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ABSTRACT. We introduce the notion of Kreı̆n space induced by a densely de-
fined symmetric operator in a Hilbert space, as an abstract notion of indefinite
energy spaces. Characterizations of existence and uniqueness, as well as cer-
tain canonical representations, are obtained. We exemplify these by the free
and certain perturbed Dirac operators.
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1. INTRODUCTION

According to the classical approach of K. Friedrichs [12], the problem of es-
timation of the spectrum of a nonnegative (or, more generally, semi-bounded)
linear operator A associated to a partial differential equation leads naturally to
Hilbert spaces that are obtained by a quotient-completion process performed on
the quadratic form ξ 7→ 〈Aξ, ξ〉. The Hilbert space obtained in this way is called
the energy space due to a certain quantum mechanical interpretation of the spec-
tral points (in particular, eigenvalues) of A as possible values of the energy of the
system. This construction can be made abstract by the notion of induced Hilbert
spaces as in [3], where we have exemplified it on different linear operators asso-
ciated to partial differential equations. The induced Hilbert spaces are in general
Sobolev type spaces and the main result in [3], see Theorem 2.2, shows that, un-
der certain intertwining assumptions, estimation of the spectra of linear operators
on the original Hilbert space yields an estimation of the spectra of the operators
lifted to the energy space (for the case of bounded operators, cf. [16], [19], [18],
and [8]).

In this paper, we are interested in performing similar constructions and
obtaining similar results in case the operator A is indefinite, without assump-
tions of semi-boundedness. The corresponding induced space can no longer be
a Hilbert space due to the fact that the quadratic form ξ 7→ 〈Aξ, ξ〉 is indefinite.
The natural (and most tractable) generalization of Hilbert space, and appropriate
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to the present situation, is that of Kreı̆n space, and we expect the geometrical-
topological difficulties of operator theory in Kreı̆n space to show up. Indeed,
the first difficulty comes from the fact that an indefinite inner product, with both
positive and negative indices infinite, may not be associated to any Kreı̆n space,
e.g. see [2] and the literature cited there. Second, the uniqueness modulo unitary
equivalence, that holds naturally for the positive case, does not exist, in the gen-
uine cases of indefiniteness. In this respect, it is natural to ask for some “canoni-
cal” representations of induced Kreı̆n spaces, when they exist, and in these cases,
to look for necessary and sufficient conditions of uniqueness, modulo unitary
equivalence. These are the main goals of this paper.

The idea of induced Kreı̆n space is simple and comes from the following
observation: let H be a Hilbert space and A a densely defined symmetric op-
erator in H. We consider Dom(A), the domain of A, and its factorization by
the kernel of A, Ker(A). The (indefinite) inner product 〈Ax, y〉 factors to a non-
degenerate inner product space Dom(A)/ Ker(A) and let us assume, for the mo-
ment, that this can be isometrically embedded into a Kreı̆n space K with inner
product [·, ·]. Modulo the identification of Dom(A)/ Ker(A) with its image, this
means that 〈Ax, y〉 = [x̂, ŷ] for all x, y ∈ Dom(A), where x̂ = x + Ker(A) de-
notes the corresponding equivalence class in Dom(A)/ Ker(A). We let Π be the
operator obtained from the composition of the canonical projection Dom(A) →
Dom(A)/ Ker(A) with the embedding of Dom(A)/ Ker(A) inK, and call (K, Π)
a Kreı̆n space induced by the symmetric operator A. This construction, which is
a natural generalization of the quotient-completion to a Hilbert space when A is
nonnegative, can be put into an axiomatic framework as in Section 3. What we
do is actually to look, formally, for factorizations A = Π∗ JΠ, where Π is a linear
operator from H into K and J is a symmetry (or, in other terminology, a unitary
involution) on some Hilbert space K, and under certain minimality conditions.
The difficulty comes from giving a sense to this factorization, taking into account
that we deal with unbounded operators. In the bounded case (that is, when A is
bounded) and, additionally, we require that Π is also bounded (see Remark 3.1),
this construction was first performed in [4] and used successfully in dilation the-
ory in [4], [5], and [6].

As a first motivation for our investigations, we started with the free Dirac
operator which is a satisfactory model for a 1

2 -spin free electron in relativistic
quantum theory. When considered on its natural domain, the free Dirac operator
is selfadjoint and has a spectral gap in the neighbourhood of 0. It turns out that
the Kreı̆n space induced by the free Dirac operator exists and is unique, mod-
ulo unitary equivalence. This is a generalization of the Friedrichs energy space
and has the interpretation of the existence of states with positive energy, corre-
sponding to electrons, and of other states with negative energy, corresponding to
positrons. These considerations have some overlapping with the supersymmetry
of the free Dirac operator, e.g. see [22] for definitions and basic properties. The
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notion of induced Kreı̆n space gets more consistency when applied to perturbed
Dirac operators.

Let us briefly describe the contents of this article. In Section 2 we briefly
recall the similar construction in the (positive) definite case, and also the lifting
theorem. There is a slight modification of the induced Hilbert space with respect
to that given in [3] due to an anomaly that was pointed to us by K.-H. Förster,
which we acknowledge now. However, this does not change any of the results in
[3], except the possibility of taking the operator Π closed, if A is closed, that is
used in Proposition 2.2 in the cited paper. Then we recall a few things on Kreı̆n
spaces and their linear operators that we need in this paper.

In Section 3 we define Kreı̆n spaces induced by symmetric densely defined
operators and then give a variety of characterizations of existence. A particularly
interesting condition of existence is when the operator A has selfadjoint exten-
sions and we show by an example that there exist operators admitting induced
Kreı̆n spaces but having no selfadjoint extensions.

In Section 4 we describe two canonical representations of Kreı̆n spaces in-
duced by selfadjoint operators and prove the lifting theorem for this case (the
bounded indefinite case was obtained in [9]). In the next section we give equiva-
lent characterizations of uniqueness of the induced Kreı̆n space, modulo unitary
equivalence, both in spectral and geometric terms. We conclude the paper by
exemplifying these on the free and certain perturbed Dirac operators.

2. SOME PRELIMINARY CONSIDERATIONS

2.1. HILBERT SPACES INDUCED BY NONNEGATIVE OPERATORS. We consider a
Hilbert space H and A a densely defined nonnegative operator in H (in this pa-
per, the nonnegativity of an operator A means 〈Ax, x〉H > 0 for all x ∈ Dom(A)).
A pair (K, Π) is called a Hilbert space induced by A if:

(i) K is a Hilbert space;
(ii) Π is a linear operator with domain Dom(Π) ⊇ Dom(A) and range in K;

(iii) Π Dom(A) is dense in K;
(iv) 〈Πx, Πy〉K = 〈Ax, y〉H for all x ∈ Dom(A) and all y ∈ Dom(Π).

Such an object always exists by an obvious quotient-completion procedure.
In addition, they are essentially unique in the following sense: two Hilbert spaces
(Ki, Πi), i = 1, 2, induced by the same operator A, are called unitary equivalent if
there exists a unitary operator U ∈ B(K1,K2) such that UΠ1 = Π2.

REMARK 2.1. In the case of a nonnegative selfadjoint operator, the quotient-
completion construction can be made more explicit. Thus, if A is a nonnegative
selfadjoint operator in the Hilbert space H, then A1/2 exists as a nonnegative
selfadjoint operator in H, Dom(A1/2) ⊇ Dom(A) and Dom(A) is a core of A1/2.
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In particular we have

〈Ax, y〉H = 〈A1/2x, A1/2y〉H, x ∈ Dom(A), y ∈ Dom(A1/2),

which shows that we can consider the seminorm ‖A1/2 · ‖ on Dom(A) and make
the quotient completion with respect to this seminorm in order to get a Hilbert
space KA. We denote by ΠA the corresponding canonical operator. Then it is
easy to see that (KA, ΠA) is a Hilbert space induced by A.

The main result of [3] is the following lifting theorem:

THEOREM 2.2. Let A and B be nonnegative selfadjoint operators in the Hilbert
spaces H1 and respectively H2, and let (KA, ΠA) and (KB, ΠB) be the Hilbert spaces
induced by A and respectively B. For any operators T ∈ B(H1,H2) and S ∈ B(H2,H1)
such that

(2.1) 〈Bx, Ty〉H2 = 〈Sx, Ay〉H1 , x ∈ Dom(B), y ∈ Dom(A),

there exist uniquely determined operators T̃ ∈ B(KA,KB) and S̃ ∈ B(KB,KA) such
that T̃ΠAx = ΠBTx for all x ∈ Dom(A), S̃ΠBy = ΠASy for all y ∈ Dom(B), and

(2.2) 〈S̃h, k〉KA = 〈h, T̃k〉KB , h ∈ KB, k ∈ KA.

Among other results, in this paper we obtain a generalization of this theo-
rem, see Theorem 4.2.

2.2. KREĬN SPACES AND THEIR LINEAR OPERATORS. We recall that a Kreı̆n space
K is a complex linear space on which it is defined an indefinite scalar product
[·, ·] such that K is decomposed in a direct sum

(2.3) K = K+[+̇]K−
in such a way that K± are Hilbert spaces with scalar products ±[·, ·], respectively
and the direct sum in (2.3) is orthogonal with respect to the indefinite scalar
product [·, ·], i.e. K+ ∩ K− = {0} and [x+, x−] = 0 for all x± ∈ K±. The de-
composition (2.3) gives rise to a positive definite scalar product 〈·, ·〉 by setting
〈x, y〉 := 〈x+, y+〉− 〈x−, y−〉, where x = x+ + x−, y = y+ + y−, and x±, y± ∈ K±.
The scalar product 〈·, ·〉 defines on K a structure of Hilbert space. Subspaces K±
are orthogonal with respect to the scalar product 〈·, ·〉, too. We denote by P± the
corresponding orthogonal projections onto K±, and let J = P+ − P−. The opera-
tor J is a symmetry, i.e. a selfadjoint and unitary operator, J∗ J = J J∗ = J2 = I.

Given a Kreı̆n space (K, [·, ·]) the cardinal numbers

(2.4) κ+(K) = dim(K+), κ−(K) = dim(K−),

do not depend on the fundamental decomposition and they are called, respec-
tively, the geometric ranks of positivity/negativity of K.

The operator J is called a fundamental symmetry of the Kreı̆n space K. Note
that [x, y] = 〈Jx, y〉, (x, y ∈ K). If T is a densely defined operator from a Kreı̆n
spaceK1 to anotherK2, it can be defined the adjoint of T as an operator T] defined
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on the set of all y ∈ K2 for which there exists hy ∈ K1 such that [Tx, y] = [x, hy],
and T]y = hy. We remark that T] = J1T∗ J2, where T∗ denotes the adjoint operator
of T with respect to the Hilbert spaces (K1, 〈·, ·〉J1) and (K1, 〈·, ·〉J1). We will use
] to denote the adjoint when at least one of the spaces K1 or K2 is indefinite. In
the case of an operator T defined on the Kreı̆n space K, T is called symmetric if
T ⊂ T], i.e. if the relation [Tx, y] = [x, Ty] holds for each x, y ∈ Dom(T) and T is
called selfadjoint if T = T].

In this paper we will use a bit of the geometry of Kreı̆n spaces. Thus, a
(closed) subspace L of a Kreı̆n space K is called regular if K = L + L⊥, where
L⊥ = {x ∈ K : [x, y] = 0 for all y ∈ L}. Regular spaces of Kreı̆n spaces are im-
portant since they are exactly the analog of Kreı̆n subspaces, that is, if we want L
be a Kreı̆n space with the restricted indefinite inner product and the same strong
topology, then it should be regular.

In addition, let us recall that, given a subspace L of a Kreı̆n space, we call
L non-negative (positive) if the inequality [x, x] > 0 holds for x ∈ L (respectively,
[x, x] > 0 for all x ∈ L \ {0}). Similarly we define non-positive and negative sub-
spaces. A subspace L is called degenerate if L ∩ L⊥ 6= {0}. Regular subspaces are
non-degenerate. As a consequence of the Schwarz inequality, if a subspace L is
either positive or negative it is nondegenerate. A remarkable class of subspaces
are those regular spaces that are either positive or negative, for which the terms
uniformly positive, respectively, uniformly negative are used. These notions can be
defined for linear manifolds also, that is, without assuming closedness.

A linear operator V defined from a subspace of a Kreı̆n spaceK1 and valued
into another Kreı̆n space K2 is called isometric if [Vx, Vy] = [x, y] for all x, y in the
domain of V. Note that isometric operators between genuine Kreı̆n spaces are
unbounded and different criteria of boundedness are available, see [2]. One can
even define unbounded unitary operators in Kreı̆n spaces (e.g. see [13]). However,
in this paper a unitary operator between Kreı̆n spaces means that it is a bounded
isometric operator that has a bounded inverse.

3. KREĬN SPACES INDUCED BY SYMMETRIC OPERATORS

If A is a symmetric densely defined linear operator in the Hilbert space H
we can define a new inner product [·, ·]A on Dom(A), the domain of A, by

(3.1) [x, y]A = 〈Ax, y〉H, x, y ∈ Dom(A).

In this section we investigate the existence and the properties of some Kreı̆n
spaces associated to this kind of inner product space.

A pair (K, Π) is called a Kreı̆n space induced by A if:
(i) K is a Kreı̆n space;

(ii) Π is a linear operator from H into K such that Dom(A) ⊆ Dom(Π);
(iii) Π Dom(A) is dense in K;
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(iv) [Πx, Πy] = 〈Ax, y〉 for all x ∈ Dom(A) and y ∈ Dom(Π).

The operator Π is called the canonical operator.

REMARK 3.1. Let A be a symmetric densely defined linear operator in the
Hilbert space H.

(1) (K, Π) is a Kreı̆n space induced by A if and only if it satisfies the axioms
(i)–(iii) and, in addition,

(iv′) Π]Π ⊇ A,

in the sense that Dom(A) ⊆ Π]Π and Ax = Π]Πx for all x ∈ Dom(A).
(2) Without loss of generality we can assume that Π is closed. This follows

from the remark at item (1): axiom (iv) can be interpreted as Π]Π ⊇ A. Then, by
axiom (iii) it follows that Π] is densely defined, hence Π is closable. Finally, we
note that by replacing Π with its closure, all the axioms are fulfilled.

(3) Let us consider a symmetric densely defined operator A that admits an
induced Kreı̆n space (K, Π) such that Π is bounded. Then A is bounded. If A
is bounded then, in general, it does not follow that Π is bounded. This anom-
aly is explained by the existence of unbounded isometric operators in a Kreı̆n
space. However, if A is not only bounded but also everywhere defined, then the
operator Π is bounded as well.

For the moment it is not clear why Kreı̆n spaces induced by symmetric op-
erators should exist. This is the first major difference when compared to the non-
negative definite case, see [3].

At this level of generality, we distinguish a general characterization of ex-
istence of induced Kreı̆n spaces, in connection to Theorem 7.1 in [5]. It is re-
markable that this can be done in terms of decompositions as a difference of two
nonnegative operators, as well.

THEOREM 3.2. Let A be a densely defined and symmetric operator in a Hilbert
space H. The following assertions are equivalent:

(i) There exists a nonnegative quadratic form q on Dom(A) such that

−q(x) 6 〈Ax, x〉 6 q(x), x ∈ Dom(A).

(i’) There exists a nonnegative operator B in H such that Dom(A) ⊆ Dom(B) and
−〈Bx, x〉H 6 〈Ax, x〉H 6 〈Bx, x〉H for all x ∈ Dom(A).

(ii) There exists a nonnegative quadratic form q on Dom(A) such that

|〈Ax, y〉|2 6 q(x)q(y), x, y ∈ Dom(A).

(ii’) There exists a nonnegative operator B in H such that Dom(A) ⊆ Dom(B) and
|〈Ax, y〉| 6 |〈Bx, x〉|1/2|〈By, y〉|1/2 for all x, y ∈ Dom(A).

(iii) A ⊆ A+ − A− for two nonnegative operators A± in H, that is, Dom(A) ⊆
Dom(A+) ∩Dom(A−) and Ax = A+x− A−x for all x ∈ Dom(A).

(iv) There exists a Kreı̆n space induced by A.
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Proof. The equivalences of (i) with (ii) and, respectively, of (i’) and (ii’), is a
standard argument of quadratic forms, see e.g. [21]. If B is as in (ii’) then let A+ =
1
2 (B + A) and A− = 1

2 (B − A), both with domain Dom(A). Then clearly (iii)
holds. Conversely, once we have (iii) we let B = A+ + A− which is a nonnegative
operator that satisfies condition (ii’).

Let us now assume that (i) holds. We consider H the Hilbert space obtained
by quotient-completion with respect to q: we factor Dom(A) by the isotropic sub-
space of J (q) of q and then take the abstract completion to a Hilbert space. Due
to the inequality in (i) we have J ⊆ Ker(A), hence the operator A can be fac-
tored by J (q) and the same inequality implies that this operator can be extended
by continuity to a bounded (actually contractive) and selfadjoint operator onto
the whole space H. We define the Kreı̆n space K as H where the indefinite in-
ner product is given by the symmetry SA = sgn(A). The operator Π is defined
to have the domain Dom(A) and acts as the composition of the factorization by
J (q) and the embedding of the factor space into K(= H). Then (K, Π) is a Kreı̆n
space induced by A.

On the other hand, let us assume that there exists a Kreı̆n space (K, Π) in-
duced by A. Let K = K+[+]K− be a fundamental decomposition and the corre-
sponding fundamental symmetry J = J+ − J−. Define Π± = J±Π : Dom(Π) →
K+. Then A+ = Π∗

+Π+ and A− = Π∗
−Π− are nonnegative operators in H such

that A+ − A− = Π∗
+Π+ −Π∗

−Π− = Π∗ JΠ = Π]Π ⊇ A, by Lemma 3.1. Hence,
(iv) implies (iii).

As a consequence of Theorem 3.2 and the spectral theory of selfadjoint op-
erators in Hilbert space it follows

COROLLARY 3.3. For any densely defined symmetric operator A that admits a
selfadjoint extension in H, there exists a Kreı̆n space induced by A.

Proof. If A is selfadjoint, then by the spectral theory of selfadjoint operators,
there exists the Jordan decomposition A = A+ − A−, where A± are nonnega-
tive selfadjoint operators (e.g. see [15], [1], [23]) defined by borelian functional
calculus. Then use Theorem 3.2.

If A is not selfadjoint but it admits a selfadjoint extension in H, we use the
Jordan decomposition of the extension to produce two nonnegative operators A±
such that A ⊆ A+ − A−, and proceed as before.

In connection with the previous corollary, it is natural to ask whether the
assertions (i)–(iv) in Theorem 3.2 are actually equivalent with the assertion in
the corollary, namely, that A has a selfadjoint extension. The following example
shows that this is not the case.
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EXAMPLE 3.4. Let A− and A+ be the differential operators on L2(R+) de-
fined by the differential expressions

A− = −
( d

dx

)2
, A+ = −

( d
dx

)2
+ 2i

d
dx

+ 1,

where Dom(A−) = Dom(A+) is the Sobolev space W2
2 (R+), with the Dirichlet

boundary conditions at 0. Then both A− and A+ are nonnegative selfadjoint
operators, but the operator

A := A+ − A− = 2i
d

dx
+ 1

is a symmetric operator in L2(R+) with defect indices (1, 0), and hence does not
have selfadjoint extensions.

Another distinction with respect to the definite case, that is, when the sym-
metric operator A is nonnegative as in [3], is the problem of uniqueness, modulo
unitary equivalence. Two Kreı̆n spaces (Ki, Πi), i = 1, 2, induced by the same
symmetric operator A, are called unitarily equivalent if there exists a bounded uni-
tary operator U : K1 → K2 such that

(3.2) UΠ1x = Π2x, x ∈ Dom(A).

Before considering the uniqueness problem, we first record a special case,
very useful in applications, when both existence and uniqueness hold. Recall that
κ−(A) and κ+(A) denote the number of the negative and, respectively, the posi-
tive squares of the quadratic form associated to the inner product 〈·, ·〉A defined
as in (3.1), more precisely, κ±(A) is the number of positive/negative squares of
the quadratic form Dom(A) 3 x 7→ 〈Ax, x〉, if this is finite, and the symbol +∞ in
the opposite case. In a different formulation, κ±(A) is the (algebraic) dimension
of the spectral subspace of A corresponding to the positive/negative semi-axis,
when these spectral subspaces exist.

PROPOSITION 3.5. Let A be a densely defined and symmetric operator such that
either κ−(A) < ∞ or κ+(A) < ∞. Then there exists and it is unique, up to a unitary
equivalence, a Kreı̆n space induced by A.

Proof. Assume that κ−(A) < ∞. The inner product space (Dom(A), [·, ·]A)
is decomposable, that is, there exists a decomposition

(3.3) Dom(A) = D−+̇ Ker A+̇D+,

where the inner product spaces (D±,±[·, ·]) are positive definite and mutually
orthogonal, e.g. see Theorem I.11.7 in [2]. We consider the nondegenerate inner
product space (D−+̇D+, [·, ·]A) and, since dimD− = κ−(A) < ∞, there exists
the completion of this space to a Pontryagin space (K, [·, ·]A) such that κ−(K) =
κ−(A) < ∞. Consider the linear mapping Π : Dom(A) → K defined by

Dom(A) 3 x− + x0 + x+ 7→ x− + x+ ∈ K, x± ∈ D±, x0 ∈ Ker A.
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Then Π has dense range. Also Π has a densely defined adjoint, more precisely,
this is an extension of the linear mappingK ⊇ D−+D+ 3 x 7→ x ∈ H, and hence
Π is closable. We denote by the same symbol Π its closure and then (K, Π) is a
Kreı̆n space induced by A.

Let (K1, Π1) be another Kreı̆n space induced by A. Since Π1 satisfies the
axiom (iv), it follows that κ−(K1) > κ−(A). Since Π1 has dense range, we eas-
ily obtain the converse inequality and hence κ−(K1) = κ−(A). Define a linear
operator U : D− +D+ → R(Π1) by

(3.4) Ux = Π1x, x ∈ D− +D+.

Since both Π and Π1 satisfy the axiom (iv), it follows that U is isometric and
then (see Theorem VI.3.5 in [2]) it follows that U can uniquely be extended to a
bounded unitary operator U : K → K1. The analog of (3.2) follows from (3.4) and
the definition of Π.

4. TWO CANONICAL REPRESENTATIONS OF KREĬN SPACES INDUCED
BY SELFADJOINT OPERATORS

The existence of Kreı̆n spaces induced by symmetric operators is guaranteed
in case the operator A is selfadjoint, cf. Corollary 3.3. Since, even for selfadjoint
operators (as will be seen in Theorem 5.3) we do not have in general uniqueness of
the induced Kreı̆n spaces, it is useful to point out some "canonical" constructions.

4.1. THE INDUCED KREĬN SPACE (KA, ΠA). The first example starts with a self-
adjoint operator A and describes a construction of a Kreı̆n space induced by A,
more or less the equivalent of the quotient completion method.

Let A be a selfadjoint operator in the Hilbert spaceH. We consider the polar
decomposition of A

(4.1) A = SA|A|,

where, by borelian functional calculus, there are defined |A| = (A∗A)1/2 =
(A2)1/2, the modulus (or the absolute value) of the operator A, and SA = sgn(A),
that is a selfadjoint partial isometry on H. It is known (e.g. see [23], [1]) that
Dom(A) = Dom(|A|) and that |A| is a nonnegative selfadjoint operator. We now
consider the quotient completion of Dom(A) with respect to the nonnegative self-
adjoint operator |A| as in Remark 2.1, and define KA = K|A|. To be more precise,
we do the following: on Dom(A) we consider the semi-norm ‖|A|1/2 · ‖, factor
Dom(A) by the kernel of A (which coincides with the isotropic part of this semi-
norm) and then complete the factor space Dom(A)/ Ker(A) to the Hilbert space
that we denote by KA. Recall that Dom(A) ⊆ Dom(|A|1/2) and that Dom(A) is
a core for |A|1/2. Further, Ker(SA) = Ker(A) and SA leaves invariant Dom(A).
Since SA is a selfadjoint partial isometry, its spectrum coincides with its point
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spectrum and is contained in {−1, 0, +1}. Hence Dom(A) = D+ ⊕Ker(A)⊕D−
where

(4.2) D± = Dom(A) ∩Ker(SA ∓ I).

This implies that we can identify naturally Dom(A)/ Ker(A) with D+ ⊕ D−.
Now observe that we can complete D± with respect to the norm ‖|A|1/2 · ‖ and
let these completions be denoted by K±A . Then, KA can be naturally identified
with K+

A ⊕K
−
A and, considering this as a fundamental decomposition,

(4.3) KA = K+
A [+]K−A

it yields an indefinite inner product [·, ·] with respect to which KA becomes a
Kreı̆n space.

Equivalently, this construction of the Kreı̆n space (KA, [·, ·]) can be done as
follows: we first recall that SA commutes with all selfadjoint operators A, |A|, and
|A|1/2. For example, since SA commutes with |A|1/2 it follows that Dom(|A|1/2)
is invariant under SA and for all x∈Dom(|A|1/2) we have SA|A|1/2x= |A|1/2SAx.
This implies that SA is isometric with respect to this seminorm and hence, SA fac-
tors by Ker(A) and extends uniquely by continuity to an isometric operator on
the Hilbert space K|A|, that we denote also by SA. We now observe that SA is
actually a symmetry (that is, both unitary and selfadjoint) on the Hilbert space
K|A|. Indeed, for this we take into account that SA commutes with |A|, that is,

SA|A|x = |A|SAx, x ∈ Dom(|A|) = Dom(A),

and get

〈|A|SAx, y〉 = 〈SA|A|x, y〉 = 〈|A|x, SAy〉, x, y ∈ Dom(|A|) = Dom(A),

which shows the selfadjointness of SA in the Hilbert space K|A|. Since SA is also
isometric with respect to the seminorm ‖|A|1/2 · ‖, it follows that it is a symmetry
in K|A|. Then we use this symmetry to introduce on K|A| = KA an indefinite
inner product that turns KA into a Kreı̆n space. It is easy to see that the funda-
mental decomposition in (4.3) is exactly that corresponding to the fundamental
symmetry SA.

Finally, let ΠA be the operator which is obtained by composing the canon-
ical surjection Dom(A) → Dom(A)/ Ker(A) with the embedding of the space
Dom(A)/ Ker(A) into its Hilbert space completion K|A| = KA.

PROPOSITION 4.1. If A is a selfadjoint operator on the Hilbert spaceH then, with
the notation as before, (KA, ΠA) is a Kreı̆n space induced by A.

Proof. We verify the axioms (i)–(iv) in the definition of the Kreı̆n space in-
duced by A. It was proved above that KA is a Kreı̆n space. By definition ΠA is a
linear operator with domain Dom(ΠA) = Dom(A) and range Dom(A)/ Ker(A)
dense in KA. Thus only the axiom (iv) remains to be verified. For any x, y ∈
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Dom(A) = Dom(Π) we have the following, which concludes the proof:

[Πx, Πy]KA = [x + Ker(A), y + Ker(A)]KA = 〈SA(x + Ker(A)), y + Ker(A)〉K|A|
= 〈|A|1/2SAx, |A|1/2y〉H = 〈|A|1/2SA|A|1/2x, y〉H = 〈Ax, y〉.

The previous result allows us to introduce the following definition: the geo-
metric positive/negative ranks of the selfadjoint operator A are, by definition,

(4.4) κ+(A) = κ+(KA), κ−(A) = κ−(KA),

where (KA, ΠA) is the Kreı̆n space induced by A as in Example 2.1, and the geo-
metric ranks of positivity/negativity are defined as in (2.4). It is not difficult to see
that κ±(A) coincides with the (Hilbert space) dimension of the spectral subspace
of A corresponding to the positive/negative semi-axis.

4.2. THE LIFTING PROPERTY OF THE SPACE (KA, ΠA). In order to exploit the full
power of induced Kreı̆n spaces we need to know which linear operators can be
lifted to induced Kreı̆n spaces. Based on Theorem 2.2 we can answer positively
this question for the Kreı̆n spaces in the unitary orbit of (KA, ΠA), that is, for any
other Kreı̆n space (K, Π) that is unitarily equivalent with (KA, ΠA).

THEOREM 4.2. Let H1 and H2 be Hilbert spaces and let A and B be selfadjoint
operators in H1 and respectively H2. We consider the induced Kreı̆n spaces (KA, ΠA)
and (KB, ΠB). Then for any operators T ∈ B(H1,H2), and S ∈ B(H2,H1) such that

(4.5) 〈Bx, Ty〉H2 = 〈Sx, Ay〉H1 , x ∈ Dom(B), y ∈ Dom(A),

there exist uniquely determined operators T̃∈L(KA,KB) and S̃∈L(KB,KA) such that
T̃ΠAx=ΠBTx for all x∈Dom(A) and S̃ΠBy = ΠASy, for all y ∈ Dom(B) and

〈S̃h, k〉K = 〈h, T̃k〉K, h ∈ KB, k ∈ KA.

Proof. Let A = SA|A| and B = SB|B| be the polar decompositions of A and
respectively B, then we note that (4.5) can be written

(4.6) 〈|B|x, SBTy〉H2 = 〈SASx, Ay〉H1 , x ∈ Dom(B), y ∈ Dom(A),

and hence we can apply Theorem 2.2 to the operators SBT and SAS to obtain the
lifted operators X and Y. Then note that SB and SA can be lifted to fundamental
symmetries on KB and respectively SA, and hence they are invertible on KB and,
respectively, KA, and finally let T̃ = S−1

B X and S̃ = S−1
A Y.

In Theorem 2.3 of [6], it is proven that in any infinite dimensional Hilbert
space there exist bounded selfadjoint operators that admit induced Kreı̆n spaces
that do not have the lifting property. Of course, this implies that in the un-
bounded case the situation is not better.
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4.3. THE INDUCED KREĬN SPACE (HA, πA). The construction of the Kreı̆n space
(KA, ΠA) induced by A, when A is a selfadjoint operator in the Hilbert space
H, has the disadvantage that it is obtained by a completion procedure and hence
some of the vectors in KA can be outside of H. In the following we present a
different construction in which the induced Kreı̆n space is actually a subspace of
H, the strong topology of this induced Kreı̆n space is inherited from the strong
topology of H, but the cost is a more involved canonical mapping Π.

Let A be a selfadjoint operator in the Hilbert spaceH. We consider the polar
decomposition (4.1) of the operator A. The operator SA is a selfadjoint partial
isometry and consider the subspace HA = Ran(A) that is invariant under SA.
HA is a Hilbert space, as a closed subspace of H. The restriction of this operator
to HA is a symmetry and let us define the inner product [·, ·] by

(4.7) [x, y]SA = 〈SAx, y〉H, x, y ∈ HA.

We consider the Kreı̆n space 〈HA, [·, ·]SA). Since Ran(|A|1/2) ⊆ HA we can define
the operator πA : Dom(|A|1/2) → HA by

(4.8) πAx = |A|1/2x, x ∈ Dom(|A|1/2).

PROPOSITION 4.3. Let A be a selfadjoint operator on the Hilbert space H. With
the notation as above, (HA, πA) is a Kreı̆n space induced by A. Moreover, (KA, ΠA) is
unitarily equivalent with (HA, πA).

Proof. To prove that (HA, πA) is a Kreı̆n space induced by A, note that we
already proved above that HA is a Kreı̆n space. Then note that πA is closed and
densely defined, as |A|1/2 has the same properties. Since Dom(A) = Dom(|A|)
is a core of |A|1/2 it follows that πA Dom(A) is dense in HA. In addition,

[πAx, πAy]SA = 〈SA|A|1/2x, |A|1/2y)= [Ax, y], x ∈ Dom(A), y ∈ Dom(|A|1/2).

We prove now that the induced Kreı̆n spaces (HA, πA) and (KA, ΠA) are
unitarily equivalent. To this end, we consider the operator U with Dom(U) =
Dom(A) ⊆ KA and range in HA, defined by

(4.9) Ux = |A|1/2x, x ∈ |A|1/2 Dom(A).

It follows that for all x, y ∈ Dom(A) we have

[Ux, Uy]SA = 〈SA|A|1/2x, |A|1/2y〉H = 〈Ax, y〉H = [x, y]A,

which proves that U is isometric with respect to the indefinite inner products on
HA and respectively KA. Taking into account how the strong topologies on these
Kreı̆n spaces are defined, more precisely, on KA it is given by the (semi)norm
‖|A|1/2 · ‖while onHA it is that inherited fromH, it follows that U is actually iso-
metric with respect to these Hilbert space norms, and thus continuous. Since, by
the definition of the space HA, U has dense range, it follows that it is a bounded
unitary operator between the Kreı̆n spaces KA and HA. Using the definition of U
it follows that UΠAx = πAx, for all x ∈ Dom(A).
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5. UNIQUENESS

We are now in a position to approach the uniqueness, modulo unitary equiv-
alence, of the Kreı̆n spaces induced by symmetric densely defined operators. First
we record a sufficient condition.

PROPOSITION 5.1. Let A be a densely defined symmetric operator in a Hilbert
space H such that it admits a Kreı̆n space induced by A, let this be (K, Π) subject to
the property that the linear manifold Π Dom(A) contains a maximal uniformly definite
subspace ofK. Then the Kreı̆n space induced by A is unique, modulo unitary equivalence.

Proof. Let (Ki, Πi), i = 1, 2, be Kreı̆n spaces induced by A. The equation
UΠ1x = Π2x, x ∈ Dom(A), uniquely determines an isometric operator densely
defined in K1 and with dense range in K2. If Π1 Dom(A) contains a maximal
uniformly definite subspace then by Theorem VI.3.5 in [2] it follows that U has a
unique extension to a bounded unitary operator and hence the two Kreı̆n spaces
induced by A are unitarily equivalent.

REMARK 5.2. The question whether the sufficient condition in the previous
proposition is also necessary is related to the study of dense operator ranges in
Kreı̆n spaces, as in [10]. For a dense operator range K in a Kreı̆n space D, ac-
cording to [10], the following alternative holds: either D contains a maximal uni-
formly definite subspace or it is contained in a subspace of form L+L⊥, where L
is a maximal positive subspace that is not uniformly definite. According to [13],
subspaces of the latter form are exactly the domains of unbounded unitary op-
erators. Therefore, if additionally we require that the symmetric densely defined
operator A admits an induced Kreı̆n space (K, Π) such that Dom(A) = Dom(Π)
and Π is closed, then the uniqueness of the Kreı̆n space induced by A, mod-
ulo unitary equivalence, implies that Π Dom(A) contains a maximal uniformly
definite subspace, equivalently, Π Dom(A) is not contained in any domain of un-
bounded unitary operators.

In the special case of a selfadjoint operator, we can obtain a characterization
of uniqueness in spectral terms. The lateral spectral gap condition plays a role
in similar uniqueness problems, as pointed out in [14], [7], [10], and [4]. In the
following, ρ(A) denotes the resolvent set of the operator A.

THEOREM 5.3. Let A be a selfadjoint operator in the Hilbert space H. The follow-
ing statements are equivalent:

(i) The Kreı̆n space induced by A is unique, modulo unitary equivalence.
(ii) A has a lateral spectral gap, that is, there exists an ε > 0 such that either (0, ε) ⊂

ρ(A) or (−ε, 0) ⊂ ρ(A).

Proof. (i)⇒(ii) We actually show that the same idea as in Theorem 3.2 in [4]
works in this unbounded case as well. Let us assume that the statement (ii) does
not hold. Then there exists a decreasing sequence of values {µn}n>1 ⊆ σ(A),
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0 < µn < 1 such that µn → 0 (n → ∞), and there exists a decreasing sequence of
values {νn}n>1 ⊆ σ(−A), 0 < νn < 1, such that νn → 0 (n → ∞). Then, letting
µ0 = ν0 = 1 there exist sequences of orthonormal vectors {en}n>1 and { fn}n>1
such that

(5.1) en ∈ E((µn, µn−1])H, fn ∈ E([−νn−1,−νn))H, n > 1.

where E denotes the spectral measure of A. As a consequence, we also have

(5.2) 〈Aei, f j〉 = 0, i, j > 1.

Define the sequence {λn}n>1 by

(5.3) λn = max
{√

1− µ2
n,

√
1− ν2

n

}
.

Then, 0 < λn 6 1 for all n and

(5.4) lim
n→∞

λn = 1.

We now consider (KA, ΠA), the Kreı̆n space induced by A and defined as
in Example 4.1, as well as the sequence {Sn}n>1, of subspaces of the Kreı̆n space
KA, defined by

Sn = Cen+̇C fn, n > 1,

and then define the operators Un ∈ L(Sn)

(5.5) Un =
1√

1− λ2
n

[
1 −λn

λn −1

]
, n > 1.

Further, we define the linear manifold D0 in KA by D0 =
⋃

k>1
Sk.

Recalling the notation in (4.2), the linear manifold

D = D++̇D− = Ran(ΠA)

is dense in KA, where A = A+ − A− is the Jordan decomposition of A and D± =
Dom(A) ∩ Ran(A±). By construction, D0 ⊆ D = D0+̇(D ∩D⊥0 ). Letting

(5.6) D+0 = Span{en : n > 1}, D−0 = Span{ fn : n > 1},

from (5.1) it follows that D0 = D+0 +D−0, where D±0 are mutually orthogonal
uniformly positive/negative linear manifolds. Then define a linear operator U
in KA, with domain D0 and the same range, by U|Sn = Un, n > 1, and then
extend it to D by letting U|(D ∩D⊥0 ) = I|(D ∩D⊥0 ). The operator U is isometric,
it has dense range as well as dense domain. On the other hand, U is unbounded
because it maps uniformly definite subspaces D±0 into subspaces that are not
uniformly definite. Indeed, considering the sequence xn = Unen, we observe that

〈|A|xn, xn〉 =
1 + λn√

1− λ2
n
〈Aen, en〉 >

µn(1 + λn)√
1− λ2

n
> 1,
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where the inequality follows by (5.4). On the other hand, by (5.4),

[Axn, xn] =
1− λn√

1− λ2
n
〈Aen, en〉 =

√
1− λn√
1 + λn

→ 0, as n → ∞,

hence UD+0 is not uniformly positive.
Using all these, define the operator Π from H into KA by Π = UΠA. We

claim that (KA, Π) is a Kreı̆n space induced by A.
Indeed, Π Dom(A) = UΠA Dom(A) ⊇ D which is dense in KA. Further,

[Πx, Πy]= [UΠAx, UΠAy]= [ΠAx, ΠAy]= [Ax, y], x∈Dom(A), y∈Dom(Π).

This concludes the proof of the claim. Since U is unbounded it follows that
(KA, ΠA) is not unitarily equivalent with (KA, Π).

(ii)⇒(i). Let A = A+ − A− be the Jordan decomposition of the operator A.
Denoting H± = Ran(A±), the following decomposition holds

(5.7) H = H+ ⊕Ker A⊕H−.

The operators A± yield selfadjoint operators in the Hilbert spaces H±, respec-
tively, with domains D± = H± ∩Dom(A). As in Example 4.1 it follows that the
strong topology of K is determined by the norms D± 3 x 7→ ‖(A±)1/2x‖.

To make a choice, let us assume that there exists ε > 0 such that (−ε, 0) ⊆
ρ(A), equivalently A− has closed range. Since A− is closed this implies that the
normed space (D−, ‖(A−)1/2 · ‖) is complete and hence, by the definition of the
Kreı̆n space KA, D− is a maximal uniformly negative subspace of KA. In case it
is assumed that (0, ε) ⊆ ρ(A), in a similar way we prove that D+ is a maximal
uniformly positive subspace of KA. Then we use Proposition 5.1.

6. EXAMPLES

In this section we consider some concrete realizations of Kreı̆n spaces in-
duced by linear operators associated to partial differential equations. Before do-
ing this we point out another abstract but useful construction.

6.1. REPRESENTATIONS IN TERMS OF THE CANONICAL MAPPING Π. As pointed
out in Remark 3.1, given a densely defined symmetric operator A in a Hilbert
space H, the possibility of getting a Kreı̆n space induced by A is more or less
related to getting a factorization of A of type Π∗ JΠ, where J is a symmetry on
a Hilbert space K and Π satisfies the axiom (i)–(iii). In this section we adopt a
different point of view, when compared to the previous Section 4. Our interest is
justified because both of the representations (KA, ΠA) and (HA, πA) heavily de-
pend on the modulus |A| and its square root |A|1/2, that are difficult to calculate.
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PROPOSITION 6.1. Let T ∈ C(H,H1), that is, T is a closed linear operator with
domain Dom(T) dense in the Hilbert space H and range Ran(T) in the Hilbert space
H1 such that for some c > 0 we have

(6.1) ‖Tu‖H1 > c‖u‖H, u ∈ Dom(T).

Let also J be a symmetry on Ran(T).
Then, the operator A = T∗ JT is selfadjoint that has a spectral gap in the neigh-

bourhood of 0, and (Ran(T), T) is a Kreı̆n space induced by A.

Proof. From (6.1) it follows that Ran(T) is closed and T is boundedly invert-
ible, that is there exists the bounded linear operator S = T−1 : Ran(T) → H.
Therefore, the operator B = S∗ JS is a bounded selfadjoint operator on the Hilbert
space Ran(T). In addition, B is injective and hence its inverse A = B−1 = T∗ JT is
a selfadjoint operator in H and has a spectral gap in the neighbourhood of 0. The
Kreı̆n space structure of Ran(T) is given by the strong topology (inherited from
that of H1) and the symmetry J. It is clear now that (Ran(T), T) is a Kreı̆n space
induced by A.

6.2. THE FREE DIRAC OPERATOR. We first consider the standard free Dirac op-
erator which describes the free electron in relativistic quantum mechanics (e.g.
see [11], [17], [22]). To simplify the notation, we assume the mass m = 1 and the
light speed c = 1. The free Dirac operator is defined in the space H = L2(R3; C4)
identified with C4 ⊗ L2(R3) as the following

H0 =
3

∑
j=1

αj ⊗ Dj + α0 ⊗ IL2(R3),

where Dj = i ∂
∂xj

(j = 1, 2, 3), x = (x1, x2, x3) ∈ R3, αj (j = 1, 2, 3, 4) are the
Dirac matrices, i.e. 4× 4 Hermitian matrices which satisfy the anticommutation
relations

αjαk + αkαj = 2δjk, j, k = 0, 1, 2, 3.

In the standard representation, see e.g. [22], the Dirac matrices αj (j =
0, 1, 2, 3) are chosen as follows

αj =
(

0 σj
σj 0

)
for j = 1, 2, 3; α0 =

(
σ0 0
0 −σ0

)
where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices (σ0 = I2 designates the 2 × 2 identity matrix). We con-
sider the operator H0 defined on its maximal domain, i.e. on the Sobolev space
Dom(H0) = W1

2 (R3; C4). It is known that on this domain H0 is a self-adjoint op-
erator. Note that by applying the Fourier transformation to the elements of the
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space L2(R3; C4) the operator H0 is transformed (in the momentum space) into a
multiplication operator by the following matrix-valued function

h0(ξ) =
[

σ0 σ(ξ)
σ(ξ) −σ0

]
,

where
σ(ξ) = ξ1σ1 + ξ2σ2 + ξ3σ3, ξ = (ξ1, ξ2, ξ3) ∈ R3.

The Fourier transformation is defined by the formula

û(ξ) = (Fu)(ξ) =
1

(2π)3/2

∫
u(x)ei〈x,ξ〉dx, u ∈ L2(R3)

in which 〈x, ξ〉 designates the scalar product of the elements x, ξ ∈ R3 (here and
in what follows

∫
:=

∫
R3

). The matrix h0(ξ) is the symbol of the operator H0 con-

sidered as a matrix differential operator with constant coefficients. This matrix
has the following eigenvalues, where r(ξ) = (1 + |ξ|2)1/2:

λ1(ξ) = λ2(ξ) = r(ξ), λ3(ξ) = λ4(ξ) = −r(ξ).

The unitary transformation U(ξ) which brings h0(ξ) to the diagonal form is
given explicitly by

U(ξ) =
[

a(ξ)I2 −b(ξ)σ(ξ)
b(ξ)σ(ξ) −a(ξ)I2

]
,

where a(ξ) =
( 1

2 (1 + r(ξ))−1)1/2 and b(ξ) = a(ξ)(1 + γ(ξ))−1. Thus, we have

(6.2) U(ξ)h0(ξ)U(ξ)∗ = α0r(ξ).

Now, we let
T(ξ) = r(ξ)1/2U(ξ),

and denote by T = T(D) the pseudo-differential operator corresponding to its
symbol T(ξ). The operator T is defined in the space H = L2(R3; C4) by

(6.3) (Tu)(x) =
1

(2π)3/2

∫
T(ξ)û(ξ)e−i〈x,ξ〉dξ, x ∈ Rn,

on the domain

Dom(T) = {u ∈ L2(R3; C4) : T(ξ)û(ξ) ∈ L2(R3; C4)}.

Obviously, u ∈ Dom(T) if and only if û ∈ L2,r(R3; C4), where L2,r(R3; C4)
stands for the space weighted by r(ξ) = (1 + |ξ|2)1/2, i.e. the space of all functions
f ∈ L2(R3; C4) such that r f ∈ L2(R3; C4). Note that F∗L2,r(R3; C4) = W1

2 (R3; C4)
(the Fourier transformation in the space L2(R3; C4) is again denoted by F).

It follows from (6.3) the factorization

H0 = T∗(α0 ⊗ IL2(R3))T.
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Since

‖Tu‖2 =
∫
|T(ξ)û(ξ)|2dξ =

∫
r(ξ)|û(ξ)|2dξ >

∫
|û(ξ)|2dξ = ‖u‖

for all u ∈ Dom(T), the condition (6.1) from Proposition 6.1 is fulfilled. In par-
ticular, the range Ran(T) is closed in the space L2(R3; C4), and so we have the
Hilbert space

GT = (Ran(T), ‖ · ‖L2(R3;C4)).

On the space H = L2(R3; C4) we consider the symmetry given by

(6.4) Ju = α0 ⊗ IL2(Rr)u, u ∈ L2(Rr),

and hence the Hilbert space GT equipped with the indefinite scalar product de-
fined by J becomes a Kreı̆n space that we denote by K. We have the decomposi-
tion

K = K+ ⊕K−,

where the orthogonal projection operators from K onto K± are given by

P± =
1
2
(I ± α0)⊗ IL2(Rr).

We conclude that the pair (K, Π), where Π = T (recall that T is the pseudo-
differential operator defined in the space L2(R3; C4) by (6.3)), is a Kreı̆n space
induced by the free Dirac operator H0, by Proposition 6.1.

Further on, denote by E0 the spectral measure associated with H0 and put

sgn(H0) =
∫

sgn(λ)dE0(λ).

Next we consider the symmetry J0 = sgn(H0) (in the space H = L2(R3; C4)).
With respect to the symmetry J0 the space H decomposes into an orthogonal di-
rect sum

H = H0
+ ⊕H0

−,

where H0
± = P0

±H and P0
± = 1

2 (I ± J0). In the theory of quantum mechanics H0
+

(respectively, H0
−) is known as the subspace of positive (respectively, negative)

energies.
We note the relation between the symmetries J0 and J defined as in (6.4)

J0 = W∗ JW,

where W = UF and U denotes the operator (in the momentum space) of multi-
plication by the unitary matrix U(ξ), and F is the Fourier operator.

We have the polar decomposition of the free Dirac operator H0 = J0|H0|.
Since

P0
+ J0 =

1
2
(I + J0)J0 =

1
2
(J0 + I) = P0

+,
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and, similarly, P0
− J0 = −P0

−, it follows that

H0
+ = P0

+H0P0
+ = P0

+ J0|H0|P0
+ = P0

+|H0|P0
+ > 0, and

H0
− = P0

−H0P0
− = P0

− J0|H0|P0
− = −P0

−|H0|P0
− 6 0.

Thus, H0 acts as a positive operator on the positive energy subspace H+,
and similarly, H0 is negative on the corresponding negative energy subspace
H−. Therefore, we see (by Theorem 5.3) that the Kreı̆n space induced by the
free Dirac operator H0 is unique, modulo unitary equivalence. In this respect we
note that σ(H0

−) = (−∞,−1], σ(H0
+) = [1, +∞), and σ(H0) = σ(H0

−)∪ σ(H0
+) =

(−∞,−1] ∪ [1, +∞) or, in other words, the interval (−1, 1) is a spectral gap for
the free Dirac operator.

6.3. THE PERTURBED DIRAC OPERATOR. We consider now the perturbed Dirac
operator H = H0 + Q, where Q is the operator of multiplication by a given
4 × 4 Hermitian matrix-valued function Q(x), x ∈ R3, relatively compact with
respect to H0. We assume that the entries of Q(x) are bounded and measurable
functions on R3. Due to the fact that the operator Q is a bounded operator the
perturbed Dirac operator H is defined on the Sobolev space W1

2 (R3; C4) as the
unperturbed operator H0. Moreover, the operator H is self-adjoint in the space
H = L2(R3; C4). It is known (e.g. see [15], [20], [23]) via the Weyl theory that, if
assuming in addition that the entries of the matrix-valued function Q(x) vanish
at infinity, then the essential spectra of the perturbed Dirac operator H = H0 + Q
and H0 are the same, i.e. σess(H) = (−∞,−1] ∪ [1, +∞), and the perturbation Q
can add a non-trivial set of eigenvalues in the spectral gap (−1, 1), but their pos-
sible points of accumulation can be only the endpoints ±1. Thus, again arguing
as in the case of the free Dirac operator, we can define the subspace of positive
energies H+ ⊂ H(= L2(R3; C4)) and the subspace H− = H ª H+ of nega-
tive energies for the perturbed Dirac operators. Obviously, H± = P±H, where
P± = 1

2 (I ± J) with J = sgn(H). By applying Theorem 5.3 we conclude that
the Kreı̆n space induced by the perturbed Dirac operator (of course, under our
hypotheses) is unique, modulo unitary equivalence.
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