is constant, say $G(z)=e^{\mathrm{i} \theta_{1}}$, then

$$
\frac{w f(z)}{w-\mathrm{e}^{\mathrm{i} \theta_{1}}}=F \in L^{2}\left(\Gamma^{2}\right)
$$

Since $1 /\left(w-\mathrm{e}^{\mathrm{i} \theta_{1}}\right) \notin L^{2}\left(\Gamma_{w}\right), f(z)=0$, and this is a contradiction. Hence $G(z)$ is non-constant, so that $G(z)$ is an open mapping. Since $\left|G\left(z_{1}\right)\right|=1$ and $z_{1} \in D$, $G(D)$ contains an open subarc I of $\partial D=\Gamma$ with $G\left(z_{1}\right) \in I$. So, there exists a curve J in D such that $z_{1} \in J$ and $|G(z)|=1$ on J. By (2.6),

$$
F \in \sum_{n=0}^{\infty} \bigoplus z^{n} L^{2}\left(\Gamma_{w}\right)
$$

Hence $F\left(z, \mathrm{e}^{\mathrm{i} t}\right) \in H^{2}\left(\Gamma_{z}\right)$ for almost every $\mathrm{e}^{\mathrm{i} t} \in \Gamma_{w}$, so that

$$
\frac{f(z)}{1-G(z) \mathrm{e}^{-\mathrm{i} t}} \in H^{2}\left(\Gamma_{z}\right)
$$

for almost all $\mathrm{e}^{\mathrm{i} t} \in \Gamma_{w}$. Since $|G(z)|=1$ on J, we get $f(z)=0$ on J. Hence $f(z)=0$, and this is a contradiction. Thus we get (2.7).

Since $F \in L^{2}\left(\Gamma^{2}\right), F\left(\mathrm{e}^{\mathrm{i} s}, w\right) \in L^{2}\left(\Gamma_{w}\right)$ for almost all $\mathrm{e}^{\mathrm{i} s} \in \Gamma_{z}$. If $|G(z)|=1$ on some subset E of Γ_{z} with $\mathrm{d} \theta(E)>0$, then there exists a point $\mathrm{e}^{\text {is }} \in E$ such that $f\left(\mathrm{e}^{\mathrm{is}}\right) \neq 0$ and $F\left(\mathrm{e}^{\mathrm{is}}, w\right) \in L^{2}\left(\Gamma_{w}\right)$. Since $F=w f(z) /(w-G(z))$,

$$
\frac{w}{w-G\left(\mathrm{e}^{\mathrm{i} s}\right)} \in L^{2}\left(\Gamma_{w}\right)
$$

Since $\left|G\left(\mathrm{e}^{\mathrm{is}}\right)\right|=1$, this leads to a contradiction. Thus we get

$$
\begin{equation*}
|G(z)| \neq 1 \quad \text { a.e. on } \Gamma_{z} \tag{2.8}
\end{equation*}
$$

By (2.7), either $G(D) \subset D$ or $G(D) \cap D=\varnothing$. Suppose that $G(D) \cap D=\varnothing$. Then $1 / G(z) \in H^{\infty}\left(\Gamma_{z}\right)$, by $(2.8)|1 / G(z)|<1$ a.e. on Γ_{z}, and

$$
F=\frac{w f(z)}{G(z)\left(\frac{w}{G(z)}-1\right)}=-\sum_{n=0}^{\infty} \frac{f(z)}{G(z)^{n+1}} w^{n+1} \quad \text { a.e. on } \Gamma^{2}
$$

By (2.6), $F \perp w H^{2}\left(\Gamma^{2}\right)$, hence $f(z)=0$, and this is a contradiction. Thus we get $G(D) \subset D$ and $|G(z)|<1$ a.e. on Γ_{z}. Therefore

$$
F=\frac{f(z)}{1-G(z) \bar{w}}=\sum_{n=0}^{\infty} f(z) G(z)^{n} \bar{w}^{n} \quad \text { a.e. on } \Gamma^{2}
$$

Since $F \in L^{2}\left(\Gamma^{2}\right)$,

$$
\infty>\|F\|^{2}=\sum_{n=0}^{\infty}\left\|f(z) G(z)^{n}\right\|^{2}=\int_{0}^{2 \pi} \frac{\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{1-\left|G\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \frac{\mathrm{~d} \theta}{2 \pi}
$$

Hence

$$
\frac{|f(z)|^{2}}{1-|G(z)|^{2}} \in L^{1}\left(\Gamma_{z}\right)
$$

Since $z^{k} F \perp F$ for every $k \geqslant 1$,

$$
0=\left\langle z^{k} F, F\right\rangle=\int_{0}^{2 \pi} \frac{\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{1-\left|G\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{e}^{\mathrm{i} k \theta} \frac{\mathrm{~d} \theta}{2 \pi}
$$

This shows that

$$
\frac{\left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{1-\left|G\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}=a
$$

for some constant $a>0$. Therefore $f(z)=c H(z)$ for some function $H(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ with $\left|H\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}=1-\left|G\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}$ a.e. on Γ_{z}, and $G(z)$ is not an extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$.

Next, suppose that conditions (i)-(iii) hold. Note that $F \neq 0$. We shall prove that $M \ominus z M=w H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot F$. By (i) and (iii)

$$
F(z, w)=c \sum_{n=0}^{\infty} H(z) G^{n}(z) \bar{w}^{n} \quad \text { a.e. on } \Gamma^{2}
$$

so that $z^{k} F \perp w H^{2}\left(\Gamma^{2}\right)$ for every $k \geqslant 0$. By (iii), $w F=c w H(z)+G(z) F$. This shows that $M=w H^{2}\left(\Gamma^{2}\right) \oplus \overline{F H^{\infty}\left(\Gamma_{z}\right)}$. Since $F \in L^{2}\left(\Gamma^{2}\right)$,

$$
\frac{|H(z)|^{2}}{1-|G(z)|^{2}} \in L^{1}\left(\Gamma_{z}\right)
$$

By (ii), we have

$$
\left\langle z^{k} F, F\right\rangle=\int_{0}^{2 \pi} \frac{\left|H\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{1-\left|G\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{e}^{\mathrm{i} k \theta} \frac{\mathrm{~d} \theta}{2 \pi}=0
$$

for every $k \geqslant 1$. Hence $M=w H^{2}\left(\Gamma^{2}\right) \oplus F H^{2}\left(\Gamma_{z}\right)$ and

$$
M \ominus z M=w H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot F
$$

This completes the proof.

Corollary 2.3. Let M be an invariant subspace of $L^{2}\left(\Gamma^{2}\right)$ satisfying $M \ominus$ $z M=w H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot F$ for some function $F \in L^{2}\left(\Gamma^{2}\right)$ with $F \neq 0$. Then $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]$ $=1$ if and only if $F \neq a /(1-b \bar{w})$ for every $a \in \mathbb{C}$ and $b \in D$.

Proof. By Theorem 2.2,

$$
F=\frac{c H(z)}{1-G(z) \bar{w}}, \quad c \neq 0
$$

where $G(z) \in$ ball $H^{\infty}\left(\Gamma_{z}\right)$ is a non-extreme point and $H(z) \in$ ball $H^{\infty}\left(\Gamma_{z}\right)$ with $|H(z)|^{2}=1-|G(z)|^{2}$. We have

$$
w F=\frac{c w H(z)}{1-G(z) \bar{w}}=c w H(z)+\frac{c G(z) H(z)}{1-G(z) \bar{w}}=c w H(z)+G(z) F
$$

Hence $w F \notin M \ominus z M$ if and only if either $H(z)$ or $G(z)$ is not constant, that is, $F \neq a /(1-b \bar{w})$ for every $a \in \mathbb{C}$ and $b \in D$. By Lemma 2.1, we get the assertion.

Replacing the variable w by \bar{w} in Theorem 2.2, we have the following.
Corollary 2.4. Let $F \in H^{2}\left(\Gamma^{2}\right)$ with $F \neq 0$, and N be the smallest closed subspace of $H^{2}\left(\Gamma^{2}\right)$ satisfying $F \in N, z N \subset N$, and $T_{w}^{*} N \subset N$, where $T_{w}^{*} f=P_{H^{2}\left(\Gamma^{2}\right)} \bar{w} f$ for $f \in H^{2}\left(\Gamma^{2}\right)$. Then $N \ominus z N=\mathbb{C} \cdot F$ if and only if there exist functions $G(z), H(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfying the following conditions:
(i) $G(z)$ is a non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$;
(ii) $|H(z)|^{2}=1-|G(z)|^{2}$ a.e. on Γ^{2};
(iii) $F(z, w)=c H(z) /(1-G(z) \bar{w})$ a.e. on $\Gamma^{2}, c \in \mathbb{C}$ with $c \neq 0$.

One easily sees the following lemma.
LEMMA 2.5. Let M_{1} and M_{2} be invariant subspaces of $L^{2}\left(\Gamma^{2}\right)$. If $M_{2}=\varphi M_{1}$ for some unimodular function φ on Γ^{2}, then $\operatorname{rank}\left[R_{z, M_{1}}^{*}, R_{w, M_{1}}\right]=\operatorname{rank}\left[R_{z, M_{2}}^{*}, R_{w, M_{2}}\right]$.

Now we study invariant subspaces in $H^{2}\left(\Gamma^{2}\right)$.
THEOREM 2.6. Let M be an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ satisfying $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]$ $=1$. Let $\left[R_{z}^{*}, R_{w}\right]=\eta \otimes f$ for functions $f, \eta \in M$ with $f \neq 0$ and $\eta \neq 0$. Suppose that $\overline{\operatorname{span}}\left\{R_{w}^{* n} f: n \geqslant 0\right\}=\mathbb{C} \cdot f$. Then there exist functions $G(z), H(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ and an inner function φ on Γ^{2} satisfying the following conditions:
(i) $G(z)$ is a non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$;
(ii) $|H(z)|^{2}=1-|G(z)|^{2}$ a.e. on Γ^{2};
(iii) $f=c \varphi H(z) /(w-G(z))$ a.e. on $\Gamma^{2}, c \in \mathbb{C}$ with $c \neq 0$.

Moreover,

$$
M=\varphi H^{2}\left(\Gamma^{2}\right) \oplus \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right)
$$

Conversely, suppose that $G(z), H(z) \in H^{\infty}\left(\Gamma_{z}\right)$ satisfy conditions (i) and (ii), and there exists an inner function φ such that

$$
\frac{\varphi H(z)}{w-G(z)} \in H^{2}\left(\Gamma^{2}\right)
$$

Moreover suppose that either $H(z)$ or $G(z)$ is not constant. Then

$$
M=\varphi H^{2}\left(\Gamma^{2}\right) \oplus \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right)
$$

is an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ and $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$.
Proof. We shall prove the first assertion. By the argument below Lemma 2.1, see (2.3) and (2.5), there exists an inner function φ satisfying

$$
w \bar{\varphi} M \ominus z w \bar{\varphi} M=w H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot w \bar{\varphi} f
$$

By Theorem 2.2, there exist functions $G(z), H(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfying (i), (ii), and

$$
w \bar{\varphi} f=\frac{c H(z)}{1-G(z) \bar{w}}, \quad c \neq 0 .
$$

Hence

$$
f=\frac{c \varphi H(z)}{w-G(z)}
$$

and

$$
M=\sum_{n=0}^{\infty} \bigoplus z^{n}(M \ominus z M)=\varphi H^{2}\left(\Gamma^{2}\right) \oplus \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right)
$$

Next, we shall prove the second assertion. Let M_{1} be the invariant subspace of $L^{2}\left(\Gamma^{2}\right)$ generated by $w H^{2}\left(\Gamma_{w}\right)$ and a function $H(z) /(1-G(z) \bar{w})$. By Theorem 2.2,

$$
M_{1} \ominus z M_{1}=w H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot \frac{H(z)}{1-G(z) \bar{w}}
$$

By Corollary 2.3, $\operatorname{rank}\left[R_{z, M_{1}}^{*}, R_{w, M_{1}}\right]=1$. We have

$$
\bar{w} \varphi M_{1} \ominus z \bar{w} \varphi M_{1}=\varphi H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot \frac{\varphi H(z)}{w-G(z)}
$$

so that

$$
\bar{w} \varphi M_{1}=\varphi H^{2}\left(\Gamma^{2}\right) \oplus \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right)=M
$$

Hence M is an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$, and by Lemma 2.5, rank $\left[R_{z}^{*}, R_{w}\right]=$ 1.

Let $G(z) \in$ ball $H^{\infty}\left(\Gamma_{z}\right)$ be a non-extreme point. Then there exists an outer function $H_{0}(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ such that

$$
\left|H_{0}(z)\right|^{2}=1-|G(z)|^{2} \quad \text { a.e. on } \Gamma_{z} .
$$

Let

$$
F(z, w)=\frac{H_{0}(z)}{w-G(z)} \quad \text { on } \Gamma^{2}
$$

Then

$$
\|F\|^{2}=\int_{0}^{2 \pi} \frac{\left|H_{0}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{1-\left|G\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \frac{\mathrm{~d} \theta}{2 \pi}=1
$$

so that $F \in L^{2}\left(\Gamma^{2}\right)$. Here we have a problem; for which $G(z)$, is there an inner function φ on Γ^{2} satisfying

$$
\varphi F=\frac{\varphi H_{0}(z)}{w-G(z)} \in H^{2}\left(\Gamma^{2}\right) ?
$$

We denote by $H\left(D^{2}\right)$ the space of analytic functions in the bidisk D^{2}. The space $A\left(D^{2}\right)$ is the class of all continuous functions on the closure \bar{D}^{2} of D^{2} whose restriction to D^{2} is analytic there. This is a so-called polydisk algebra. Similarly we can define the disk algebra $A(D)$. Let $N\left(D^{2}\right)$ be the class of all functions $f \in H\left(D^{2}\right)$ which satisfy

$$
\sup _{0 \leqslant r<1} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f_{r}\left(\mathrm{e}^{\mathrm{i} s}, \mathrm{e}^{\mathrm{i} t}\right)\right| \frac{\mathrm{d} s \mathrm{~d} t}{(2 \pi)^{2}}<\infty
$$

where $f_{r}(z, w)=f(r z, r w)$. We denote by $N_{*}\left(D^{2}\right)$ the class of functions $f \in$ $N\left(D^{2}\right)$ for which the functions $\log ^{+}\left|f_{r}\right|$ form a uniformly integrable family. For each $f \in N\left(D^{2}\right)$ with $f \neq 0, \log |f|$ has a least 2-harmonic majorant which is denoted by $u(f)$. By Theorem 3.3.5 of [10], every f in $N\left(D^{2}\right)$ has radial limit f^{*} a.e. on Γ^{2}. Moreover there is a real singular measure σ_{f} on Γ^{2} determined by f such that $u(f)$ is given by

$$
u(f)(Z)=P_{Z}\left(\log \left|f^{*}\right|+\mathrm{d} \sigma_{f}\right), \quad Z \in D^{2}
$$

where P_{Z} denotes the Poisson integral. In particular, $f \in N_{*}\left(D^{2}\right)$ if and only if $\mathrm{d} \sigma_{f} \leqslant 0$. The following lemma is proved in Theorem 5.4.5 of [10].

Lemma 2.7. Suppose that $f \in H^{\infty}\left(\Gamma^{2}\right), f \neq 0$, and $|f|$ is upper semi-continuous on Γ^{2}. Then for some function $h \in H\left(D^{2}\right)$ with $|h|>0$ on D^{2}, fh is an inner function.

We need the following lemma.
Lemma 2.8. Let $G(z) \in \operatorname{ball} H^{\infty}\left(\Gamma_{z}\right)$ and $h \in H\left(D^{2}\right)$. If $(w-G(z)) h=g \in$ $N_{*}\left(D^{2}\right)$, then $h \in N_{*}\left(D^{2}\right)$.

Proof. We follow the proof given by Chen and Guo in Proposition 4.1.1 of [1]. By the assumption, we have $h \in N\left(D^{2}\right)$. Write $F(z, w)=w-G(z)$. For $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \Gamma^{2}$, let $F_{\lambda}(\zeta)=F\left(\lambda_{1} \zeta, \lambda_{2} \zeta\right)$ for $\zeta \in D$. Then

$$
F_{\lambda}(\zeta)=\lambda_{2} \zeta-G\left(\lambda_{1} \zeta\right)
$$

We shall prove that $F_{\lambda}(\zeta)$ has no singular inner factor. If $\|G\|_{\infty}<1$, clearly $F_{\lambda}(\zeta)$ has no singular inner factor. So, we assume that $\|G\|_{\infty}=1$. We have

$$
\lambda_{2} \zeta-F_{\lambda}(\zeta)=G\left(\lambda_{1} \zeta\right) \in \operatorname{ball} H^{\infty}\left(\Gamma_{z}\right) \quad \text { and } \quad\left|\lambda_{2} \zeta-F_{\lambda}(\zeta)\right| \leqslant 1 \quad \text { a.e. on } \Gamma
$$

Hence

$$
\operatorname{Re} \bar{\lambda}_{2} \bar{\zeta} F_{\lambda}(\zeta) \geqslant 0 \quad \text { a.e. on } \Gamma .
$$

Let

$$
f(\zeta)=\frac{\bar{\lambda}_{2} F_{\lambda}(\zeta)}{\zeta}, \quad \zeta \in D \backslash\{0\}
$$

Then $f(\zeta)$ is analytic in $D \backslash\{0\}$. Let I be an open arc in Γ. We may assume that $f(\zeta)$ has nontangential limits at the end points $\mathrm{e}^{\mathrm{i} \theta_{1}}, \mathrm{e}^{\mathrm{i} \theta_{2}}$ of I and that $\operatorname{Re} f\left(\mathrm{e}^{\mathrm{i} \theta_{j}}\right)>$ $0, j=1,2$. Let J be a circular arc in D jointing $\mathrm{e}^{\mathrm{i} \theta_{1}}$ to $\mathrm{e}^{\mathrm{i} \theta_{2}}$. We may further assume that $\inf _{J}|f(\zeta)|>0$. Let U be the domain bounded by $I \cup J$, and let τ be a conformal mapping from D onto U. We may assume that $0 \notin \bar{U}$. Then $f \circ \tau \in H^{\infty}(\Gamma)$ and $\operatorname{Re} f \circ \tau \geqslant 0$ a.e. on $\tau^{-1}(I)$. By pp. 96-97 in [2],

$$
\begin{aligned}
\lim _{r \rightarrow 1} \int_{I_{1}} \log \left|F_{r}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \frac{\mathrm{d} \theta}{2 \pi} & =\lim _{r \rightarrow 1} \int_{I_{1}} \log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right| \frac{\mathrm{d} \theta}{2 \pi}=\int_{I_{1}} \log \left|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \frac{\mathrm{d} \theta}{2 \pi} \\
& =\int_{I_{1}} \log \left|F_{\lambda}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \frac{\mathrm{d} \theta}{2 \pi}
\end{aligned}
$$

for any compact subarc I_{1} of I, which means that the inner factor of $F_{\lambda}(\zeta)$ has no singularities on I. Hence $F_{\lambda}(\zeta)$ has no singular inner factor.

Since $F_{\lambda}(\zeta)$ has no singular inner factor for every $\lambda \in \Gamma^{2}$, by Theorem 3.3.6 of [10] we have $\mathrm{d} \sigma_{F}=0$. Since $g=h F, \mathrm{~d} \sigma_{g}=\mathrm{d} \sigma_{h}+\mathrm{d} \sigma_{F}$. Since $g \in N_{*}\left(D^{2}\right)$, $\mathrm{d} \sigma_{g} \leqslant 0$. Thus we get $\mathrm{d} \sigma_{h} \leqslant 0$, and then $h \in N_{*}\left(D^{2}\right)$.

Suppose that $G(z) \in A(D) \cap$ ball $H^{\infty}\left(\Gamma_{z}\right)$. By Lemma 2.7, there is a function $h \in H\left(D^{2}\right)$ such that $(w-G(z)) h$ is an inner function. Write $\varphi=(w-G(z)) h$. Let $\psi(z)$ be a non-constant inner function. Then

$$
\varphi(\psi(z), w)=(w-(G \circ \psi)(z)) h(\psi(z), w)
$$

Note that $\varphi(\psi(z), w)$ is inner and $(G \circ \psi)(z) \in$ ball $H^{\infty}\left(\Gamma_{z}\right)$. By Lemma 2.8, $h(\psi(z), w) \in N_{*}\left(D^{2}\right)$. Suppose that $(G \circ \psi)(z)$ is a non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$. Note that if $G(z)$ is non-extreme, then so is $(G \circ \psi)(z)$. Then there exists an outer function $H_{0}(z)$ in ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfying

$$
\left|H_{0}(z)\right|^{2}=1-|(G \circ \psi)(z)|^{2} \quad \text { a.e. on } \Gamma_{z} \text {. }
$$

Then

$$
\frac{H_{0}(z)}{w-(G \circ \psi)(z)} \in L^{2}\left(\Gamma^{2}\right)
$$

Hence

$$
\frac{\varphi(\psi(z), w) H_{0}(z)}{w-(G \circ \psi)(z)}=H_{0}(z) h(\psi(z), w) \in N_{*}\left(D^{2}\right) \cap L^{2}\left(\Gamma^{2}\right)=H^{2}\left(\Gamma^{2}\right)
$$

Combining with Theorem 2.6, we have the following theorem. A similar discussion is given in [4].

We denote by $\mathcal{A}(D)$ the set of all $(G \circ \psi)(z)$, where $G(z) \in A(D) \cap$ ball $H^{\infty}\left(\Gamma_{z}\right)$ and $\psi(z)$ are non-constant inner functions. Then $A(D) \subset \mathcal{A}(D) \subset$ ball $H^{\infty}\left(\Gamma_{z}\right)$.

THEOREM 2.9. Let $G(z) \in \mathcal{A}(D)$. Suppose that $G(z)$ is not an extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$. Let $H_{0}(z) \in H^{\infty}\left(\Gamma_{z}\right)$ be an outer function with $\left|H_{0}(z)\right|^{2}=1-|G(z)|^{2}$ a.e. on Γ_{z}. Let $H(z) \in$ ball $H^{\infty}\left(\Gamma_{z}\right)$ with $|H(z)|=\left|H_{0}(z)\right|$ a.e. on Γ_{z}. Assume that either $G(z)$ or $H(z)$ is non-constant. Then there exists an inner function φ on Γ^{2} such that

$$
\frac{\varphi H_{0}(z)}{w-G(z)} \in H^{2}\left(\Gamma^{2}\right) \quad \text { and } \quad M=\varphi H^{2}\left(\Gamma^{2}\right) \oplus \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right)
$$

is an invariant subspace of $H^{2}\left(\Gamma^{2}\right)$ and $\operatorname{rank}\left[R_{z}^{*}, R_{w}\right]=1$.

3. TAKAHASHI'S THEOREM

We prove an $H^{2}\left(\Gamma^{2}\right)$-version of Takahashi's theorem.
THEOREM 3.1. Let $g(z)$ be a function in ball $H^{\infty}\left(\Gamma_{z}\right)$. Then $g(z)$ is a non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$ if and only if there is a function F in $L^{2}\left(\Gamma^{2}\right) \backslash H^{2}\left(\Gamma^{2}\right)$ such that $(w-g(z)) F \in H^{2}\left(\Gamma^{2}\right)$.

Proof. Suppose that $g(z)$ is not an extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$. Then there exists a function $h(z)$ in $H^{\infty}\left(\Gamma_{z}\right)$ with $|h(z)|=1-|g(z)|$ a.e. on Γ_{z}. Let

$$
F(z, w)=\frac{h(z)}{w-g(z)}
$$

Then $(w-g(z)) F \in H^{\infty}\left(\Gamma^{2}\right)$. Since

$$
\left|\frac{h(z)}{w-g(z)}\right| \leqslant \frac{|h(z)|}{1-|g(z)|}=1 \quad \text { a.e. on } \Gamma_{z}
$$

we have $F \in L^{\infty}\left(\Gamma^{2}\right)$. Since

$$
F(z, w)=\sum_{n=0}^{\infty} h(z) g^{n}(z) \bar{w}^{(n+1)} \quad \text { a.e. on } \Gamma_{z},
$$

$F(z, w) \in H^{\infty}\left(\Gamma^{2}\right)$ if and only if $h(z)=0$. Since $|h(z)|>0$ a.e. on $\Gamma_{z}, F \notin H^{\infty}\left(\Gamma^{2}\right)$.
Next, suppose that $(w-g(z)) F \in H^{2}\left(\Gamma^{2}\right)$ for some $F \in L^{2}\left(\Gamma^{2}\right) \backslash H^{2}\left(\Gamma^{2}\right)$. We have $(\xi-g(z)) F(z, \xi) \in H^{2}\left(\Gamma_{z}\right)$ for almost all $\xi \in \Gamma_{w}$. Since $\xi-g(z) \in H^{2}\left(\Gamma_{z}\right)$
is outer for all $\xi \in \Gamma_{w}, F(z, \xi) \in H^{2}\left(\Gamma_{z}\right)$ for almost all $\xi \in \Gamma_{w}$. This implies that

$$
F \in \sum_{n=-\infty}^{\infty} \bigoplus w^{n} H^{2}\left(\Gamma_{z}\right)
$$

Write

$$
F=\sum_{n=-\infty}^{\infty} f_{n}(z) w^{n}, \quad f_{n}(z) \in H^{2}\left(\Gamma_{z}\right)
$$

Since $(w-g(z)) F \in H^{2}\left(\Gamma^{2}\right), f_{n-1}(z)-g(z) f_{n}(z)=0$ for every $n \leqslant-1$. Hence

$$
f_{-k}(z)=f_{-1}(z) g^{k-1}(z), \quad k \geqslant 1
$$

Write

$$
F^{\prime}(z, w)=\sum_{n=-\infty}^{-1} f_{n}(z) w^{n}
$$

Then $F^{\prime}(z, w)=\sum_{k=1}^{\infty} f_{-k}(z) \bar{w}^{k}=f_{-1}(z) \sum_{k=1}^{\infty} g(z)^{k-1} \bar{w}^{k}$. Since $F \notin H^{2}\left(\Gamma^{2}\right)$, we have $f_{-1}(z) \neq 0$. Since $F^{\prime} \in L^{2}\left(\Gamma^{2}\right)$,

$$
\infty>\left\|F^{\prime}\right\|^{2}=\int_{0}^{2 \pi}\left|f_{-1}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2} \sum_{k=1}^{\infty}\left|g\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2(k-1)} \frac{\mathrm{d} \theta}{2 \pi}
$$

Hence $|g|<1$ a.e. on Γ. Thus we get

$$
\int_{0}^{2 \pi} \frac{\left|f_{-1}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{1-\left|g\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \frac{\mathrm{~d} \theta}{2 \pi}<\infty
$$

Let

$$
G\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\frac{\left|f_{-1}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{1-\left|g\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}
$$

Then $G \in L^{1}\left(\Gamma_{z}\right)$ and

$$
\int_{0}^{2 \pi} \log G\left(\mathrm{e}^{\mathrm{i} \theta}\right) \frac{\mathrm{d} \theta}{2 \pi}+\int_{0}^{2 \pi} \log \left(1-\left|g\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}\right) \frac{\mathrm{d} \theta}{2 \pi}=2 \int_{0}^{2 \pi} \log \left|f_{-1}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \frac{\mathrm{d} \theta}{2 \pi}
$$

We have $\int_{0}^{2 \pi} \log G\left(\mathrm{e}^{\mathrm{i} \theta}\right) \frac{\mathrm{d} \theta}{2 \pi}<\infty$. Since $f_{-1}(z) \in H^{2}\left(\Gamma_{z}\right)$, by Jensen's inequality, see p. 52 in [3],

$$
-\infty<\int_{0}^{2 \pi} \log \left|f_{-1}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \frac{\mathrm{d} \theta}{2 \pi}
$$

Hence

$$
\int_{0}^{2 \pi} \log \left(1-\left|g\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}\right) \frac{\mathrm{d} \theta}{2 \pi}>-\infty
$$

Therefore $g(z)$ is not an extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$.

Acknowledgements. The first author is partially supported by Grant-in-Aid for Scientific Research (No.16340037), Japan Society for the Promotion of Science.

The authors would like to thank the referee for many suggestions improving the paper.

REFERENCES

[1] X. Chen, K. Guo, Analytic Hilbert Modules, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[2] J. Garnett, Bounded Analytic Functions, Academic Press, New York 1981.
[3] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, New Jersey 1962.
[4] K.J. Izuchi, K.H. Izuchi, Rank-one commutators on invariant subspaces of the Hardy space on the bidisk, J. Math. Anal. Appl. 316(2006), 1-8.
[5] K.J. Izuchi, S. Ohno, Selfadjoint commutators and invariant subspaces on the torus, J. Operator Theory 31(1994), 189-204.
[6] K. deLeeuw, W. Rudin, Extreme points and extremum problems in H_{1}, Pacific. J. Math. 8(1958), 467-485.
[7] V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103(1988), 145-148.
[8] T. NAKAZI, Invariant subspaces in the bidisc and commutators, J. Austral. Math. Soc. Ser. A 56(1994), 232-242.
[9] T. NAKAZI, An outer function and several important functions, Arch. Math. (Basel) 66(1996), 490-498.
[10] W. Rudin, Function Theory in Polydiscs, Benjamin, New York 1969.
[11] D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, John Wiley \& Sons, Inc., New York 1994.
[12] R. Yang, Operator theory in the Hardy space over the bidisk. III, J. Funct. Anal. 186(2001), 521-545.

KEI JI IZUCHI, Department of Mathematics, Niigata University, Niigata, 950-2181, JAPAN

E-mail address: izuchi@math.sc.niigata-u.ac.jp
KOU HEI IZUCHI, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan; Current address: Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, JAPAN

E-mail address: f04n010j@mail.cc.niigata-u.ac.jp and khizuchi@math.sci.hokudai.ac.jp

