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ABSTRACT. We show that a big Hankel operator defined on certain Hardy–
Sobolev spaces of the polydisk Dn, n > 1, cannot be compact unless it is the
zero operator. This result was obtained by Cotlar and Sadosky in 1993 for the
classical Hardy space, but our approach here is much different and our result
is more general.
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1. INTRODUCTION

Let Dn be the polydisk in Cn and let Tn be the Shilov boundary of Dn.
The normalized Lebesgue measure on Tn will be denoted by dσ. Thus for f ∈
L1(Tn, dσ) and z = (eit1 , . . . , eitn) in Tn we have

∫
Tn

f (z) dσ(z) =
1

(2π)n

2π∫
0

· · ·
2π∫
0

f (eit1 , . . . , eitn) dt1 · · ·dtn.

The Hardy space H2 consists of holomorphic functions f in Dn such that

‖ f ‖2 = sup
0<r<1

∫
Tn

| f (rz)|2 dσ(z) < ∞.

It is well known that for every function f ∈ H2, the radial limit

lim
r→1−

f (rz)

exists for almost every z ∈ Tn. If we denote the above radial limit by f (z), then
the Hardy space H2 can be regarded (isometrically) as a closed subspace of L2 =
L2(Tn, dσ).
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Every function f ∈ L2 admits a Fourier expansion

f (z) = ∑
J

aJzJ , z ∈ Tn,

where J = (j1, . . . , jn) runs over all n-tuples of integers (not just nonnegative
integers) and

zJ = zj1
1 · · · z

jn
n .

The Fourier coefficients {aJ} of f ∈ L2 satisfy

‖ f ‖2 = ∑
J
|aJ |2 < ∞.

Moreover, a function f ∈ L2 is the radial limit function of some f ∈ H2 if and
only if aJ = 0 whenever at least one of the jk’s is negative. In particular, the
set of all monomials on Tn form an orthonormal basis for L2, and the set of all
holomorphic monomials on Tn form an orthonormal basis for H2.

When H2 is considered as a closed subspace of the Hilbert space L2, there
exists an orthogonal projection

P : L2 → H2.

It is well known that the orthogonal projection above admits the following inte-
gral representation

(1.1) P f (z) =
∫
Tn

C(z, ζ) f (ζ) dσ(ζ), z ∈ Dn,

where

C(z, ζ) =
n

∏
j=1

1
1− zjζ j

is the Cauchy–Szëgo kernel of Dn. It is clear from a pointwise approximation
argument that the domain of the integral operator in (1.1) can be extended to
L1(Tn, dσ), although the resulting holomorphic function P f is generally not in
H2 when f ∈ L1(Tn, dσ).

If f is a function in L2, we can densely define a linear operator

H f : H2 → L2(Tn, dσ)

as follows:
H f (g) = (I − P)( f g) = f g− P( f g).

In particular, the above definition makes sense for all polynomials g which form
a dense subspace of H2.

It is clear that if f is bounded, then H f is a bounded linear operator from
H2 into L2 (from now on we shall simply say that H f is bounded on H2). But it
is easy to see that there exist unbounded symbol functions f in L2 such that the
Hankel operator H f extends to a bounded linear operator on H2. For example, if
f happens to be in H2, then it can be checked that P( f g) = f g for all g ∈ H2, so
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the resulting Hankel operator H f is the zero operator, which is of course bounded
on H2. On the other hand, if H f = 0, then

H f (1) = f − P( f ) = 0,

so f = P( f ) ∈ H2. Therefore, H f = 0 if and only if f ∈ H2.
More generally, it was shown in [1] and [6] that, for f ∈ L2, the Hankel

operators H f and H f are simultaneously bounded on H2 if and only if f belongs
to BMO, the space of functions with uniformly bounded mean oscillation in each
variable.

In the case when n = 1, it is a classical theorem of Nehari (see [7] for exam-
ple) that the Hankel operator H f can be extended to a bounded operator on H2 if
and only if there exists a bounded function g such that H f = Hg. Combining this
with the earlier remark about zero Hankel operators, we see that H f is bounded
if and only if f = g + h, where g ∈ H2 and h ∈ L∞. It was shown in [1], [2],
[5] that a direct analogue of Nehari’s result does not hold for higher dimensions.
Namely, when n > 1, there exist functions f ∈ L2 such that H f is bounded on
H2 but no decomposition of the form f = g + h, where g ∈ H2 and h ∈ L∞, is
possible. So in higher dimensions, Nehari’s theorem fails in the sense that there
are more bounded Hankel operators than those induced by bounded symbols.

In the case when n = 1 again, it is a classical theorem of Hartman (see [7]
again) that the Hankel operator H f can be extended to a compact operator on H2

if and only if f = g + h, where g ∈ H2 and h is continuous on T. The purpose
of this note is to show that Hartman’s theorem fails in higher dimensions, but
in a completely different way. It’s not that we get more compact Hankel opera-
tors than those induced by continuous symbols. Instead, there exist no compact
Hankel operators at all on H2 in dimensions greater than 1.

We mention in passing that it was shown in [3] that there exists no noncon-
stant holomorphic symbol function f such that the corresponding Hankel oper-
ator H f defined on the Bergman space of the polydisk Dn, n > 1, is compact.
But in that context, there exist a lot of nontrivial compact Hankel operators on
the Bergman space of Dn whose symbols are not conjugate holomorphic. The
surprise for the Hardy space case is that even for general symbols, the Hankel
operator H f cannot be compact unless it is the zero operator.

2. THE CASE OF THE HARDY SPACE

In this section we show that if a Hankel operator on the Hardy space of the
polydisk is compact, then it must be zero. This result was obtained in [4], but our
approach here is different and more transparent.
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The key idea of our analysis is to study the action of rotations on the space
L2 = L2(Tn, dσ). Thus for any ζ = (ζ1, . . . , ζn) ∈ Tn we define an operator

Uζ : L2(Tn, dσ) → L2(Tn, dσ)

by
Uζ( f )(z1, . . . , zn) = f (ζ1z1, . . . , ζnzn).

It is obvious that Uζ is a unitary operator on L2. We are going to call Uζ the
operator of rotation by ζ. It is easy to check that U∗

ζ = Uζ , so U∗
ζ is just the

operator of rotation by ζ. In particular, H2 is invariant under the actions of Uζ

and U∗
ζ . In other words, H2 is a reducing subspace for the operators Uζ , so each

Uζ commutes with the Cauchy–Szëgo projection P that is used in the definition
of Hankel operators.

LEMMA 2.1. If f ∈ L2 and H f is a bounded Hankel operator on H2, then, for
every ζ ∈ Tn,

Uζ H f U∗
ζ = HUζ f .

Proof. This is a simple consequence of the definition of Hankel operators
and the fact that each Uζ commutes with the projection P.

The following result shows that the unitary action of Uζ on Hankel opera-
tors is continuous in the strong operator topology.

LEMMA 2.2. Suppose f ∈ L2 and H f is bounded on H2. Then for every g ∈ H2,
the mapping ζ 7→ HUζ f (g) is continuous from Tn to L2.

Proof. Fix η ∈ Tn. For ζ → η in Tn we consider

HUζ f − HUη f = Uζ H f U∗
ζ −Uη H f U∗

η = Uζ H f (U∗
ζ −U∗

η ) + (Uζ −Uη)H f U∗
η

= Uζ H f (Uζ −Uη) + (Uζ −Uη)H f Uη .

If g ∈ H2, then

‖(HUζ f − HUη f )(g)‖ 6 ‖H f ‖‖(Uζ −Uη)g‖+ ‖(Uζ −Uη)H f Uη g‖.

If aJ are the Fourier coefficients of g, then

‖(Uζ −Uη)g‖2 = ∑
J>0

|aJ |2|ζ J − η J |2,

where J = (j1, . . . , jn) is an n-tuple of integers, J > 0 means that each of its
components is nonnegative, and ζ J = ζ

j1
1 · · · ζ

jn
n . Since

∑
J>0

|aJ |2 < ∞, |ζ J − η J |2 6 4,

an application of the dominated convergence theorem shows that

lim
ζ→η

‖(Uζ −Uη)g‖2 = 0.
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Similarly, using the Fourier expansion of the function H f Uη g (recall that η is
fixed) in L2, we can show that

lim
ζ→η

‖(Uζ −Uη)H f Uη g‖2 = 0.

This proves the following as desired:

lim
ζ→η

‖HUζ f (g)− HUη f (g)‖ = 0.

COROLLARY 2.3. If f ∈ L2 and H f is bounded on H2, then for any g ∈ H2 the
mapping ζ 7→ ‖HUζ f (g)‖ is a continuous function from Tn to [0, ∞).

We need the following special case before we deal with the general case.

LEMMA 2.4. Suppose n > 1 and

f (z) = zJ = zj1
1 zj2

2 · · · z
jn
n

is a non-holomorphic monomial on Tn. Then H f is not compact on H2.

Proof. Since f is not holomorphic, at least one of the jk’s must be negative.
Without loss of generality we may assume that the exponent j1 is negative. If g is
any function in H2 that is independent of the first variable z1, then

f g = z|j1|1 h(z2, . . . , zn)

for some function h, and it follows from the product structure of the Cauchy–
Szëgo projection that P( f g) = 0. So for such g we have

H f g = f g, ‖H f g‖ = ‖g‖.

The space of functions g ∈ H2 that is independent of z1 is infinite dimensional,
and H f acts on this space isometrically. So H f cannot be compact.

We can now prove the main result of this section.

THEOREM 2.5. Suppose f ∈ L2(Tn, dσ) and n > 1. If H f is compact on H2,
then H f = 0, that is, f ∈ H2.

Proof. Suppose
f (z) = ∑

J
aJzJ

is the Fourier expansion of f on Tn, where J = (j1, . . . , jn) runs over all n-tuples
of integers. Fix any J such that aJ 6= 0 and write f J = aJzJ . It is easy to see that

f J(z) =
∫
Tn

(Uζ f )(z) ζ
J

dσ(ζ).

An application of Fubini’s theorem shows that

〈H f J (g), h〉 =
∫
Tn

〈HUζ f (g), h〉 ζ
J

dσ(ζ),
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where g ∈ H2 and h ∈ L2. For the careful reader, this should be done in two
steps: first check the identity for g ∈ H∞(Tn) and h ∈ L∞(Tn), which are dense
subspaces of H2 and L2 respectively, then obtain the general case by an approxi-
mation argument.

If h is a unit vector in L2, then we have

|〈H f J (g), h〉| 6
∫
Tn

|〈HUζ f (g), h〉|dσ(ζ) 6
∫
Tn

‖HUζ f (g)‖dσ(ζ).

Here we used Lemma 2.2 and Corollary 2.3 to make sure that all integrals above
are well-defined. Taking the supremum on the left-hand side of the above in-
equality over all unit vectors h, we obtain the following where g is any function
in H2:

(2.1) ‖H f J (g)‖ 6
∫
Tn

‖HUζ f (g)‖dσ(ζ).

Since H f is compact, it follows from Lemma 2.1 that each Hankel operator
HUζ f is compact. If {gk} is any sequence in H2 that converges to 0 weakly, then
the compactness of HUζ f implies that

(2.2) lim
k→∞

‖HUζ f (gk)‖ = 0.

Every weakly convergent sequence in H2 is bounded, and the Hankel operators
HUζ f are uniformly bounded. Therefore, we can find a positive constant C such
that

‖HUζ f (gk)‖ 6 C

for all k and all ζ. In view of (2.1), (2.2), and the theorem of dominated conver-
gence, we conclude that

lim
k→∞

‖H f J (gk)‖ = 0.

Since {gk} is arbitrary, we have shown that H f J is compact.
Now f J is a nonzero monomial on Tn. We deduce from Lemma 2.4 and the

compactness of H f J that f J must be a holomorphic monomial. But f J was an arbi-
trary term in the Fourier expansion of f , so the function f must be holomorphic.
This completes the proof of the theorem.

3. GENERALIZATION TO HARDY–SOBOLEV SPACES

In this section we extend the results of the previous section to a class of
Hankel type operators on certain Hardy–Sobolev spaces on the polydisk.

Fix a real weight parameter α and define a weighted L2 space on the unit
circle T as follows.

L2,α(T) =
{ ∞

∑
k=−∞

akzk :
∞

∑
k=−∞

(|k|+ 1)α|ak|2 < ∞
}

.
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In general, elements in L2,α(T) should be thought of as formal power series or
as distributions. In particular, algebraic operations in L2,α(T) will be performed
in the sense of formal power series or distributions. In the case when α > 0, the
space L2,α(T) is indeed a space of functions on T.

Three special cases are worth mentioning. First, if α = 0, L2,α(T) becomes
the standard L2 space of the unit circle with respect to Lebesgue measure. Second,
if α = 1, then L2,α(T) is the diagonal Besov space B2. Equivalently, f ∈ L2,1(T) if
and only if the Cauchy transforms of f and f both belong to the Dirichlet space.
Finally, if α = −1, then L2,−1(T) can be thought of as the boundary distributions
of harmonic Bergman functions. Here we say that a harmonic function h in the
unit disk is in the Bergman space if∫

D

|h(z)|2 dA(z) < ∞,

where dA is area measure on D.
It is clear that L2,α(T) is a Hilbert space with the following inner product:

〈 f , g〉α =
∞

∑
k=−∞

(|k|+ 1)αak bk,

where

f (z) =
∞

∑
k=−∞

akzk, g(z) =
∞

∑
k=−∞

bkzk,

are elements in L2,α(T). The coefficients {ak} associated with an element f ∈
L2,α(T) will be called the Fourier coefficients of f . From now on elements of
L2,α(T) will be called functions as well.

Let H2,α(T) denote the closed subspace of L2,α(T) consisting of functions
whose Fourier coefficients {ak} satisfy ak = 0 for all k < 0. Intuitively, H2,α(T) is
the subspace of L2,α(T) consisting of “analytic functions”. Obviously, H2,α(T) is
a closed subspace of L2,α(T).

Let
Pα : L2,α(T) → H2,α(T)

denote the orthogonal projection. Given a symbol function ϕ ∈ L2,α(T) we define
two operators

Tϕ : H2,α(T) → H2,α(T) and Hϕ : H2,α(T) → L2,α(T)

as follows, where I is the identity operator on L2,α(T):

Tϕ( f ) = Pα(ϕ f ), Hϕ( f ) = (I − Pα)(ϕ f ).

These operators will be called Toeplitz and Hankel operators respectively,
and they are at least densely defined. For example, if f is a finite power series,
then both Tϕ( f ) and Hϕ( f ) are well defined. It is easy to see that the set of all
finite power series is dense in L2,α(T), and the set of all finite analytic power
series is dense in H2,α(T).
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A natural and fundamental problem is to determine the symbol functions ϕ
such that the operators Tϕ and/or Hϕ are bounded or compact. Before we turn
out attention to the polydisk, we mention two elementary examples below and
will cite two known results concerning the boundedness of Toeplitz and Hankel
operators on H2,α(T).

First, if ϕ itself has a finite power series, then it is easy to check that both
Tϕ and Hϕ are bounded. Actually, Hϕ is compact in this case; see Corollary 3.6.
Second, if ϕ ∈ H2,α(T), then Hϕ = 0, and so is bounded. On the other hand, if
Hϕ = 0, then

Hϕ(1) = ϕ− Pα(ϕ) = 0,

so that ϕ = Pα(ϕ) belongs to H2,α(T). Thus Hϕ = 0 if and only if ϕ ∈ H2,α(T).
It turns out that the most interesting case is when 0 < α < 1. In this case,

the spaces H2,α(T) are between the Hardy space H2(T) and the classical Dirichlet
space, so elements in H2,α(T) are analytic functions in the unit disk. Moreover, it
is easy to see that an analytic function f in D belongs to H2,α(T) if and only if∫

D

| f ′(z)|2(1− |z|2)1−α dA(z) < ∞.

Such spaces are usually called Dirichlet type spaces and they have been studied
extensively in recent years. For example, closely related (but differently defined)
Hankel and Toeplitz operators on Dirichlet type spaces are studied in [8], [10],
[12]. We warn the reader that the space L2,α defined here differs in an essential
way from the space L2,α defined in [8].

A class of spaces introduced by Wu (see [10], [11], [12]), the analog of BMOA
in the context of Dirichlet spaces, play an important role in all these studies. More
specifically, for any α ∈ (0, 1) let Wα denote the space of analytic functions f in D
with the property that there exists a positive constant C = C f such that∫

D

|g(z)|2| f ′(z)|2(1− |z|2)1−α dA(z) 6 C‖g‖2
α

for all g ∈ H2,α(T), where ‖g‖α is the norm of g in H2,α(T). In other words, an
analytic function f in D belongs to Wα if and only if the measure

dµ(z) = | f ′(z)|2(1− |z|2)1−α dA(z)

is a Carleson measure for the Dirichlet type space H2,α(T). Geometric conditions
in terms of a certain capacity are obtained in [9] and [13] that characterize Car-
leson measures for Dirichlet type spaces. Note that our usage of the parameter α
is different from that in the papers cited above.

The following result can be found in [13]. See [14] as well.

PROPOSITION 3.1. Suppose ϕ ∈ H2,α(T) and 0 < α < 1. Then the following
conditions are equivalent:

(i) The function ϕ is a pointwise multiplier of H2,α(T).
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(ii) The Toeplitz operator Tϕ is bounded on H2,α(T).
(iii) The function ϕ belongs to H∞ ∩Wα.

If ϕ is analytic, then it is easy to check that our Hankel operator Hϕ is
bounded on H2,α(T) if and only if there exists a positive constant C such that

|〈ϕ, f g〉α| 6 C‖ f ‖α‖g‖α

for all analytic polynomials f and g. It can be checked that this condition is also
equivalent to the boundedness of the small Hankel operator hϕ defined in [8].

For a general symbol ϕ ∈ L2,α(T) we can use the projection Pα to write
ϕ = ϕ1 + ϕ2, where each ϕk ∈ H2,α(T). Since Hϕ1 = 0, the following result
follows from [8], although the definition of Hankel operators in the two instances
are completely different.

PROPOSITION 3.2. Suppose ϕ ∈ L2,α(T) and 0 < α < 1. Then the following
conditions are equivalent:

(i) The operator Hϕ is bounded on H2,α(T).
(ii) The function Pα(ϕ) is in Wα.

(iii) The following measure is a Carleson measure for H2,α(T):

|∂ϕ|2(1− |z|2)1−α dA(z).

As a consequence, the two Hankel operators Hϕ and Hϕ are both bounded
if and only if the measure

|∇ϕ(z)|2(1− |z|2)1−α dA(z)

is a Carleson measure for H2,α(T). Similar results can be proved for the com-
pactness of Hankel operators using vanishing Carleson measures. We leave the
details to the interested reader.

More generally, for any fixed weight parameter α and any positive integer
n > 1, we consider the space and its holomorphic subspace, respectively:

L2,α(Tn) = L2,α(T)⊗ · · · ⊗ L2,α(T), H2,α(Tn) = H2,α(T)⊗ · · · ⊗ H2,α(T).

For simplicity of notation let P = Pα,n denote the orthogonal projection

P : L2,α(Tn) → H2,α(Tn).

Given a symbol function ϕ ∈ L2,α(Tn), we can use the projection P to
(densely) define a Toeplitz operator

Tϕ : H2,α(Tn) → H2,α(Tn)

and a Hankel operator
Hϕ : H2,α(Tn) → L2,α(Tn)

just as before. Although we do not have a characterization of symbols ϕ that
induce bounded Hankel operators on H2,α(Tn), we can determine the symbols ϕ

that induce compact Hankel operators on H2,α(Tn) when n > 1.
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THEOREM 3.3. Suppose n > 1 and ϕ ∈ L2,α(Tn). Then the following conditions
are equivalent:

(i) Hϕ is compact on H2,α(Tn).
(ii) ϕ ∈ H2,α(Tn).

(iii) Hϕ = 0.

Proof. We have already shown how to prove the equivalence of (ii) and (iii),
and it is trivial that (iii) implies (i). So it suffices for us to show that (i) implies
(ii). Since this part of the proof is similar to that of Theorem 2.5, we will be a little
sketchy and leave the routine details to the interested reader.

Suppose

ϕ(z) = ∑
J

aJzJ

is the Fourier expansion of ϕ, where z ∈ Tn and J = (j1, . . . , jn) runs over all
n-tuples of integers. The very definition of L2,α(Tn) ensures that each element
of it has such a Fourier expansion. If Hϕ is compact on H2,α(Tn), then using
the unitary actions induced by rotations on Tn we can show that HϕJ is com-
pact on H2,α(Tn), where ϕJ(z) = aJzJ is an arbitrary nonzero term in the Fourier
expansion of ϕ. The desired result then follows from the first corollary to the
proposition below.

PROPOSITION 3.4. Suppose n > 1 and ϕ(z) = zm is a monomial (not necessarily
holomorphic) on Tn. Then the operator T = H∗

ϕ Hϕ is diagonal with respect to the natural
basis {zJ/‖zJ‖ : J > 0} of H2,α(Tn). Moreover, if the eigenvalue of T corresponding to
the eigenvector zJ is denoted by λJ , then λJ = 0 whenever m + J > 0, and we have the
following whenever some component of m + J is negative:

λJ =
n

∏
k=1

( |mk + jk|+ 1
jk + 1

)α
.

Proof. We first show that the operator

T = H∗
ϕHϕ : H2,α(Tn) → H2,α(Tn)

is diagonal with respect to the natural basis of H2,α(Tn). For any holomorphic
monomial zJ on Tn, we have

Hϕ(zJ) = zm+J − P(zm+J).

There are two cases to consider: if m + J > 0 (meaning that each of the compo-
nents of the n-tuple m + J is nonnegative), then

Hϕ(zJ) = zm+J − zm+J = 0;

if at least one component of m + J is negative, then

P(zm+J) = 0, Hϕ(zJ) = zm+J .
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In particular, for any two different holomorphic monomials zJ and zJ′ we always
have 〈Hϕ(zJ), Hϕ(zJ′)〉 = 0. Equivalently, 〈T(zJ), zJ′〉 = 0 whenever J 6= J′.
Therefore, T is a diagonal operator with respect to the natural basis of H2,α(Tn).

For any holomorphic zJ we write T(zJ) = λJzJ . If we take the inner product
with the vector zJ on both sides of this equation, the result is

‖Hϕ(zJ)‖2 = λJ‖zJ‖2.

It follows that λJ = 0 whenever m + J > 0, and we have the following whenever
some component of m + J is negative:

λJ =
‖zm+J‖2

‖zJ‖2 =
n

∏
k=1

( |mk + jk|+ 1
jk + 1

)α
.

COROLLARY 3.5. If n > 1 and ϕ(z) = zm is not holomorphic on Tn, then Hϕ is
not compact on H2,α(Tn).

Proof. Without loss of generality we may assume that m1 < 0. We consider
monomials of the form zj

2. By Proposition 3.4 above, the eigenvalues of T =
H∗

ϕHϕ corresponding to the eigenvectors zj
2 are given by

λj =
[ |m2 + j|+ 1

j + 1

]α

∏
k 6=2

(|mk|+ 1)α.

Regardless of the values of α and m, we always have

lim
j→∞

λj = 1.

This shows that the operator T cannot be compact, because the eigenvalues of a
compact operator must converge to zero.

COROLLARY 3.6. Suppose n = 1 and ϕ(z) = zm is a monomial on T. If m > 0,
then Hϕ = 0; if m < 0, then Hϕ is a finite rank operator whose rank equals |m|.

Once again, we mention that for general α and n > 1, we do not have a
characterization of symbols f ∈ L2,α(Tn) such that H f is bounded on H2,α(Tn).
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