
J. OPERATOR THEORY
61:2(2009), 381–417

© Copyright by THETA, 2009

LIMITS AND C∗-ALGEBRAS OF LOW RANK OR DIMENSION

LAWRENCE G. BROWN and GERT K. PEDERSEN

Dedicated to the memory of Gert K. Pedersen

Communicated by Şerban Strătilă

ABSTRACT. We explore various limit constructions for C∗-algebras, such as
composition series and inverse limits, in relation to the notions of real rank,
stable rank, and extremal richness. We also consider extensions and pullbacks.
We identify some conditions under which the constructions preserve low rank
for the C∗-algebras or their multiplier algebras. We also discuss the version
of topological dimension theory appropriate for primitive ideal spaces of C∗-
algebras and provide an analogue for rank of the countable sum theorem of
dimension theory. As an illustration of how the main results can be applied,
we show that a CCR algebra has stable rank one if and only if it has topolog-
ical dimension zero or one, and we characterize those σ-unital CCR algebras
whose multiplier algebras have stable rank one or extremal richness. (The real
rank zero case was already known.)
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1. INTRODUCTION

The concept of dimension for a topological space X originates in the basic
fact that manifolds are locally homeomorphic to euclidean spaces, which have an
obvious linear dimension. In the more abstract version given by Čech’s covering
dimension of a normal space X , the dimension gives conditions under which
certain functions extend and certain cohomology groups vanish.

Regarding a C∗-algebra A as the non-commutative analogue of C(X ) (or
C0(X )) for a compact (or just locally compact) Hausdorff space X , it is natural to
try to extend the notion of topological dimension of X to the analogous setting.
The more so as the covering dimension of X is easily characterized in terms of
elements in C(X ). In [38] Rieffel defined the (topological) stable rank, tsr(A), of
an arbitrary C∗-algebra A, using concepts from dimension theory: If A is unital,
tsr(A) is the smallest d in N (or ∞) such that unimodular d-tuples (namely, those
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which are left invertible as d × 1 matrices) are dense in Ad. Shortly after, the
stable rank was identified with the Bass stable rank of A, [15], which is a purely
algebraic concept. In particular, by an earlier result of Vaserstein, [43], we have
tsr(C0(X )) = [ 1

2 dim(X ∪ {∞})] + 1, the factor 1
2 arising from the use of complex

scalars in C0(X ).
The real rank of a C∗-algebra was introduced in [5] as an alternative to Rief-

fel’s stable rank. Formally the only difference is that self-adjoint elements replace
the general elements in Rieffel’s definition, but this has unexpected consequences,
especially for small values of the rank. In general one has RR(A) 6 2tsr(A)− 1,
and — pleasing for the eye — RR(C0(X )) = dim(X ∪ {∞}). However, in the
lowest possible cases, tsr(A) = 1 and RR(A) = 0, the two notions are indepen-
dent: one may be satisfied without the other.

One of the real surprises is the symmetry with which stable rank one and
real rank zero sometimes interact with the two K-groups for a unital C∗-algebra
A: If I is a closed ideal in A and tsr(A) = 1, the natural map K0(I) → K0(A) is
injective, whereas the map K1(I) → K1(A) is injective if RR(A) = 0. Also, the
natural map from Murray–von Neumann equivalence classes of projections in A
to K0(A) is injective if A has stable rank one, whereas its image generates the
whole group if A is of real rank zero.

Recall from [6] that a unital C∗-algebra A is extremally rich if the open set A−1
q

of quasi-invertible elements is dense in A. Here A−1
q can be defined as A−1E(A)

A−1, where E(A) denotes the set of extreme points in the closed unit ball, A1, of
A. Equivalently, cf. [7], A is extremally rich if conv(E(A)) = A1, so that — as a
Banach space — A has the λ-property, cf. [34]. If A = C(X ), extremal richness
is equivalent to dim(X ) 6 1. In general, extremal richness is a generalization of
Rieffel’s notion of stable rank one suitable for not necessarily finite C∗-algebras.
Thus every purely infinite, simple C∗-algebra is extremally rich, as is every von
Neumann algebra.

The low ranks, i.e. stable rank one, real rank zero, and extremal richness,
have different formal properties from the higher ranks. In particular, the low
ranks are invariant under Rieffel–Morita equivalence, but tsr(A⊗K) = 2 when-
ever tsr(A) > 1 and RR(A ⊗K) = 1 whenever RR(A) > 0. In this paper we
primarily consider low ranks, though a few results include higher rank cases.

For general (non-commutative) C∗-algebras the relationship between rank
and dimension is an analogy rather than a theorem. Nevertheless, topological
dimension theory has some applications, and we provide a brief treatment in
Section 2. This is largely, but not entirely, just a matter of using the appropriate
results from topology, but, as we explain, it would be wrong simply to apply cov-
ering dimension to primitive ideal spaces. Our treatment includes all C∗-algebras
with almost Hausdorff primitive ideal spaces, in particular all type I C∗-algebras.
Section 2 also contains a result about rank, Theorem 2.10, which is analogous to
and inspired by the countable sum theorem of dimension theory.
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Section 3 treats C∗-inverse limits, mainly those where all maps are surjec-
tive. We provide a framework for representing certain multiplier algebras as such
inverse limits. In Theorem 3.7 we prove that low rank is preserved by surjective
C∗-inverse limits, and in Theorem 3.11 we prove that real rank zero and stable
rank one are preserved in certain multiplier algebras which are non-surjective
inverse limits.

Section 4 has results on low rank of pullbacks where at least one of the maps
is surjective. Via the Busby construction this leads to results about low ranks
of extensions and multiplier algebras of extensions. And Section 5 contains the
applications to CCR algebras and concluding remarks and questions.

Determination of which extensions of low rank C∗-algebras have low rank
has been a matter of continuing interest to many mathematicians. In all three
cases A has low rank if and only if I and A/I do and an additional hypothesis
is satisfied. For real rank zero and stable rank one the additional hypothesis is
just the natural lifting condition, but for extremal richness it is the natural lifting
condition plus a technical hypothesis. In all three cases it is desirable to identify
circumstances in which the hypotheses can be simplified. In the extremal richness
case this means more than merely eliminating the technical hypothesis. Results
and remarks on this subject occur in Corollary 4.4, statements 4.6–4.8, and 5.11–
5.14.

The authors previously announced a paper entitled, “Extremally rich ideals
in C∗-algebras”. The present paper and [9] constitute an expanded version of that
paper.

2. TOPOLOGICAL DIMENSION AND LOW RANK

2.1. COMPOSITION SERIES. (i) Unless expressly mentioned, the word ideal will in
this paper designate a closed (and therefore ∗-invariant) ideal in a C∗-algebra. We
say that an increasing series {Iα | 0 6 α 6 β} of ideals of A, indexed by a segment
of the ordinal numbers, is a composition series of ideals for A if I0 = 0, Iβ = A, and

Iα =
( ⋃

γ<α
Iγ

)=
for limit ordinals α. Also Ã denotes the unitization of A, and “=”

denotes norm closure.
(ii) Rørdam shows in 4.1–4.3 of [39] that in every C∗-algebra A there is a largest

ideal Itsr 1(A) of stable rank one. If we define α(y) = dist(y, Ã−1), then the ideal
is given by

Itsr 1(A) = {x ∈ A | ∀y ∈ Ã : α(x + y) = α(y)} = {x ∈ A | x + Ã−1 ⊂ (Ã−1)=} .

Similar constructions are possible with respect to ideals of real rank zero
and of extremal richness, cf. Theorems 2.3 and 2.16 of [9]. Thus if we let αsa(z) =
dist(z, Ã−1

sa ) and define

R={x ∈ Asa | ∀y ∈ Ãsa : αsa(x + y)=αsa(y)}={x ∈ Asa | x + Ã−1
sa ⊂ (Ã−1

sa )=} ,
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then IRR 0(A) = R + iR is an ideal of real rank zero in A, and the largest such.
(iii) It may happen, of course, that A/Itsr 1(A) has a non-zero ideal of stable

rank one (consider e.g. the Toeplitz algebra, T ), or that A/IRR 0(A) has a non-
zero ideal of real rank zero (consider e.g. a non-trivial extension (of real rank one)
of a stabilized Bunce–Deddens algebra by C, arising from a non-liftable projection
in its corona algebra). In the general case we therefore obtain a strictly increasing
series {Iα|0 6 α 6 β} of ideals of A, which is a composition series for Iβ, such
that Iα+1/Iα = Itsr 1(A/Iα) and Itsr 1(A/Iβ) = 0, and similarly for the real rank
zero case.

(iv) If a C∗-algebra A has a composition series of ideals such that every sub-
quotient Iα+1/Iα has stable rank one (this implies Iβ = A above) we say that A
has generalized stable rank one. Similarly we say that A has generalized real rank zero
if it has a composition series such that RR(Iα+1/Iα) = 0 for all α.

(v) If A has generalized stable rank one and if we choose Iα+1 such that Iα+1/Iα

= Itsr 1(A/Iα), we obtain an essential composition series, i.e. Iα+1/Iα is an essen-
tial ideal in A/Iα for all α. For if I were a non-zero ideal of A/Iα orthogonal to
Iα+1/Iα, then there is a first ordinal µ such that J = (I ∩ Iµ)/Iα 6= 0. Since µ
cannot be a limit ordinal we see that J embeds as an ideal in Iµ/Iµ−1, and thus
tsr(J) = 1. As J ∩ (Iα+1/Iα) = 0 this contradicts our choice of Iα+1 as the largest
ideal such that tsr(Iα+1/Iα) = 1. Similar reasoning applies in the real rank zero
case.

(vi) It follows from the observations made above that a C∗-algebra A has gener-
alized stable rank one or generalized real rank zero precisely when Itsr 1(I/J) 6= 0
or IRR 0(I/J) 6= 0, respectively, for every non-zero quotient I/J of ideals of A.

This means that if A has another composition series {Iα | 0 6 α 6 β} (deter-
mined by other interesting subquotient properties), then we can find a composi-
tion series such that each of its subquotients has stable rank one or real rank zero,
respectively, and is also a subquotient of one of the algebras Iα+1/Iα.

2.2. THE PRIMITIVE IDEAL SPACE. (i) Recall from pp. 233–241 in [16] or Section 3
of [13] that the set A∨ of primitive ideals in a C∗-algebra A is a locally quasi-
compact, not necessarily Hausdorff topological space with the Jacobson topology,
defined by the closure operation:

S = hull(ker(S)) , S ⊂ A∨ .

Here hull(I) = {P ∈ A∨ | I ⊂ P}, and ker(S) =
⋂

P∈S
P for any ideal I of A and

any subset S of A∨. We obtain the formulae (A/I)∨ = hull(I) and I∨ = A∨ \
hull(I), together with ker(hull(I)) = I. Furthermore, for each x in A the norm
function x̌ on A∨ given by x̌(P) = ‖x− P‖, P ∈ A∨, is lower semicontinuous, so
that each set {P ∈ A∨ | x̌(P) > ε} is open; and x̌ vanishes at infinity, so that the
set {P ∈ A∨ | x̌(P) > ε} is compact for ε > 0, cf. 4.4.4 of [31].

(ii) For some purposes, including some results in Section 5, it is helpful to
make direct use of topological dimension theory. Since by definition tsr(A) =
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tsr(Ã) and RR(A) = RR(Ã) when A is a non-unital C∗-algebra, we will use
dim(X ∪{∞}) as the basic dimension function for any locally compact Hausdorff
space X . Here dim is Čech’s covering dimension and X ∪ {∞} is the one-point
compactification of X . It follows from 3.5.6 of [30] that

dim(X ∪ {∞}) = sup
K⊂X
{dim(K)} ,

where K is compact, and we see from 3.5.3 of [30] that dim(X ∪ {∞}) = dim(X )
whenX is σ-compact. The concept of local dimension is treated in Chapter 5 of [30],
and it follows from standard results that loc dim(X ) = dim(X ∪ {∞}) whenever
X is locally compact and Hausdorff.

(iii) Recall that a subset S of a topological space X is called locally closed if
S = F ∩G for some closed and open subsetsF and G ofX , respectively. For a C∗-
algebra A a locally closed subset S of A∨ corresponds to a subquotient of the form
I/J, where I and J are ideals of A such that J ⊂ I and S = (I/J)∨ = I∨ ∩ hullJ.
Here I and J are not uniquely determined by S , but I/J is determined up to
canonical isomorphism.

(iv) Recall further that a topological space X is called almost Hausdorff if every
non-empty closed subset F contains a non-empty relatively open subset F ∩ G
(so F ∩ G is locally closed in X ) which is Hausdorff. If A is a C∗-algebra of type
I then A∨ is almost Hausdorff since every non-zero quotient contains a non-zero
ideal with continuous trace, cf. 6.2.11 of [31].

(v) We define the topological dimension, top dim(A), of a C∗-algebra A for which
A∨ is almost Hausdorff by

top dim(A) = sup
S⊂A∨

{loc dim(S)} = sup
K⊂A∨

{dim(K)} ,

where S is any locally closed Hausdorff subset and K is any locally closed com-
pact Hausdorff subset of A∨.

REMARK 2.1. In the simplest case where A is unital and A∨ is Hausdorff
we have

top dim(A) = dim(A∨) = RR(Z(A))

by the Dauns–Hofmann Theorem, ([31], 4.4.8) where Z(A) denotes the center of
A. From [1] we then deduce, in the case where A is homogeneous of degree m
and the corresponding Fell bundle is trivial, so that A = Z(A) ⊗Mm, that we
have RR(A) 6 r if and only if top dim(A) 6 (2m − 1)r. In particular we learn
that it is in general false that top dim(A) 6 RR(A) — unless RR(A) = 0, cf.
Proposition 2.7.

PROPOSITION 2.2. If I is an ideal of a C∗-algebra A, then A∨ is almost Hausdorff
if and only if I∨ and (A/I)∨ are both almost Hausdorff, and in that case

top dim(A) = max{top dim(I), top dim(A/I)} .
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Proof. Every open or closed subset of an almost Hausdorff space is evi-
dently almost Hausdorff. Moreover, any subset of an open or a closed set which
is relatively locally closed and compact Hausdorff is also locally closed and com-
pact Hausdorff in the global sense. This proves the first part of the the proposi-
tion and shows that top dim(A) majorizes the other two. The reverse inequality
follows from 3.5.6. of [30].

PROPOSITION 2.3. If {Iα | 0 6 α 6 β} is a composition series for a C∗-algebra A
then A∨ is almost Hausdorff if and only if Iα+1/Iα is almost Hausdorff for each α < β,
and if this is so, then

top dim(A) = sup
α<β

{top dim(Iα+1/Iα)} .

Proof. Assume that for some ordinal λ we have proved that

top dim(Iµ) = sup
α<µ
{top dim(Iα+1/Iα)}

for all µ < λ. If λ is a limit ordinal then Iλ =
( ⋃

µ<λ
Iµ

)=
. Since every compact

subset of I∨λ is contained in some I∨µ we conclude that

top dim(Iλ) = sup
µ<λ

{top dim(Iµ)} = sup
α<λ

{top dim(Iα+1/Iα)} .

If λ is not a limit ordinal, i.e. λ = µ + 1 for some µ < λ, then again

top dim(Iλ) = max
{

top dim(Iλ/Iµ), sup
α<µ
{top dim(Iα+1/Iα)}

}
= sup

α<λ

{top dim(Iα+1/Iα)}

by Proposition 2.2. The argument can now be completed by transfinite induc-
tion.

PROPOSITION 2.4. If A is a C∗-algebra such that A∨ is almost Hausdorff and if
A∨ =

⋃
n
Sn where each Sn is locally closed, then top dim(A) = sup

n
{top dim(An)},

where An is the subquotient of A with A∨n = Sn.

Proof. It follows from Proposition 2.2 that top dim(An) 6 top dim(A) for
every n.

To prove the reverse inequality we shall use transfinite induction to con-
struct a composition series {Iα | 0 6 α 6 β} for A such that each locally closed
subset (Iα+1/Iα)∨ is contained in some Sn.

Assume that for some ordinal λ we have defined these ideals for all µ < λ.

If λ is a limit ordinal we just put Iλ =
( ⋃

µ<λ
Iµ

)=
. If λ is not a limit ordinal, i.e.
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λ = µ + 1 for some µ such that Iµ 6= A, we observe that

hull(Iµ) = (A/Iµ)∨ =
⋃
n
Sn ∩ hull(Iµ) .

Since (A/Iµ)∨ is a Baire space there is an n such that (Sn ∩ hull(Iµ))− has non-
empty interior (relative to hull(Iµ)). As any locally closed subset S is a dense,
relatively open subset of S , this implies that Sn ∩ hull(Iµ) has a relative interior
G 6= ∅. Thus we may define Iλ such that (Iλ/Iµ)∨ = G ⊂ Sn.

Since Iλ is strictly larger than Iµ, the inductive process must eventually ter-
minate with Iβ = A for some ordinal β, giving us the desired composition series.
The result now follows from Proposition 2.3.

REMARK 2.5. (i) We have not been able to locate a precise reference for the
topological analogues of Propositions 2.3 and 2.4, but we note that Proposition 2.3
is a special case of Proposition 2.4 when the composition series is countable and
that the topological analogue of Proposition 2.4 follows from standard results
when X is second countable.

(ii) It follows from Proposition 2.3 that when A∨ is almost Hausdorff then
dim(K) 6 top dim(A) for any compact Hausdorff subset of A∨, regardless of
whether K is locally closed or not. We do not know whether such non-locally
closed subsets can actually exist.

(iii) Note that top dim(A) depends only on A∨, but we are not showing this
in the notation because it is not the same as dim(A∨). It would be a mistake
if we had simply defined top dim(A) to be dim(A∨), ignoring the fact that A∨

may not be Hausdorff. To see this let X be a locally compact Hausdorff space
and define A = (C0(X ) ⊗ K)̃ . Then A∨ = X ∪ {∞}, where X has the given
topology; but X ∪ {∞} is not the one-point-compactification. In fact, the only
open set containing ∞ is the whole of A∨. Thus dim(A∨) = 0, whereas we have
correctly defined top dim(A) to be loc dim(X ). Note also that A∨ is compact, so
loc dim(A∨), as defined in [30], is zero. The space A∨, for X = [0, 1], appears in
Example 3.6.1 of [30].

The phenomenon above occurs annoyingly often, and means that we have
to work with non-unital C∗-algebras in order not to destroy the Hausdorff prop-
erties of their primitive ideal spaces.

(iv) Kirchberg and Winter [17] have defined the decomposition rank, dr(A),
for nuclear C∗-algebras A and have presented strong evidence that it is a non-
commutative analogue of topological dimension. Unlike top dim(A), dr(A) is
not a property of A∨, and therefore it can give much deeper information about A
than can top dim(A). Winter [44] has shown that dr(A) = top dim(A) when A is
subhomogeneous, but this does not hold for all type I A, since by Example 4.8 of
[17], dr(T ) = ∞.
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(v) It can be shown that for type I A, top dim(A) 6 sup{top dim(Aα)} when
A = (

⋃
Aα)= for an upward directed family {Aα} of C∗-subalgebras, cf. Ax-

iom X3 of [42].
(vi) Although we have defined the topological dimension of A only when A∨

is almost Hausdorff, the concept can be extended to arbitrary A in the special
case of dimension zero. Thus we define top dim(A) = 0 to mean that A∨ has a
basis consisting of compact-open subsets. This concept has already been used to
good effect by Bratteli and Elliott [2] and recently by Pasnicu and Rørdam [29]. In
Corollary 4.4 of [29] it is shown that the analogue of Proposition 2.2 holds for the
extended concept in the separable case. However, the proof depends on the main
theorem of [29]. We provide in the next proposition a simple direct proof that the
analogue of Proposition 2.2 always holds. Then it is routine to show that the new
definition for top dim(A) = 0 agrees with that given in Subsection 2.2 when A∨

is almost Hausdorff and that Proposition 2.3 and Proposition 2.4 still hold for the
new definition. We are grateful to M. Rørdam for providing a copy of [29] and
for helpful discussions.

PROPOSITION 2.6. Let X be a locally quasi-compact topological space and F a
closed subset. Then X has a basis of compact-open sets if and only if both F and X \ F
have bases of (relatively) compact-open sets.

Proof. Since one direction is trivial, it is enough to assume F and X \ F
have the property and prove that X does. Thus we are given a point p in X and
an open set U containing p, and we need to find a compact-open set C such that
p ∈ C and C ⊂ U . We assume p is in F , since otherwise the existence of C is
obvious. Then there is a compact relatively open subset K of F such that p ∈ K
and K ⊂ U . Let V be an open set such that V ⊂ U and V ∩ F = K. By local
quasi-compactness there is a compact set L such that L ⊂ V and K ⊂ L◦, where
L◦ is the interior of L. Then L \ L◦ is a compact subset of V \ F . Thus we can
find a compact-open subset C1 (open relative to X \F and hence open in X ) such
that L \ L◦ ⊂ C1 ⊂ V \ F . Then let C = L◦ ∪ C1 = L ∪ C1.

Recall that A is said to have the ideal property if every ideal of A is (ideally)
generated by its projections. This property was defined by Stevens [41] and ex-
tensively studied by Pasnicu, cf. [27]. A weaker property is that A⊗K have the
ideal property.

PROPOSITION 2.7. If A is a C∗-algebra of generalized real rank zero, or more
generally if A has a composition series {Iα | 0 6 α 6 β} such that (Iα+1/Iα)⊗K has
the ideal property for each α < β, then top dim(A) = 0.

Proof. Since A and A⊗K have the same primitive ideal spaces, and since
topological dimension is compatible with composition series (Proposition 2.3 and
Remark 2.5(vi)), it is sufficient to assume A has the ideal property and prove A∨

has a basis of compact-open sets. For this we use the fact that for every projection
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p in A, {P ∈ A∨ | p /∈ P} is a compact-open subset of A∨. Thus the ideal property
yields directly the fact that every open subset of A∨ is a union of compact-open
sets.

REMARK 2.8. Since the study of ranks is our primary concern, we have only
introduced the topological dimension for C∗-algbras as a tool. But it raises some
natural questions. One of the main theorems in topological dimension theory
is that if a normal space X is written as X =

⋃Fn, where each Fn is closed,
then dim(X ) = sup

n
dim(Fn). We proceed to establish an analogue of this count-

able sum theorem. Another will appear in Theorem 3.7, cf. Corollary 3.8 and
Remark 3.9.

DEFINITION 2.9. Recall from [9] that a C∗-algebra A is isometrically rich if the
union of the left and right invertible elements of Ã is dense in Ã. Equivalently,
cf. Proposition 4.2 of [9], A is isometrically rich if it is extremally rich and E(Ã)
consists only of isometries and co-isometries.

THEOREM 2.10. Let (In) be a sequence of ideals in a C∗-algebra A such that
∞⋃

n=1
hull(In) = A∨. Then:

(i) RR(A) = sup
n
{RR(A/In)}.

(i′) If A is σ-unital and RR(M(A/In)) = 0 for all n, then RR(M(A)) = 0.
(ii) tsr(A) = sup

n
{tsr(A/In)}.

(ii′) If A is σ-unital and tsr(M(A/In)) = 1 for all n, then tsr(M(A)) = 1.
(iii) If each quotient A/In is isometrically rich and In+1 ⊂ In for all n, then A is

isometrically rich.
(iv) If each quotient A/In is extremally rich and either {In} is finite or A∨ is Haus-

dorff, then A is extremally rich.

Proof. Without loss of generality we may assume in cases (i), (ii) and (iii) that
A is unital. In case (i) we assume for some d > 0 that RR(A/In) 6 d for all n and
take a tuple x in (Asa)d+1. We then wish to approximate x by a unimodular self-
adjoint (d + 1)-tuple. In case (ii) we assume for some d > 1 that tsr(A/In) 6 d
for all n and take a tuple x in Ad. We then seek the same kind of approximation
by a unimodular d-tuple. In cases (iii) and (iv) we take an arbitrary element x of
A or Ã and wish to approximate it by a one-sided invertible element of A or by
a general quasi-invertible element of Ã. The basic construction is the same in all
these cases, so we will write it out in case (iii), the most difficult, and then indicate
the minor changes to be made for the others.

Recall that for a quasi-invertible element y in A we have defined mq(y) =
dist(y, A \ A−1

q ), cf. 1.4 and 1.5 of [6], and that mq(y) also measures the distance
from 0 to the rest of the spectrum of |y|. Now take ε > 0 and let x0 = x. Also, let
πn : A → A/In denote the quotient morphism. By induction we will construct a
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sequence (xn) in A, such that πn(xn) ∈ (A/In)−1
q and ‖xn − xn−1‖ < δn, where

δn = min
{

2−nε ,
1
2

mq(πn−1(xn−1)) ,
1
2

δn−1

}
for all n (with the convention that mq(π0(x0)) = δ0 = 1). Assume that we have
defined xk for all natural numbers k < n. Since A/In is extremally rich we can
find y in (A/In)−1

q such that ‖y−πn(xn−1)‖ < δn, and we may then choose xn in
A such that πn(xn) = y and ‖xn − xn−1‖ < δn, completing the induction step.

The sequence (xn) is evidently convergent, so we can define x∞ = lim xn.
The inequalities in the construction imply that ‖x∞ − x‖ < ε. Moreover,

‖x∞ − xn‖ < ∑
k>n

δk 6 2δn+1 6 mq(πn(xn)) ,

so πn(x∞) ∈ (A/In)−1
q for all n. By assumption A/In is isometrically rich, so

πn(x∞) is either left or right invertible. However, since In+1 ⊂ In, if πn(x∞) is
not right invertible then πm(x∞) cannot be right invertible for any m > n. We
may therefore assume that πn(x∞) is, say, left invertible for all n. Equivalently,
πn(x∗∞x∞) is invertible for all n. Since A∨ =

⋃
hull(In) this implies that ρ(x∗∞x∞)

is invertible for every irreducible representation (ρ,H) of A. Therefore x∗∞x∞ is
invertible in A, so that x∞ is left invertible in A, as desired.

In case (iv), when A∨ is Hausdorff, the same construction will produce an
approximant x∞ in 1 + A ⊂ Ã such that ρ(x∞) is either left or right invertible for
every irreducible representation (ρ,H) of A. Thus

mq(ρ(x∞)) = max{m(ρ(x∞)), m(ρ(x∗∞))} > 0 ,

where, as usual,

m(ρ(x∞)) = max{ε > 0 | [0, ε[∩sp(ρ(|x∞|)) = ∅}.
Thus min(m(ρ(x∞)), 1) = 1−‖(1− ρ(|x∞|))+‖. Since this function is continuous
on A∨ and approaches 1 at ∞, there is an ε > 0 such that mq(ρ(x∞)) > ε for all
(ρ,H), whence mq(x∞) > ε and x∞ ∈ Ã−1

q , cf. Proposition 1.2 of [6]. And of
course the completion of case (iv) when {In} is finite is obvious.

In cases (i) and (ii) a key fact is that the set of (self-adjoint) unimodular
tuples in Ad is open. The distance of a unimodular tuple to the set of non-
unimodular tuples will then replace the function mq in the previous argument.
We therefore obtain a tuple x∞ = (y1, . . . , yd) such that ρ(∑ y∗k yk) is invertible for
every irreducible representation of A, which means that ∑ y∗k yk is invertible in A
and x∞ is a unimodular tuple.

The proofs of cases (i′) and (ii′) are almost identical, so we write it out only
for case (ii′), the more difficult. Thus we are given x in M(A) and seek to ap-
proximate x by an invertible element y of M(A). By the same basic argument
as above, we can approximate x by x∞ in M(A) such that for all n πn(x∞) is in-
vertible in M(A/In). Here πn : M(A)→ M(A/In) is the natural extension of πn,
and we use the non-commutative Tietze extension theorem ([32], Theorem 10), to
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deduce that πn is surjective. We shall show that x∞ has a polar decomposition,
x∞ = u|x∞|, where u is unitary in M(A). Then let y = u(|x∞|+ ε1).

For each n let (ρn,Hn) be a non-degenerate representation of A with kernel
In. Let (ρ,H) be the direct sum representation, and let ρn and ρ be the extensions
of ρn and ρ to M(A). Then ρ is faithful and ρ(M(A)) is the idealizer of ρ(A) in
B(H). Since ρn(x∞) is invertible, we can write ρn(x∞) = Unρn(|x∞|), where Un is
unitary in B(Hn). Let U =

⊕
n

Un and note that Uρ(|x∞|) = ρ(x∞) = ρ(|x∗∞|)U. It

is sufficient to show that U idealizes ρ(A). Clearly Uρ(R) ⊂ ρ(A) and ρ(L)U ⊂
ρ(A), where L = (A|x∗∞|)= and R = (|x∞|A)=, one-sided ideals of A. We claim
that L = A = R. To see this, use the corresponding hereditary C∗-subalgebras,
B = (|x∗∞|A|x∗∞|)= and C = (|x∞|A|x∞|)=. If, for example, R 6= A, then C 6= A;

and hence ϕ|C = 0 for some pure state ϕ. But since
∞⋃

n=1
hull(In) = A∨, ϕ factors

through A/In for some n. This contradicts the invertibility of πn(|x∞|).

REMARK 2.11. (i) It follows from Theorem 2.10 that we have:

(1) RR(A/(I ∩ J)) = max{RR(A/I), RR(A/J)};
(2) tsr(A/(I ∩ J)) = max{tsr(A/I), tsr(A/J)}; and
(3) A/(I ∩ J) is extremally rich⇔ A/I and A/J are for any pair I, J of ideals

in A. Since A/(I ∩ J) is a surjective pullback of A/I and A/J, (1) and (2) are not
new, cf. Theorem 4.1 and Remark 4.2 below.

(ii) Since the extra conditions in cases (iii) and (iv) are disappointing, we men-
tion a couple of complements.

(4) if A/I1 is isometrically rich and tsr(A/In) = 1 for n > 1, then A is isomet-
rically rich;

(5) if A/I1, . . . , A/Im are isometrically rich, tsr(A/In) = 1 for n > m, and if
hull(I1), . . . , hull(Im) are mutually disjoint, then A is extremally rich.

If we replace the sequence (In) by
( n⋂

k=1
Ik

)
, it is easy to deduce (4) from case (iii).

The deduction of (5) is also elementary, though not so immediate.
(iii) We show in Example 4.10 that if A/I1 is only extremally rich in (4), then

A need not be extremally rich, and that the disjointness hypothesis cannot be
omitted from (5). Thus the extra conditions in cases (iii) and (iv) of Theorem 2.10
cannot be omitted. We also show in Example 4.10 that (iii′) and (iv′), the ana-
logues of (iii) and (iv) for multiplier algebras, are false. It can also be shown that
(i′) and (ii′) would be false for real ranks > 0 or stable ranks > 1.

(iv) Part (i) of Theorem 2.10 gives in principle a new proof of the topological
countable sum theorem for compact Hausdorff spaces. However, the standard
proof as found in Theorem 2.5 of [30] is also of a function-theoretic nature. But
it uses the fact that dimX 6 n if and only if each unimodular (n + 1)-tuple in
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any quotient of C(X )sa lifts to a unimodular tuple in C(X )sa. Since general C∗-
algebras may not have very many ideals this definition does not generalize, and
the commutative proof cannot be used as it stands.

3. LOW RANK OF INVERSE LIMITS

3.1. INVERSE LIMITS. (i) If {Ai} is a family of C∗-algebras indexed by a directed
set I, and if {ϕij | i, j ∈ I, i > j} is a family of morphisms ϕij : Ai → Aj satisfying
the coherence relations ϕjk ◦ ϕij = ϕik for all i > j > k in I, we define the C∗-
inverse limit as the C∗-algebra lim←− Ai of bounded strings x = (xi) in ∏ Ai such
that ϕij(xi) = xj for all i > j. If ρi : A → Ai, i ∈ I, is a family of morphisms
which is coherent with respect to (ϕij), i.e. ϕij ◦ ρi = ρj for all i > j, there is
a unique morphism ρ : A → lim←− Ai given by ρ(x) = (ρi(x)). This universal
property provides an alternative definition of lim←− Ai.

We shall here be exclusively interested in the case where I = N. If each
morphism ϕn = ϕn,n−1 is surjective, we shall refer to lim←− An as the surjective C∗-
inverse limit of the An’s. For the rest of this section we shall assume lim←− An denotes
a surjective C∗-inverse limit unless we explicitly say otherwise.

In stark contrast to the direct limit, the inverse limit of C∗-algebras is practi-
cally absent from the theory. The reason is that it tends to be unmanageably large.
To circumvent this difficulty Phillips considered in [36] and [37] the category of
pro-C∗-algebras in which full inverse limits (containing unbounded strings in
∏ Ai) are allowed, but a much weaker topology is used. Roughly speaking, this
is the non-commutative analogue of passing from the category of compact spaces
(where an infinite topological union need not be in the category) to the category
of normal spaces (where this process is allowed, cf. 1.4.3 of [30]). In fact, if X is
the direct limit (in the category of topological spaces) of a directed family (Xi)
of compact Hausdorff spaces then lim←−C(Xi) = C(βX ), where βX denotes the
Stone–Čech compactification of X (so that βX is the direct limit of (Xi) in the cat-
egory of compact topological spaces). We shall here turn the usual disadvantage
of inverse limits into an advantage, describing a rather general method of writ-
ing the multiplier algebra M(A) of some C∗-algebras A as a surjective C∗-inverse
limit of quotients of A.

(ii) For every m we define the surjective morphism πm : lim←− An → Am by
evaluating an element x = (xn) of lim←− An at m. Note that ϕn ◦ πn = πn−1 for
n > 1. For each C∗-subalgebra B of lim←− An we therefore obtain a sequence of
C∗-subalgebras Bn = πn(B) such that ϕn(Bn) = Bn−1 for n > 1. Conversely,
and more to the point, given such a coherent sequence (Bn), there is a natural
embedding of lim←− Bn as a C∗-subalgebra B of lim←− An. Evidently B ⊂ B, and in
general the inclusion is strict. It is straightforward to verify that if B is an ideal
or a hereditary C∗-subalgebra of lim←− An, then this is also the case for every Bn
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in An. Conversely, if a coherent sequence (Bn) consists of ideals or hereditary
C∗-subalgebras, then B will have the same property in lim←− An. With the obvious
modifications this holds even for one-sided ideals.

THEOREM 3.1. If lim←− An is the surjective C∗-inverse limit of a sequence (An) of
σ-unital C∗-algebras, and if Ao is an ideal of lim←− An such that πm(Ao) = Am for every
m, then M(Ao) = lim←−M(An), a surjective C∗-inverse limit.

Proof. Put A = lim←− An and M = lim←−M(An). We then claim that there is a
commutative diagram

Ao
ιo−−−−→ A πn−−−−→ An

ϕn−−−−→ An−1yι

yρ
yιn

yιn−1

M(Ao) M πn−−−−→ M(An)
ϕn−−−−→ M(An−1)

Here ι and ιk for k > 0 are the natural embeddings, and ϕn is the surjective mor-
phism obtained from Theorem 10 of [32]. It follows that M is a surjective inverse
limit, and the coordinate evaluations πn are therefore also surjective.

Since the rightmost square of the diagram is commutative, we can define
the morphism ρ by (xn) 7→ (ιn(xn)) for every string x = (xn) in A, and we note
that πn ◦ ρ = ιn ◦ πn by this definition. Evidently ρ is injective and ρ(A) is an
essential ideal of M.

We claim that Ao is essential in A. For if xAo = 0 for some x in A, then
πn(x)An = 0 for every n by our assumption on Ao, whence πn(x) = 0, and
therefore x = 0. It follows that ρ(ιo(Ao)) is an essential ideal in M. By the uni-
versal property of multiplier algebras there is therefore an injective morphism
ϕ : M→ M(Ao) such that ϕ ◦ ρ ◦ ιo = ι.

Each surjective morphism πn ◦ ιo extends uniquely to a (not yet claimed
surjective) morphism ψn : M(Ao) → M(An) . Since ϕn ◦ πn ◦ ιo = πn−1 ◦ ιo, then
also ϕn ◦ ψn = ψn−1 for all n. By the universal property of inverse limits this
means that we have a unique morphism ψ : M(Ao) → M such that πn ◦ ψ = ψn
for all n. It follows that

πn ◦ ρ ◦ ιo = ιn ◦ πn ◦ ιo = ψn ◦ ι = πn ◦ ψ ◦ ι

for all n, which implies that ψ ◦ ι = ρ ◦ ιo.
Combining these results we find that

(ϕ ◦ ψ) ◦ ι = ϕ ◦ ρ ◦ ιo = ι and (ψ ◦ ϕ) ◦ ρ ◦ ιo = ψ ◦ ι = ρ ◦ ιo .

Since ι(Ao) is an essential ideal in M(Ao) and ρ(ιo(Ao)) is an essential ideal in M
these equations imply that ϕ and ψ are the inverses of one another, and we have
our natural isomorphism.
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COROLLARY 3.2. If (An) is a sequence of σ-unital C∗-algebras with surjective
morphisms ϕn : An → An−1, and if ϕn : M(An) → M(An−1) denote the unique (sur-
jective) extensions of the ϕn’s then

M(lim←− An) = lim←−M(An) .

3.2. CONSTANT IDEALS. We say that an ideal I in lim←− An is m-constant if I ∩
ker πm = 0. Equivalently, I ⊂ (ker πm)⊥. Since (ker πn) is a decreasing se-
quence, I ∩ ker πn = 0 for all n > m. Since ϕn ◦ πn = πn−1 we see that ker ϕn ⊂
πn(ker πm) for n > m. If therefore In = πn(I) denotes the associated sequence of
ideals in An, then In ∩ ker ϕn = 0 for n > m. Thus I is isomorphic to Im and In is
isomorphic to Im for all n > m. In particular, lim←− In = I. Conversely, if (In) is a
sequence of ideals in (An) such that ϕn(In) = In−1 for n > 1 and In ∩ ker ϕn = 0
for all n > m for some m then I = lim←− In will be an m-constant ideal in lim←− An.

If I is an n-constant and J an m-constant ideal with n 6 m, then I + J ⊂
(ker πm)⊥ since ker πm ⊂ ker πn, so I + J is an m-constant ideal. Since (ker πm)⊥

is the largest m-constant ideal, it follows that Ac = (
⋃

(ker πm)⊥)= is equal to
the sum of all constant ideals, and we shall refer to it as the quasi-constant ideal of
lim←− An.

The motivating example for considering constant and quasi-constant ideals
arises from the Stone–Čech compactification. If X is a locally compact Hausdorff
space then Cb(X ) is always a C∗-inverse limit. In the case where X is also σ-
compact we can write X =

⋃Xn, where each Xn is compact and Xn ⊂ (Xn+1)◦.
Put An = C(Xn) and let ϕn( f ) = f |Xn for each f in C(Xn+1). Then Cb(X ) =
lim←− An. The large constant ideals will be of the form (ker πm)⊥ = C0((Xm)◦), so
the quasi-constant ideal of Cb(X ) can be identified with C0(X ).

Theorem 3.1 provides an immediate generalization of this construction:

COROLLARY 3.3. If A = lim←− An is the surjective C∗-inverse limit of a sequence of
σ-unital C∗-algebras (An), such that the quasi-constant ideal Ac of A satisfies πm(Ac)
= Am for every m, then M(Ac) = lim←−M(An).

THEOREM 3.4. Let (Jn) and (In) be two sequences of ideals in a C∗-algebra A, one
increasing, the other decreasing, but such that In ∩ Jn = 0 for all n. If Ao = (

⋃
Jn)= is

essential in A and Ao + In = A for every n, then with An = A/In and ϕn : An → An−1
the natural morphisms we have an embedding ρ : A → lim←− An such that ρ(Ao) is an
ideal. If also each A/In is σ-unital, then M(Ao) = lim←−M(An).

Proof. If x ∈ ⋂
In then it annihilates Jn for every n, whence x ∈ A⊥o . But

then x = 0 since Ao is essential. Thus our assumptions imply that
⋂

In = 0. The
quotient morphisms ρn : A → An satisfy ϕn ◦ ρn = ρn−1 for all n, and therefore
define a morphism ρ : A → lim←− An. Since ker ρ =

⋂
In = 0, this is an embed-

ding. Observe that ρn(Jm) = (Jm + In)/In is an ideal in An for every n and m.
Since ker ϕn = In−1/In we see moreover that ρn(Jm) ∩ ker ϕn = 0 for n > m.
Consequently (ρn(Jm)) is a coherent sequence of ideals in (An), all isomorphic
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for n > m, thus giving rise to the m-constant ideal ρ(Jm) in lim←− An. It follows
from this that ρ(Ao) is an ideal in lim←− An, isomorphic to Ao (and contained in the
quasi-constant ideal of lim←− An). Since by assumption

πn(ρ(Ao)) = ρn(Ao) = (Ao + In)/In = An ,

it follows from Theorem 3.1 that M(Ao) = lim←−M(An).

REMARK 3.5. (i) If A = lim←− An where each An is separable, it can be shown
that Ac is the largest separable ideal of A, a result analogous to the result from
[3] that every separable C∗-algebra B is the largest separable ideal of M(B). With
the help of these facts it can be shown that if M(A0) = lim←−M(An) for a separa-
ble ideal A0 of A, then A0 = Ac and πm(A0) = Am, as in Corollary 3.3. Also
if (In) is a decreasing sequence of ideals of a separable C∗-algebra A such that⋂

In = 0, and if A0 is an ideal of A such that M(A0) is identified as above with
lim←−M(A/In), then A0 = (

⋃
I⊥n )= and A0 + In = A, as in Theorem 3.4. These facts

provide some justification for our approach in Corollary 3.3 and Theorem 3.4.
(ii) In Theorem 3.4 we could enlarge In to J⊥n or Jn to I⊥n and still have the

hypotheses. In the first case we see that lim←−M(An) doesn’t change. In the second,
(
⋃

Jn)= doesn’t change, at least in the separable case.

COROLLARY 3.6. Let (In) and (Jn) be two sequences of ideals in a C∗-algebra A,
one decreasing, the other increasing, such that In ⊥ Jn for every n. If

⋃
Jn is dense

in A and each quotient An = A/In is unital, then with ϕn : An+1 → An the natural
morphisms we have an embedding of A into lim←− An, such that lim←− An = M(A).

THEOREM 3.7. Let A = lim←− An be the surjective C∗-inverse limit of a sequence
of C∗-algebras. Then:

(i) If RR(An) = 0 for all n, then RR(A) = 0.
(ii) tsr(A) = sup

n
{tsr(An)}.

(iii) If each An is isometrically rich, then A is isometrically rich.
(iv) If each An is extremally rich, then A is extremally rich.

Proof. We shall use the same basic construction as in the proof of Theo-
rem 2.10, relative to the surjective morphisms πn : A → An. Assuming, as we
may, that A is unital we find in cases (i), (iii) or (iv) for each x in Asa or in A and
each ε > 0 an x∞ in Asa or in A, such that ‖x∞ − x‖ < ε and πn(x∞) ∈ (An)−1

sa
(in case (i)) and πn(x∞) ∈ (An)−1

q (in cases (iii) and (iv)). Moreover, in case
(iii) where each An is isometrically rich, we see from the connecting morphisms
ϕn : An → An−1 that either all πn(x∞) are left invertible or all are right invertible.

Let πn(x∞) = wn|πn(x∞)| be the polar decomposition, so that wn is in
E(An). Since wn is unique and |πn(x∞)| = πn(|x∞|) it follows that ϕn(wn) =
wn−1 for n > 1, so that w = (wn) is in E(A). Moreover, if all πn(x∞) are self-
adjoint invertibles, then every wn is a symmetry, so w is a symmetry, and if all
πn(x∞) are, say, left invertible, then each wn is an isometry, so w is an isometry.
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Now put y = w(|x∞|+ ε1). Then y ∈ A−1
q (and y is self-adjoint invertible if w is

a symmetry, whereas y is left invertible if w is an isometry) with ‖y− x‖ 6 2ε.
In the remaining case (ii) we are given a tuple x, and the approximant x∞ is

also a tuple. Thus x∞ = (y1, . . . , yd) is in Ad, and hn = πn(∑ y∗k yk) is invertible
in An for all n. Put wn = πn(x∞)h−1/2

n . Then as above ϕn(wn) = wn−1 and we
approximate x with w((∑ y∗k yk)1/2 + ε1).

COROLLARY 3.8. Let (Jn) be an increasing sequence of ideals in a C∗-algebra
A such that

⋃
Jn is dense in A. Assume furthermore that each annihilator quotient

A/(Jn)⊥ is unital. Then:
(i) If RR(A) = 0, then RR(M(A)) = 0.

(ii) tsr(M(A)) = tsr(A).
(iii) If A is isometrically rich, then M(A) is isometrically rich.
(iv) A is extremally rich if and only if M(A) is extremally rich if and only if each

A/(Jn)⊥ is extremally rich.

Proof. Combine Corollary 3.6 and Theorem 3.7.

REMARK 3.9. (i) The idea in Corollary 3.8 of combining properties of ideals
and their annihilators is found in Proposition 3.15 of [40], which is labeled a tech-
nical proposition. Viewed as a generalization of writing Cb(X ) as a C∗-inverse
limit lim←−C(Xn), cf. Subsection 3.2, the condition seems more intuitive. Sheu’s re-
sult calculates tsr(A) using weaker hypotheses on the ideals than those in Corol-
lary 3.8. It helped inspire some of our results and in turn could be deduced from
Theorem 2.10(ii).

(ii) It is instructive to realize that these formulae are non-commutative ana-
logues of the well-known identities dim(βX ) = dim(X ), valid for any nor-
mal space X ([30], 6.4.3). By contrast, the identities tsr(M(A)) = tsr(A) and
RR(M(A)) = RR(A) are often false for non-commutative C∗-algebras. A partial
“explanation” might be that M(A) is not always obtainable as a C∗-inverse limit
in the non-commutative case.

(iii) The hypotheses of Corollary 3.8 imply that A∨ =
⋃

hull(J⊥n )◦, a consider-
ably stronger condition than the one used in Theorem 2.10, but cases (iii) and (iv)
and case (ii) for higher ranks don’t follow from Theorem 2.10.

(iv) The reader may have wondered at the asymmetry in the treatment of stable
rank and real rank in Theorem 3.7 parts (i) and (ii). The truth is that we have —
at the moment — no argument to prove that if RR(A) 6 n for some unital C∗-
algebra A and n > 0, then for each ε > 0 there is a δ > 0 such that for every
tuple (x0, . . . , xn) in Asa there is a tuple (y0, . . . , yn) in Asa with ∑ y2

k > δ and
‖xk − yk‖ 6 ε for all k. In the similar situation for stable ranks we can take δ to
be any number less that ε2, as we saw in the proof of Theorem 3.7. This missing
information means that the higher real ranks of inverse limits and even direct
products cannot be estimated, a fact that seems not to be widely known.
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(v) We show that the surjectivity hypothesis in Theorem 3.7 cannot be omitted,
even in the separable, commutative, unital case. Note that if (An) is a decreasing
sequence of C∗-subalgebras of B, then

⋂
An is the C∗-inverse limit of the An’s. Let

X be an arbitrary compact metric space and f : C → X a surjective continuous
map, where C is the Cantor set. Let G = {(s, t) ∈ C × C | f (s) = f (t)} and
D = {(sn, tn)}, a countable dense subset of G. Then if B = C(C) and An = {g ∈
B | g(sk) = g(tk), k = 1, . . . , n}, then top dim(An) = 0 and

⋂
An ∼= C(X ).

Despite this example, we have some positive results about one class of non-
surjective inverse limits: Let (In) be an increasing sequence of ideals such that
A = (

⋃
In)=. Then M(A) is the C∗-inverse limit of the M(In)’s relative to the

restriction maps ρn : M(A) → M(In) and ρn,n−1 : M(In) → M(In−1). (But A is
the direct limit of the In’s.)

LEMMA 3.10. Let A = (
⋃

In)=, where (In) is an increasing sequence of ideals,
and let g ∈ A+. Then there is an increasing sequence (gn) such that gn ∈ In+ and
‖g− gn‖ → 0.

Proof. Let Pn = {x ∈ In+ : ‖x‖ < 1} and P =
⋃

Pn. By 1.4.3 of [31] Pn is
directed upward and forms an approximate identity of In. Hence P is directed
upward and forms an approximate identity of A. Thus we can recursively con-
struct an increasing sequence (rj) in P such that ‖g1/2(1 − rj)g1/2‖ < 1

j and a

strictly increasing sequence (nj) with rj ∈ Pnj . Finally, let gn = g1/2rjg1/2 if
nj 6 n < nj+1 (gn = 0 if n < n1).

THEOREM 3.11. Assume A is a σ-unital C∗-algebra and (In) an increasing se-
quence of ideals such that A = (

⋃
n

In)=. Let ρn : M(A) → M(In) be the restriction
maps.

(i) If tsr(A) = 1 and if p and q are projections in M(A) such that ρn(p) ∼ ρn(q)
for all n, then p ∼ q, where ∼ denotes Murray–von Neumann equivalence.

(ii) If tsr(M(In)) = 1 for all n, then tsr(M(A)) = 1.
(iii) If RR(M(In)) = 0 for all n, then RR(M(A)) = 0.

Proof. (ii) In the proof we make frequent use of a C∗-algebraic operation
which has already occurred in connection with C∗-algebras of low rank, but
which has no standard notation. If x is an element of a C∗-algebra B which is
faithfully represented on a Hilbert space, then x has a canonical polar decompo-
sition, x = v|x|, where |x| is in B but v need not be. If f : [0, ∞[→ C is a continuous
function such that f (0) = 0, let x[ f ] denote v f (|x|) = f (|x∗|)v. Then, as is well
known, x[ f ] is in B and is independent of the representation of B. Also this op-
eration is compatible with morphisms. For δ > 0 let Eδ and Fδ be the spectral
projections of |x| and |x∗| for the interval ]δ, ∞[, which again need not be in B.
Then, when B is unital, Rørdam [39] showed that tsr(B) = 1 if and only if for
each x in B and each δ > 0 there is a unitary u in B with uEδ = vEδ (equivalently
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Fδu = Fδv). In other words u “extends” the partial isometry vEδ. This property
of u is independent of the representation of B and can equivalently be stated:

(6) x[ f ] = u f (|x|) whenever f|[0,δ] = 0, or, still equivalently;
(7) xg(|x|) = u|x|g(|x|) whenever g|[0,δ] = 0.

Let x be in M(A) and 0 < δ < 1. Fix a strictly positive element g of A, and
let (gn) be as in Lemma 3.10. Define functions h0, h, k, and θn on [0, ∞[ by:

(8) h0|[0, δ
4 ] = 0, h0|[δ,∞[ = 1, h0 is linear on [ δ

4 , δ];

(9) h|[0, 1
2 ] = 0, h|[1,∞[ = 1, h is linear on [ 1

2 , 1];

(10) k|[0, 1
4 ] = 0, k|[ 1

2 ,∞[ = 1, k is linear on [ 1
4 , 1

2 ];
(11) θ1 = k ◦ h0, and θn+1 = k ◦ h ◦ θn.

Also we shall use the same symbol ρn to denote the restriction maps from
M(Im) to M(In) for m > n.

We shall recursively define wn, en, and fn in M(In) and yn in M(A) such
that:

(12) wn is unitary, 0 6 en, fn 6 1;

(13) wn extends vnE(n)
δ , referring to a polar decomposition of ρn(x);

(14) (ρn−1(wn)− wn−1)en−1 = 0 = fn−1(ρn−1(wn)− wn−1) for n > 1;
(15) wnen = fnwn;
(16) ‖(1− en)gn‖, ‖gn(1− fn)‖ < 1

n ;
(17) ρn−1(en)en−1 = en−1 and ρn−1( fn) fn−1 = fn−1 for n > 1;
(18) yn ∈ x[θn ] + In;
(19) ρn(yn) = wn|ρn(yn)|;
(20) (1− |yn|)Eδ = 0 = Fδ(1− |y∗n|); and
(21) (1− ρn(|yn|))en = 0 = fn(1− ρn(|y∗n|)).

To start the construction, choose a unitary w1 which extends v1E(1)
δ/4, estab-

lishing (13). Then let (ri) be an approximate identity for I1 and let

e′i = h(ρ1(h0(|x|) + (1− h0(|x|))1/2ri(1− h0(|x|))1/2)) .

Since (e′i) converges strictly to 1 in M(I1), we may define e1 = e′i0 , where i0 is
chosen large enough that ‖(1− e1)g1‖, ‖g1(1− w1e1w∗1)‖ < 1. Using (15) as the
definition of f1, we have (16). Now let

c1 = k(ρ1(h0(|x|) + (1− h0(|x|))1/2ri0(1− h0(|x|))1/2)) ,

and m1 = w1c1. From the choice of w1 and the fact that c1 ∈ ρ1(θ1(|x|)) + I1, it
follows that m1 = ρ1(x[θ1]) + z1 for some z1 in I1. Then let y1 = x[θ1] + z1, so that
(18) and (19) are clear. To prove (20) it is enough to show that the relations hold
both modulo I1 and after application of ρ1. Modulo I1 the relations are obvious
from (18) and the fact that θ1|[δ,∞]

= 1. Since ρ1(y1) = m1, it is clear that ρ1(|y1|)
unitizes anything unitized by ρ1(h0(|x|)). This shows the first part of (20), and
the second part follows by conjugation with w1 (using (13)). The first part of (21)
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follows from the fact that kh = h, and the second again follows by conjugation
with w1.

Now let n > 1 and assume the first n − 1 steps. Choose a unitary wn in
M(In) which extends v′E′1/4, referring to a polar decomposition of ρn(yn−1). To
verify (13) it suffices to verify it both modulo In−1 and after application of ρn−1.
Then (18) for n− 1 easily implies the relation modulo In−1. From (19) for n− 1
we see:

(22) ρn−1(wn)t = wn−1t whenever ρn−1(|yn−1|)t = t, and tρn−1(wn) = twn−1
whenever tρn−1(|y∗n−1|) = t.

In view of (20) and (13) for n− 1, the proof of (13) is complete. Next let (ri)
be an approximate identity for In and let

e′i = h(ρn(h(|yn−1|) + (1− h(|yn−1|))1/2ri(1− h(|yn−1|))1/2)) .

Since (e′i) converges strictly to 1 in M(In), we may define en = e′i0 where i0 is
chosen large enough that ‖(1− en)gn‖, ‖gn(1− wnenw∗n)‖ < 1

n . As in step one,
we define fn by (15) and have (16). Now we can deduce (14) from (21) for n− 1,
using (22). Since ρn−1(en) unitizes anything unitized by ρn−1(|yn−1|), we have
the first part of (17). The second part follows by conjugation, using (14). Next let

cn = k(ρn(h(|yn−1|) + (1− h(|yn−1|))1/2ri0(1− h(|yn−1|))1/2)) ,

and mn = wncn. Since cn ∈ ρn(k(h(|yn−1|))) + In, mn ∈ wnk(h(ρn(|yn−1|))) + In.
Also, the choice of wn and the fact that k ◦ h is supported on [ 1

4 , ∞) imply that
wnk(h(ρn(|yn−1|))) = ρn(yn−1)[k◦h]. It follows, using (18) for n − 1, that mn =
ρn(x[θn ]) + zn for some zn in In. Then let yn = x[θn ] + zn, so that (18) and (19) are
clear. Finally (20) and (21) are proved as in step one.

Now given the recursion, we construct w essentially as the strict limit of
(wn). Of course wn is only in M(In), but for each a in

⋃
In, wna and awn are de-

fined for n sufficiently large; and we claim that these sequences converge. In fact
from (14) and (17), fnρn(wm) and ρn(wm)en are constant for m > n. In particular
(wma) is convergent for a in engn In. Since engn → g by (16) and the choice of (gn),
we conclude that (wma) is convergent for a in gIn; and since g is strictly positive,
(gIn)− = In. The convergence of (awm) is proved similarly. Finally, it is clear that
w is unitary and the fact that w extends vEδ follows from (13).

(iii) It was shown in both [4] and [10] that a C∗-algebra B has real rank zero if
and only if it satisfies an interpolation by projections property. When B is unital
and is faithfully represented on a Hilbert space this property can be stated as
follows: Let x be in Bsa, and for δ > 0 let E+

δ and E−δ be the spectral projections
of x for the intervals ]δ, ∞[ and ]−∞,−δ[. Then there is a projection p in B such
that E+

δ 6 p 6 1− E−δ . This property can be equivalently stated:

(7′) pg(x)= g(x) whenever g|]−∞,δ] =0, and pg(x)=0 whenever g|[−δ,∞[ =0.

Thus the interpolation property is independent of the representation of B.
Note that for the canonical polar decomposition, x = v|x|, we have that v∗ = v,
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Eδ = Fδ = E+
δ + E−δ , vEδ = E+

δ − E−δ , and v|x| = |x|v in the notation of case (ii). It
was further observed in [10] that B has real rank zero if and only if for each such
δ and x, vEδ can be extended to a self-adjoint unitary u in B. The proof of case (iii)
can now proceed analogously to that of case (ii).

Thus we start with 0 < δ < 1 and x in M(A)sa and recursively define wn
and en in M(In)sa and yn in M(A)sa such that, with the same notations as in case
(ii):

(12′) wn is unitary and 0 6 en 6 1;

(13′) wn extends vnE(n)
δ , referring to a polar decomposition of ρn(x);

(14′) (ρn−1(wn)− wn−1)en−1 = 0 for n > 1;
(15′) wnen = enwn;
(16′) ‖(1− en)gn‖ < 1

n ;
(17′) ρn−1(en)en−1 = en−1 for n > 1;
(18′) yn ∈ x[θn ] + In;
(19′) ρn(yn) = wn|ρn(yn)| = |ρn(yn)|wn;
(20′) (1− |yn|)Eδ = 0; and
(21′) (1− ρn(|yn|))en = 0.

To start the construction, we choose two projections p and q in M(I1) such
that E(1)+

δ/4 6 p 6 E(1)+
δ/8 and E(1)−

δ/4 6 q 6 E(1)−
δ/8 . (The existence of p and q fol-

lows from the stated interpolation property and functional calculus.) Note that
pq = 0, ρ1(h0(x+)) ∈ pM(I1)p, and ρ1(h0(x−)) ∈ qM(I1)q. Let (ri) be an approx-
imate identity for pI1 p, (sj) an approximate identity for qI1q, (tk) an approximate
identity consisting of projections for (1− p− q)I1(1− p− q), and

e′i,j,k = h(ρ1(h0(|x|) + (1− h0(|x|))1/2(ri + sj)(1− h0(|x|))1/2)) + tk .

Then (e′i,j,k) converges strictly to 1 in M(I1). Hence we may define e1 = e′i0,j0,k0
,

where i0, j0, k0 are chosen large enough that ‖(1− e1)g1‖ < 1. Now let

c1 = k(ρ1(h0(|x|) + (1− h0(|x|))1/2(ri0 + sj0)(1− h0(|x|))1/2)) + tk0 ,

w1 = 2(p + tk0)− 1, and m1 = w1c1 = c1w1. As above, m1 = ρ1(x[θ1]) + z1 for
some z1 in I1, and we define y1 = x[θ1] + z1. All the conditions follow as in the
proof of case (ii), or more easily.

As in the proof of case (ii), the recursive step is essentially the same as the
initial step, using yn−1 instead of x, h instead of h0, 1

n instead of 1, and 1
4 instead of

δ
4 . All the conditions are verified as in case (ii) or more easily. And the completion
of the proof after the recursive construction is also the same as in case (ii).

(i) Let pn = ρn(p), qn = ρn(q), Bn = pn In pn, Cn = qn Inqn, and Xn = pn Inqn.
Fix strictly positive elements g′ of pAp and g′′ of qAq and choose g′n in Bn and g′′n
in Cn as in Lemma 3.10. Choose un in M(In) such that unu∗n = pn and u∗nun = qn,
and let B̃n = Bn + Cpn, C̃n = Cn + Cqn, and X̃n = Xn + Cun. Thus B̃n, C̃n, X̃n ⊂
M(In), and X̃n is a B̃n-C̃n Hilbert C∗-bimodule.
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An element u of X̃n will be called unitary if uu∗ = pn and u∗u = qn. Since
B̃n is unital of stable rank one, and since the map x 7→ xu∗n is an isomorphism of
X̃n with B̃n, the result of Rørdam [39] applies: If x ∈ X̃n with polar decomposition
x = v|x|, and if δ > 0, then there is a unitary u in X̃n such that uEδ = vEδ.

We shall recursively construct xn in Xn and wn in X̃n such that:

(12′′) wn is unitary and ‖xn‖ 6 1;
(14′′) (wn − wn−1)|xn−1| = 0 = |x∗n−1|(wn − wn−1) for n > 1;
(15′′) xn = wn|xn|;
(16′′) ‖(1− x∗nxn)g′′n‖, ‖g′n(1− xnx∗n)‖ < 1

n ;
(17′′) (1− |xn|)|xn−1| = 0 = |x∗n−1|(1− |x∗n|) for n > 1; and
(21′′) there is cn in Cn such that 0 6 cn 6 1 and (1− cn)|xn| = 0.

To start the construction, let w1 = u1 and choose an approximate iden-
tity (ri) for C1. Since (h(ri)) is also an approximate identity, we may define
|x1| = h(ri0)

1/2, where i0 is chosen large enough that ‖(1− h(ri0))g′′1 ‖, ‖g′1(1−
w1h(ri0)w∗1)‖ < 1. Then using (15′′) as the definition of x1 and taking c1 = k(ri0),
we have all the conditions.

For the recursive step, we take wn in X̃n to be a unitary extension of vEδ

for some δ < 1, referring to a polar decomposition of wn−1cn−1. If (ri) is an
approximate identity for Cn, then (h(cn−1 + (1− cn−1)1/2ri(1− cn−1)1/2)) is also
an approximate identity. Thus we may define |xn|=(h(cn−1+(1−cn−1)1/2ri0(1−
cn−1)1/2))1/2, where i0 is chosen large enough that ‖(1−|xn|2)g′′n‖, ‖g′n(1−wn|xn|2
w∗n)‖ < 1. The rest is similar to the above or clear.

Then we can see, as in the proof of case (ii), that (xn) converges strictly to
an element w of M(A) such that ww∗ = p and w∗w = q (also wn → w).

REMARK 3.12. (i) We don’t know whether M(In) extremally rich for all n
implies M(A) extremally rich. Nevertheless Theorem 3.11 can be used in con-
junction with Theorem 4.8 below to help prove extremal richness for some mul-
tiplier algebras, as in Corollary 4.9.

(ii) Case (i) of Theorem 3.11 is relevant in the context of low rank because
there are known relationships, and interest in investigating possible further rela-
tionships, between low rank and various cancellation properties for equivalence
classes of projections.

4. PULLBACKS, EXTENSIONS AND LOW RANK

Recall that the meaning of pullback diagram, in the notation below, is that
(η, ρ) gives an isomorphism of A with B⊕D C = {(b, c) ∈ B⊕ C | τ(b) = π(c)}.
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THEOREM 4.1. Consider a pullback diagram of C∗-algebras

A −−−−→
η

Byρ
yτ

C π−−−−→ D

in which π (hence also η) is surjective. Then:
(i) tsr(A) 6 max(tsr(B), tsr(C))).

(ii) If B and C have real rank zero, then A has real rank zero.
(iii) If B and C (hence also D) are extremally rich, then: A is extremally rich and ρ

extreme-point-preserving (e.p.p.) ⇔ τ is e.p.p.

Proof. By forced unitization we may assume that all C∗-algebras and all
morphisms are unital.

Note first that ρ| ker η is an isomorphism onto ker π, so that we may put
I = ker η = ker π to obtain the commutative diagram of extensions

0 −−−−→ I −−−−→ A −−−−→
η

B −−−−→ 0∥∥∥ yρ
yτ

0 −−−−→ I −−−−→ C π−−−−→ D −−−−→ 0

cf. Remark 3.2 of [35].
(i) Let d = max(tsr(B), tsr(C)). If x is a tuple in Ad, then we first approximate

η(x) by a unimodular tuple in Bd. By the definition of quotient norm, we approxi-
mate x by a tuple y such that η(y) is unimodular. Then π(ρ(y)) = τ(η(y)), which
is unimodular. By Lemma 2.1 of [23] we can approximate ρ(y) by a unimodular
tuple z such that π(z) = π(ρ(y)). Then the pair (η(y), z) satisfies the pullback
condition and gives a unimodular approximant to x.

(iii) If τ is e.p.p. and u ∈ E(B), then since C is extremally rich there is v in E(C)
such that π(v) = τ(u). Then the pair (u, v) represents a lifting of u to E(A).

To show that ρ is e.p.p., consider w = (u, v) in E(A). Then v is a partial
isometry in C such that (1 − v∗v)C(1 − vv∗) ⊂ I, since π(v) = τ(u) ∈ E(D).
However, (1− v∗v)I(1− vv∗) = 0 because I ⊂ A and w ∈ E(A). Taken together
this means that v is in E(C) as desired.

According to Theorem 6.1 of [6], to finish the proof that A is extremally rich,
we must check that

I + E(A) ⊂ (A−1
q )= .

For this, consider w = (u, v) in E(A) and x in I. Since C is extremally rich v + x ∈
(C−1

q )=, so v + x is the limit of a sequence (an) from C−1
q . By 2.13 of [9] we may

assume that v − an ∈ I. In the standard decomposition an = vnen, with vn in
E(C) and en = (|an|+ 1− v∗nvn) ∈ C−1

+ (cf. Theorem 1.1 of [6], ), we then have
π(en) = 1. It follows that wn = (u, vn) ∈ E(A) and xn = (1, en) ∈ A−1

+ ; and since
wnxn → (u, v + x) we have shown that (u, v + x) ∈ (A−1

q )=, as desired.
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Finally, to show the reverse implication, assume u ∈ E(B). Then u = η(w),
w ∈ E(A), since A is extremally rich. Then by hypothesis, ρ(w) ∈ E(C), and
hence τ(u) = π(ρ(w)) ∈ E(D).

(ii) The proof is similar to, and slightly easier than, the first part of the proof
of (iii). By Theorem 3.14 of [5] we need only prove that projections lift from B to
A.

REMARK 4.2. A number of papers contain results similar to ours. Thus
Corollary 3.16 of [40] and Corollary 2.7 of [23] cover Theorem 4.1 for stable rank,
and Lemma 1.3 of [25] covers it for real rank, in the special case where both π and
τ (hence also η and ρ) are surjective. Sheu’s, Nistor’s, and Osaka’s results cover
arbitrary values of the rank, not just low ranks.

More recently, independently of our result (and after it was first obtained in
1998), Nagisa, Osaka, and Phillips ([21], Proposition 1.6) proved Theorem 4.1(ii)
for arbitrary values of the real rank. After Corollary 1.12 of [21] they remark that
their proof (which is considerably longer than ours) also works for stable rank.
The idea, used in Corollary 4.4 below, of combining Theorem 4.1 with Busby’s
analysis of extensions, is also found in Osaka’s survey article ([26], Proposition 3.4).

The surjectivity condition cannot be entirely dropped from Theorem 4.1. To
show that surjectivity of π cannot be omitted for the case of real rank zero take
A = C([0, 1]), embedded in the algebra D of all bounded functions on [0,1]. Let C
be the subalgebra of D consisting of functions that are continuous on [0,1], except
for possible jump discontinuities at points of the form n2−m, where 0 < n <
2m, m ∈ N. Let B be defined as C, except that the jump discontinuities are now
allowed at points of the form n3−m, where 0 < n < 3m, m ∈ N. Realizing B
and C as inductive limits of algebras of step-functions with only finitely many
jumps, we see easily that they both have real rank zero. In fact, B and C are both
isomorphic to C(C), where C denotes the Cantor set. Since B ⊂ D and C ⊂ D it
is easy to verify that we have B⊕D C = B ∩ C = A. But A has real rank one, not
zero.

Tensoring A, B, C and D with C([0, 1]), we obtain an example for functions
on the unit square, which shows that surjectivity of π cannot be left out in the
stable rank one or extremal richness cases either.

If τ in Theorem 4.1(iii) is not e.p.p., it can actually happen that ρ is e.p.p.
and A not extremally rich (cf. Corollary 4.4) or that A is extremally rich and ρ not
e.p.p.

COROLLARY 4.3. Let I be an ideal in an extremally rich C∗-algebra A and denote
by π : A → A/I the quotient morphism. Then for each extremally rich C∗-subalgebra
B which is e.p.p. embedded in A/I, the C∗-subalgebra π−1(B) is extremally rich and
e.p.p. embedded in A.



404 LAWRENCE G. BROWN AND GERT K. PEDERSEN

Proof. We have the commutative diagram

I −−−−→ π−1(B) −−−−→
π

B∥∥∥ y y
I −−−−→ A π−−−−→ A/I

which shows that π−1(B) is one of the pullbacks covered by Theorem 4.1.

Every extension of C∗-algebras is associated with a Busby diagram, cf. [12]
or [14],

0 −−−−→ I −−−−→ A −−−−→
η

B −−−−→ 0∥∥∥ yρ
yτ

0 −−−−→ I −−−−→ M(I) π−−−−→ Q(I) −−−−→ 0

where Q(I) = M(I)/I denotes the corona algebra of I. Here the right hand
square is a pullback, and A is completely determined by the Busby invariant τ.
Either A is unital, which implies that also τ is unital; or A is non-unital, in which
case we obtain a new pullback diagram replacing η and τ by the forced unitized
morphisms η̃ : Ã→ B̃ and τ̃ : B̃→ Q(I). Since this will not effect the rank of any
of the algebras involved, we may as well assume that the extension is unital.

Applying Theorem 4.1 to the pullback diagrams described above, we ob-
tain a simple but powerful tool for producing examples of extremally rich C∗-
algebras.

COROLLARY 4.4. Consider an extension of C∗-algebras

0→ I → A→ B→ 0

determined by the Busby invariant τ : B→ Q(I). Then
(a) tsr(A) 6 max(tsr(B), tsr(M(I))).
(b) If both B and M(I) have real rank zero, then A has real rank zero.
(c) If both B and M(I) are extremally rich, then the following are equivalent:

(i) τ is e.p.p;
(ii) η(E(A)) = E(B), where η : A→ B is the quotient map;

(iii) A is extremally rich.

Proof. In this situation the map ρ is always e.p.p. In fact if u ∈ E(A), then
(1 − u∗u)I(1 − uu∗) = 0. Since ρ(I) is strictly dense in M(I), this implies that
(1− ρ(u)∗ρ(u))M(I)(1− ρ(u)ρ(u)∗) = 0. The rest follows from Theorem 4.1 and
its proof.

Sometimes it is useful to know whether η(E(A)) = E(B) for purposes other
than determining whether A is extremally rich. For example, we may want to
know whether η induces a surjective map on the extremal K-sets, cf. [8]. Also
if I is the largest ideal of A which is a dual C∗-algebra, then the description of
elements of A with persistently closed range, cf. Section 7 of [8], can be simplified
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if extremals lift. Thus it is worthwhile to state the following corollary, which
follows from the arguments above.

COROLLARY 4.5. If I is an ideal in a unital C∗-algebra A, η : A → A/I is the
quotient map, and if M(I) is extremally rich, then η(E(A)) = E(A/I) if and only if the
Busby invariant τ : A/I → Q(I) is extreme-point-preserving.

REMARK 4.6. (i) For stable rank one or real rank zero the hypotheses of
Corollary 4.4 can be weakened: If tsr(B) = tsr(I) = 1 and the map ι0 : K0(I) →
K0(M(I)) is injective then tsr(A) = 1. It is well-known by now that the vanishing
of the map ∂1 : K1(B) → K0(I) suffices for an extension of stable rank one alge-
bras to have stable rank one, and this fact follows from the injectivity of ι0 by an
easy diagram chase. According to [24] the statement about ∂1 is an unpublished
result of G. Nagy, who later published a different proof in Corollary 2 of [22]. Sim-
ilarly, if RR(B) = 0 = RR(I) and the map ι1 : K1(I) → K1(M(I)) is injective then
RR(A) = 0. Here we need the injectivity of ι1 to show that ∂0 : K0(B) → K1(I)
vanishes. This statement is due to Zhang, cf. Propositions 3.14 and 3.15 of [5].

(ii) Since any morphism from an isometrically rich C∗-algebra is extreme-point-
preserving, Corollary 4.4(c) yields extremal richness for A whenever B is isomet-
rically rich, and this is not a severe restraint. By contrast, the condition that not
only I but also M(I) should be extremally rich or of low rank is quite restrictive.

EXAMPLE 4.7. To apply Corollary 4.4(c) we need a supply of C∗-algebras
(necessarily extremally rich) whose multiplier algebras are extremally rich. As
shown in Corollary 3.8 of [18] this happens for every σ-unital purely infinite sim-
ple C∗-algebra. However, if A is σ-unital, simple (but not elementary) and has a
finite trace then neither M(A) nor M(A⊗K) are extremally rich by Theorems 3.1
and 3.2 of [18]. Secondly, we immediately observe that if A is a dual C∗-algebra,
then M(A) is extremally rich. Indeed, A is the direct sum

⊕
Ai of elementary C∗-

algebras (full matrix algebras or algebras of compact operators on some Hilbert
space), so M(A) is the direct product ∏ M(Ai), where each M(Ai) = B(Hi) for
some Hilbert space Hi. But if A = c ⊗ K, the algebra of norm convergent se-
quences of compact operators on `2, then M(A) is not extremally rich. This will
be shown in Example 4.10, below. Finally, Theorem 5.9 below provides additional
examples.

THEOREM 4.8. Let I be an ideal in a σ-unital C∗-algebra A. Then:
(i) If RR(M(I)) = 0 and RR(M(A/I)) = 0, then RR(M(A)) = 0.

(ii) If tsr(M(I)) = 1 and tsr(M(A/I)) = 1, then tsr(M(A)) = 1.
(iii) If both M(I) and M(A/I) are extremally rich and tsr(M(A/(I + I⊥))) = 1,

then M(A) is extremally rich and the natural morphism ρ : M(A)→ M(I) is extreme-
point-preserving.
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Proof. Setting B = A/I we have a commutative diagram in which each row
contains an extension and ι denotes an unspecified embedding:

0 −−−−→ I ι−−−−→ A
η−−−−→ B −−−−→ 0∥∥∥ yρ

yτ

0 −−−−→ I ι−−−−→ ρ(A) π−−−−→ τ(B) −−−−→ 0∥∥∥ yι

yι

0 −−−−→ I ι−−−−→ M(I) π−−−−→ Q(I) −−−−→ 0yι

xι

xι

0 −−−−→ M(ρ(A), I) ι−−−−→ I(ρ(A)) π−−−−→ I(τ(B))
ϕ−−−−→ M(τ(B)) −−−−→ 0xι

xρ

xτ

0 −−−−→ M(A, I) ι−−−−→ M(A)
η→−−−−−−−−−−−−−−−−→ M(B) −−−−→ 0

Here M(A, I) = {x ∈ M(A) | xA + Ax ⊂ I} and M(ρ(A), I) = {x ∈ M(I) |
xρ(A) + ρ(A)x ⊂ I}, whereas I(ρ(A)) and I(τ(B)) denote the idealizers of the
two algebras inside M(I) and Q(I), respectively. The two quotient morphisms η
and π are central to the picture and describe the extensions in the first and third
row. The morphism ρ : A→ M(I) is the natural map arising from the embedding
of I as an ideal in A; and ker ρ = I⊥. The Busby invariant τ is derived from ρ
to make the upper right square commutative. The morphisms η, τ and ρ are the
canonical extensions to the multiplier algebras of η, τ and ρ, respectively. Since
A, hence also B and τ(B) are σ-unital, the overlined morphisms are surjective by
Theorem 10 of [32]. Finally, the natural morphism ϕ is surjective by Corollary 3.2
of [14].

The kernel of the morphism ρ is

ker ρ = {x ∈ M(A) | xA + Ax ⊂ I⊥} = M(A, I⊥) ,

which intersects M(A, I) in 0. Thus ρ gives an isomorphism of M(A, I) onto the
hereditary C∗-subalgebra M(ρ(A), I) of M(I), which is an ideal of I(ρ(A)). In
the diagram we may therefore identify the two isomorphic ideals in M(A) and
I(ρ(A)).

We claim that the lower right rectangle is a pullback, so that

M(A) = I(ρ(A))⊕M(τ(B)) M(B) .

For this it suffices to show that M(ρ(A), I) = ker(ϕ ◦ π) in I(ρ(A)), cf. Proposi-
tion 3.1 of [35]. But this is evident, since the kernel of ϕ is the (two-sided) annihi-
lator τ(B)⊥ in I(τ(B))

(i) Since M(ρ(A), I) is hereditary in M(I), it follows that RR(M(A, I)) = 0.
Given that also RR(M(B)) = 0 we need only show that projections lift from M(B)
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to M(A), cf. 3.14 of [5]. Given a projection p in M(B) let h be a self-adjoint lift in
M(A) of the symmetry 2p− 1, and put h = ρ(h). By [4], see also the explanatory
version in [10], there is an interpolating projection q in M(I) such that if f± are
(any) two continuous functions vanishing on [−1, 1

2 ] and [− 1
2 , 1], respectively,

with f+(1) = 1 and f−(−1) = 1 for future use, then

q f+(h) = f+(h) and (1− q) f−(h) = f−(h).

For every b in B we have

π( f+(h))τ(pb) = τ(pb) and π( f−(h))τ((1− p)b) = τ((1− p)b) .

Consequently,
π(q)τ(pb) = π(q f+(h))τ(pb) = τ(pb) .

Similarly π(1 − q)τ((1 − p)b) = τ((1 − p)b). Taken together, this means that
π(q)τ(b) = τ(pb). Similarly τ(b)π(q) = τ(bp). Thus π(q) ∈ I(τ(B)) and
ϕ(π(q)) = τ(p). It follows that p = (q, p) ∈ M(A) and is a projection lift of
p, as desired.

(ii) We now know that both M(B) and M(A, I) (being isomorphic to a hered-
itary C∗-subalgebra of M(I)) have stable rank one, so in order to prove that
tsr(M(A)) = 1 we need only show that unitaries lift from M(B) to M(A), cf.
6.4 of [6]. Given a unitary u in M(B) let h be a lift of u to M(A) and put h = ρ(h).
Since tsr(M(I)) = 1 there is, by Theorem 2.2 of [39] or Corollary 8 of [33], for
any continuous function f vanishing on [0, 1

2 ], with f (1) = 1, a unitary w in M(I)
such that if h = v|h| is the polar decomposition in some B(H) (cf. the proof of
Theorem 3.11) then

v f (|h|) = w f (|h|) and f (|h∗|)v = f (|h∗|)w .

For each b in B we compute

π( f (|h|))τ(b) = τ( f (|u|)b) = τ(b) .

Similarly τ(b)π( f (|h∗|)) = τ(b). Consequently,

π(w)τ(b) = π(w f (|h|))τ(b) = π(v f (|h|))τ(b) = τ(ub) ,

and similarly τ(b)π(w) = τ(bu). Thus ϕ(π(w)) = τ(u) and u = (w, u) ∈ M(A)
and is a unitary lift of u, as desired.

(iii) Now M(A, I) and M(B) are both extremally rich, so to prove that M(A)
is extremally rich we must show that extreme partial isometries in E(M(B)) lift
in a “good” way, cf. Theorem 6.1 of [6]. Given u in E(M(B)) let h be a lift in
M(A) and put h = ρ(h) as in case (ii). Since M(I) is extremally rich there is for
any continuous function f vanishing on [0, 1

2 ], with f (1) = 1, an extreme partial
isometry w in E(M(I)) such that if h = v|h| is the polar decomposition, then

v f (|h|) = w f (|h|) and f (|h∗|)v = f (|h∗|)w ,
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cf. Theorem 2.2 of [6]. We have assumed that tsr(M(τ(B))) = 1, so τ(u) is unitary.
Consequently

π( f (|h|))τ(b) = τ( f (|u|)b) = τ(b)

for every b in B, and similarly τ(b)π( f (|h∗|)) = τ(b). As in case (ii) we therefore
obtain the equations

π(w)τ(b) = τ(ub) and τ(b)π(w) = τ(bu) ,

so that π(w) ∈ I(τ(B)) with ϕ(π(w)) = τ(u). Thus u = (w, u) ∈ M(A) and is
an extremal lift of u as we wanted.

Let p± denote the defect projections of u. The extra technical condition
needed in Theorem 6.1 of [6] is that the two bimodules p±M(A)r are extremally
rich for any defect projection r arising from an element s in E(M(A, I )̃ ). Since
τ(η(u))=τ(u) is unitary it follows that π(ρ(p±))∈τ(B)⊥, i.e. ρ(p±)∈M(ρ(A), I).
Since moreover r ∈ M(A, I), also ρ(r) ∈ M(ρ(A), I). But this is a hereditary
C∗-subalgebra of M(I), so

ρ(p±M(A)r) = ρ(p±)M(ρ(A), I)ρ(r) = ρ(p±)M(I)ρ(r) .

Note now that by construction ρ(u) = w ∈ E(M(I)), so ρ(p±) are both extreme
defect projections of M(I). Moreover, since ρ(M(A, I)) is hereditary in M(I),
ρ(s) is in E(M(I)) and ρ(r) is also an extreme defect projection of M(I). It now
follows from Proposition 4.4 of [6] that ρ(p±)M(I)ρ(r) is extremally rich.

Finally, the fact that ρ is e.p.p. follows by the same argument as in Corol-
lary 4.4.

COROLLARY 4.9. Let {Iα | 0 6 α 6 β} be a composition series for a separable
C∗-algebra A. Then

(i) If RR(M(Iα+1/Iα)) = 0 for all α < β, then RR(M(A)) = 0.
(ii) If tsr(M(Iα+1/Iα)) = 1 for all α < β, then tsr(M(A)) = 1.

(iii) If M(I1) is extremally rich and tsr(M(Iα+1/Iα)) = 1 for 1 6 α < β, then M(A)
is extremally rich.

Proof. If we assume, as we may, that (Iα) is strictly increasing, then β is
countable, since A∨ is second countable. Then the result follows by a routine
transfinite induction from Theorems 3.11 and 4.8.

EXAMPLE 4.10. In Example 7.9 of [8] we explored a non-extremally rich
C∗-algebra A that illustrates a number of points in the present paper. (There
is a typographical error in the second-to-last paragraph of Example 7.9 of [8]:

Please change (vii) to (viii).) Let I =
∞⊕

n=1
Mn and let B be the C∗-subalgebra of

M(I) (=
∞
∏

n=1
Mn) consisting of norm convergent sequences (relative to the stan-

dard embedding of Mn in B(`2)). Then M(B) consists of the strong* convergent
sequences. If sn denotes the forward truncated shift in Mn and s the forward shift
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on `2, we put s̃ = (sn) in M(B) and now A = C∗(B , s̃ , 1) in M(B). The quotient
A/I is isomorphic to Te, the extended Toeplitz algebra generated by the element
s⊕ s∗ in B(`2 ⊕ `2). The primitive ideal space of A (equal to the spectrum Â) is
the disjoint union

{π1, π2, . . . } ∪ {σ+} ∪ {σ−} ∪T ,

where each πn corresponds to an n-dimensional representation, σ± correspond
to the infinite dimensional representations of Te, and the circle T (with the usual
topology) consists of one-dimensional representations. The set F = {σ+, σ−} ∪T
is the hull of I, and (πn) converges to all points in F simultaneously.

Each set {πn} is closed in A∨ and corresponds to a stable rank one quotient
of A. Thus the hypothesis in (4) of Remark 2.11(ii) that A/I1 be isometrically
rich cannot be weakened to extremal richness. Also, each of the sets {σ+} ∪ T
and {σ−} ∪ T is closed in A∨ and corresponds to an isometrically rich quotient
of A. Thus the disjointness condition in (5) of Remark 2.11(ii) cannot be omit-
ted. Since Â is an almost Hausdorff space, the Hausdorff demand in part (iv) of
Theorem 2.10 cannot be replaced by almost Hausdorff.

Since A/B is isometrically rich and A is not extremally rich, it follows from
Corollary 4.4 that M(B) is not extremally rich. This shows that the non-existent

parts (iii′) and (iv′) of Theorem 2.10 are false if we consider B∨=
( ⋃

n
{πn}

) ⋃{σ+}.

Note that B∨ is Hausdorff and all but one of the quotients of B are unital and of
stable rank one. This also shows that the hypothesis that tsr(M(A/(I + I⊥))) = 1
cannot be dropped from Theorem 4.8, since tsr(M(I)) = 1 and M(B/I) is isomet-
rically rich, thus suggesting some sharpness in the hypotheses of Theorem 4.8.
Finally, since B is a corner of c⊗K, the assertion in Example 4.7 that M(c⊗K) is
not extremally rich has been verified.

5. APPLICATIONS, REMARKS, AND QUESTIONS

The main purpose of this section is to provide some sample applications of
the basic results of the paper by determining when CCR algebras or their multi-
plier algebras have low rank. In deciding how much material to present and how
to present it, we have tried to walk a fine line. On the one hand we don’t want to
obscure the main purpose with too many technical proofs, and on the other hand
we don’t want to complicate the statements of the results with unnecessary tech-
nical hypotheses. But we begin with two light contributions concerning type I
algebras. These together with Proposition 2.7 constitute our best effort to give
a somewhat general characterization of low topological dimension. (The “light-
ness” of Proposition 5.1 lies in the fact that the most important parts were already
known.)

We will use the local definition of AF-algebra in order to cover non-separable
algebras. Thus A is an AF-algebra if for every finite subset F of A and every ε > 0,
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there is a finite dimensional C∗-subalgebra B such that dist(a, B) < ε for each a
in F . In Proposition 5.1 below the equivalence of (i) and (iv) in the separable
case was proved by Bratteli and Elliott [2], the fact that (i) implies (v) is a special
case of results of Lin [19], [20], and Pasnicu ([28], Remark 2.12) shows that (i) is
equivalent to the ideal property in the separable case.

PROPOSITION 5.1. Let A be a type I C∗-algebra. Then (v)⇒ (i)⇔ (ii)⇔ (iii)
⇔ (iv). If also A is σ-unital, then all the conditions are equivalent:

(i) A is an AF-algebra.
(ii) A has real rank zero.

(iii) A has generalized real rank zero.
(iv) top dim(A) = 0.
(v) M(A) has real rank zero.

Proof. The implications (i)⇒ (ii)⇒ (iii) and (v)⇒ (ii) are obvious, and (iii)
⇒ (iv) follows from Proposition 2.7.

(iv) ⇒ (i) A has a composition series {Iα | 0 6 α 6 β} such that for each
α < β Iα+1/Iα is Rieffel–Morita equivalent to a commutative algebra C0(Xα).
Each Xα is totally disconnected, and hence C0(Xα) is AF. Therefore Iα+1/Iα is
AF. Since direct limits of AF-algebras are AF, and since an extension of one AF-
algebra by another is AF (a fact which was not known when [2] was written), a
routine transfinite induction shows that A is AF.

Finally, if A is σ-unital, the implication (i)⇒ (v) follows from Corollary 3.7
of [19].

PROPOSITION 5.2. If A is a type I C∗-algebra, then the following conditions are
equivalent:

(i) A has generalized stable rank one;
(ii) A has a composition series {Iα | 0 6 α 6 β} such that Iα+1/Iα is extremally rich

for each α < β;
(iii) top dim(A) 6 1.

Proof. The implication (i)⇒ (ii) is obvious, and for (ii)⇒ (iii) we use a com-
position series such that Iα+1/Iα is both extremally rich and Rieffel–Morita equiv-
alent to a commutative C∗-algebra C0(Xα), cf. Subsection 2.1(vi). Then Iα+1/Iα

extremally rich implies C0(Xα) extremally rich which implies tsr(C0(Xα)) = 1
which implies top dim(C0(Xα)) 6 1 which implies top dim(Iα+1/Iα) 6 1. Then
by Proposition 2.3 top dim(A) 6 1. The proof that (iii) implies (i) is similar. Now
top dim(Iα+1/Iα) 6 1 implies top dim(C0(Xα)) 6 1 which implies tsr(C0(Xα)) =
1 which implies tsr(Iα+1/Iα) = 1.

If A is type I and top dim(A) = 0, then A has stable rank one since it is
AF. But in the one-dimensional case there are numerous examples where A is
extremally rich but not of stable rank one and numerous examples where A is
not even extremally rich. But, as we proceed to show, such examples cannot be
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CCR algebras, despite the fact that the (non-canonical) composition series for a
CCR algebra with each Iα+1/Iα of continuous trace can be very complicated.

LEMMA 5.3. Let A be an n-homogeneous C∗-algebra such that top dim(A) 6 1.
(i) If A is σ-unital, then tsr(M(A)) = 1.

(ii) In any case, tsr(A) = 1.

Proof. (i) By the structure theory for n-homogeneous algebras and the fact
that A∨ is σ-compact, we can find a sequence (Im) of ideals such that

⋃
hull

(Im) = A∨ and each A/Im is isomorphic to C(Xm)⊗Mn where Xm is compact.
Since dim(Xm) 6 1, A/Im is unital and of stable rank one. The conclusion follows
from Theorem 2.10(ii′).

(ii) If A is σ-unital (ii) follows from (i). But A is the direct limit of an upward
directed family of σ-unital ideals.

LEMMA 5.4. Assume each irreducible representation of A has dimension at most
n and top dim(A) 6 1.

(i) Then tsr(A) = 1.
(ii) If also A is separable, then tsr(M(A)) = 1.

Proof. (i) We use induction on n. The case n = 1 is known. For n > 1 A
has an ideal I which is n-homogeneous such that all irreducibles of A/I have
dimension at most n − 1. Thus tsr(I) = tsr(A/I) = 1 by Lemma 5.3(ii) and
induction. To complete the proof we show that ι0 : K0(I)→ K0(A) is injective, cf.
Remark 4.6. Write I = (

⋃
Iα)= for an upward directed family of σ-unital ideals.

Consider

K0(Iα)
(ια)∗→ K0(I)

ι0→ K0(A)
(ρα)∗→ K0(M(Iα)),

where ρα : A → M(Iα) is the natural map used above, cf. Corollary 4.4. The
composite map is injective by Lemma 5.3(i). Since every element of K0(I) is in
the image of (ια)∗ for α sufficiently large, this implies ι0 is injective.

(ii) We use the same induction and the same I, but here we use Lemma 5.3(i)
and Theorem 4.8.

LEMMA 5.5. Let A be a C∗-algebra, all of whose irreducible representations are
finite dimensional, such that top dim(A) 6 1.

(i) Then tsr(A) = 1.
(ii) If also A is separable, then tsr(M(A)) = 1.

Proof. There is a sequence (In) of ideals such that all irreducibles of A/In
have dimension at most n and

⋃
hull(In) = A∨. Thus (i) follows from Theo-

rem 2.10(ii) and Lemma 5.4(i), and (ii) follows from Theorem 2.10(ii′) and Lem-
ma 5.4(ii).

THEOREM 5.6. If A is a CCR C∗-algebra, then the following conditions are equiv-
alent:
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(i) A has stable rank one;
(ii) A is extremally rich;

(iii) top dim(A) 6 1.

Proof. We need only prove that (iii) implies (i). We claim that A = (
⋃

Bα)=,
for an upward directed family of hereditary C∗-subalgebras, such that each Bα

has only finite dimensional irreducibles. One way to see this is to use the theory
of the minimal dense ideal, K(A), found in Section 5.6 of [31]. By 5.6.2 of [31] the
hereditary C∗-subalgebra generated by any finite subset of K(A) is contained in
K(A). And for each a in K(A) and each irreducible π, π(a) has finite rank. Since
B∨α is an open subset of A∨, top dim(Bα) 6 1. Then the conclusion follows from
Lemma 5.5(i) and the preservation of low rank by direct limits.

THEOREM 5.7. If A is a σ-unital CCR C∗-algebra, then M(A) has stable rank
one if and only if top dim(A) 6 1 and all irreducible representations of A are finite
dimensional.

Proof. If A has an infinite dimensional irreducible representation, then A
has a quotient algebra isomorphic to K. Therefore M(A) has a quotient isomor-
phic to B(H). But tsr(B(H)) = ∞.

For the other direction we write A = (
⋃

Aα)= for a suitable upward di-
rected family of separable C∗-subalgebras. Since A is σ-unital, we can choose the
Aα’s so that M(A) =

⋃
M(Aα). (Note that M(Aα) ⊂ M(A) if Aα contains an

approximate identity of A.) Since tsr(A) = 1 (by Lemma 5.5(i) or Theorem 5.6),
we can also arrange that tsr(Aα) = 1 and hence top dim(Aα) 6 1. Then Lem-
ma 5.5(ii) applies to each Aα, and the conclusion follows.

We are not applying the inverse limit theory here, but we could have used
Corollary 4.9 (which is based on Theorem 3.11) instead of Theorem 2.10 in the
proof of Lemma 5.5(ii), and we could have used an easier inverse limit argument
similar to the construction in Subsection 3.2 instead of Theorem 2.10 in the proof
of Lemma 5.3(i). A negative answer to the first question below would allow the
possibility of more crucial applications of Theorem 3.11.

QUESTIONS 5.8. (i) If A is a σ-unital (or separable) C∗-algebra (or type I
C∗-algebra) such that M(A) has stable rank one, does there necessarily exist a
sequence (In) of ideals such that

⋃
hull(In) = A∨ and each A/In is unital?

(ii) Does there exist a separable C∗-algebra A such that tsr(A) = 1 and 1 <
tsr(M(A)) < ∞?

NOTE: These questions are not conjectures, and nothing in this paper should
be construed as a conjecture.

THEOREM 5.9. Let I be an ideal of a σ-unital C∗-algebra A such that I is a dual
C∗-algebra, A/I has only finite dimensional irreducible representations, and
top dim(A/I) 6 1. Then M(A) is extremally rich.
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Proof. By Theorem 5.7 M(A/I) has stable rank one. Hence the result follows
from Theorem 4.8(iii).

REMARK 5.10. It can be shown that if M(A) is extremally rich for a σ-unital
CCR algebra A, then A satisfies the hypotheses of Theorem 5.9. In other words:

If A is a σ-unital CCR C∗-algebra, then M(A) is extremally rich if and only
if top dim(A) 6 1 and each infinite dimensional irreducible representation of A
gives an isolated point of A∨.

We are omitting the proof of the converse but point out that the algebra
called B in Example 4.10 is an instructive example. Note that not every C∗-algebra
satisfying the hypotheses of Theorem 5.9 is CCR.

COROLLARY 5.11. Let I be an ideal of a C∗-algebra A such that I has only finite
dimensional irreducible representations and top dim(I) 6 1. Then tsr(A) = tsr(A/I).

Proof. If I is σ-unital, this follows directly from Theorem 5.7 and Corol-
lary 4.4. The general case follows from this via standard techniques for reducing
to the separable case. In representing A as the direct limit of separable algebras
Aα, we arrange directly that tsr(Aα ∩ I) = 1 rather than trying to arrange di-
rectly that top dim(Aα ∩ I) 6 1. (We don’t know whether it is possible to control
topological dimension in general constructions of this sort.)

REMARK 5.12. As mentioned above in Remark 4.6, one can use K-theory
instead of multiplier algebras to study the stable rank of an extension of one stable
rank one C∗-algebra by another; and in this way one can prove the stable rank one
case of Corollary 5.11 without using multiplier algebras. The following result,
whose proof is omitted, can be used:

Let A be a CCR algebra such that top dim(A) 6 1. If α ∈ K0(A) and π∗(α) =
0 in K0(π(A)) for every irreducible representation π, then α = 0.

THEOREM 5.13. Let I be an ideal of a C∗-algebra A such that I has only finite
dimensional irreducible representations, top dim(I) 6 1, and A/I is extremally rich.
Then (i), (ii), and (iii) below are equivalent and (v) implies (i), (ii), and (iii). If also I is
σ-unital then (iv) is equivalent to (i), (ii), and (iii).

(i) A is extremally rich.
(ii) π(E(Ã)) = E((A/I)∼), where π is the quotient map.

(iii) tsr(A/(I + I⊥)) = 1.
(iv) The Busby invariant τ : A/I → M(I)/I is extreme-point-preserving.
(v) A/I is isometrically rich.

Proof. We may assume A unital.
It is obvious that (i) implies (ii). Assume (ii) and let u be in E(A/(I + I⊥)).

Lift u first to E(A/I) and then to v in E(A). Let ρ be a representation of A which
is faithful, non-degenerate, and atomic on I. Hence ker(ρ) = I⊥. Clearly ρ(v)
is unitary. Therefore v + I⊥ is unitary in A/I⊥ and u is unitary. It now follows
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from 2.7 of [9] that tsr(A/(I + I⊥)) = 1. If (iii) is true, then tsr(A/I⊥) = 1 by
Corollary 5.11. Since A is a pullback of A/I and A/I⊥, with both maps surjec-
tive, Theorem 4.1 implies that A is extremally rich. Thus (i), (ii), and (iii) are
equivalent.

Now if I is σ-unital, the facts that (i), (ii), and (iv) are equivalent and (v)
implies (i) follow from Theorem 5.7, Corollary 4.4(c), and Remark 4.6(ii). The fact
that (v) still implies (i), (ii), and (iii) in general follows via standard techniques
for reducing to the separable case.

REMARK 5.14. (i) One should not view Theorem 5.13 as the prototype for re-
sults stating that certain C∗-algebras I are universally good ideals from the point
of view of extremal richness of extensions. The reason is that the equivalence of
(ii) and (iii) is an artifact of the particular class of ideals being considered. Instead,
Corollary 4.4 and Remark 4.6 suggest two reasonable prototypes:

(v)⇒ (i)⇔ (ii), or

(v)⇒ (i)⇔ (ii)⇔ (iv).

One may want technical hypotheses, such as the σ-unitality used above, in order
to prove the stronger version. It can be shown that arbitrary purely infinite simple
C∗-algebras satisfy the weaker version, cf. Example 4.7.

(ii) The fact that (v) implies (iii) in Theorem 5.13 amounts to the statement that
M(I)/I contains no proper isometries. Our proof of this uses top dim(I) 6 1.
Could this hypothesis be omitted? In other words:

If I is a C∗-algebra with only finite dimensional irreducible representations,
is M(I)/I necessarily stably finite?

REMARK 5.15. Theorems on higher real rank and stable rank of CCR alge-
bras can also be proved using our main results. This will be done in a future
paper. In particular, a generalization, which doesn’t involve topological dimen-
sion, of Corollary 5.11 to arbitrary ranks will be given.
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