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ABSTRACT. We consider a family of operators determined by a sequence of
operator norms. When the sequence of norms is determined by a single oper-
ator the natural question that arises is when the algebra properly contains the
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the operator.
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1. INTRODUCTION

While the classical invariant subspace problem concerns itself with a sin-
gle operator, the study of the relationship between operator algebras and their
invariant subspaces was begun at least as far back as the 1960’s. Of course the
classical problem is also a question about the invariant subspaces of an operator
algebra: is the weak closure of the algebra of polynomials in a given operator A
non-transitive? The more general hyperinvariant subspace problem asks: for a
given operator A on a Banach space X, is the (in general) non-commutative alge-
bra (A)′= {T ∈ L(X) : AT = TA} non-transitive? The extreme case is of course
when A = λI, a scalar multiple of the identity. In this case, and this case alone,
(A)′ = L(X).

We consider a family of algebras determined by sequences of operator norms
on L(X), and following Lambert and Petrović ([12], Theorem 3.4) we state an in-
variant subspace theorem for such algebras using the principle of Lomonosov
[15]. After discussing this general framework we consider three concrete ex-
amples of such algebras which have the common property that the sequence of
norms determining the algebra is defined in terms of a single operator A in such
a way that it contains its commutant (A)′. The significance of this fact from the
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point of view of invariant subspace theory is clear. In this case, an invariant sub-
space of the algebra is at least a hyperinvariant subspace for A. Thus it is funda-
mental to determine when on one hand the algebra properly contains (A)′ and on
the other hand when it is not weakly dense in L(X). In this situation an invariant
subspace theorem is possible and is stronger than the existence of hyperinvariant
subspaces.

In Hilbert space all three examples fit the following format. Let {Dn}∞
n=1

be a sequence of invertible operators on X dependent on the given operator A
and let {‖T‖n} be the sequence of operator norms on X defined by ‖T‖n =
‖DnTD−1

n ‖. We consider the unital algebra

B =
{

T ∈ L(X) : sup
n>0
‖DnTD−1

n ‖ < ∞
}

.

In all three examples the commutant of A is easily seen to be a subalgebra of B.
The extension to Banach space of the final example, the spectral radius algebra of
[12] requires a more complicated construction.

In our first example we consider the sequence Dn = I + nA such that, for

each n, Dn is invertible. In this case the algebra RA :=
{

T ∈ L(X) : sup
n
‖(I +

nA)T(I + nA)−1‖ < ∞
}

will be maximal, RA = L(X), if and only if A is invert-

ible. If X is finite dimensional then RA is minimal, RA = (A)′, if and only if A
is nilpotent. For X infinite dimensional the situation is much more complicated.
We give a class of compact quasinilpotent operators for which RA = (A)′ and
another for whichRA is quite large.

Our next example is the algebra introduced by Deddens [7]. In this case A

is invertible and Dn = An for each n. ThenDA :=
{

T ∈ L(X) : sup
n
‖AnTA−n‖ <

∞
}

contains (A)′, and it was shown ([19], [7]) that for X a Hilbert space, DA is

maximal, that is DA = L(X), if and only if A is (similar to) a scalar multiple of
a unitary operator. The question: when is DA minimal, that is DA = (A)′ ?, is
much more difficult. It was shown in [6] that if A = λI + N with N nilpotent
then DA = (A)′ and that for X finite dimensional this is the only such case.
Deddens [7] formulated a conjecture about the minimality of DA, but Roth [17]
disproved it in both directions. We give additional examples connected with the
conjecture of Deddens, namely, examples of operators of the form A = I + Q
with Q quasinilpotent for which DA properly contains (A)′.

Our final example is the extension to Banach space of the spectral radius
algebras introduced in [12]. While the sequence of operator norms used for
Deddens’ algebra can be defined directly on L(X) and this is the case for the
spectral radius algebras on Hilbert space, as defined in [12], the extension to Ba-
nach space requires us to define a sequence of vector norms on X and then con-
sider the induced operator norms on L(X). The main issue in [12] was to extend
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Lomonosov’s famous result on non-transitivity of (A)′ when A is a compact op-
erator [14]. The spectral radius algebra BA, determined by A, contains (A)′, and
the main result of [12] is that for A compact BA is non-transitive. Of course, for
this theorem to actually extend Lomonosov it is necessary that BA properly con-
tain (A)′. They show that this is in fact the case for A compact with positive
spectral radius. While it is far from clear that this approach will give new invari-
ant subspace theorems for single operators it does give new results for operator
algebras properly containing the commutant of an operator and thus a stronger
result than the existence of hyperinvariant subspaces. This is reflected in the title
of [12]: "Beyond Hyperinvariance".

Recently [3] the question: when is BA maximal, that is BA = L(X)? was
resolved for Hilbert space X. This is the case if and only if A is similar to a scalar
multiple of an isometry. This result reflects strongly the connection between DA
and BA. In fact we see that for A invertible DA ⊆ BA.

These particular examples are considered within a general framework of al-
gebras determined by a sequence of operator norms. This framework seems to
be new, and many interesting problems relating to operator algebras and their
invariant subspaces arise naturally. We hope that the results and examples pre-
sented here will stimulate further study of these issues.

2. ALGEBRAS GENERATED BY A SEQUENCE OF OPERATOR NORMS

Let X be a complex Banach space. L(X) will denote the algebra of bounded
linear operators on X. A norm ‖ · ‖′ on L(X) is admissible if it is (topologically)
equivalent to the initial vector induced operator norm on L(X) and it is algebraic;
that is:

(1) ‖A1 A2‖′ 6 ‖A1‖′‖A2‖′ for A1, A2 ∈ L(X).
(2) ‖I‖′ = 1 for the identity operator I ∈ L(X).

Let {‖T‖m}∞
m=1 be a sequence of admissible norms on L(X) and

B = B(‖T‖m) =
{

B ∈ L(X) : sup
m>0
‖B‖m < ∞

}
.

It is clear that B(‖T‖m) is a unital subalgebra of L(X). We will refer to it as the
algebra determined by the sequence {‖T‖m} of operator norms. We show that
with respect to the norm ‖|B‖| = sup

m
‖B‖m, B is a Banach algebra.

LEMMA 2.1. Let Y be a Banach space and {‖ · ‖m} a sequence of norms on Y, each
equivalent to the initial norm ‖ · ‖. The subspace

Y′ =
{

y ∈ Y : sup
m
‖y‖m < ∞

}
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is complete with respect to the norm

‖|y‖| = sup
m
‖y‖m.

Proof. Let {yn} ⊆ Y′ be a Cauchy sequence with respect to the norm ‖| · ‖|.
Then it is Cauchy with respect to each ‖ · ‖m and with respect to the initial norm
‖ · ‖. Thus there exists y ∈ Y such that ‖yn − y‖ → 0, and hence ‖yn − y‖m → 0
for each m, as n → ∞. Since {yn} is Cauchy with respect to ‖| · ‖|, for any ε > 0
there is k0 ∈ N such that ‖yk− yn‖m < ε for k, n > k0 and for all m ∈ N. Therefore,
sup

m
‖y− yn‖m 6 ε for n > k0. Thus y− yn ∈ Y′ and y ∈ Y′.

COROLLARY 2.2. B(‖T‖m) is complete with respect to the norm ‖|T‖|.
It is of interest to know when B is closed in L(X). We recall the following

well known consequence of the Open Mapping Theorem (see p. 274 of [4]).

LEMMA 2.3. Suppose X is a Banach space with given norm ‖ · ‖ and that ‖ · ‖′ is
another norm on X such that ‖ · ‖ is subordinate to ‖ · ‖′ (there exists C > 0 such that
‖x‖ 6 C‖x‖′ for all x ∈ X ). Then X is complete with respect to ‖ · ‖′ if and only if the
two norms are equivalent (‖ · ‖′ is also subordinate to ‖ · ‖).

We obtain the next theorem as an immediate consequence:

THEOREM 2.4. The subalgebra B(‖T‖m) ⊆ L(X) is closed in L(X) if and only if
there exists a constant C > 0 such that for each T ∈ B(‖T‖m), ‖|T‖| 6 C‖T‖.

We now present an invariant subspace theorem for B = B(‖T‖m) which
will be applied later. Let Q denote the class of quasinilpotent operators in L(X),
and consider the subset of B

Q(B) = Q(B(‖T‖m)) = {T ∈ L(X) : ‖T‖m → 0, m→ ∞}.

LEMMA 2.5. Q(B) is a two-sided ideal in B and Q(B) ⊆ Q.

Proof. If T ∈ Q(B) and X ∈ B, then ‖TX‖m 6 ‖T‖m‖X‖m → 0 as m → ∞,
so Q(B) is a right ideal. The proof that it is a left ideal is similar.

Since for T ∈ L(X) its spectral radius r(T) satisfies r(T) 6 ‖T‖m for each m,
it follows that if T ∈ Q(B) then r(T) = 0.

It is easily seen that Q(B) is contained in the radical of B.
The idea of the proof of the next theorem is from [12], adapted to our frame-

work.

THEOREM 2.6. Suppose that the algebra B = B(‖T‖m) is such that:
(i) B contains a non-zero compact operator,

(ii) Q(B) 6= {0}.
Then B has a non-trivial invariant subspace.
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Proof. Let K be a non-zero compact operator in B. We can assume that QK =
0 for every Q ∈ Q(B). Indeed if for some Q ∈ Q(B), QK 6= 0, then QK is
compact quasinilpotent, and for any B ∈ B, BQK ∈ Q. If B is transitive, then
by Lomonosov [15] there exists B ∈ B such that BQK has 1 as an eigenvalue,
contradicting BQK ∈ Q.

Let Q be a fixed non-zero operator in Q(B) and T ∈ B. Then QT ∈ Q(B)
and QTK = 0. Since K 6= 0, there is a non-zero vector z in the range of K.
Clearly QTz = 0 so Tz ∈ KerQ for all T ∈ B. Now the closure of the subspace
{Tz : T ∈ B} is invariant for B and is non-zero since z 6= 0 and I ∈ B. It is not X
since it is contained in the kernel of the non-zero operator Q.

We saw before that ‖|T‖| = sup
m
‖T‖m is a natural norm on B = B(‖T‖m). It

is of interest to consider the semi-norm |T| = lim sup
m→∞

‖T‖m.

THEOREM 2.7. If B = B(‖T‖m) is a transitive algebra and contains a non-zero
compact operator, then |T| is a norm on B.

Proof. To show that |T| is a norm it suffices to show that if |T| = 0 then
T = 0. This is equivalent to showing that Q(B) = 0. If Q(B) 6= 0 then by
Theorem 2.6 B must be non-transitive.

COROLLARY 2.8. If B(‖T‖m) = L(X) then |T| = lim sup
m→∞

‖T‖m is a norm on

L(X).

We now consider a more concrete family of sequences of norms on L(X).
This family was studied in [2] from a completely different perspective and in
[13] from a point of view similar to ours. Let {Dm} be a sequence of bounded
invertible operators on X. We define ‖T‖m for T ∈ L(X) by ‖T‖m = ‖DmTD−1

m ‖.
Consider

B(‖T‖m) =
{

T ∈ L(X) : sup
m>0
‖T‖m < ∞

}
.

For this family of sequences of norms it is easy to see when B(‖T‖m) is L(X).

THEOREM 2.9. B = B(‖T‖m) = L(X) if and only if sup
m
‖Dm‖‖D−1

m ‖ < ∞.

Proof. If sup
m
‖Dm‖‖D−1

m ‖=C, then obviously for any T∈L(X), ‖DmTD−1
m ‖

6 C‖T‖ and B = L(X).
If B = L(X), then for the sequence Gm(T) = DmTD−1

m on L(X) we have

sup
m
‖Gm(T)‖ < ∞

for all T ∈ L(X). By the Uniform Boundedness Principle, sup
m
‖Gm‖ < ∞. This

means that there exists C1 > 0 such that ‖DmTD−1
m ‖ 6 C1‖T‖ for all T ∈ L(X).



322 AVRAHAM FEINTUCH AND ALEXANDER MARKUS

In particular for any rank one operator T = x⊗ f , x ∈ X, f ∈ X∗, we have

‖Dmx‖‖D∗−1
m f ‖ 6 C1‖x‖‖ f ‖.

Since x ∈ X and f ∈ X∗ are arbitrary, this implies

‖Dm‖‖D∗−1
m ‖ = ‖Dm‖‖D−1

m ‖ 6 C1.

We now consider the sequence Dm = I + mA for A ∈ L(X). (Such se-
quences were considered in [13]).) We denote the corresponding algebra B by
RA:

RA =
{

T ∈ L(X) : sup
m>0
‖(I + mA)T(I + mA)−1‖ < ∞

}
.

Of course, we suppose that all the operators I + mA are invertible. We exclude
the trivial case A = 0.

THEOREM 2.10. RA = L(X) if and only if A is invertible.

Proof. By the previous theorem,RA = L(X) if and only if

sup
m
{‖(I + mA)‖‖(I + mA)−1‖} < ∞.

Since m‖A‖ − 1 6 ‖I + mA‖ 6 1 + m‖A‖, this is equivalent to sup
m
{m‖(I +

mA)−1‖} < ∞, or,

sup
m

∥∥∥(A +
1
m

I
)−1∥∥∥ < ∞,

and this is equivalent to the invertibility of A.

Since (A)′ ⊆ RA it is of interest to ask: when is RA minimal? This is much
more difficult to answer.

PROPOSITION 2.11. If A is nilpotent thenRA = (A)′.

Proof. Suppose Al = 0. Then (I + mA)−1 =
l−1
∑

k=0
mk Ak(−1)k, and

(I + mA)T(I + mA)−1 = T −m[T, A] + m2S2 + · · ·+ mlSl

where Sj = (−1)j(TAj − ATAj−1). If T ∈ RA, then {‖(I + mA)T(I + mA)−1‖} is
bounded and therefore

Sl = Sl−1 = · · · = S2 = [T, A] = 0,

so T ∈ (A)′.

For dim X < ∞ it is easy to see that the converse holds as well. If RA =
(A)′, then A is nilpotent. For X infinite dimensional the situation is more com-
plicated. We describe a class of non-nilpotent quasinilpotent operators for which
RA = (A)′ and another class of quasinilpotent operators for which RA is quite
large. We begin with the second class.
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LEMMA 2.12. Suppose A ∈ L(X) such that {‖(I + mA)−1‖} is bounded. Then

L(X)A ⊆ RA.

Proof. Suppose T = SA for any S ∈ L(X). Then

(I + mA)T(I + mA)−1 = T(I + mA)−1 + mAT(I + mA)−1.

Since the first term is assumed to be bounded, T ∈ RA if and only if {‖mAT(I +
mA)−1‖} is bounded. But

‖mAT(I + mA)−1‖ = ‖ASmA(I + mA)−1‖

= ‖AS[I − (I + mA)−1]‖ 6 ‖AS‖+ ‖AS‖‖(I + mA)−1‖.

LEMMA 2.13. Suppose A ∈ L(X) such that KerA = {0}, and suppose {‖(I +
mA)−1‖} is bounded. ThenRA is a transitive algebra.

Proof. Let M be any proper closed subspace of X and x0 a non-zero vector
in M. Since Ax0 6= 0, for any y /∈ M there exists S ∈ L(X) such that S(Ax0) = y.
Since L(X)A ⊆ B, it follows that M is not an invariant subspace for B.

An operator A on a Hilbert space H is accretive if A + A∗ > 0. It is known
(see, e.g., Inequality V.3.38 of [11]) that for A accretive, ‖(I + λA)−1‖ 6 1 for all
λ > 0.

The following follows immediately from Lemma 2.13.

THEOREM 2.14. If A is an accretive operator on H with KerA = {0}, then RA
is a transitive algebra.

COROLLARY 2.15. If A is accretive, compact and quasinilpotent with KerA =
{0}, then (A)′ is properly contained inRA.

Proof. By Lomonosov’s Theorem (A)′ is not transitive and by the previous
theoremRA is transitive.

REMARK 2.16. (i) The best known example of such an operator is of course

the Volterra operator defined on L2(0, 1) by (V f )(x) =
x∫

0
f (t)dt.

(ii) If A is not compact, nothing is known about the transitive algebraRA. It is
not necessary closed and its weak closure may very well be L(X).

(iii) It is easy to see that for any A 6= 0 such that KerA 6= {0}, KerA is a non-
trivial invariant subspace for RA.

Now we describe a large class of compact quasinilpotent operators A on a
Hilbert space H for which RA = (A)′. This construction uses some ideas from
[21], [17] and needs some results from complex analysis.

LEMMA 2.17. Let f (z) be an entire function such that

ln max
|z|=r
| f (z)| = o(r)(r → +∞).
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If sup
n∈N
| f (n)| < ∞, then sup

x∈R+

| f (x)| < ∞.

This lemma is a weak version of a theorem of Cartwright (see, e.g., Theo-
rem 10.2.1 of [1]).

LEMMA 2.18. Let G(z) be an entire function with values in a Banach space Y. If
ln max
|z|=r
‖G(z)‖ = o(r1/2) (r → +∞), and sup

n∈N
‖G(n)‖ < ∞, then G(z) is a constant.

Proof. Let h be an arbitrary functional from Y∗ and g(z) = h(G(z)). Lem-
ma 2.17 implies that sup

x∈R+

|g(x)| < ∞. Since ln max
|z|=r
|g(z)| = o(r1/2), a standard

application of the Phragmen-Lindelöf theorem to the angle 2π (i.e. to the whole
plane) shows that the entire function g is bounded and thus constant. Since h ∈
Y∗ is arbitrary, G(z) is a constant vector.

For a compact operator A on H, denote by {sj(A)} the sequence of its singu-
lar values, i.e. the sequence of all eigenvalues of the compact selfadjoint operator
(A∗A)1/2 (for details see, e.g., Chapter 6 of [9]).

THEOREM 2.19. Let A be a compact quasinilpotent operator with
∞

∑
j=1

s1/2
j (A) < ∞.

ThenRA = (A)′.

Proof. Let T ∈ RA. This means that the operator valued entire function

G(z) = (I + zA)T(I + zA)−1

satisfies sup
n∈N
‖G(n)‖ < ∞. The condition on the sequence sj(A) implies that

ln max
|z|=r
‖(I + zA)−1‖ = o(r1/2)(r → +∞)

(see, e.g., Theorem X.2.2 of [9]). Hence, also ln max
|z|=r
‖G(z)‖ = o(r1/2) (r → +∞).

It now follows from Lemma 2.19 (for the space Y = L(H)) that G(z) is a constant.
Taking z = 0 and z = 1 gives (I + A)T(I + A)−1 = T, or TA = AT.

3. THE DEDDENS ALGEBRA

Here we consider another example where the sequence {Dm} is determined
by a single operator. Let A ∈ L(X) be invertible and let Dm = Am. We consider

DA =
{

T ∈ L(X) : sup
m>0
‖AmTA−m‖ < ∞

}
.
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The question: when is DA = L(X)?, was resolved for X a Hilbert space in [19],
[7]. DA = L(X) if and only if A = cU where U is (similar to) a unitary operator.
This can be extended to the Banach space case in the following sense: DA = L(X)
if and only if A = cU where U is an isometry in some norm ‖ · ‖′ on X which
is equivalent to the initial norm. Indeed, the argument given in [7] shows that
DA = L(X) implies that A = cU where sup

k∈Z
‖Uk‖ < ∞. Define

‖x‖′ = sup
k∈Z
‖Ukx‖.

Then ‖Ux‖′ = ‖x‖′ for all x ∈ X (cf. Proposition 10 of [5]). Of course, the result
in Hilbert space X is much stronger, since the famous result of Sz-Nagy [20] gives
a norm ‖ · ‖′ in X which is also generated by an inner product.

We consider the minimality issue: when is DA = (A)′? The next proposi-
tion was proved in [6]. Another proof was proposed by Williams [21] (see also
Theorem 0.4 of [17]). We give here a new proof of the proposition.

PROPOSITION 3.1. Let A = I + N where Nl+1 = 0. Then DA = (A)′.

Proof. Since A−m = (I + N)−m, we have that for m > l and T ∈ L(X),

AmTA−m =
l

∑
k=0

(
m
k

)
NkT

l

∑
j=0

(
−m

j

)
N j = T + mS1 + m2S2 + · · ·+ m2lS2l

where {Sk}2l
1 depend only on N and T (and not on m). In particular, if [R, T] =

RT − TR,

S1 =
[

N − 1
2

N2 +
1
3

N3 + · · ·+ (−1)l+1 Nl

l
, T
]
.

Since for T ∈ DA, ‖AmTA−m‖ 6 C for all m, all the operators Sk are 0. In partic-
ular, S1 = 0. If

R = N − 1
2

N2 +
1
3

N3 + · · ·+ (−1)l+1 Nl

l
,

then in fact R = ln(I + N) where ln(1 + z) is defined to be the power series
∞
∑

k=0
(−1)k+1 zk

k for |z| < 1. Hence N = exp(R) and [R, T] = 0 implies [A, T] = 0.

COROLLARY 3.2. For A = I + N with N nilpotent, Q(DA) = {0}.
Proof. If T ∈ DA then AT = TA, so, for all m,

‖AmTA−m‖ = ‖T‖.

Let X be a Banach space and X∗ its dual space. Following [16], pp. 214–215,
X∗ will denote the set of functionals complex conjugated to the linear functionals
on X. Hence for x ∈ X, f ∈ X∗, λ ∈ C,

λ(x⊗ f ) = (λx⊗ f ) = x⊗ (λ f ).
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REMARK 3.3. (i) It was pointed out in [6] that if dimX < ∞, then the con-
verse of Proposition 3.1 holds as well. Here we give an alternate proof of this
fact. If A ∈ L(X) is invertible but not of the form λI + N with N nilpotent, it
has at least two non-zero distinct eigenvalues. So suppose x ∈ X and f ∈ X∗ are
non-zero such that Ax = λx, A∗ f = µ f with |λ| 6 |µ|, λ 6= µ. Then for T = x⊗ f ,

‖AmTA−m‖ = ‖Amx‖‖A∗−m f ‖ =
∣∣∣λ
µ

∣∣∣m‖x‖‖ f ‖ 6 ‖x‖‖ f ‖.

So T ∈ DA. On the other hand, AT = Ax⊗ f = λT but TA = x⊗ A∗ f = µT, so
T /∈ (A)′.

(ii) If A ∈ L(X) is invertible, then (Al)′ ⊆ DA for any l ∈ N. For if T ∈ (Al)′,

sup
m
‖AmTA−m‖ = max{‖AkTA−k‖ : 0 6 k < l} < ∞.

Since (A)′ ⊆ (Al)′, if there exists l > 1 such that (Al) properly contains (A)′,
then DA properly contains (A)′.

It was conjectured in [7] that DA = (A)′ if and only if A is quasisimilar to
an operator of the form αI + Q with α 6= 0 and Q quasinilpotent. Roth [17] dis-
proved this conjecture in both directions. We give here some additional examples
of operators of the form A = I + Q for which DA 6= (A)′.

LEMMA 3.4. Suppose A =
[

C 0
0 B
]
is a non-scalar invertible operator on X ⊕ X

such that sup
n>0
‖Bn‖‖C−n‖ < ∞. Then DA 6= (A)′.

Proof. Let S be an arbitrary operator on X and T =
[ 0 0

S 0
]
. Since AnTA−n

=
[

0 0
BnSC−n 0

]
, the condition sup

n>0
‖Bn‖‖C−n‖ < ∞ implies that T ∈ DA. If DA =

(A)′ this implies BS = SC . For S = I this gives C = B, and since S is arbitrary,
(B)′ = L(X). By Schur’s lemma, C = B = λI.

Now suppose X = H is a Hilbert space.

THEOREM 3.5. Let R1, R2 be accretive operators, and

A =
[

I − 2R1(I + R1)−1 0
0 I + R2

]
.

If A is a non-scalar operator, then DA 6= (A)′.

Proof. We mentioned in the previous section that for an accretive operator R

‖(I + λR)−1‖ 6 1

for all λ > 0. In particular, ‖(I + R2)−1‖ 6 1. On the other hand, the Cayley
transform (I − R1)(I + R1)−1 = I − 2R1(I + R1)−1 of the accretive operator R1 is
a contraction, so we can apply Lemma 3.4.
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Now suppose that R1 and R2 are accretive and quasinilpotent. For ex-
ample, take R1 = R2 = V where V is the Volterra operator mentioned above.

More generally one can consider Rj defined by (Rj f )(x) =
x∫

0
k j(x, t) f (t)dt where

k j(x, t), 0 6 x, t 6 1, j = 1, 2 are Hermitian positive square integrable functions.
For such operators, A is of the form I + Q where Q is quasinilpotent. By Theo-
rem 3.5, DA properly contains (A)′. The example of Roth [17] is the special case
where R1 = 0, R2 = V.

A related question is: when does DA = DA−1 ?

EXAMPLE 3.6. Let A =
[ I 0

0 λI
]

where 0 6= |λ| < 1. Then for T =
[

T11 T12
T21 T22

]
,

AmTA−m =
[

T11 λ−mT12
λmT21 T22

]
. So

DA =
{

T =
[

T11 0
T21 T22

] }
, DA−1 =

{
T =

[
T11 T12
0 T22

] }
.

Also (A)′ =
{

T =
[

T11 0
0 T22

] }
, and hence, (A)′ = DA ∩DA−1 , (A)′ 6= DA, (A)′ 6=

DA−1 , DA 6= DA−1 .
Since in general (A)′ ⊆ DA ∩ DA−1 , it follows that whenever DA 6= DA−1

then either (A)′ 6= DA or (A)′ 6= DA−1 , or both.

A similar example shows that, in general, for A − λI invertible, DA 6=
DA−λI , and when this is the case, either (A)′ 6= DA or (A)′ 6= DA−λI or both.

We recall that Williams [21] proved the equality (A)′ = DA ∩DA−1 for A =
αI + Q where α 6= 0 and Q is quasinilpotent.

REMARK 3.7. (i) If A is normal invertible with polar decomposition A =
U|A|, then (by [6]) DA = D|A| is a nest algebra determined by completing the
nest {E([0, a])H : a > 0}, where E is the spectral measure for |A|. Thus for A
normal, DA = (A)′ if and only if A = λI for some λ ∈ C. Also, Example 3.6 is an
example of DA for A 6= λI normal.

(ii) In order to apply Theorem 2.6 to DA we must know when Q(DA) 6= {0}.
The answer to this question seems to be quite difficult even for A = I + K with K
compact (where K ∈ DA and hence condition (i) of Theorem 2.6 holds).

(iii) Suppose A is invertible such that Ax = λx, A∗ f = µ f with |λ| < |µ|. It is
easy to see that in this case T = x⊗ f ∈ Q(DA).

4. OPERATOR NORMS INDUCED BY VECTOR NORMS

We now consider the situation where we are given a sequence {‖x‖m} of
vector norms on the Banach space X which are equivalent to the given norm on
X. Each such norm induces an operator norm on L(X) equivalent to the given
induced norm on L(X). We will denote this operator norm by ‖T‖m for T ∈ L(X).
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We consider the algebra

B = B(‖x‖m) =
{

T ∈ L(X) : sup
m>0
‖T‖m < ∞

}
.

In fact the sequence {‖DmTD−1
m ‖} of operator norms considered in the previous

sections can be viewed in this way. They are simply the operator norms induced
by the sequence {‖x‖m = ‖Dmx‖} of vector norms on X. We note that in this case
for {‖x‖m} to define a norm on X equivalent to the given norm it is enough that
Dm be injective with closed range for each m. Thus, in particular the Deddens’
algebra DA can be considered in the more general case where A is such a non-
invertible operator and the operator norms determiningDA are those induced by
the sequence {‖x‖m = ‖Amx‖}.

We are interested when B = B(‖x‖m) = L(X). For v ∈ X∗, we define

‖v‖−m = sup
m
{|v(x)| : x ∈ X, ‖x‖m = 1}.

LEMMA 4.1. For a vector u ∈ X and a functional v ∈ X∗,

u⊗ v ∈ B(‖x‖m)⇔ sup
m
‖u‖m‖v‖−m < ∞

and

lim
m→∞

‖u⊗ v‖m = 0⇔ lim
m→∞

‖u‖m‖v‖−m = 0.

Proof. For x ∈ X,

‖(u⊗ v)x‖m = ‖v(x)u‖m = |v(x)|‖u‖m

and

‖(u⊗v)‖m =sup
m
{|v(x)|‖u‖m :‖x‖m =1}=‖u‖m sup

m
{|v(x)| :‖x‖m=1}=‖u‖m‖v‖−m.

Both the equivalences now follow from the definition of B(‖x‖m).

THEOREM 4.2. The following are equivalent:
(i) B(‖x‖m) = L(X).

(ii) B(‖x‖m) contains all rank-one operators from L(X).
(iii) There exists C > 0 such that, for all u ∈ X, v ∈ X∗,

sup
m
‖u‖m‖v‖−m 6 C‖u‖‖v‖.

Proof. That (i) implies (ii) is trivial. We first show (ii) implies (iii). By the
previous lemma, u⊗ v ∈ B(‖x‖m) means sup

m
‖u‖m‖v‖−m < ∞. Fix v ∈ X∗ and

define ϕm(u) = ‖u‖m‖v‖−m for u ∈ X. (ii) implies that sup
m
|ϕm(u)| < ∞ for all

u ∈ X. Thus by the Uniform Boundedness Principle for semi-additive functionals
([10], Theorem 2.5.4) there exists C(v) > 0 such that for all m ∈ N, and u ∈ X,
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ϕm(u) 6 C(v)‖u‖. Thus ‖u‖m‖v‖−m 6 C(v)‖u‖. For 0 6= u ∈ X, define ψm,u on
X∗ by

ψm,u(v) =
‖u‖m‖v‖−m

‖u‖ .

Then sup
m,u

ψm,u 6 C(v) for all v ∈ X∗ and, using uniform boundedness again, we

obtain C > 0 such that sup
m,u

ψm,u(v) 6 C‖v‖ for all m ∈ N, u ∈ X, v ∈ X∗; that is,

sup
m
‖u‖m‖v‖−m 6 C‖u‖‖v‖.

We now show that (iii) implies (i). Let T ∈ L(X), and let x ∈ X be non-zero.
By the definition of ‖v‖−m,

‖v‖−m >
|v(x)|
‖x‖m

for all v ∈ X∗. Thus for u = Tx (iii) implies that

‖Tx‖m
|v(x)|
‖x‖m

6 C‖Tx‖‖v‖

for all v ∈ X∗. Using Hahn-Banach, we choose v ∈ X∗ such that v(x) = ‖x‖, ‖v‖
= 1. Then,

‖Tx‖m
‖x‖
‖x‖m

6 C‖Tx‖, or ‖Tx‖m‖x‖ 6 C‖Tx‖‖x‖m 6 C‖T‖‖x‖‖x‖m.

Thus ‖Tx‖m 6 C‖T‖‖x‖m for all m ∈ N and T ∈ B(‖x‖m).

Fix A ∈ L(X) and let {wmk} (m = 1, 2, . . . ; k = 0, 1, . . .) be an array of
non-negative numbers such that for each m the following conditions hold:

(a) wmk > 0 for at least one k;

(b)
∞
∑

k=0
w2

mk‖Ak‖2 < ∞ :

(c) either wm0 > 0 or A is injective with closed range.

Then

‖x‖m =
[ ∞

∑
n=0

w2
mk‖Akx‖2

]1/2

defines, for each m, a norm on X equivalent to the initial norm. We consider the
subalgebra B = B(‖x‖m) of L(X) determined by {‖x‖m}∞

1 . The Deddens algebra
discussed above is the special case when A is invertible (or injective with closed
range; see the beginning of this section) and wmk = δmk. The spectral radius alge-
bra of [12], which will be studied here at length, also belongs to this framework.
Since for these algebras B is determined by a single operator, we will use the
notations BA and Q(BA).

The proof of the next theorem is similar to that of Proposition 2.3 of [12].
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THEOREM 4.3. Let B ∈ L(X) and C > 0 such that ‖Bn‖ 6 C for all n ∈ N and
B ∈ (A)′. If T ∈ L(X) such that AT = BTA, then T ∈ BA. In particular, this holds for
B = λI, with |λ| 6 1, and thus (A)′ ⊆ BA.

Proof. We have

‖Tx‖2
m =

∞

∑
k=0

(w2
mk‖AkTx‖)2 =

∞

∑
k=0

(wmk‖BkTAkx‖)2 6 C2‖T‖2
∞

∑
k=0

(wmk‖Akx‖)2

= C2‖T‖2‖x‖2
m.

So ‖T‖m 6 C‖T‖ for all m ∈ N and T ∈ BA.

EXAMPLE 4.4. Let r = r(A) denote the spectral radius of A and let {εm} be a

sequence of positive numbers. Then for wmk =
( 1

r(A)+εm

)k, the series
∞
∑

k=0
[wmk‖Ak‖]2

converges, and, for each m ∈ N, the equation

‖x‖2
m =

∞

∑
k=0

[wmk‖Akx‖]2

defines a norm on X which is equivalent to the given norm on X. Thus we can
consider the algebra BA ⊇ (A)′ determined by the sequence of induced operator
norms on L(X). If εm = 1

m , X is a Hilbert space, and we denote 1
r(A)+ 1

m
= m

1+mr(A)

by dm, then

‖x‖2
m =

∞

∑
k=0

d2k
m ‖Akx‖2 =

∞

∑
k=0

d2k
m (A∗k Akx, x) = (R2

mx, x) = ‖Rmx‖2,

where Rm = Rm(A) =
( ∞

∑
k=0

d2k
m A∗k Ak

)1/2
> 0, and

‖T‖m =sup{‖RmTx‖ :‖Rmx‖=1}=sup{‖RmTR−1
m y‖ :‖y‖=1}=‖RmTR−1

m ‖.

Thus

BA =
{

T ∈ L(X) : sup
m
‖RmTR−1

m ‖ < ∞
}

.

This is the spectral radius algebra studied in [12]. We note that in the Hilbert
space case, BA belongs to the class of algebras studied in Section 2 of this paper.

While formally DA was defined for A invertible the meaning of the next
proposition is clear.

PROPOSITION 4.5. If A is injective with closed range, then DA ⊆ BA.

Proof. If T ∈ DA, then ‖AkTx‖ 6 C‖Akx‖ for all k > 0 and x ∈ X. Therefore

‖Tx‖2
m =

∞

∑
k=0

d2k
m ‖AkTx‖2 6 C2

∞

∑
k=0

d2k
m ‖Akx‖2 = C2‖x‖2

m.
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REMARK 4.6. (i) The main result of [7] is that for A normal and invertible,
DA is the nest algebra determined by the spectral measure of the positive factor in
the polar decomposition of A. In particular, (A)′ is properly contained inDA and
therefore in BA. The main result of [3] is that for any non-scalar normal operator
A, (A)′ is properly contained in BA.

(ii) It can be shown that in general neither of the inclusions Q(DA) ⊆ Q(BA),
Q(BA) ⊆ Q(DA) hold.

In the next section we will study BA in greater detail.

5. SPECTRAL RADIUS ALGEBRAS

We saw in the previous section that for A ∈ L(X), and dm = m
1+mr(A) , we

have, for each m ∈ N, that

‖x‖2
m =

∞

∑
k=0

d2k
m ‖Akx‖2 > ‖x‖2

defines a norm on X equivalent to the original norm. It is of interest to note that
for each A 6= 0 there exists a non-zero vector x ∈ X such that lim

m→∞
‖x‖m = ∞. This

statement can be proved by an argument similar to that given in Proposition 3.11
of [12].

Each of these norms induces an operator norm ‖T‖m on L(X) equivalent to
the initial induced norm and the spectral radius algebra determined by A is

BA =
{

T ∈ L(X) : sup
m>0
‖T‖m < ∞

}
.

By Corollary 2.2, BA is a Banach algebra with respect to the norm

‖|T‖| = sup
m
‖T‖m

for T ∈ BA, and as we saw, (A)′ ⊆ BA.
We extend Proposition 1.5 of [12] to this framework.

PROPOSITION 5.1. ‖A‖m → r(A) as m→ ∞.

Proof. We have

‖dm A‖m =sup{‖dm Ax‖m : ‖x‖m =1}=sup
{( ∞

∑
k=0

d2(k+1)
m ‖Ak+1‖2

)1/2
:‖x‖m =1

}
=sup{(‖x‖2

m − ‖x‖2)1/2 : ‖x‖m = 1} 6 1.

Thus ‖A‖m 6 1
dm

for all m ∈ N, and lim sup
m→∞

‖A‖m 6 lim sup
m→∞

1
dm

= r(A). On the

other hand, r(A) 6 ‖A‖m for all m ∈ N, and therefore

lim inf
m→∞

‖A‖m > r(A).
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So ‖A‖m → r(A) as m→ ∞.

We consider some examples.

EXAMPLE 5.2. (i) It was shown in [3] that for X a Hilbert space, BA = L(X)
if and only if A = aU where U is (similar to) an isometry. The sufficiency extends
immediately to Banach space and continues to hold when U is an isometry with
respect to an equivalent norm on X. Thus if A ∈ L(X) is such that for some
positive integer j and a 6= 0, Aj = aU where U is an isometry, then A = a1/jV
where V is an isometry with respect to the equivalent norm

‖x‖′ =
( j−1

∑
k=0
‖(a−1/j A)kx‖2

)1/2
,

so BA = L(X). The situation is different for a = 0. Indeed suppose that for some
j > 1, Aj = 0, Aj−1 6= 0. Then for 0 6= x ∈ RanAj−1, x = Aj−1y for some y ∈ X,
x ∈ KerA, and ‖x‖m = ‖x‖ for all m ∈ N . Choose f ∈ X∗ such that f (x) = 1 and
let T = y⊗ f . Then

‖Tx‖2
m =

j−1

∑
k=0

m2k‖Aky‖2‖x‖2 > m2(j−1)‖x‖2 → ∞

as m→ ∞. Thus T /∈ BA and BA 6= L(X).
(ii) Let X be a Banach space with direct sum decomposition X = Y⊕ Z. Let A

be an operator on X with matrix representation

A =
[

ρU 0
0 B

]
,

where ρ 6= 0, r(B) < |ρ|, and U is an isometry. For simplicity, and without loss of
generality, we assume that ρ = 1 and ‖y + z‖2 = ‖y‖2 + ‖z‖2 for y ∈ Y, z ∈ Z.
Then

‖x‖2
m =

∞

∑
n=0

d2n
m (‖y‖2 + ‖Bnz‖2)

where dm = m
m+1 . Represent T ∈ L(X) as the operator matrix

T =
[

T11 T12
T21 T22

]
.

We show that T ∈ BA if and only if T12 = 0, or equivalently, that Z is an invariant
subspace for T.

Suppose T ∈ BA. Then there exists C > 0 such that for each x ∈ X and
m ∈ N,

‖Tx‖m 6 C‖x‖m.
If z ∈ Z and ‖z‖ = 1, we have

∞

∑
n=0

d2n
m (‖T12z‖2 + ‖BnT22z‖2) 6 C

∞

∑
n=0

d2n
m ‖Bnz‖2.
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Since r(B) < 1, the series
∞
∑

n=0
‖Bn‖2 converges, so if b =

∞
∑

n=0
‖Bn‖2, then

‖T12z‖2
∞

∑
n=o

d2n
m 6 Cb.

Since
∞

∑
n=0

d2n
m =

∞

∑
n=0

( m
m + 1

)2n
=

(m + 1)2

2m + 1
→ ∞

as m→ ∞, it follows that T12z = 0. Since z ∈ Z was arbitrary, T12 = 0.
Now suppose T12 = 0. Then for x = y + z with y ∈ Y, z ∈ z,

∞

∑
n=0

d2n
m ‖AnTx‖2 =

∞

∑
n=0

d2n
m (‖T11y‖2 + ‖Bn(T21y + T22z)‖2).

Obviously

∞

∑
n=0

d2n
m ‖T11y‖2 6 ‖T11‖2

∞

∑
n=0

d2n
m ‖y‖2 6 ‖T11‖2‖x‖2

m,

and, since dm < 1,

∞

∑
n=0

d2n
m‖Bn(T21y+T22z)‖26

∞

∑
n=0
‖Bn‖2‖T21y+T22z‖26b(‖T21‖2+‖T22‖2)(‖y‖2+‖z‖2)

=C1‖x‖2 6 C1

∞

∑
n=0

d2n
m ‖Anx‖2 = C1‖x‖2

m.

Thus

‖Tx‖2
m =

∞

∑
n=0

d2n
m ‖AnTx2‖ 6 (‖T11‖2 + C1)‖x‖2

m

and T ∈ BA.
A special case is Example 3.6, where A =

[ I 0
0 λI

]
, for |λ| < 1. In this case

DA = BA, DA−1 = BA−1 .

We now turn to the non-minimality question: when does BA properly con-
tain (A)′?

THEOREM 5.3. If A ∈ L(X) is non-zero such that KerA 6= {0}, then BA prop-
erly contains (A)′.

Proof. Suppose u ∈ X is a non-zero vector such that Au = 0, and let f ∈ X∗

such that A∗ f 6= 0. We show that F = u⊗ f ∈ BA. Now

‖F‖m = sup
x 6=0

∑∞
n=0 d2n

m ‖AnFx‖2

∑∞
n=0 d2n

m ‖Anx‖2 .
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Since AnFx = f (x)Anu = 0 for n > 1, we have
∞
∑

n=0
d2n

m ‖AnFx‖2 = ‖Fx‖2 =

(| f (x)|‖u‖)2. Since

∞

∑
n=0

d2n
m ‖Anx‖2 > ‖x‖2, ‖F‖2

m 6 sup
x 6=0

| f (x)|2‖u‖2

‖x‖2 = ‖ f ‖2‖u‖2,

and F ∈ BA. However, FA = u⊗ A∗ f 6= 0 and AF = Au⊗ f = 0, so F /∈ (A)′.

REMARK 5.4. Since (A)′ ⊂ DA ⊂ BA (Proposition 4.5) we obtain from
Lemma 3.4 and Theorem 3.5 some examples of invertible A such that BA 6= (A)′.
Here we give some examples of possibly non-invertible operators with this prop-
erty. Let A =

[
C 0
0 B
]

be an operator on X⊕ X and let α > 0 be a number such that
‖Bkx‖ 6 α‖Ckx‖ for x ∈ X, k ∈ N. It is easy to check that the operator T =

[
0 0
I 0
]

belongs to the algebra BA. On the other hand, T ∈ (A)′ if and only if B = C.
Hence for an arbitrary pair of different operators, B, C, which satisfy the inequal-
ity mentioned above, BA 6= (A)′. For example, we can choose C arbitrarily and
take B = GC where G 6= I is any contraction commuting with C.

In fact, the only example known to us of a bounded operator A such that
BA = (A)′ is A = λI. It is easy to show that for X finite dimensional this is the
only example.

6. COMPACTNESS AND BA

The results of this section strengthen slightly and extend to Banach space
those of Section 4 of [12]. The main result is that for a compact operator K, BK
has a non-trivial invariant subspace. Since (K)′ ⊆ BK, this is at least as strong
as Lomonosov’s theorem [14] and will give a stronger result when BK properly
contains (K)′. This will be a fundamental issue.

LEMMA 6.1. Suppose K ∈ L(X) is a compact operator with r(K) > 0. Then there
exists f ∈ X∗ such that lim

m→∞
‖ f ‖−m = 0.

Proof. Let λ0 be an eigenvalue of K such that |λ0| = r(K) = r. Let u be a
corresponding normalized eigenvector and f an eigenvector of K∗ corresponding
to its eigenvalue λ0. Then, for F = u⊗ f ,

KF = Ku⊗ f = (λ0u)⊗ f = u⊗ (λ0 f ) = u⊗ K∗ f = FK,

so F ∈ BK. That is, sup
m
‖F‖m < ∞. This means that

sup
m

sup
x 6=0

∑∞
n=0 d2n

m ‖KnFx‖2

∑∞
n=0 d2n

m ‖Knx‖2 < ∞.
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But
∞
∑

n=0
d2n

m ‖KnFx‖2 =
∞
∑

n=0
d2n

m | f (x)|2r2n = | f (x)|2
1−(dmr)2 . Since lim

m→∞
(1− d2

mr2)m = 2
r ,

we have

lim
m→∞

‖ f ‖2
−m = lim

m→∞
sup
x 6=0

| f (x)|2
‖x‖2

m
= 0.

LEMMA 6.2. Let K ∈ L(X) be a compact operator with r(K) > 0 and λ an
eigenvalue of K such that |λ| = r(K). If f ∈ X∗ such that K∗ f = λ f and w ∈ X such
that sup

m
‖w‖m < ∞, then w⊗ f ∈ Q(BA).

Proof. Let F = w⊗ f . Then

‖F‖2
m = sup

x 6=0

∑∞
n=0 d2n

m ‖KnFx‖2

‖x‖2
m

.

Since KnFx = f (x)Knw, ‖KnFx‖ = | f (x)‖|Knw‖, and
∞

∑
n=0

d2n
m ‖KnFx‖2 = | f (x)|2

∞

∑
n=0

d2n
m ‖Knx‖2 = | f (x)|2‖w‖2

m.

Thus, as m→ ∞,

‖F‖2
m = sup

x 6=0

| f (x)|2
‖x‖2

m
‖w‖2

m = ‖ f ‖2
−m‖w‖2

m → 0.

THEOREM 6.3. Let K be a non-zero compact operator on X. Then BK has a non-
trivial invariant subspace.

Proof. By Theorem 2.7 it suffices to show that Q(BK) 6= {0}. If r(K) = 0, this
follows from Proposition 5.1, so assume that r(K) > 0. Since the only limit point
of the spectrum of K is 0, we can choose 0 < r0 < r and a circle Γ = {λ : |λ| = r0}
which contains no points of the spectrum of K. Let P = − 1

2πi

∫
Γ

(K − λI)−1dλ be

the corresponding Riesz projection with RanP = N. Then N is invariant for K, and
for K0 = K|N the spectrum of K0 will be interior to Γ. Since dimX = ∞, N 6= {0}.
Let w be a unit vector in N. Then

‖Knw‖ = ‖Kn
0 w‖ 6 ‖Kn

0‖‖w‖ = ‖Kn
0‖,

‖w‖2
m =

∞

∑
n=0

d2n
m ‖Knw‖2 6

∞

∑
n=0

d2n
m ‖Kn

0‖2 <
∞

∑
n=0

‖Kn
0‖2

r2n ,

since dm < 1
r for all m. Since

lim
n→∞

[‖K0‖2

r2n

]1/n
=

1
r2 lim

n→∞
[‖Kn

0‖1/n]2 =
[r(K0)]2

r2 < 1,

the series converges and sup
m
‖w‖m < ∞. Thus for an eigenvalue λ of K with

|λ| = r and f ∈ X∗ such that K∗ f = λ f , w⊗ f ∈ Q(BK) by Lemma 6.2.
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In order for this result to be stronger than that of Lomonosov we need that
(K)′ be properly contained in BK. The next proposition is a little more general
than the corresponding Proposition 4.3 of [12].

PROPOSITION 6.4. If K is a non-zero compact operator on X such that K has an
eigenvalue (possibly just zero), then BK properly contains (K)′.

Proof. If KerK 6= {0} the result follows from Theorem 5.3. If r(K) > 0
let F = w ⊗ f be the operator constructed in Theorem 6.3. Then F ∈ BK, but
KF = K0w⊗ f and

FK = w⊗ K∗ f = w⊗ λ f = λw⊗ f .

If KF = FK, then K0w = λw. But |λ| = r > r(K0). So F /∈ (K)′.

REMARK 6.5. Let X be a Banach space for which there exists A ∈ L(X)
which is transitive (see e.g. [8]). It follows from Theorem 6.3 that for any compact
operator K 6= 0, A /∈ BK. Thus the analogue of Problem 4.7 of [12] is obviously
solved in this case.

EXAMPLE 6.6. Let H be a Hilbert space with orthonormal basis {en}∞
n=0 and

{wn}∞
n=0 a sequence of complex numbers such that wn → 0 as n → ∞. Let A

be the weighted shift defined on H by Aen = wnen+1, n > 0. Then [18] A is
compact quasinilpotent, and since A is unitarily equivalent to the weighted shift
with weights {|wn|}, we can assume that wn > 0 for all n ∈ N .

In this case R2
m(A) =

∞
∑

n=0
m2n A∗n An is easily computed. It is the diagonal

operator (with respect to the given basis)

R2
m = diag[rmi]∞i=0 where rmi = 1 +

∞

∑
n=1

m2nw2
i · · ·w2

i+n−1 > 1.

So Rm = diag[(rmi)1/2] and R−1
m = diag

[
1

(rmi)1/2

]
. For T ∈ L(H) with matrix

representation T = [tij]∞i,j=0,

RmTR−1
m =

[( rmi
rmj

)1/2
tij

]
.

Now
rmi
rmj

=
1 + ∑∞

n=1 m2nw2
i · · ·w2

i+n−1

1 + ∑∞
n=1 m2nw2

j · · ·w2
j+n−1

.

If we write αj = 1 +
∞
∑

n=1
m2nw2

j · · ·w2
j+n−1 then we obtain, for i < j,

rmi
rmj

=
1 + m2w2

1 + · · ·+ m2(j−i)w2
i · · ·w2

j−1αj

αj
> m2(j−i)w2

i · · ·w2
j−1.
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Thus rmi
rmj
→ ∞ as m → ∞. If tij 6= 0 for some i < j then

∣∣( rmi
rmj

)1/2tij
∣∣ → ∞ as

m→ ∞. But ∣∣∣( rmi
rmj

)1/2
tij

∣∣∣ = |(RmTR−1
m ej, ei)| 6 ‖RmTR−1

m ‖,

so if T is not lower triangular, T /∈ BA. Thus every operator in BA must be lower
triangular.

On the other hand, assume in addition that {wn} is non-increasing. Then
it is easily seen that for j < i, rmi

rmj
6 1. Thus if T is lower triangular and Hilbert-

Schmidt,
‖RmTR−1

m ‖ 6 ‖RmTR−1
m ‖2 6 ‖T‖2,

so T ∈ BA (here ‖T‖2 is the Hilbert-Schmidt norm). In particular BA contains all
finite rank lower triangular operators, so its weak closure is the nest algebra of all
lower triangular operators.

Also BA properly contains (A)′, for if T = e1 ⊗ e0, T is lower triangular and
T ∈ BA. But ATe0 = w1e2 and TAe0 = 0 so T /∈ (A)′.

REMARK 6.7. Conjecture 4.6 of [12] asks if for any compact operator K, BK
properly contains (K)′. We have seen that this question reduces to the case where
K is compact quasinilpotent with trivial kernel. [12] shows this to be true for the
Volterra operator and we have added compact weighted shifts and some rather
artificial examples in Remark 5.4. The answer to the general conjecture remains
unknown.

7. ADDITIONAL REMARKS AND EXAMPLES

In Section 4 we introduced the family of sequences of vector norms of the
type

‖x‖m =
[ ∞

∑
k=0

w2
mk‖Akx‖2

]1/2

which includes the Deddens’ algebra and the spectral radius algebra as special
cases. In fact we can consider for each 1 6 p < ∞, the sequence

‖x‖m,p =
[ ∞

∑
k=0

wp
mk‖Akx‖p

]1/p
,

and for p = ∞
‖x‖m,∞ = sup

k
wmk‖Akx‖.

These vector norms (for fixed p) induce a sequence of operator norms on L(X)
which determine a subalgebra BA,p of L(X). It is easy to check that for wmk = dk

m
all the results of Sections 5 and 6 which were obtained for the case p = 2 in fact
hold for 1 6 p 6 ∞. For 1 6 p < ∞ we do not know if different algebras are
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obtained for different values of p. We give an example for which BA,∞ is different
from BA,2.

EXAMPLE 7.1. Consider the sequence of vector norms defined on X by

‖x‖m,∞ = sup
n

dn
m‖Anx‖.

Let {‖T‖m,∞} denote the sequence of induced operator norms, and let

BA,∞ =
{

T ∈ L(X) : sup
m
‖T‖m,∞ < ∞

}
.

Suppose r(A) = 1 and that there exists C > 0 such that for all n ∈ N, ‖An‖ 6 C.
Then

‖x‖m,∞ = sup
n

[ m
m + 1

]n
‖Anx‖ 6 C‖x‖.

Since ‖x‖ 6 ‖x‖m,∞ for all x ∈ X, we have for T ∈ L(X),

‖Tx‖m,∞ 6 C‖Tx‖ 6 C‖T‖‖x‖.
Thus sup

m
‖T‖m,∞ 6 C‖T‖ and BA,∞ = L(X). Now A =

[ I 0
0 λI

]
with |λ| < 1

satisfies the requirements given above and we saw (Example 5.2(ii)) that BA =
BA,2 6= L(X).

A more interesting example of an operator that satisfies the mentioned con-
ditions is A = (I + V)−1, where V is the Volterra operator (see Remark 2.16(i)).
Here also (BA =) BA,2 6= L(X) (= BA,∞). Indeed, if BA = L(X) then ([3], Theo-
rem 2.7) A is similar to a constant multiple of an isometry. Since the spectrum of
A is the set {1}, this implies that A = I which is a contradiction.

Our final example is a compact weighted shift on the Banach space l1 with
the sequence of vector norms for p = 1.

EXAMPLE 7.2. Let X = l1 with standard basis {en}∞
n=0. Every T ∈ L(X) has

a matrix representation T = [tjk]∞j,k=0, and the induced operator norm determined

by the l1 norm is

‖T‖ = sup
j

∞

∑
k=0
|tjk|.

Let {wn} be a monotone sequence of positive numbers converging to zero, and
consider the weighted shift A ∈ L(X) defined by Aen = wnen+1. Then for x =
∞
∑

i=0
xiei ∈ X,

Anx =
∞

∑
i=0

wi · · ·wi+n−1ei+n =
∞

∑
i=0

w(i, n)ei+n,

where w(i, n) = wi · · ·wi+n−1. We consider the sequence of vector norms de-
fined by

‖x‖m =
∞

∑
n=0

dn
m‖Anx‖ =

∞

∑
n=0

dn
m

∞

∑
i=0

w(i, n)|xi|.
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For simplicity in this example we will write ‖ · ‖m for ‖ · ‖m,1.
Suppose T ∈ L(X) has a lower triangular matrix representation, T=[tjk]∞j,k=0,

with tjk = 0 for j < k. Then, for x =
∞
∑

i=0
xiei,

‖Tx‖m =
∞

∑
n=0

dn
m‖AnTx‖ =

∞

∑
n=0

dn
m

∞

∑
i=0

w(i, n)
∣∣∣ ∞

∑
k=0

tikxk

∣∣∣.
If we denote w(i, n)xi by y(n)

i , this can be written as
∞

∑
n=0

dn
m

∞

∑
i=0

∣∣∣ ∞

∑
k=0

tik
w(i, n)
w(k, n)

y(n)
k

∣∣∣ 6 ∞

∑
n=0

dn
m‖T̂‖

∞

∑
k=0
|y(n)

k |

where T̂ =
[
tik

w(i,n)
w(k,n)

]∞

i,k=0
.

Since w(i, n) 6 w(k, n), ‖T̂‖ 6 ‖T‖, and

‖Tx‖m 6 ‖T‖
∞

∑
n=0

dn
m

∞

∑
k=0
|y(n)

k | = ‖T‖‖x‖m,

so that T ∈ BA,1 = {T ∈ L(X) : sup ‖T‖m < ∞}, where ‖T‖m is the norm
induced by the given norm ‖x‖m.

In the argument given above we used the monotonicity of the sequence
{wn} but not the fact that it converges to zero. To show that operators which are
not lower triangular are not in BA,1 we use the fact that {wn} converges to zero
but not that it is monotone.

Suppose T ∈ L(X) is not lower triangular. Then in its matrix representation

[tjk], tjk 6= 0 for some pair {j, k} with j < k. Then Tek =
∞
∑

i=0
tikei and AnTek =

∞
∑

i=0
tikw(i, n)ei+n, so

‖Tek‖m =
∞

∑
n=0

dn
m

∞

∑
i=0
|tik|w(i, n) > |tjk|

∞

∑
n=0

dn
mw(j, n),

‖ek‖m =
∞

∑
n=0
‖Anek‖ =

∞

∑
n=0

dn
mw(k, n).

Since wn → 0 as n→ ∞, A is quasinilpotent and dm = m. Therefore

‖Tek‖m

‖ek‖m
> |tjk|

1 + ∑∞
n=0 mnw(j, n)

1 + ∑∞
n=0 mnw(k, n)

.

Denote the denominator of the last expression by βk. Then

‖Tek‖m

‖ek‖m
> |tjk|

1 + mwj + · · ·+ mk−jwj · · ·wk−1βk

βk
> |tjk|mk−jwj · · ·wk−1 → ∞

as m→ ∞. Hence T /∈ BA,1.
Thus BA,1 coincides with the set of all lower triangular operators from L(l1).
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This algebra properly contains (A)′, since (as in Example 6.6) T = e1 ⊗ e0 is
lower triangular but does not commute with A.

Acknowledgements. We express thanks to the referee for a careful reading of the man-
uscript and a number of helpful suggestions which we incorporated into the final version
of the paper.
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