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ABSTRACT. A new criterion for essential normality of unbounded Hilbert
space operators is furnished in terms of local spectral radius. Accordingly,
extensive study of operators of certain types related to local spectral radius is
conducted. Spectral radii of local restrictions of a normal operator are investi-
gated.
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INTRODUCTION

In this paper, we give conditions for normality of the closure (read: essen-
tial normality) of an unbounded Hilbert space operator. Our approach is based
on the notion of local spectral radius (cf. [7], [35], [36], [8], [19], [37]; see also
[4], [5] for the case of unbounded operators). We attach to any (unbounded) op-
erator a family of invariant linear spaces of C∞-vectors determined by uniform
boundedness of their local spectral radii. Examining the corresponding restric-
tions (called local restrictions) of the operator in question enables us to distin-
guish classes of localoid and locally normaloid operators (cf. Section 4). This is
preceded by detailed analysis of local spectral radius, as some of its properties
are not preserved in the unbounded case (cf. Sections 1 and 3). In Section 2, we
provide necessary and sufficient conditions for an abstract transformation of the
half real line to come from spectral radii of local restrictions of a normal operator.
The advantage of introducing notions of localoid and locally normaloid operators
when compared with other known classes of operators (e.g. restriction-normaloid
operators) lies in the fact that our attention is confined to the family of selected
invariant subspaces which may reduce to a finite set. We show that paranormal
operators as well as those satisfying the Kato-Protter inequality form proper sub-
classes of locally normaloid operators. In Section 5 we discuss the question of
when essential normality of an operator follows from essential normality of all
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its cyclic parts. Having this established, we provide a criterion for essential nor-
mality of locally algebraic operators written in terms of local normaloidity (cf.
Theorem 6.7).

1. LOCAL SPECTRAL RADIUS

Throughout what follows, H stands for a complex Hilbert space. By an
operator in H we mean a linear mapping A : D(A) → H defined on a linear
subspace D(A) of H, called the domain of A. We denote by N(A), A∗ and A the

kernel, the adjoint and the closure of A respectively. We put D∞(A) =
∞⋂

n=1
D(An).

A densely defined operator A inH is called normal if it is closed and A∗A = AA∗.
An operator A inH is said to be essentially normal if A is closable and A is normal.

Given an inner product space D, we denote by B(D) the algebra of all
bounded linear mappings from D into D. If A ∈ B(D), then r(A) stands for
the spectral radius of the unique bounded linear extension of A to the comple-
tion of D; in the case of D = {0}, we put r(A) = 0. By the Gelfand theorem
r(A) = lim

n→∞
‖An‖1/n.

Given an operator A in H, we define

r(A, f ) = lim sup
n→∞

‖An f ‖1/n, f ∈ D∞(A),

HA(t) = { f ∈ D∞(A) : r(A, f ) 6 t}, t ∈ [0, ∞].

The quantity r(A, f ) ∈ [0, ∞] is called the local spectral radius of A at f . Note
that the set of all vectors f ∈ H such that r(A, f ) < ∞ is identical with the set
of all bounded vectors for A (cf. [10], [32] and [33] for an up-to-date approach).
Evidently HA(s) ⊆ HA(t) whenever 0 6 s 6 t, and HA(∞) = D∞(A). Let us
list some basic properties of local spectral radius (consult the proof of Lemma 1
in [8]).

LEMMA 1.1. If A is an operator in H, then:
(i) r(A, α f + βg) 6 max{r(A, f ), r(A, g)} for all α, β ∈ C and f , g ∈ D∞(A);

(ii) r(A, A f ) = r(A, f ) for all f ∈ D∞(A);
(iii) for every t∈[0, ∞], HA(t) is a linear subspace of D∞(A) which is invariant for A;
(iv) for every t ∈ [0, ∞], HA(t) = HA(t̃), where t̃ def= sup{r(A, f ) : f ∈ HA(t)}.

For t ∈ [0, ∞], we put A[t] = A|HA(t). We regard A[t] as an operator in H.
We now show to what extent the equality r(A, f )k = r(Ak, f ), originally

proved in [8], can be extended to the case of unbounded operators.

LEMMA 1.2. If A is an operator in H, f is a vector in D∞(A) and k > 1 is an
integer, then:

(i) r(A, f )k = max{r(Ak, Aj f ) : j = 0, 1, . . . , k− 1};
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(ii) r(A, f )k = max{r(Ak, Aj f ) : j = 0, 1} provided A[t] is closed (as an operator in
H) for t = r(A, f );

(iii) r(A, f )k = r(Ak, f ) provided A[t] is bounded for t = r(A, f ).

Proof. (i) Each positive integer n can be written as n = km + j with unique
nonnegative integers m > 0 and j ∈ {0, . . . , k− 1}. This leads to

r(A, f )k = lim
l→∞

sup
n>l

‖An f ‖k/n = lim
l→∞

max
j=0,...,k−1

sup
km+j>l

(‖(Ak)m Aj f ‖1/m)1/(1+ j
km )

= max
j=0,...,k−1

lim
l→∞

sup
km+j>l

(‖(Ak)m Aj f ‖1/m)1/(1+ j
km ) = max

j=0,...,k−1
r(Ak, Aj f ).

(ii) Set ‖h‖A =
√
‖h‖2 + ‖Ah‖2 for h ∈ HA(t). Denote by Xt the inner

product space (HA(t), ‖ · ‖A) and define the linear mapping Bt : Xt → Xt by
Bth = Ah for h ∈ Xt. Since A[t] is a closed operator in H, Xt is a Hilbert space
and the operator Bt is closed. By the closed graph theorem Bt ∈ B(Xt). Note that
r(A, f ) = r(Bt, f ) and r(Bk

t , f ) = max{r(Ak, f ), r(Ak, A f )} (r(Bt, f ) and r(Bk
t , f )

are calculated with respect to ‖ · ‖A). Applying Lemma 1 (6) of [8] to the bounded
operator Bt we get

r(A, f )k = r(Bt, f )k = r(Bk
t , f ) = max{r(Ak, f ), r(Ak, A f )}.

(iii) Applying Lemma 1 (6) of [8] now to the bounded operator A[t], we get
the following which completes the proof:

r(A, f )k = r(A[t], f )k = r(Ak
[t], f ) = r(Ak, f ), k > 1.

Note that the case r(A, f ) = ∞ is excluded in (ii) and (iii) of Lemma 1.2.

COROLLARY 1.3. If A is an operator in H such that all the operators A[t], t ∈
[0, ∞), are bounded, then HAk (t) = HA( k

√
t) for all real t > 0 and all integers k > 1.

COROLLARY 1.4. If A is an operator in H and k > 1 is an integer, then
(i) for every f ∈ D∞(A) there exists j ∈ {0, . . . , k− 1} such that

r(A, Aj f )k = r(Ak, Aj f );

(ii) if D∞(A) 6= {0}, then there exists f ∈ D∞(A) \ {0} such that r(A, f )k =
r(Ak, f ).

Proof. (i) follows from Lemmata 1.1 and 1.2.
(ii) Take any nonzero vector f ∈ D∞(A). If Ak f = 0, then manifestly

r(A, f )k = r(Ak, f ) = 0. Otherwise, Aj f 6= 0 for all j = 0, . . . , k − 1, which
combined with (i) completes the proof.

EXAMPLE 1.5. We show that the equality r(A, f )k = r(Ak, f ) is no longer
true for arbitrary unbounded operators. Let {en}∞

n=0 be an orthonormal basis of
H and D be the linear span of {en}∞

n=0. Given a sequence {λn}∞
n=0 ⊆ (0, ∞), we

define the operator A inH by D(A) = D and Aen = λnen+1 for all integers n > 0.
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Consider the sequence

(λ0, λ1, λ2, . . . ) = (u, u−1, u2, u−2, u3, u−3, . . . ),

where u > 1 is a fixed real number. It follows from Lemma 1.1 that

r(A, ej) = r(A, Aje0) = r(A, e0) =
√

u, j > 1.(1.1)

Take f =
N
∑

l=0
αlel ∈ D \ {0} with {αl}N

l=0 ⊆ C. By Lemma 1.1 (i) we have

r(A, f ) 6 max{r(A, ej) : j = 0, . . . , N} (1.1)
=
√

u,

r(A, f ) = lim sup
n→∞

( N

∑
l=0

‖αl Anel‖2
)1/2n

> lim sup
n→∞

‖αp Anep‖1/n =
√

u,(1.2)

where p is chosen so that αp 6= 0. As a consequence, we obtain

r(A, f ) =
√

u, f ∈ D \ {0}.(1.3)

Arguing as above we see that

r(A2, f ) =

{
u if there exists an odd integer p such that αp 6= 0,
1 otherwise.

(1.4)

The equalities (1.3) and (1.4) imply that

HA(t) =

{
{0} if t <

√
u,

D if t >
√

u,
and HA2(t) =


{0} if t < 1,
∗ if 1 6 t < u,
D if t > u,

(1.5)

where “∗” stands for the linear span of {e2j}∞
j=0.

In turn, if (λ0, λ1, λ2, . . . ) = (220
, 2−20

, 221
, 2−21

, 222
, 2−22

, . . . ), then one can
show that equalities (1.3), (1.4) and (1.5) remain valid with ∞ in place of u and√

u.

We now list some basic properties of the function t 7→ r(A[t]).

LEMMA 1.6. If A is an operator in H such that A[u] ∈ B(HA(u)) for some
u ∈ [0, ∞), then:

(i) A[t] ∈ B(HA(t)) for all t ∈ [0, u];
(ii) HA(t) ⊆ HA(r(A[t])) for all t ∈ [0, u];

(iii) r(A[t]) 6 r(A[t′ ]) whenever t ∈ [0, u] and A[t′ ] ∈ B(HA(t′)), where t′ def=
r(A[t]);

(iv) t 6 r(A[t]) whenever t ∈ [0, u] and t = r(A, f ) for some f ∈ D∞(A);
(v) the function [0, u] 3 t 7→ r(A[t]) ∈ [0, ∞) is monotonically increasing;

(vi) if t ∈ [0, u) and r(A[t]) < r(A[t+])
def= lim

s→t+
r(A[s]), then t < r(A[s]) for all

s ∈ (t, u] and consequently t 6 r(A[t+]);
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(vii) if t ∈ (0, u] and r(A[t]) > r(A[t−])
def= lim

s→t−
r(A[s]), then r(A[t]) > t.

Proof. (i) Evident.
(ii) This follows from the inequality

r(A, f ) = r(A[t], f ) 6 r(A[t]), f ∈ HA(t), t ∈ [0, u].(1.6)

(iii) and (v) Apply (ii) and the Gelfand formula for the spectral radius.
(iv) This is a direct consequence of (1.6).
(vi) Suppose, for contradiction, that (vi) fails to hold. Then there exist t ∈

[0, u) and s ∈ (t, u] such that r(A[t]) < r(A[t+]) and r(A[s]) 6 t. By (ii) this yields

HA(s) ⊆ HA(r(A[s])) ⊆ HA(t) ⊆ HA(s).(1.7)

Hence r(A[t]) = r(A[s]) and thus by (v), r(A[t]) = r(A[t+]), which is a contradic-
tion.

(vii) Since r(A[t]) > r(A[t−]), we see that HA(s) Ã HA(t) for every s ∈ (0, t).
Hence for every s ∈ (0, t) there exists fs ∈ D∞(A) such that s < r(A, fs) 6 t.
Observing that r(A, fs) 6 r(A[t]) and letting s tend to t, we get t 6 r(A[t]).

2. CHARACTERIZATION OF t 7→ r(A[t]) FOR NORMAL OPERATORS

The function t 7→ r(A[t]) can be explicitly computed for normal operators by
means of their spectral measures. For t ∈ [0, ∞), we put ∆t = {z ∈ C : |z| 6 t},
∆o

t = the interior of ∆t and Γt = ∆t \ ∆o
t . By convention sup∅ = 0 and |Y| =

{|z| : z ∈ Y} for Y ⊆ C. As usual, σ(A) stands for the spectrum of an operator A.

LEMMA 2.1. If E is the spectral measure of a normal operator A in H, then for all
t ∈ [0, ∞),

(i) HA(t) = E(∆t)H;

(ii) r(A[t]) =

{
t if E(Γt) 6= 0,
sup |σ(A) ∩∆o

t | if E(Γt) = 0;
(iii) r(A[t]) equals sup |σ(A) ∩∆o

t | or sup |σ(A) ∩∆t|.
Proof. (i) Consult the proof of Proposition 4 in [33].
(ii) and (iii) Take t ∈ [0, ∞). By (i), E[t](·)

def= E(·)|E(∆t)H is the spectral
measure of A[t]. Since the closed support of the spectral measure of a normal
operator coincides with its spectrum, we get

σ(A[t]) ⊆ ∆t ∩ σ(A) and σ(A[t]) ∩∆o
t = σ(A) ∩∆o

t .(2.1)

Suppose that E(Γt) 6= 0. The standard compactness argument implies that
there exists z0 ∈ Γt such that E(U ∩ Γt) 6= 0 and consequently E(U ∩ ∆t) 6= 0
for every open neighborhood U of z0. This means that z0 belongs to the closed
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support of E[t]. Hence, by (2.1), r(A[t]) = t. As a consequence,

r(A[t]) = sup |σ(A) ∩∆t|.

Suppose now that E(Γt) = 0. If sup |σ(A)∩∆o
t | = t, then by (2.1), r(A[t]) = t

and consequently r(A[t]) = sup |σ(A) ∩∆t|. In turn, if s def= sup |σ(A) ∩∆o
t | < t,

then E(∆o
t \ ∆s) = 0. Since moreover E(Γt) = 0, we get E[t](C \ ∆s) = 0, which

yields r(A[t]) 6 s. If s = 0, then evidently r(A[t]) = s. Otherwise s > 0 and
consequently Γs ∩ σ(A) 6= ∅. This combined with (2.1) and r(A[t]) 6 s leads to
r(A[t]) = s.

We now extract some properties of the function s 7→ r(A[s]), where A is a
normal operator. Their abstract versions determine all functions of this type (cf.
Theorem 2.4). In what follows, we preserve the notation used in Lemma 1.6.

PROPOSITION 2.2. If A is a normal operator in H and t ∈ [0, ∞), then:
(i) r(A[t]) equals r(A[t−]) or r(A[t+]);

(ii) if the function s 7→ r(A[s]) is not continuous at t, then

r(A[t−]) < r(A[t+]) = t,

r(A[v]) = r(A[t−]), v ∈ [r(A[t−]), t);

(iii) if r(A[s]) = t for all s ∈ (t, ∞), then r(A[t]) = t;
(iv) if the function s 7→ r(A[s]) is continuous on an open interval U ⊆ (0, ∞), then

there exists c ∈ [0, ∞] such that r(A[s]) = min{s, c} for all s ∈ U.

Proof. It follows from Lemma 2.1 (ii) that

r(A[s]) 6 s, s ∈ [0, ∞).(2.2)

The next step of the proof is to show that for every x ∈ [0, ∞),

if r(A[x]) < x, then r(A[v]) = r(A[x]) for all v ∈ [r(A[x]), x].(2.3)

Indeed, if r(A[x]) < x, then by Lemma 2.1 (ii), u def= sup |σ(A) ∩ ∆o
x| < x and

E(∆x \ ∆u) = 0. This and again Lemma 2.1 (ii) give r(A[v]) = u for all v ∈
(u, x]. Consequently, r(A[x]) = u. Hence it remains to verify that r(A[u]) = u.

Suppose that, contrary to our claim, z def= r(A[u]) < u. Then, by Lemma 2.1 (ii),
E(∆u \ ∆z) = 0. This and E(∆o

x \ ∆u) = 0 yield E(∆o
x \ ∆z) = 0, which in turn

implies that σ(A) ∩ (∆o
x \ ∆z) = ∅. Thus Γu ∩ σ(A) = ∅, which contradicts

sup |σ(A) ∩∆o
x| = u > 0.

We are now ready to prove all the parts of the conclusion using only (2.2),
(2.3) and the monotonicity of s 7→ r(A[s]) (without any recourse to Lemma 2.1).
This observation is essential in the context of the proof of Proposition 2.5.

(i) If r(A[t]) = t, then by (2.2) and the monotonicity of the function s 7→
r(A[s]) we have r(A[t]) = r(A[t+]). Otherwise r(A[t]) < t, which, together with
(2.3), yields r(A[t]) = r(A[t−]).
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(ii) By discontinuity of the function s 7→ r(A[s]) at t, r(A[t−]) < r(A[t+]) 6 t.
Let {tn}∞

n=1 ⊆ (r(A[t−]), t) be a strictly increasing sequence tending to t. Take
v ∈ [r(A[t−]), t). Since r(A[tn ]) 6 r(A[t−]) for all n > 1 and tn ↗ t, there exists an
integer k > 1 such that v ∈ [r(A[tn ]), tn) for all n > k. In virtue of (2.3) we see that
r(A[v]) = r(A[tn ]) for all n > k. Letting n tend to ∞, we get r(A[v]) = r(A[t−]).

We now show that r(A[t+]) = t. In the contrary case, r(A[t+]) < t and
consequently there exists real s > t such that r(A[s]) ∈ [r(A[t+]), t). This leads to
r(A[s]) < t < s. By (2.3), r(A[v]) = r(A[s]) for all v ∈ (r(A[s]), t). Therefore, we
have r(A[t−]) = r(A[s]) > r(A[t+]), which is a contradiction.

(iii) Apply (2.3) to some x > t.
(iv) We claim that if r(A[v]) < v for some v ∈ U, then r(A[s]) = r(A[v]) for all

s ∈ (r(A[v]), ∞) ∩U. By (2.3) we see that r(A[s]) = r(A[v]) for all s ∈ (r(A[v]), v].
Suppose that, contrary to our claim, the function s 7→ r(A[s]) is not constant on
(r(A[v]), ∞) ∩U. Then there exists w ∈ U such that v < w and r(A[v]) < r(A[w]).
By the Darboux property we can assume without loss of generality that r(A[w]) <

v. Hence v ∈ (r(A[w]), w), which by (2.3) contradicts r(A[v]) < r(A[w]).
We now show that if r(A[v]) = v for some v ∈ U, then r(A[s]) = s for all

s ∈ (0, v] ∩U. Indeed, supposing that r(A[w]) 6= w for some w ∈ (0, v) ∩U, we
infer from (2.2) that r(A[w]) < w, which contradicts the previous paragraph.

To complete the proof, note that if r(A[s]) = s for all s ∈ U, then we may take

c = ∞. Otherwise, there exists v ∈ U such that r(A[v]) < v, and so c def= r(A[v]) fits
into (iv). This finishes the proof.

Given a = {an}∞
n=1 ⊆ C, we denote by Ma the diagonal operator in `2 de-

fined by

D(Ma) =
{
{xn}∞

n=1 ∈ `2 :
∞

∑
n=1

|anxn|2 < ∞
}

and

Ma(x) = {anxn}∞
n=1 for x = {xn}∞

n=1 ∈ D(Ma).

It is well known that Ma is normal and σ(Ma) is the closure of the set {an : n > 1}.

COROLLARY 2.3. If a = {an}∞
n=1 ⊆ C, then

r((Ma)[t]) = sup{|an| : n > 1, |an| 6 t}, t ∈ [0, ∞).(2.4)

Proof. The spectral measure E of Ma is given by E(σ) = Maσ , where aσ =
{aσ,n}∞

n=1 is the sequence given by aσ,n = 1 if an ∈ σ and aσ,n = 0 otherwise. Thus
E(σ) 6= 0 if and only if σ ∩ {an : n > 1} 6= ∅. Applying Lemma 2.1 (ii) and the
equality sup |σ(A) ∩∆o

t | = sup{|an| : n > 1, |an| < t} completes the proof.

We now show that monotonically increasing transformations of [0, ∞) satis-
fying abstract versions of conditions (i)–(iv) of Proposition 2.2 come from normal
operators.
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THEOREM 2.4. If ϕ : [0, ∞) → [0, ∞) is a monotonically increasing function sat-
isfying the following four conditions:

(i) for every t ∈ [0, ∞), ϕ(t) equals ϕ(t−) or ϕ(t+);
(ii) for every t ∈ (0, ∞), if the function ϕ is not continuous at t, then ϕ(t−) <

ϕ(t+) = t and ϕ(v) = ϕ(t−) for all v ∈ [ϕ(t−), t);
(iii) for every t ∈ [0, ∞), if ϕ(s) = t for all s ∈ (t, ∞), then ϕ(t) = t;
(iv) if the function ϕ is continuous on an open interval U ⊆ (0, ∞), then there exists

c ∈ [0, ∞] such that ϕ(s) = min{s, c} for all s ∈ U;
then there exists a positive selfadjoint operator A in `2 such that ϕ(s) = r(A[s]) for all
s ∈ [0, ∞).

Proof. In what follows, K′ stands for the collection of all accumulation points
of a set K ⊆ R. Define the following four sets:

K− = {t ∈ [0, ∞) : ϕ(t) = ϕ(t−) < ϕ(t+)},

K+ = {t ∈ [0, ∞) : ϕ(t−) < ϕ(t+) = ϕ(t)},

Kc = {t ∈ [0, ∞) : ϕ(t−) = ϕ(t) = ϕ(t+)},

Kr = {t ∈ [0, ∞) : ϕ−1({t}) has a nonempty interior}.

It follows from (i) that [0, ∞) = K− ∪K+ ∪Kc with pairwise disjoint terms. Clearly,
Kr ⊆ ϕ([0, ∞)) and, by (ii), K+ ⊆ ϕ([0, ∞)). It is also easily seen that the sets
K−, K+ and Kr are at most countable. This implies that there exists a sequence
a = {an}∞

n=1 ⊆ ϕ([0, ∞)) dense in ϕ([0, ∞)) such that K+ ∪ Kr ⊆ {an : n > 1}. Let
A be the diagonal operator Ma. Since A is positive and selfadjoint, it remains to
show that ϕ(s) = r(A[s]) for all s ∈ [0, ∞). We split the proof into several steps.
The monotonicity assumption will be mentioned explicitly only in more subtle
cases.

Step 1. ϕ(s) 6 s for all s ∈ [0, ∞) (an analogue of (2.2)).

This can be done by analyzing three possible cases: s ∈ K− ∪ K+, s ∈ Kc ∩
(K− ∪ K+)′ and s ∈ Kc \ (K− ∪ K+)′.

Step 2. If t ∈ Kr, then either ϕ−1({t}) = [t, ∞) or there exists u ∈ (t, ∞) ∩
(K− ∪ K+) such that [t, u) ⊆ ϕ−1({t}) ⊆ [t, u].

Taking any nonempty open interval (α, β) ⊆ ϕ−1({t}), we infer from Step 1
and (ii) that α ∈ [t, ∞) and (t, β) ⊆ Kc, which enables us to define

u = sup{s ∈ (t, ∞) : (t, s) ⊆ Kc}.

Clearly, u > β and (t, u) ⊆ Kc. If u = ∞, then (iv) and (iii) give ϕ−1({t}) = [t, ∞).
Assume that u < ∞. It follows from (iv) that (t, u) ⊆ ϕ−1({t}). If u ∈ K− ∪ K+,
then applying (ii) we get the other part of the conclusion of Step 2. We are left
with verifying that the remaining possibility u ∈ Kc can never happen. Indeed,
the case u ∈ Kc \ (K− ∪ K+)′ immediately contradicts the definition of u. In turn,
if u ∈ Kc ∩ (K− ∪ K+)′, then there exists {un}∞

n=1 ⊆ (u, ∞) ∩ (K− ∪ K+) such that
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u = lim
n→∞

un. Hence by (ii) and monotonicity of ϕ we must have ϕ(s) > u for all

s > u, which means that ϕ(u+) > u > t = ϕ(u−), a contradiction.
Let us fix a real t > 0. If t = 0, then Step 1 and (2.2) imply that ϕ(0) =

r(A[0]) = 0. In the rest of the proof we assume that t > 0.

Step 3. If t ∈ K+, then ϕ(t) = r(A[t]) = t.

This can be deduced from (2.4), K+ ⊆ {an : n > 1} and (ii).

Step 4. If t ∈ K−, then ϕ(t) = r(A[t]).

Using (ii) and Step 2, we can show that ϕ(s) > ϕ(t+) = t for all s ∈ (t, ∞),
which yields (ϕ(t), t] ∩ ϕ([0, ∞)) = ∅. This and {an}∞

n=1 ⊆ ϕ([0, ∞)) lead to
(ϕ(t), t] ∩ {an : n > 1} = ∅. Applying (2.4), we get r(A[t]) 6 ϕ(t). However
ϕ(t) ∈ Kr ⊆ {an : n > 1}, which together with (2.4) and ϕ(t) < t gives r(A[t]) >
ϕ(t).

Step 5. If α ∈ [0, t) and ϕ(s) = s for every s ∈ (α, t), then ϕ(t) = r(A[t]) = t.

Indeed, by {an : n > 1} = ϕ([0, ∞)), there exists {kn}∞
n=1 ⊆ {1, 2, . . .} such

that lim
n→∞

akn = t and akn < t for all integers n > 1. By virtue of (2.2) and (2.4),

we have r(A[t]) = t. In turn, Step 1 and monotonicity of ϕ implies ϕ(t) = t, as
desired.

Step 6. If t ∈ Kc ∩ (K− ∪ K+)′, then ϕ(t) = r(A[t]) = t.

Suppose first that ϕ is continuous on an interval (t − ε, t) for some ε > 0.
We claim that ϕ(t) = t. Indeed, since there exists a sequence {un}∞

n=1 ⊆ (t, ∞) ∩
(K− ∪ K+) converging to t, we deduce from (ii) that ϕ(un+) = un tends to t as
n → ∞. This and t ∈ Kc lead to ϕ(t) = t. Next, in view of (iv), we get ϕ(s) = s for
all s ∈ (t− ε, t), and so Step 5 gives the conclusion. In the other case there exists
a strictly increasing sequence {tn}∞

n=1 ⊆ K− ∪ K+ tending to t. Condition (ii)
accompanied with Steps 3 and 4 implies that

tn = ϕ(tn+) 6 ϕ(tn+1) = r(A[tn+1]) 6 r(A[t]), n > 1.

Letting n tend to ∞, and applying t ∈ Kc and (2.2) proves Step 6.

Step 7. If t ∈ Kc \ (K− ∪ K+)′, then ϕ(t) = r(A[t]).

Indeed, there exists a nonempty interval J = (α, β) containing t and such
that ϕ is continuous on J. By virtue of (iv), we can reduce the proof of Step 7 to
considering the following two cases:

(a) ϕ(s) = ϕ(t) for all s ∈ J,
(b) ϕ(s) = s for all s ∈ (α, t).

If (a) holds, then ϕ(t) ∈ Kr, which by Step 2, monotonicity of ϕ, (i) and (ii) lead
either to (ϕ(t), ∞) ∩ ϕ([0, ∞)) = ∅ or to (ϕ(t), u) ∩ ϕ([0, ∞)) = ∅, where u ∈
[β, ∞) ∩ (K− ∪ K+). Applying (2.4), Step 1 and the inclusions Kr ⊆ {an : n > 1} ⊆
ϕ([0, ∞)), we get ϕ(t) = r(A[t]). The case (b) can be deduced from Step 5.
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In view of the proof of Theorem 2.4 it is clear that in general for a given
transformation ϕ there may exist many positive selfadjoint operators A such that
ϕ(s) = r(A[s]) for every s ∈ [0, ∞). It is also worth mentioning that none of
the conditions (i)–(iv) can be removed from Theorem 2.4 without affecting its
conclusion.

Arguing as in the proof of Theorem 2.4, we can obtain the following result.

PROPOSITION 2.5. Suppose that ϕ : [0, ∞) → [0, ∞) is an arbitrary function. If
ϕ is monotonically increasing, then ϕ satisfies the conditions (i)–(iv) of Theorem 2.4 if
and only if the following two conditions hold:

(i) for every x ∈ [0, ∞), ϕ(x) 6 x;
(ii) for every x ∈ [0, ∞), if ϕ(x) < x, then ϕ(v) = ϕ(x) for all v ∈ [ϕ(x), x].

If ϕ has left-hand and right-hand limits at each point of [0, ∞) and satisfies the conditions
(i), (ii) and (iv) of Theorem 2.4, then ϕ is monotonically increasing.

3. EXAMPLES OF DISCONTINUITY OF t 7→ r(A[t])

EXAMPLE 3.1. For normal operators A, the function t 7→ r(A[t]) may have
either left-hand or right-hand discontinuity (but never simultaneously, cf. Propo-
sition 2.2). Indeed, if α, β and γ are positive real numbers such that α < β < γ,
and a = {an}∞

n=1 is a sequence whose entries form a dense subset of [0, α]∪ [β, γ],
then by (2.4) the function t 7→ r((Ma)[t]) is left-discontinuous at β whenever
an = β for some n > 1, and right-discontinuous at β otherwise.

EXAMPLE 3.2. Let Z stand for the set of all integers. Denote by `2(Z) the
Hilbert space of all square summable two-sided complex sequences. For u ∈
[0, 1], we define the bounded linear operator Tu on `2(Z) by

Tu(. . . , x−1, x0 , x1, . . .) = (. . . , x−2, x−1 , ux0, ux1, . . .), {xj}j∈Z ∈ `2(Z),

where the boxed entries occupy the zeroth position. We show that

r((Tu)[t]) =

{
0 if t ∈ [0, u),
1 if t ∈ [u, ∞).

(3.1)

Indeed, note first that if x ∈ `2(Z) is nonzero, then ‖Tux‖ > u‖x‖, which, when
iterated, leads to r(Tu, x) > u. Hence HTu(t) = {0} for all t ∈ [0, u). On the
other hand if t ∈ [u, ∞), then en ∈ HTu(t) for every n ∈ Z, where {en}n∈Z is
the standard “0–1” orthonormal basis of `2(Z). This and Lemma 1.1 (iii) imply
r((Tu)[t]) = r(Tu). However, ‖Tk

u‖ = 1 for all integers k > 1, which gives r(Tu) =
1. This justifies (3.1).

Take now u, v ∈ R such that 0 6 u < v. Since HαA(t) = HA(t/α) and
consequently r((αA)[t]) = α r(A[t/α]) for A ∈ B(H) and α ∈ (0, ∞), we deduce
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from (3.1) that the operator Su,v
def= vTu/v ∈ B(`2(Z)) has the following property:

r((Su,v)[t]) =

{
0 if t ∈ [0, u),
v if t ∈ [u, ∞).

(3.2)

EXAMPLE 3.3. Take u ∈ [0, 1) and a sequence {un}∞
n=1 ⊆ (u, 1) tending to u.

Set T =
∞⊕

n=1
Tun , where Tun ∈ B(`2(Z)) are as in Example 3.2. The Hilbert space

H on which the bounded operator T acts is the orthogonal sum of ℵ0 copies of
`2(Z). We show that

r(T[t]) =

{
0 if t ∈ [0, u],
1 if t ∈ (u, ∞).

(3.3)

For this, observe that if f =
∞⊕

n=1
fn ∈ H and fk 6= 0 for some k > 1, then

r(T, f ) > r(Tuk , fk) > uk > u.(3.4)

The first inequality can be proved similarly to (1.2), while the second one is justi-
fied in Example 3.2. Condition (3.4) implies that HT(t) = {0} for all t ∈ [0, u]. Fix
now t ∈ (u, ∞) and choose an integer k0 > 1 such that uk0 6 t. Denote by X the

set of all f =
∞⊕

n=1
fn ∈ H such that fn = 0 for each n 6= k0, and fk0 ∈ {ej : j ∈ Z},

where ej’s are as in Example 3.2. Since r(Tuk0
, ej) = uk0 for all integers j, we

see that X ⊆ HT(t). Hence, again by Lemma 1.1 (iii), the linear span E of X is
contained in HT(t). Consequently

1 = ‖T‖ > r(T[t]) > r(T[t]|E ) = r(Tuk0
) = 1,

the last equality being shown in Example 3.2. This completes the proof of (3.3).
Employing (3.3) and the same “scaling” procedure as in Example 3.2, we

construct for each (u, w) ∈ R2 with 0 6 u < w the operator T ∈ B(H) such that

r(T[t]) =

{
0 if t ∈ [0, u],
w if t ∈ (u, ∞).

(3.5)

LEMMA 3.4. Let Aj be an operator with invariant domain acting in a Hilbert space

Hj , j = 1, 2, . . . , n. If A =
n⊕

j=1
Aj, then:

(i) r(A, f ) = max
j=1,...,n

r(Aj, f j) for all f =
n⊕

j=1
f j ∈ D(A);

(ii) HA(t) =
n⊕

j=1
HAj(t) for all t ∈ [0, ∞);

(iii) r(A[t]) = max
j=1,...,n

r((Aj)[t]) for all t ∈ [0, ∞) such that A[t] ∈ B(HA(t)).
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Proof. Arguing as in (1.2) and using Lemma 1.1 (i) we obtain (i). Condi-
tion (ii) follows from (i), while (iii) is a consequence of (ii).

EXAMPLE 3.5. Take u, v, w ∈ R such that 0 6 u < v < w. Let T ∈ B(H)
satisfy (3.5) and Su,v be as in (3.2). If A = T ⊕ Su,v, then by Lemma 3.4 we have

r(A[t]) =


0 if t ∈ [0, u),
v if t = u,
w if t ∈ (u, ∞).

(3.6)

This means that the function s 7→ r(A[s]) is both left- and right-discontinuous at
u, and r(A[t]) > t for all t ∈ [u, w). In turn, the operator A = Su,v satisfies (3.6)
with 0 6 u < v = w, while the operator A = T⊕ uI (I = the identity operator on
a nonzero Hilbert space) fulfills (3.6) with 0 6 u = v < w. Finally, note that by
Lemma 1.6 (vii) there is no bounded operator A satisfying (3.6) with 0 < v < u.

4. LOCALOID AND LOCALLY NORMALOID OPERATORS

We now distinguish two new classes of operators. An operator A in H is
said to be localoid if A[t] ∈ B(HA(t)) and r(A[t]) 6 t for every real t > 0. This
definition remains unchanged if we let t range over [0, ∞). Indeed, Lemma 1.6
leads to r(A[0]) 6 r(A[t]) 6 t for all real t > 0, and so r(A[0]) = r(A[0+]) = 0. The
following fact is a consequence of Lemma 1.6.

PROPOSITION 4.1. If A is a localoid operator in H, then:
(i) HA(t) = HA(r(A[t])) for all t ∈ [0, ∞);

(ii) r(A[t]) = r(A[t′ ]) with t′ def= r(A[t]) for all t ∈ [0, ∞);
(iii) r(A[t]) = t whenever t ∈ [0, ∞) and t = r(A, f ) for some f ∈ D∞(A);
(iv) r(A[t−]) 6 r(A[t]) 6 r(A[t+]) 6 t for all t ∈ [0, ∞);
(v) if t ∈ [0, ∞) and r(A[t]) < r(A[t+]), then r(A[t+]) = t;

(vi) r(A[t]) equals r(A[t−]) or r(A[t+]) for all t ∈ [0, ∞).

COROLLARY 4.2. If A is a localoid operator in H and s, t are real numbers such
that 0 6 t 6 s, then the following conditions are equivalent:

(i) HA(t) = HA(s);
(ii) HA(r(A[t])) = HA(r(A[s]));

(iii) r(A[t]) = r(A[s]);
(iv) r(A[s]) 6 t.

Proof. Apply Proposition 4.1 (i), the localoidity of A, and (1.7).

Closed localoid operators can be characterized in a topological manner.
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LEMMA 4.3. Let A be a closed operator in H. Then the following conditions are
equivalent:

(i) A is localoid;
(ii) for every t ∈ (0, ∞), HA(t) is a closed subspace of H;

(iii) for every t ∈ (0, ∞), A[t] ∈ B(HA(t)) and r(A[t]) = r(A, ft) for some ft ∈
HA(t).
Moreover, if (i) holds, then (ii) and (iii) are also valid for t = 0.

Proof. (i)⇒(ii) Suppose that t ∈ (0, ∞) and f ∈ HA(t). Since A[t] ⊆ A and
A[t] ∈ B(HA(t)), we obtain A[t] = A|

HA(t) and thus HA(t) ⊆ D∞(A). This

yields r(A, f ) = r(A[t], f ) 6 r(A[t]) 6 t, which means that f ∈ HA(t). Hence
HA(t) = HA(t). Since HA(0) =

⋂
s>0

HA(s), we see that HA(0) is closed.

(ii)⇒(i) By the closed graph theorem A[t] ∈ B(HA(t)) for every t ∈ (0, ∞).
Owing to Lemma 2 of [8] (see also Theorem 1 of [19]), we have

r(A[t]) = max
f∈HA(t)

r(A[t], f ) = max
f∈HA(t)

r(A, f ) 6 t, t ∈ (0, ∞).

(i)⇒(iii) In view of implication (i)⇒(ii), HA(t) is a closed subspace of H,
and so (iii) is a direct consequence of Lemma 2 in [8] applied to A[t] (t ∈ [0, ∞)).

(iii)⇒(i) As ft ∈ HA(t), we get r(A[t]) = r(A, ft) 6 t for all real t > 0.

An operator A in H is called a locally normaloid operator if A[t] ∈ B(HA(t))
and ‖A[t]‖ 6 t for all real t > 0. We may again admit t = 0 without harming the
definition. It is clear that every locally normaloid operator is localoid. The reverse
implication is no longer true (consider a nonzero quasinilpotent A ∈ B(H)).

Locally normaloid operators can be characterized as follows.

LEMMA 4.4. If A is an operator inH, then the following conditions are equivalent:
(i) A is locally normaloid;

(ii) ‖A f ‖ 6 r(A, f )‖ f ‖ for all f ∈ D∞(A);
(iii) the sequence {‖(tA)n f ‖}∞

n=0 is monotonically decreasing for all f ∈ HtA(1) and
t ∈ (0, ∞);

(iv) sup
n>1

‖(tA)n f ‖ 6 ‖ f ‖ for all f ∈ HtA(1) and t ∈ (0, ∞).

Proof. (i)⇒(ii) Fix f ∈ D∞(A). Suppose that t def= r(A, f ) < ∞. Then f ∈
HA(t), and consequently by (i) we have ‖A f ‖ = ‖A[t] f ‖ 6 t‖ f ‖ = r(A, f )‖ f ‖.
The case r(A, f ) = ∞ is obvious.

(ii)⇒(iii) Fix f ∈ D∞(A) and t ∈ (0, ∞) such that r(tA, f ) 6 1. It follows
from Lemma 1.1 (ii) that r(A, An f ) = r(A, f ) 6 1

t for all n > 0. Thus by (ii) we
have ‖An+1 f ‖ = ‖A(An f )‖ 6 1

t ‖An f ‖ for all n > 0, which gives ‖(tA)n+1 f ‖ 6
‖(tA)n f ‖ for all n > 0.

(iii)⇒(iv) Evident.
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(iv)⇒(i) If t ∈ (0, ∞) and f ∈ HA(t), then r( 1
t A, f ) 6 1 and hence, by (iv),

‖ 1
t A f ‖ 6 ‖ f ‖. This completes the proof.

We now show that under some extra assumption localoidity may imply lo-
cal normaloidity. Following [1], we say that an operator A in H is restriction-
normaloid if for every linear subspace E of D(A) such that A|E ∈ B(E), the equal-
ity ‖A|E‖ = r(A|E ) holds (equivalently: ‖A|E‖ = sup{|〈A f , f 〉| : f ∈ E , ‖ f ‖ =
1}; cf. Section 2.5.4, Theorem 2 of [11]). Note that for A ∈ B(H), our definition
agrees with the one in [1].

THEOREM 4.5. Let A be an operator in H. Then the following conditions are
equivalent:

(i) A is locally normaloid;
(ii) A is localoid and restriction-normaloid.

Moreover, if A is closed, then (i) is equivalent to:
(iii) HA(t) is a closed subspace ofH and (note that by the closed graph theorem, A[t] ∈

B(HA(t))) ‖A[t]‖ = r(A[t]) for all t ∈ (0, ∞).

Proof. (i)⇒(ii) Evidently A is localoid. Let E be a linear subspace of D(A)
such that A|E ∈ B(E). It follows from the implication (i)⇒(ii) of Lemma 4.4 that

‖A|E f ‖ = ‖A f ‖ 6 r(A, f )‖ f ‖ = r(A|E , f )‖ f ‖ 6 r(A|E )‖ f ‖, f ∈ E ,

which leads to ‖A|E‖ 6 r(A|E ). Hence ‖A|E‖ = r(A|E ).
(ii)⇒(i) By our assumption we have ‖A[t]‖ = r(A[t]) 6 t for all t ∈ (0, ∞).
(i)⇔(iii) This can be deduced from Lemma 4.3 and implication (i)⇒(ii).

Note that the assumption on restriction-normaloidity cannot be dropped
in Theorem 4.5 (ii) (consider a nonzero quasinilpotent operator). It is an open
question whether there exist restriction-normaloid operators which are not lo-
cally normaloid.

The following simple fact is stated without proof.

LEMMA 4.6. If A is a localoid (respectively locally normaloid) operator inH, then:
(i) Ak is localoid (respectively locally normaloid) for every integer k > 1;

(ii) A|E is localoid (respectively locally normaloid) for every linear subspace E of
D(A) such that A(E) ⊆ E .

We show by example that both localoidity and local normaloidity are not
preserved when taking adjoints (see also Example 4.10).

EXAMPLE 4.7. Let A be the bounded weighted shift on H given by Aen =
λnen+1 for all n > 0, where {λn}∞

n=0 is a sequence of positive real numbers and
{en}∞

n=0 is an orthonormal basis of H. We show that A∗ is localoid if and only if
r(A) = 0. The “if” part is plain due to r(A) = r(A∗). For the “only if” part, note
that A∗(n+1)en = 0 for all n > 0, which implies that en ∈ HA∗(0) for all n > 0. By
Lemma 1.1, HA∗(0) is dense in H and consequently by Lemma 4.3, HA∗(0) = H.
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This yields r(A) = r(A∗) = r((A∗)[0]) 6 0, which completes the proof. Both
possibilities r(A) > 0 and r(A) = 0 can occur in the context of weighted shifts
(cf. [27]).

Following [34], we indicate two subclasses of locally normaloid operators.

PROPOSITION 4.8. Every operator A in H satisfying the following inequality is
locally normaloid:

(−1)j Re〈Aj f , f 〉 > 0, f ∈ D∞(A), j = 1, 2, . . . .(4.1)

Proof. By the Protter inequality (cf. Theorem 1 of [24]), we have

‖A f ‖ 6 bn‖ f ‖n/(n+1)‖An+1 f ‖1/(n+1), f ∈ D∞(A), n = 1, 2, . . . ,

where b2
n = (n + 1)n−n/(n+1). Letting n tend to ∞ gives ‖A f ‖ 6 r(A, f )‖ f ‖ for

all f ∈ D∞(A). This implies that A is locally normaloid (cf. Lemma 4.4).

Recall that an operator A inH is said to be paranormal if ‖Ah‖2 6 ‖A2h‖‖h‖
for all h ∈ D(A2) (cf. [16], [22], [34], [11]). The following fact is a direct conse-
quence of Proposition 1 in [34] and Lemma 8 of [32].

PROPOSITION 4.9. If A is a paranormal operator in H, then A is locally nor-
maloid and for all f ∈ D∞(A), the sequence {‖An f ‖1/n}∞

n=1 is convergent in [0, ∞].

EXAMPLE 4.10. We give an example of a bounded locally normaloid oper-
ator, which is not paranormal and which fails to fulfill (4.1). Assume that H is a
separable infinite dimensional Hilbert space with an orthonormal basis {en}∞

n=0.
Let {εn}∞

n=0 be a sequence of nonnegative real numbers which converges to 0.
Then evidently

lim
n→∞

1
n + 1

n

∑
j=0

ε j = 0.(4.2)

Let A ∈ B(H) be the weighted shift given by Aen = e−εn en+1 for all n > 0. Since
sup
n>0

e−εn = 1, we see that ‖A‖ = 1. It follows from (4.2) that

r(A, ej) = lim sup
n→∞

e−
ε j+···+ε j+n−1

n = 1, j > 0.(4.3)

We claim that r(A, f ) = 1 for all f ∈ H \ {0}. Indeed, the inequality “6” follows

from r(A, f ) 6 r(A) 6 ‖A‖ = 1. For the opposite inequality, write f =
∞
∑

j=0
αjej

with nonzero {αj}∞
j=0 ∈ `2. Let p be such that αp 6= 0. Computing as in (1.2)

and applying (4.3) we get r(A, f ) > r(A, αpep) = 1, which proves our claim. By
contractivity of A this implies that ‖A f ‖ 6 ‖ f ‖ = r(A, f )‖ f ‖ for all f ∈ H.
Hence, by Lemma 4.4, A is locally normaloid.
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To see that A does not satisfy (4.1), take f =
∞
∑

k=0

1
2k ek and compute

(−1)j Re〈Aj f , f 〉 =
(
− 1

2

)j ∞

∑
k=0

e−(εk+···+εk+j−1)
(1

2

)2k
, j > 1.

To disprove the paranormality of A we have to assume that the sequence
{εn}∞

n=0 is not monotonically decreasing. Then A can not be paranormal because
otherwise

e−2εn = ‖Aen‖2 6 ‖A2en‖ = e−εn e−εn+1 , n > 0,

which is a contradiction.

5. NORMALITY FROM CYCLIC NORMALITY

In this section we investigate the question of essential normality of an oper-
ator whose all cyclic (or multicyclic) parts are essentially normal. This question
was settled by Nussbaum in the case of symmetric operators (cf. Theorem 1 of
[20]). We begin with an auxiliary result.

PROPOSITION 5.1. Let A be a closed operator in H and let X be the set of all
vectors h ∈ H for which there exists a closed linear subspace K of H reducing A to a
normal operator and containing h. If X is total in H, then A is normal.

Proof. Note first that A is densely defined. One can deduce from Theorem of
[30] (e.g. making use of its “moreover” part) that there exists the greatest closed
linear subspace of H which reduces A to a normal operator; denote it by Hn. It is
now clear that X ⊆ Hn, which yields Hn = H. The proof is complete.

Recall that e ∈ D∞(A) is an analytic vector of an operator A in H if there

exists a constant r > 0 such that
∞
∑

n=0
‖Ane‖ rn

n! < ∞. A densely defined operator

A in H is said to be subnormal if there exists a complex Hilbert space K ⊇ H (an
isometric embedding) and a normal operator N in K such that D(A) ⊆ D(N)
and Ah = Nh for all h ∈ D(A). A densely defined operator A in H is called
hyponormal if D(A) ⊆ D(A∗) and ‖A∗h‖ 6 ‖Ah‖ for all h ∈ D(A).

THEOREM 5.2. If A is a densely defined operator in H with invariant domain,
then each of the following three conditions implies the essential normality of A:

(i) D(A) consists of analytic vectors of A and for every e ∈ D(A), the operator A|De

is essentially normal in He
def= De, where De

def= lin{Ane : n > 0};
(ii) A is hyponormal and the set of all vectors e ∈ D(A) for which the operator A|De

is essentially normal in He is total in H;
(iii) for every finite subset E of D(A), the operator A|DE is essentially normal in

HE
def= DE , where DE

def= lin{Ane : n > 0, e ∈ E}.
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Proof. (i) If e ∈ D(A), then ‖Ane‖2 =
∞∫
0

tn〈Ee(dt)e, e〉 for all integers n > 0,

where Ee is the spectral measure of (A|De)
∗(A|De)

−. By Theorem 7 of [29], the
operator A is subnormal. This implies that A is closable. Since, as easily checked,
Corollary 1 of [30] remains valid for hyponormal operators, and each subnormal
operator is hyponormal, we see that He reduces A to a normal operator for ev-
ery e ∈ D(A). This means that the operator A satisfies all the assumptions of
Proposition 5.1. Hence A is normal, as desired.

(ii) Argue as in the proof of (i).
(iii) Since A is subnormal if and only if A|DE is subnormal for every finite

subset E of D(A) (cf. Theorem 3 of [29]), we deduce from our assumptions that
A is subnormal. Applying Corollary 1 of [30] and Proposition 5.1 as in the proof
of (i) completes the proof of Theorem 5.2.

6. ALL THIS FOR LOCALLY ALGEBRAIC AND COMPACT OPERATORS

Below, K[X] stands for the ring of all polynomials in indeterminate X with
coefficients in a field K. An operator A in H is called algebraic if there exists
a nonzero polynomial p ∈ C[X] such that p(A) f = 0 for all f ∈ D(p(A)) def=
D(Adeg p). Recall that there are algebraic operators with invariant domains which
are not closable (cf. Example 3.2 of [21]). For the sake of self-containedness, we
include the proof of the following basic fact about algebraic operators.

LEMMA 6.1. Let p1, . . . , pm ∈ K[X] be a collection of pairwise relatively prime
polynomials, X be a linear space over K and A : X → X be a linear mapping such that
p1(A) · · · pm(A) = 0. Then:

(i) all the spaces N(pj(A)), j = 1, . . . , m, are invariant for A;
(ii) X = N(p1(A)) u · · ·u N(pm(A)), where u denotes the direct sum;

(iii) N(pi1(A) · · · pis(A)) = N(pi1(A)) u · · ·u N(pis(A)) for all finite sequences
of integers 1 6 i1 < · · · < is 6 m;

(iv) N(pj(A)) 6= {0} for every j ∈ {1, . . . , m} such that ∏
k 6=j

pk(A) 6= 0.

Proof. The invariance of N(pj(A)) under A is readily checked. The proof
of (ii) is by induction on m. The case m = 1 is clear. Suppose (ii) is valid for
a fixed integer m > 1. Assume that p1, . . . , pm+1 are pairwise relatively prime
and p1(A) · · · pm+1(A) = 0. Set q = p1 · · · pm. By relative primeness of q and
pm+1 there exist polynomials u, v ∈ K[X] such that uq + vpm+1 = 1 (combine
Corollary III.6.4, Theorem III.3.9 and Theorem III.3.11 of [12]). Then

x = q(A)u(A)x + pm+1(A)v(A)x, x ∈ X .(6.1)
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As q(A)pm+1(A) = 0, we see that

pm+1(A)v(A)x∈N(q(A)) and q(A)u(A)x∈N(pm+1(A)) for all x∈X .(6.2)

Define Y = N(q(A)) and Z = N(pm+1(A)). Then (6.1) and (6.2) imply that

X = Y uZ .(6.3)

Since Y is an invariant subspace for the mapping A, p1(A|Y ) · · · pm(A|Y ) = 0
and N(pj(A|Y )) = N(pj(A)) for all j = 1, . . . , m, we infer from the induction
hypothesis that Y = N(p1(A)) u · · · u N(pm(A)). By (6.3) this completes the
induction argument.

Applying (ii) to the restriction of A to V def= N(pi1(A) · · · pis(A)), we get
V = N(pi1(A|V )) u · · · u N(pis(A|V )). Since N(pik (A|V )) = N(pik (A)) for all
k = 1, . . . , s, the proof of (iii) is finished.

If ∏
k 6=j

pk(A) 6= 0 and N(pj(A)) = {0} for some j ∈ {1, . . . , m}, then pj(A) is

injective, which contradicts pj(A) ∏
k 6=j

pk(A) = 0. Hence (iv) is proved.

Let A be an algebraic operator in H such that D∞(A) 6= {0}. Since A[∞] is
also algebraic, we find a unique monic polynomial p of minimal degree (call it
minimal) such that p(A[∞]) = 0. By the fundamental theorem of algebra, p(z) =
(z− z1)n1 · · · (z− zm)nm with unique integers n1, . . . , nm > 1 and complex num-
bers z1, . . . , zm such that zj 6= zk for all j 6= k. Owing to Lemma 6.1, we have

(6.4)
D∞(A) = N((A[∞] − z1)n1) u · · ·u N((A[∞] − zm)nm),

N((A[∞] − zj)
nj) 6= {0}, j = 1, . . . , m.

Thus every f ∈ D∞(A) can be uniquely decomposed as f = f1 + · · ·+ fm with
f j ∈ N((A[∞] − zj)

nj). We set n f (A) = {j ∈ {1, . . . , m} : f j 6= 0}. If no confusion
can arise, we write n f instead of n f (A).

PROPOSITION 6.2. Let A be an algebraic operator in H. Then for every nonzero
vector f ∈ D∞(A) the sequence {‖An f ‖1/n}∞

n=1 is convergent to max{|zj| : j ∈ n f },
where z1, . . . , zm and n f are as above. Moreover, if t > max{|zj| : 1 6 j 6 m}, then
HA(t) = D∞(A).

Proof. We start with an auxiliary fact.

SUBLEMMA 6.3. Assume that T : D → D is a linear mapping on an inner product
space D, f ∈ D \ {0}, z ∈ C \ {0} and k > 1 is an integer. If (T − z)k f = 0, then
there exists an integer N > 0 such that the sequence { 1

znnN Tn f }∞
n=1 is convergent to an

element of D \ {0}.
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Indeed, there exists an integer N > 0 such that (T − z)N f 6= 0 and (T −
z)j f = 0 for all j > N + 1. The case N = 0 is easily seen to be true. If N > 1, then

1
znnN Tn f =

1
znnN ((T − z) + z)n f =

1
nN

N

∑
j=0

(
n
j

)( T − z
z

)j
f

=
1

nN

(
n
N

)( T − z
z

)N
f +

1
n

N−1

∑
j=0

1
nN−1

(
n
j

)( T − z
z

)j
f , n > N.

Since lim
n→∞

1
nN ( n

N) = 1
N! and each sequence { 1

nN−1 (n
j)}∞

n=N , j = 0, . . . , N − 1, is

bounded, we get lim
n→∞

1
znnN Tn f = 1

N! (
T−z

z )N f ∈ D \ {0}.

We now turn to the proof of Proposition 6.2. There is no loss of generality
in assuming that A = A[∞]. The spaces Xj

def= N((A − zj)
nj), j = 1, . . . , m, are

invariant for A and, by (6.4), D(A) = X1 u · · ·uXm. Take a nonzero f ∈ D(A).
Then f = f1 + · · ·+ fm with the unique vectors f j ∈ Xj. Define

n∗f = {j ∈ n f : |zj| > 0}.

We will only handle the nontrivial case of n∗f 6= ∅. Owing to the sublemma, there
exist nonnegative integers {Nj}j∈n∗f

such that

gj
def= lim

n→∞

1
zn

j nNj
An f j ∈ Xj \ {0}, j ∈ n∗f .(6.5)

Set r = max{|zj| : j ∈ n∗f } and N = max{Nj : j ∈ n∗f , |zj| = r}. Remark that r > 0.
We divide n∗f into two disjoint sets

J1 = {j ∈ n∗f : |zj| = r, Nj = N},

J2 = {j ∈ n∗f : |zj| = r, Nj < N} ∪ {j ∈ n∗f : |zj| < r}.

This enables us to write (with special care for j ∈ n f \ n∗f )

1
rnnN An f = ∑

j∈J1

1
rnnN An f j + ∑

j∈J2

1
rnnN An f j, n > κ,(6.6)

where κ def= max{n1, . . . , nm}. Note that

1
rnnN An f j =

1
nN−Nj

( zj

r

)n 1
zn

j nNj
An f j, j ∈ n∗f , n > κ.(6.7)

If j ∈ J2, then lim
n→∞

1
nN−Nj

(
zj
r )n = 0, which together with (6.5) shows that

(6.8) the sequence
{

∑
j∈J2

1
rnnN An f j

}∞

n=1
tends to 0 as n → ∞.

Fix an arbitrary strictly increasing sequence {ln}∞
n=1 of positive integers. Passing

to a subsequence if necessary, we can assume that for each j ∈ J1 the sequence



272 D. CICHOŃ, I. JUNG, AND J. STOCHEL

{( zj
r )ln}∞

n=1 is convergent to a complex number αj of absolute value 1. Hence
calling upon (6.6), (6.7), (6.8) and (6.5) we see that

lim
n→∞

1
rln lN

n
Aln f = ∑

j∈J1

αjgj.

Since gj ∈ Xj \ {0} and αj 6= 0 for all j ∈ J1, and D(A) = X1 u · · ·u Xm, the
above limit is nonzero. This implies that lim

n→∞
‖Aln f ‖1/ln = r. Summarizing, we

have proved that every subsequence of the sequence {‖An f ‖1/n}∞
n=1 admits a

subsequence which is convergent to r. Hence {‖An f ‖1/n}∞
n=1 is convergent to r.

This immediately implies the “moreover” part of the conclusion.

In the case of algebraic operators localoidity reduces to the boundedness
of A[∞].

PROPOSITION 6.4. If A is an algebraic operator in H, then the following condi-
tions are equivalent:

(i) A is localoid;
(ii) A[t] ∈ B(HA(t)) for every t ∈ (0, ∞);

(iii) A[∞] is bounded.
In particular, every algebraic operator A ∈ B(H) is localoid.

Proof. (i)⇒(ii) Evident.
(ii)⇒(iii) Apply Proposition 6.2.
(iii)⇒(i) Clearly, there is no loss of generality in assuming that A = A[∞].

Next, since A : D(A) → D(A) is a bounded algebraic operator, Lemma 4.6 en-
ables us to reduce the proof to the case A ∈ B(H). Preserving the notation from
the proof of Proposition 6.2, we define the set mt = {j ∈ {1, . . . , m} : |zj| 6 t} for
t ∈ (0, ∞). It follows from Proposition 6.2 that

HA(t) =

 u
j∈mt

Xj if mt 6= ∅,

{0} if mt = ∅,
t ∈ (0, ∞).

This and part (iii) of Lemma 6.1 imply that HA(t) is a closed subspace of H for
every t ∈ (0, ∞). Hence, by Lemma 4.3, A is localoid.

Bounded algebraic operators on H may not be locally normaloid (cf. Theo-
rem 6.5). However, there are unbounded closed densely defined nilpotents and
idempotents with invariant domains (cf. [21]) which are evidently not localoid.

We now formulate a criterion for essential normality of algebraic operators.

THEOREM 6.5. Let A be a densely defined algebraic operator in H with invariant
domain. Then the following conditions are equivalent:

(i) A is closable and A is a bounded normal operator on H;
(ii) A is paranormal;
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(iii) A is locally normaloid.

Proof. We need only consider the case H 6= {0}.
(i)⇒(ii) This is a well known fact (cf. Proposition 3 of [34]).
(ii)⇒(iii) Apply Proposition 4.9.
(iii)⇒(i) One way of proving this implication is to mimic the proof of Propo-

sition 6.1 in [28] and to use Lemma 4.4 and the discussion preceding Proposi-
tion 6.2. The other possibility is to reduce our case to bounded algebraic operators
satisfying condition (iii) of Lemma 4.4, which would enable us to apply directly
Proposition 6.1 of [28]. Hence, in view of Lemma 4.4, it suffices to show that A is
a bounded algebraic locally normaloid operator. We preserve the notation from
the proof of Proposition 6.2. By Proposition 6.4, A is closable and A ∈ B(H). It
is clear that A is algebraic and the minimal polynomials of A and A coincide. It
follows from Lemma 6.1 that

D(A) = N((A− z1)n1) u · · ·u N((A− zm)nm),

H = N((A− z1)n1) u · · ·u N((A− zm)nm),(6.9)

N((A− zj)
nj) ⊆ N((A− zj)

nj), j = 1, . . . , m.

Fix real t > 0. By Proposition 6.4 and Lemma 4.3, the space HA(t) is closed.
Hence HA(t) ⊆ HA(t). We now justify the converse inclusion. Take a nonzero
vector f = ∑

j∈n f (A)
f j ∈ HA(t) with the unique nonzero vectors f j ∈ N((A− zj)

nj).

Let us abbreviate n f (A) to σ. We show that the space U def= u
j∈σ

N((A− zj)
nj) is a

range of a projection P ∈ B(H) (a priori not orthogonal) such that

P(D(A)) ⊆u
j∈σ

N((A− zj)
nj).

If σ = {1, . . . , m}, then P = the identity operator is the only possible choice.
Otherwise, the existence of such a projection follows from the equality H =
U u V , where V def= u

j/∈σ

N((A− zj)
nj), the closedness of the spaces U and V (use

part (iii) of Lemma 6.1) and (6.9). Since D(A) is dense in H, there exists a se-
quence {gn}∞

n=1 ⊆ D(A) which converges to f . Then the sequence {Pgn}∞
n=1 ⊆

u
j∈σ

N((A− zj)
nj) converges to f . According to Proposition 6.2, r(A, Pgn)6r(A, f )

for all n > 1. This shows that HA(t) ⊆ HA(t). Thus we have proved that
HA(t) = HA(t) for all real t > 0. As A is a bounded locally normaloid oper-
ator, we get ‖(A)[t]‖ = ‖A[t]‖ = ‖A[t]‖ 6 t for all real t > 0, which shows that A
is locally normaloid.

Regarding Theorem 6.5 (ii), we point out that the boundedness of algebraic
paranormal operators can also be deduced from Theorem 1 of [31]. The essential
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part of the proof of Theorem 6.5 consists in transferring the problem from the
unbounded operator case to the bounded one and then to apply Proposition 6.1
of [28] (which in fact coincides with Corollary 6.6 below). Though the question
of characterizing normality found numerous solutions in literature (e.g. [13], [1],
[2], [3], [23], [25], [18]), we have not been able to come across any result directly
implying the following.

COROLLARY 6.6. Every algebraic restriction-normaloid operator A ∈ B(H) is
normal.

Proof. By Proposition 6.4, the operator A is localoid. This and Theorem 4.5
imply that A is locally normaloid. Applying Theorem 6.5 completes the proof.

Corollary 6.6 is no longer true if we drop the algebraicity assumption even
though the spectrum were finite. Indeed, according to Theorem 2 of [26], there
exists a non-normal contraction with the prescribed finite spectrum contained in
the unit circle, and as such is restriction-normaloid (cf. Theorem 1 of [14]). If we
do not insist that the spectrum is finite, then there are obvious examples of such
operators, e.g. nonunitary isometries.

An operator A in H with invariant domain is said to be locally algebraic
if for every e ∈ D(A) there exists a nonzero polynomial pe ∈ C[X] such that
pe(A)e = 0. According to Lemma 14 of [17] every locally algebraic bounded op-
erator on a Banach space is automatically algebraic. This statement is no longer
true for unbounded operators, e.g. every unbounded diagonal operator, when
considered on “finite” vectors, is locally algebraic but not algebraic. Below we
state the locally algebraic version of Theorem 6.5. Proposition 6.2 may also be
adapted to this context.

THEOREM 6.7. Let A be a densely defined locally algebraic operator in H with
invariant domain. Then the following conditions are equivalent:

(i) A is essentially normal;
(ii) A is paranormal;

(iii) A is locally normaloid.

Proof. (i)⇒(ii)⇒(iii) Mimic the appropriate parts of the proof of Theorem 6.5.
(iii)⇒(i) We preserve the notation introduced in Theorem 5.2. Take e ∈

D(A). Then A|De is a densely defined algebraic operator in He with invariant
domain. Since by Lemma 4.6 the operator A|De is locally normaloid, we infer
from Theorem 6.5 that A|De is bounded and essentially normal in He. This im-
plies that e is an analytic vector of A. Applying Theorem 5.2 (i) completes the
proof.

The alternative proof of Theorem 6.7 consists in employing Theorem 5.2 (iii).
The following result is a counterpart of Proposition 6.2 for compact opera-

tors. Let A ∈ B(H) be a compact operator. Given an isolated point z ∈ C of the
spectrum σ(A) of A, we denote by Pz ∈ B(H) the Riesz projection attached to
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{z} (cf. Chapter VII.3 of [9]). In turn, Qt ∈ B(H) stands for the Riesz projection
associated with the closed set σ(A) ∩ {z ∈ C : |z| 6 t}, where t ∈ (0, ∞). Define

k f (A) = {z ∈ C : z is an isolated point of σ(A) and Pz f 6= 0}, f ∈ H.

Recall that (below I stands for the identity operator on H)

Qt = I − ∑
z∈σ(A), |z|>t

Pz, t ∈ (0, ∞).(6.10)

PROPOSITION 6.8. Let A ∈ B(H) be a compact operator. Then A is localoid and
for every vector f ∈ H, the sequence {‖An f ‖1/n}∞

n=1 is convergent and

lim
n→∞

‖An f ‖1/n =

{
max{|z| : z ∈ k f (A)} if k f (A) 6= ∅,
0 otherwise.

(6.11)

Moreover, the following equality holds:

HA(t) = Qt(H), t ∈ (0, ∞).(6.12)

Proof. Take f ∈ H \ {0}. Consider three cases.
(i) k f (A) 6= ∅ and κ def= max{|z| : z ∈ k f (A)} > 0. Then, by (6.10), f ∈

Qκ(H). Since σ(A|Qκ(H)) = {z ∈ σ(A) : |z| 6 κ} and r(A|Qκ(H)) = κ, we can
apply Proposition 1 of [8] to the operator A|Qκ(H), which yields lim

n→∞
‖An f ‖1/n=κ.

(ii) k f (A) 6= ∅ and κ = 0. Since now 0 is an isolated point of σ(A) and
P0 = I − ∑

z∈σ(A)\{0}
Pz, we get f ∈ P0(H). Hence

r(A, f ) = r(A|P0(H), f ) 6 r(A|P0(H)) = 0.

(iii) k f (A) = ∅. Observe first that 0 is an accumulation point of σ(A). For
otherwise σ(A) is finite and Pz f = 0 for all z ∈ σ(A), which implies f = 0, a
contradiction. Take w ∈ σ(A) \ {0}. Since by (6.10), f ∈ Q|w|(H), we get

r(A, f ) = r(A|Q|w|(H), f ) 6 r(A|Q|w|(H)) = |w|.

Letting w tend to zero completes the proof of (6.11).
Noticing that HA(t) = Qt(H) = H for all positive t ∈ [r(A), ∞), we see

that (6.12) has to be verified only for t ∈ (0, r(A)). This can be done with the
help of (6.11) via (6.10) and the fact that the ranges of Riesz projections {Pz : z ∈
σ(A), |z| > t} are linearly independent. Condition (6.12) and Lemma 4.3 imply
that A is localoid.

In view of Theorem 4.5 and Proposition 6.4, within the class of bounded
algebraic operators there is no difference between the notions of a restriction-
normaloid operator and a locally normaloid operator. In turn, by Proposition 6.8,
we see that the same observation remains valid for the class of compact operators.
Hence, owing to Theorem 1 of [15] and Proposition 4.9, we obtain the following
corollary.
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COROLLARY 6.9. A compact operator A ∈ B(H) is normal if and only if it is
locally normaloid.
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[14] V.I. ISTRǍŢESCU, On some normaloid operators, Rev. Roumaine Math. Pures Appl.
14(1969), 1289–1293.
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