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ABSTRACT. A notion of unique ergodicity relative to the fixed-point subalge-
bra is defined for automorphisms of unital C∗-algebras. It is proved that the
free shift on any reduced amalgamated free product C∗-algebra is uniquely er-
godic relative to its fixed-point subalgebra, as are automorphisms of reduced
group C∗-algebras arising from certain automorphisms of groups. A gener-
alization of Haagerup’s inequality, yielding bounds on the norms of certain
elements in reduced amalgamated free product C∗-algebras, is proved.
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1. INTRODUCTION

Let Ω be a compact Hausdorff space and T a homeomorphism of Ω onto
itself. In the terminology of [11], (see also [9] and [3], where slightly different
terminology is used), T is called uniquely ergodic if there is a unique T-invariant
Borel probability measure µ on Ω, (with respect to which T is then necessarily
ergodic). Oxtoby shows ([11], 5.1) that if T is uniquely ergodic, then the ergodic
averages

1
n

n−1

∑
k=0

f ◦ Tk

converge uniformly to the constant
∫

f dµ, as n → ∞.
The homeomorphisms of Ω are in 1–1 correspondence with the automor-

phisms of the C∗-algebra C(Ω) of all continuous, complex-valued functions on
Ω and the Borel probability measures on Ω are by Riesz’s Theorem in 1–1 corre-
spondence with the states of C(Ω). There is a natural noncommutative version
of unique ergodicity. Let A be a unital C∗-algebra and let α be an automorphism
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of A. An α-invariant state of A always exists, and can be found, for example, by
taking a weak limit of averages

1
n

n−1

∑
k=0

φ ◦ αk

of any state φ. We say α is uniquely ergodic if there is a unique α-invariant state
of A. It is not difficult to show (based on Oxtoby’s argument ([11], 5.1) that α is
uniquely ergodic if and only if for every a ∈ A the ergodic averages

(1.1)
1
n

n−1

∑
k=0

αk(a)

converge in norm to a scalar multiple of the identity as n → ∞ and, in this case,
the invariant state evaluated at a is equal to this limit. (A more general result is
proved in Theorem 3.2 below.)

Our interest in these topics grew out of a question asked by David Kerr
[8]: Is the free shift on C∗r (F∞) uniquely ergodic? A positive answer to Kerr’s
question follows from Haagerup’s inequality [4]. This argument is described in
Section 2 below.

In considering more general free shift automorphisms, we were motivated
to consider a broader notion of unique ergodicity. If A is a unital C∗-algebra and
α an automorphism of A, consider the fixed-point subalgebra

(1.2) Aα = {a ∈ A : α(a) = a}.

We say that α is uniquely ergodic relative to its fixed-point subalgebra if every state of
Aα has a unique α-invariant state extension to A. In the case when Aα consists
only of scalar multiples of the identity element, this reduces to the usual notion
of unique ergodicity. In Section 3, we give some alternative characterizations
of unique ergodicity relative to the fixed-point subalgebra. It turns out to be
equivalent to norm convergence of the ergodic averages (1.1) as n → ∞ for all
a ∈ A. Thus, unique ergodicity relative to the fixed-point subalgebra implies
(by taking the limit of the ergodic averages) existence of a unique α-invariant
conditional expectation from A onto Aα. However (see Question 3.4) we do not
know whether the converse direction holds.

After seeing that the free shift on C∗r (F∞) is uniquely ergodic, it is natural
to ask whether free shifts on other reduced free product C∗-algebras and even on
reduced amalgamated free product C∗-algebras are uniquely ergodic relative to
their fixed point subalgebras. We give an affirmative answer in Theorem 6.1.

A technical result that we use is an extension of Haagerup’s inequality to the
setting of reduced amalgamated free product C∗-algebras. Haagerup’s inequality
says that the operator norm of an element of C∗r (F∞) that is supported on words
of length n is no greater than n + 1 times the `2-norm. It is a fundamental inequal-
ity, and has been generalized in several different directions; see, for example, [5],
[6], [1], [7], [13]. One such generalization is 3.3 of [1], in the context of reduced
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free product C∗-algebras with amalgamation over the scalars, which applies to
all finite linear combinations of words of fixed block length n. A strong gener-
alization, due to Ricard and Xu [13], is in the context of reduced amalgamated
free product C∗-algebras; they prove bounds on operator norms that apply to all
matrices over all finite linear combinations of words of fixed block length n. In
Proposition 5.1, we prove a generalization of Haagerup’s inequality in the setting
of reduced amalgamated free product C∗-algebras. Our bound on the operator
norm applies only to certain linear combinations of words of block length n, but
our bound has a rather nice form. In fact, as Eric Ricard kindly showed us, our
Proposition 5.1 follows from the results of Ricard and Xu. However, we nonethe-
less present our direct proof here, as it is slightly simpler (for being a more specific
result).

To summarize the contents: Section 2 contains the proof of unique ergod-
icity of the free shift on C∗r (F∞); Section 3 gives alternative characterizations
of unique ergodicity relative to the fixed-point subalgebra, and contains a gen-
eralization of the argument from the previous section to groups with property
(RD) of Jolissaint; Section 4 recalls the construction of the reduced amalgamated
free product of C∗-algebras; Section 5 contains a generalization of Haagerup’s in-
equality to reduced amalgamated free product C∗-algebras; Section 6 proves that
free shifts are uniquely ergodic relative to their fixed-point subalgebras.

2. THE FREE SHIFT ON C∗r (F∞) IS UNIQUELY ERGODIC

Here, C∗r (F∞) is the reduced group C∗-algebra of the free group on infin-
itely many generators {gi}i∈Z and the free shift is the automorphism α of C∗r (F∞)
arising from the automorphism of the group that sends gi to gi+1.

The C∗-algebra C∗r (F∞) is densely spanned by the left translation operators
λh acting on `2(F∞), (h ∈ F∞). If h = e is the trivial group element, then λh is the
identity element 1 and

1
n

n−1

∑
k=0

αk(1) = 1

for all n. If h is a nontrivial element of word length p, then by Haagerup’s in-
equality ([4], 1.4),

(2.1)
∥∥∥ 1

n

n−1

∑
k=0

αk(λh)
∥∥∥ 6 (p + 1)

∥∥∥ 1
n

n−1

∑
k=0

αk(λh)
∥∥∥

2
=

p + 1√
n

,

where ‖ · ‖2 refers to the norm of the corresponding element in `2(F∞). We con-
clude that the averages appearing on the left-hand-side of (2.1) tend to zero as
n → ∞, and this proves that the free shift is uniquely ergodic and that its unique
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invariant state is the canonical tracial state τ defined by

τ(λh) =

{
1 h = e,
0 h 6= e.

3. UNIQUE ERGODICITY RELATIVE TO THE FIXED-POINT SUBALGEBRA

In this section, we prove certain conditions equivalent to unique ergodicity
relative to the fixed-point subalgebra.

OBSERVATION 3.1. Let A be a C∗-algebra and let φ : A → C be a self–
adjoint linear functional, namely a bounded linear functional such that φ(a∗) is
the complex conjugate of φ(a). Recall (see 3.2.5 of [12]) that the Jordan decompo-
sition of φ is the unique pair φ+ and φ− of positive linear functionals such that
φ = φ+− φ− and ‖φ‖ = ‖φ+‖+ ‖φ−‖. Suppose α ∈ Aut(A) and φ is α-invariant.
Then φ = φ ◦ α = φ+ ◦ α−φ− ◦ α and ‖φ‖ = ‖φ+‖+ ‖φ−‖ = ‖φ+ ◦ α‖+ ‖φ− ◦ α‖.
By uniqueness, it follows that φ+ and φ− are both α-invariant.

Recall that a conditional expectation from a C∗-algebra A onto a C∗-subalge-
bra B is a projection E of norm 1 from A onto B. A classical result of Tomiyama
[14] is that such a projection E is automatically completely positive and satisfies
the conditional expectation property.

THEOREM 3.2. Let α be an automorphism of a unital C∗-algebra A and let Aα be
its fixed-point subalgebra as in (1.2). Then the following five statements are equivalent:

(i) Every bounded linear functional on Aα has a unique bounded, α-invariant linear
extension to A.

(ii) Every state of Aα has a unique α-invariant state extension to A.
(iii) The subspace Aα + {a− α(a) : a ∈ A} is dense in A.
(iv) For all a ∈ A, the following sequence of ergodic averages converges in norm as

n → ∞:

(3.1)
1
n

n−1

∑
k=0

αk(a).

(v) We have the following where the closure is with respect to the norm topology:

Aα + {a− α(a) : a ∈ A} = A.

These five statements imply the following statement:
(vi) There exists a unique α-invariant conditional expectation E from A onto Aα.

Furthermore, if (i)–(v) hold, then the conditional expectation E in (vi) is given by
the formula

(3.2) E(a) = lim
n→∞

1
n

n−1

∑
k=0

αk(a).
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DEFINITION 3.3. We say α is uniquely ergodic relative to its fixed-point subalge-
bra if the equivalent statements (i)–(v) hold.

Proof of Theorem 3.2. (i) =⇒ (ii) is clear.
(ii) =⇒ (iii): Suppose, to obtain a contradiction, that (ii) holds but x ∈ A

and
x /∈ Aα + {a− α(a) : a ∈ A}.

By the Hahn–Banach Theorem, there is a bounded linear functional φ : A → C
such that φ(x) 6= 0, φ(Aα) = {0} and φ ◦ α = φ. Taking the real and imaginary
parts, we may without loss of generality assume that φ is self-adjoint. Let φ =
φ+ − φ− be the Jordan decomposition of φ. Then φ+ and φ− are α-invariant, by
Observation 3.1. Moreover, φ+ and φ− agree on Aα. Either both restrict to zero
on Aα, in which case φ±(1) = 0 and φ± = 0, or φ± are nonzero multiples of states
on A and by statement (ii), φ+ and φ− must agree on all of A. This contradicts
φ(x) 6= 0.

(iii) =⇒ (iv): Let a ∈ A and ε > 0. Let c ∈ Aα and b ∈ A be such that

‖a− (c + b− α(b))‖ < ε.

If n > m, then∥∥∥ 1
n

n−1

∑
k=0

αk(a)− 1
m

m−1

∑
k=0

αk(a)
∥∥∥ < 2ε +

∥∥∥ 1
n

n−1

∑
k=0

αk(b− α(b))− 1
m

m−1

∑
k=0

αk(b− α(b))
∥∥∥

= 2ε +
∥∥∥ 1

n
(b− αn(b)) +

1
m

(b− αm(b))
∥∥∥

6 2ε +
4‖b‖

m
.(3.3)

Taking m large enough, the upper bound (3.3) can be made < 3ε. This shows that
the sequence of ergodic averages (3.1) is Cauchy.

(iv) =⇒ (vi)+(3.2): Let E be defined by the formula (3.2). Clearly, E restricts
to the identity map on Aα. One easily shows ‖E‖ = 1 and E ◦ α = α ◦ E = E. So
E is an α-invariant conditional expectation from A onto Aα. If E′ : A → Aα is any
α-invariant conditional expectation onto Aα, then

E′(a) =
1
n

n−1

∑
k=0

E′(αk(a)) = E′
( 1

n

n−1

∑
k=0

αk(a)
)

.

Taking the limit as n → ∞ gives

E′(a) = E′(E(a)) = E(a).

(iv)+(vi)+(3.2) =⇒ (i): Let τ : Aα → C be a bounded linear functional.
Then τ ◦ E is an α-invariant extension of τ to A. To show uniqueness, suppose
φ : A → C is any bounded, α-invariant, linear extension of τ. Then

φ(a) =
1
n

n−1

∑
k=0

φ(αk(a)) = φ
( 1

n

n−1

∑
k=0

αk(a)
)

.
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Taking the limit as n → ∞ gives

φ(a) = φ(E(a)) = τ(E(a)),

so φ = τ ◦ E.
We have now proved the equivalence of (i)–(iv), and that these imply (vi)

and (3.2).
(i)+(vi) =⇒ (v): Since A = Aα + ker E, it will suffice to show

ker E ⊆ {a− α(a) : a ∈ A}.

Suppose, to obtain a contradiction, x ∈ ker E but x /∈ {a− α(a) : a ∈ A}. By the
Hahn–Banach Theorem, there is a bounded linear functional φ : A → C such
that φ(x) 6= 0 and φ ◦ α = φ. By (i), we must have φ = φ ◦ E, so φ(x) = 0, a
contradiction.

(v) =⇒ (iii) is clear.

QUESTION 3.4. In Theorem 3.2, is (vi) equivalent to (i)–(v)?

Note that if Aα = C1, then (vi) =⇒ (ii) is immediate, and that this implica-
tion also holds when Aα is finite dimensional. Indeed, suppose that Aα is finite
dimensional and (vi) holds. Suppose there is a state φ of Aα that has two distinct
α-invariant extensions ψ1 and ψ2 to A. By taking a convex combination with a
faithful state on Aα, we may without loss of generality assume φ is faithful on
Aα. Now it is easy to construct conditional expectations Ei : A → Aα with the
property that φ ◦ Ei = ψi (i = 1, 2). By assumption, E1 = E2, which contradicts
ψ1 6= ψ2.

It was kindly pointed out to us by Thierry Fack that the argument used in
Section 2 applies more generally. Indeed, as the following proposition shows, the
argument carries over to groups with property (RD), as defined by Jolissaint in
[6]. Note that by [5] this includes the case of Gromov’s hyperbolic groups.

PROPOSITION 3.5. Let G be a group with property (RD) for a length function
L and let β be an L-preserving automorphism of G such that all orbits of β are either
singletons or infinite. Let H = {h ∈ G : β(h) = h}. Then the automorphism α induced
by β on C∗r (G) is uniquely ergodic relative to its fixed-point subalgebra, which is the
canonical copy of C∗r (H) in C∗r (G).

Proof. If g ∈ G is such that β(g) 6= g, then by Remark 1.2.2 of [6] there exist
positive numbers C and s such that∥∥∥ 1

n

n−1

∑
0

αk(λg)
∥∥∥ 6 C

∥∥∥ 1
n

n−1

∑
0

αk(λg)
∥∥∥

2,s,L
=

C√
n

(1 + L(g))s,

and this upper bound approaches zero as n goes to ∞. If β(g) = g, then

1
n

n−1

∑
0

αk(λg) = λg
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for all n. Now one easily sees that condition (iv) of Theorem 3.2 holds and that
C∗r (H) is the fixed-point subalgebra for α.

4. THE CONSTRUCTION OF REDUCED AMALGAMATED FREE PRODUCT C∗-ALGEBRAS

In this section we will review in some detail and thereby set some notation
for the reduced amalgamated free product of C∗-algebras, which was invented
by Voiculescu [15].

We first set some notation concerning a right Hilbert C∗-module E over a
C∗-algebra B (see [10] for a general reference on Hilbert C∗-modules). If x ∈ E,
then we let

|x| = 〈x, x〉1/2 ∈ B

and the norm of x is defined by

‖x‖E = ‖ |x| ‖B.

Let B be a unital C∗-algebra, let I be a set with at least two elements and
for every i ∈ I let Ai be a unital C∗-algebra containing a copy of B as a uni-
tal C∗-subalgebra and having a conditional expectation φi : Ai → B such that
for each ai ∈ Ai there exists x ∈ Ai for which φi(x∗a∗i aix) 6= 0. We denote by
Ei = L2(Ai, φi) the right Hilbert C∗-module over B obtained by separation and
completion of Ai with respect to the inner product 〈x, y〉 = φi(x∗y). For ai ∈ Ai,
we denote by âi the image of ai in Ei under the canonical map. There is a faithful
∗-representation πi of Ai on Ei by adjointable operators given by

πi(x)(ŷ) = (xy)̂ ,

for x, y ∈ Ai. We will often omit the reference to πi and write simply av to denote
πi(a)(v), for a ∈ Ai and v ∈ Ei.

This inclusion B ⊆ Ai yields a copy of B as a complemented Hilbert C∗-
submodule of Ei, and we write Ei = B⊕ E◦i and let Hi : Ei → E◦i be the orthogonal
projection onto E◦i . So, for example, we have

Hi(â) = (a− φi(a))̂ , (a ∈ Ai).

Since πi(b) sends E◦i into E◦i whenever b ∈ B, we regard E◦i as equipped with a
left B-action via πi. We consider the right Hilbert B-module

(4.1) E = B⊕
⊕

m∈N, i1,...,im∈I, ij 6=ij+1

E◦i1 ⊗B E◦i2 ⊗B · · · ⊗B E◦im ,

where the tensor products are with respect to the right Hilbert B-module struc-
tures and the left actions of B described above, and where the summand B in (4.1)
denotes the C∗-algebra B with its usual Hilbert C∗-module structure over itself.
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There is a faithful ∗-representation of Ai by adjointable operators on E, which is
denoted by a 7→ λi

a and which can be defined by

(4.2) λi
a(b) = φi(ab) + Hi((ab)̂ ) ∈ B⊕ E◦i , (b ∈ B)

and, considering a simple tensor

(4.3) x1 ⊗ · · · ⊗ xm

where m > 1, xj ∈ E◦ij
, i1, . . . , im ∈ I and ij 6= ij+1 for all j = 1, . . . , m− 1, by

(4.4) λi
a(x1 ⊗ · · · ⊗ xm) =


Hi(â)⊗ x1 ⊗ · · · ⊗ xm

+ φi(a)x1 ⊗ x2 ⊗ · · · ⊗ xm i 6= i1,

Hi(ax1)⊗ x2 ⊗ · · · ⊗ xm

+ 〈(a∗ )̂ , x1〉x2 ⊗ · · · ⊗ xm i = i1.

Note that for b ∈ B, λi
b is the same for all i. We will write λa or simply a instead

of λi
a, when no confusion will result.

The reduced amalgamated free product C∗-algebra

(A, φ) = (∗B)i∈I(Ai, φi)

consists of the C∗-algebra A generated in L(E) by the set {λi
a : a ∈ Ai, i ∈ I} and

the conditional expectation φ : A → B defined by

φ(a) = 〈a1B, 1B〉, (a ∈ A).

We write A◦
k = Ak ∩ ker φk. Thus, the C∗-algebra A is the closed span of B to-

gether with the set of all words of the form

(4.5) w = a1 · · · an

where ai ∈ A◦
k(i), k(1), . . . , k(n) ∈ I and k(i) 6= k(i + 1) for all i ∈ {1, . . . , n− 1}.

5. SOME NORM ESTIMATES IN REDUCED AMALGAMATED FREE PRODUCT C∗-ALGEBRAS

The main result of this section is the following norm estimate, which applies
to certain linear combinations of words of length n in reduced amalgamated free
product C∗-algebras. It is a version of the Haagerup inequality.

PROPOSITION 5.1. Suppose n > 1 and consider

f = ∑
k∈K

ak,1ak,2 · · · ak,n ∈ A,

where K is a finite subset of In such that for all k = (k(1), . . . , k(n)) ∈ K we have
k(i) 6= k(i + 1) for all i ∈ {1, . . . , n − 1} and where ak,i ∈ A◦

k(i) for all k ∈ K and
i ∈ {1, . . . , n}. Suppose, furthermore, that

(5.1) if k, k′ ∈ K and k 6= k′, then k(1) 6= k′(1) and k(n) 6= k′(n).



UNIQUE ERGODICITY 287

Then

(5.2) ‖ f ‖ 6 (2n + 1)
(

∑
k∈K

n

∏
i=1
‖ak,i‖2

)1/2
.

Before we get to the proof, we consider some preliminary constructions and
results. Let us define some elementary adjointable operators on E, in terms of
which we will later describe the action of a word w as in (4.5) on a tensor x1 ⊗
· · · ⊗ xm in (4.3).

NOTATION 5.2. Let P0 denote the orthogonal projection of E onto the sum-
mand B ⊆ E and for m > 1 let Pm denote the orthogonal projection of E onto⊕

i1,...,im∈I, ij 6=ij+1

E◦i1 ⊗B E◦i2 ⊗B · · · ⊗B E◦im .

NOTATION 5.3. For k ∈ I, let Qk denote the orthogonal projection of E onto⊕
m>1, i1,...,im∈I, ij 6=ij+1, i1=k

E◦i1 ⊗B E◦i2 ⊗B · · · ⊗B E◦im .

Note that Qk and Pm commute.

NOTATION 5.4. Given k∈ I and y∈E◦k , let ψ(y)=ψk(y)∈L(E) be given by

(5.3) ψ(y)b = (yb)̂ ∈ E◦k , (b ∈ B)

and, for x1 ⊗ · · · ⊗ xm as in (4.3),

(5.4) ψ(y)(x1 ⊗ · · · ⊗ xm) =

{
0 i1 = k,
y⊗ x1 ⊗ · · · ⊗ xm i1 6= k.

Therefore, we have ψ(y) = Qkψ(y)(1− Qk) and ψ(y)∗ψ(y) = |y|2(1− Qk), and
also:

ψ(y)∗b = 0, (b ∈ B);(5.5)

ψ(y)∗(x1 ⊗ · · · ⊗ xm) =


0 i1 6= k,
〈y, x1〉 i1 = k, m = 1,
〈y, x1〉x2 ⊗ x3 ⊗ · · · ⊗ xm i1 = k, m > 1;

(5.6)

‖ψ(y)‖ = ‖y‖.(5.7)

NOTATION 5.5. For k ∈ I and a ∈ Ak, we let ρ(a) = ρk(a) ∈ L(E) be
defined by

(5.8) ρ(a)b = 0, (b ∈ B)

and, for x1 ⊗ · · · ⊗ xm as in (4.3),

(5.9) ρ(a)(x1 ⊗ · · · ⊗ xm) =

{
(Hk(ax1))⊗ x2 ⊗ · · · ⊗ xm i1 = k,
0 i1 6= k.
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(Recall that Hk : Ek → E◦k is the orthogonal projection.) Therefore, we have
ρ(a) = Qkρ(a)Qk and

‖ρ(a)‖ 6 ‖a‖.(5.10)

To ease notation, for a ∈ Ak we let

â† = (a∗ )̂ ∈ Ek.

The following lemma describes how a word w = a1 · · · an as in (4.5) can
act on a tensor x1 ⊗ · · · ⊗ xm as in (4.3). What can happen is: w can first devour
some initial string x1 ⊗ · · · ⊗ xq of the tensor. Then it can either push some more
stuff onto the tensor from the left, or it can instead act on the next letter xq+1
and then push some more stuff onto the tensor from the left. This is all that
can happen, because neighboring letters in w and neighboring xj in x1 ⊗ · · · ⊗
xm are constrained to come from different A◦

k , respectively different E◦i . It’s not
too difficult to see this by considering some examples. We give a more precise
statement and a rigorous proof below.

LEMMA 5.6. Let n > 1 and let k = (k(1), . . . , k(n)) ∈ In be such that k(i) 6=
k(i + 1) for all i ∈ {1, . . . , n − 1}. Let w = a1 · · · an, where ai ∈ A◦

k(i) for all i ∈
{1, . . . , n}. Let m, r > 0 be integers.

(i) If r > m + n or r < |m− n|, then PrwPm = 0.
(ii) If r = m + n− 2s with s ∈ {0, 1, . . . , min(m, n)}, then

(5.11) PrwPm = ψ(â1)ψ(â2) · · ·ψ(ân−s) · ψ(â†
n−s+1)

∗ψ(â†
n−s+2)

∗ · · ·ψ(â†
n)∗Pm.

(iii) If r = m + n− 2s + 1 with s ∈ {1, 2, . . . , min(m, n)}, then

PrwPm=ψ(â1)ψ(â2)· · ·ψ(ân−s)·ρ(an−s+1)ψ(â†
n−s+2)

∗ψ(â†
n−s+3)

∗· · ·ψ(â†
n)
∗Pm.

Proof. The following equation is equivalent to parts (i)–(iii) of the Lemma 5.6
taken together:

wPm =
min(m,n)

∑
s=0

Pn+m−2sψ(â1)· · ·ψ(ân−s)·ψ(â†
n−s+1)

∗ · · ·ψ(â†
n)∗Pm+(5.12)

min(m,n)

∑
s=1

Pn+m−2s+1ψ(â1)· · ·ψ(ân−s)ρ(an−s+1)·ψ(â†
n−s+2)

∗· · ·ψ(â†
n)∗Pm.

We will prove (5.12) by induction on n. For n = 1, taking first m > 1 and
using the fact that φk(1)(a1) = 0 together with (4.4), (5.4), (5.6), and (5.9), we find

a1Pm = (ψ(â1) + ρ(a1) + ψ(â†
1)
∗)Pm(5.13)

= Pm+1ψ(â1)Pm + Pmρ(a1)Pm + Pm−1ψ(â†
1)
∗Pm,(5.14)

while in the case m = 0, using (4.2), (5.3), (5.5), and (5.8), we find

(5.15) a1P0 = ψ(â1)P0 = P1ψ(â1)P0.

Thus, (5.12) is proved in the case n = 1.
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Now let n > 2 and set w′ = a2a3 · · · an. By the induction hypothesis, we
have

w′Pm=
min(m,n−1)

∑
s=0

Pn+m−2s−1ψ(â2)· · ·ψ(ân−s)·ψ(â†
n−s+1)

∗· · ·ψ(â†
n)∗Pm+(5.16)

min(m,n−1)

∑
s=1

Pn+m−2sψ(â2)· · ·ψ(ân−s)ρ(an−s+1)·ψ(â†
n−s+2)

∗· · ·ψ(â†
n)∗Pm.(5.17)

Now we multiply both sides of (5.16) and (5.17) on the left by a1, and use (5.14)
and (5.15), as needed. For example, from (5.16) consider

(5.18) a1Pn+m−2s−1ψ(â2) · · ·ψ(ân−s)ψ(â†
n−s+1)

∗ · · ·ψ(â†
n)∗Pm.

If s < n− 1, then the initial part of (5.18) is

a1Pn+m−2s−1ψ(â2)=Pn+m−2sψ(â1)Pn+m−2s−1ψ(â2)+Pn+m−2s−1ρ(a1)Pn+m−2s−1ψ(â2)

+ Pn+m−2s−2ψ(â†
1)
∗Pn+m−2s−1ψ(â2)

=Pn+m−2sψ(â1)Pn+m−2s−1ψ(â2) = Pn+m−2sψ(â1)ψ(â2),

where, noting that every Pr and Qs commute, we have used

ρ(a1)Pn+m−2s−1ψ(â2) = ρ(a1)Qk(1)Pn+m−2s−1Qk(2)ψ(â2) = 0,

ψ(â†
1)
∗Pn+m−2s−1ψ(â2) = ψ(â†

1)
∗Qk(1)Pn+m−2s−1Qk(2)ψ(â2) = 0.

If s = n− 1 < m, then the initial part of (5.18) is

a1Pm−sψ(â†
2)
∗=Pm−s+1ψ(â1)Pm−sψ(â†

2)
∗+Pm−sρ(a1)Pm−sψ(â†

2)
∗+Pm−s−1ψ(â†

1)
∗Pm−sψ(â†

2)
∗

=Pm−s+1ψ(â1)ψ(â†
2)
∗ + Pm−sρ(a1)ψ(â†

2)
∗ + Pm−s−1ψ(â†

1)
∗ψ(â†

2)
∗,

while if s = n− 1 = m, then the initial part of (5.18) is

a1P0ψ(â†
2)
∗ = P1ψ(â1)P0ψ(â†

2)
∗ = P1ψ(â1)ψ(â†

2)
∗.

Turning now to (5.17), we consider

(5.19) a1Pn+m−2sψ(â2) · · ·ψ(ân−s)ρ(an−s+1)ψ(â†
n−s+2)

∗ · · ·ψ(â†
n)∗Pm.

We find that the initial part of (5.19) is

a1Pn+m−2sψ(â2) =

{
Pn+m−2s+1ψ(â1)ψ(â2) s < n− 1,
Pm−s+2ψ(â1)ρ(a2) s = n− 1.

Taking all of these cases into account, we prove (5.12).

LEMMA 5.7. Let f be as in Proposition 5.1. Let m, r be nonnegative integers. Then

(5.20) ‖Pr f Pm‖2 6 ∑
k∈K

n

∏
i=1
‖ak,i‖2.
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Proof. If r < |m− n| or r > m + n, then by Lemma 5.6(i), we have Pr f Pm = 0.

Case I. Suppose r = m + n− 2s for s ∈ {0, 1, . . . , min(m, n)} and with s < n.

By Lemma 5.6(ii), we have

(5.21) Pr f Pm = ∑
k∈K

ψ(âk,1) · · ·ψ(âk,n−s)ψ(â†
k,n−s+1)

∗ · · ·ψ(â†
k,n)∗Pm

and

(Pr f Pm)∗(Pr f Pm) = ∑
k,k′∈K

Pmψ(âk,n) · · ·ψ(âk,n−s+1)ψ(â†
k,n−s)

∗ · · ·ψ(â†
k,1)

∗

· ψ(âk′ ,1) · · ·ψ(âk′ ,n−s)ψ(â†
k′ ,n−s+1)

∗ · · ·ψ(â†
k′ ,n)∗Pm.

By the hypothesis (5.1), if k 6= k′, then k(1) 6= k′(1) and, consequently,

ψ(â†
k,1)

∗ψ(âk′ ,1) = ψ(â†
k,1)

∗Qk(1)Qk′(1)ψ(âk′ ,1) = 0.

Therefore, using also (5.7), we get

(5.22) ‖Pr f Pm‖2 6 ∑
k∈K

n

∏
i=1
‖âk,i‖2 6 ∑

k∈K

n

∏
i=1
‖ak,i‖2.

Case II. Suppose r = m + n− 2s for s = n 6 m.
Then (5.21) becomes

(5.23) Pr f Pm = ∑
k∈K

ψ(â†
k,1)

∗ · · ·ψ(â†
k,n)∗Pm

and we have

(Pr f Pm)(Pr f Pm)∗ = ∑
k,k′∈K

ψ(â†
k,1)

∗ · · ·ψ(â†
k,n)∗Pmψ(âk′ ,n) · · ·ψ(âk′ ,1).

Again, by the hypothesis (5.1), if k 6= k′, then k(n) 6= k′(n) and, consequently,

ψ(â†
k,n)∗Pmψ(âk′ ,n) = ψ(â†

k,n)∗Qk(1)PmQk′(1)ψ(âk′ ,n) = 0.

Using again (5.7), we get (5.22) also in this case.
Case III. Suppose r = m + n− 2s + 1 for s ∈ {1, . . . , min(m, n)}.
Then using Lemma 5.6(iii) we get

Pr f Pm = ∑
k∈K

ψ(âk,1) · · ·ψ(âk,n−s)ρ(ak,n−s+1)ψ(â†
k,n−s+2)

∗ · · ·ψ(â†
k,n)∗Pm.

As in case I, k 6= k′ implies that ψ(â†
k,1)

∗ψ(âk′ ,1) = 0. Therefore we have

‖Pr f Pm‖2 = ‖(Pr f Pm)∗(Pr f Pm)‖

6 ∑
k∈K

‖ak,n−s+1‖2 ∏
16i6ni 6=n−s+1

‖âk,i‖2 6 ∑
k∈K

n

∏
i=1
‖ak,i‖2.(5.24)
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Then using Lemma 5.6(iii) and proceeding similarly to above, we obtain the
estimate

(5.25) ‖Pr f Pm‖2 6 ∑
k∈K

‖ak,n−s+1‖2 ∏
16i6n, i 6=n−s+1

‖âk,i‖2 6 ∑
k∈K

n

∏
i=1
‖ak,i‖2.

REMARK 5.8. The left-hand inequalities in (5.22) and (5.25) are better than
required in (5.20). In fact, (5.22) and (5.25) seem to be quite close in spirit to the in-
equality obtained in 3.3 of [1], which applied to free products with amalgamation
over the scalars.

Proof of Proposition 5.1. Let σ : B → L(H) be a faithful ∗-representation of B
on a Hilbert space H. Then the internal tensor product H̃ = E⊗σ H is a Hilbert
space and the ∗-representation σ̃ : L(E) → L(H̃) given by σ̃(a) = a ⊗ idH is
faithful.

Let v ∈ H̃. Then

(5.26) ‖σ̃( f )v‖2 =
∞

∑
r=0

‖σ̃(Pr f )v‖2.

Let

γ =
(

∑
k∈K

n

∏
i=1
‖ak,i‖2

)1/2
.

Then

‖σ̃(Pr f )v‖2 =
∥∥∥ r+n

∑
m=|r−n|

σ̃(Pr f Pm)v
∥∥∥2

(5.27)

6
( r+n

∑
m=|r−n|

‖σ̃(Pr f Pm)v‖
)2

6
( r+n

∑
m=|r−n|

γ‖σ̃(Pm)v‖
)2

(5.28)

6
( r+n

∑
m=|r−n|

γ2
)( r+n

∑
m=|r−n|

‖σ̃(Pm)v‖2
)

(5.29)

6 (2n + 1)γ2
r+n

∑
m=|r−n|

‖σ̃(Pm)v‖2(5.30)

where we used Lemma 5.6(i) to get (5.27), Lemma 5.7 to get (5.28) and the Cauchy–
Schwarz inequality to get (5.29). From (5.26) and (5.27)–(5.30), we get

‖σ̃( f )v‖2 6 (2n + 1)γ2
∞

∑
r=0

r+n

∑
m=|r−n|

‖σ̃(Pm)v‖2 = (2n + 1)γ2
∞

∑
m=0

m+n

∑
r=|m−n|

‖σ̃(Pm)v‖2

6 (2n + 1)2γ2
∞

∑
m=0

‖σ̃(Pm)v‖2 = (2n + 1)2γ2‖v‖2.
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This shows ‖σ̃( f )‖ 6 (2n + 1)γ, which implies (5.2).

6. FREE SHIFTS

Let D be a unital C∗-algebra, and let ED
B : D → B be a conditional expecta-

tion onto a unital C∗-subalgebra B. For each integer i ∈ Z let (Ai, φi) be a copy of
(D, ED

B ). Let

(6.1) (A, φ) = (∗B)i∈I(Ai, φi)

be the reduced amalgamated free product, and let a 7→ λi
a denote the embedding

of Ai in the free product algebra A arising from the free product construction, as
described in Section 4. The free-shift automorphism α on A is the automorphism
of A given by α(λi

a) = λi+1
a for all a ∈ A and i ∈ Z.

THEOREM 6.1. Let α be the free-shift automorphism on the amalgamated free prod-
uct C∗-algebra A as given in (6.1) above. Then B is the fixed-point subalgebra for α and
α is uniquely ergodic relative to its fixed-point subalgebra.

Proof. We will show

(6.2) lim
n→∞

1
n

n−1

∑
k=0

αk(a) = φ(a)

for every a ∈ A. This will imply that B is the fixed-point subalgebra for α and
that condition (iv) of Theorem 3.2 holds.

It will suffice to show (6.2) for all a ∈ B and words a of the form w =
a1a2 · · · ap for some p > 1 and ai ∈ A◦

k(i), and some k(i) ∈ Z with k(i) 6= k(i + 1),
i = 1, . . . , p− 1. Since B is α invariant, (6.2) is clear for a ∈ B. So assume a = w

as above. Then φ(w) = 0 and
n−1
∑

k=0
αk(w) is a finite linear combination of words of

length p to which Proposition 5.1 applies, and we have∥∥∥ 1
n

n−1

∑
k=0

αk(w)
∥∥∥ 6

1
n

(2p + 1)n1/2
p

∏
i=1
‖ai‖.

Thus, we get

lim
n→∞

∥∥∥ 1
n

n−1

∑
k=0

αk(w)
∥∥∥ = 0,

as required.

Note added in revision: The referee kindly pointed out that the equivalence of (i)–
(v) in Theorem 3.2 applies more generally, in that α can be replaced by a unital,
positive map. This is also noted (in the completely positive case) by Fidaleo and
Mukhamedov in their recent paper [2].
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